ON SOME APPLICATIONS OF THE H°-STABLE WAVELET-LIKE
HIERARCHICAL FINITE ELEMENT SPACE DECOMPOSITIONS

PANAYOT S. VASSILEVSKI

ABSTRACT. In this paper we first review the construction of stable Riesz bases for
finite element spaces with respect to Sobolev norms. Then, we construct optimal
order multilevel preconditioners for the matrices in the normal form of the equations
arising in the finite element discretization of non-symmetric second order elliptic
equations. The optimality of the AMLI methods is proven under H?-regularity
assumption on underlined elliptic problem. A second application is in the area of
domain embedding methods that utilizes H'-bounded extension operators of data,
finite element functions defined on the boundary across which the given (irregular)
domain is embedded into a more regular (e.g., parallelepiped) one.

1. INTRODUCTION

In this paper we are concerned with the construction of efficient numerical methods
for matrix problems arising from finite element methods for elliptic partial differential
equations. In practical computation, the standard nodal basis for the finite element
space is often chosen as the computational basis and the resulting matrices are ill-
conditioned. In Vassilevski and Wang [VW97] the objective was to seek a substitution
for the standard nodal basis so that the stiffness matrix arising from the new basis is
well-conditioned, preserving the two major properties required for a computationally
feasible basis: (a) the basis functions must be computable and (b) they must also have
local support, hence the resulting stiffness matrix is sparse. This paper will first review
the construction of local projections operators by the wavelet-like method proposed
in [VW96a). The latter wavelet-like projections operators have a main application
in the construction of a stable Riesz basis with the above mentioned features for the
finite element application to elliptic problems.

Attempts in the search of a stable Riesz basis with some restrictions, either on the
mesh or on the analysis, have been made in Griebel and Oswald [GO%4], Kotyczka
and Oswald [KKO95], and Stevenson [Ste95a], [Ste95b]. For a comparative study on
the construction of economical Riesz bases for Sobolev spaces we refer to Lorentz and
Oswald [LO96]. The method from Vassilevski and Wang [VW96a], [VW97] is general
and provides a satisfactory answer for most of the elliptic equations. It is based
on modifying the existing (unstable) hierarchical basis by using operators which are
approximations of the L2-projections onto coarse finite element spaces. For more
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details we refer to [VW97]. The construction and the main properties of the stable
Riesz basis are reviewed in Section 2.

In the present paper we stress upon two applications of the stable wavelet-like
local projection operators (denoted further by m) which are the main ingredient in
the construction of stable Riesz bases for finite element spaces.

The first application, presented in Section 3, is in the construction of AMLI (Alge-
braic Multi-Level Iteration) preconditioners for matrices in normal form (i.e., AT A)
in the case of convection—diffusion (non-symmetric) finite element elliptic equations.
We prove, under H?-regularity assumption (commeonly imposed when studying con-
vergence of multilevel methods in L:-norm, cf. e.g. Bank and Dupont [BD81] and
Goldstein, Manteuffel and Parter [GMP93)), that in three space dimensions the AMLI
method of hybrid type (see further Definition 3.2) is both of optimal order and spec-
trally equivalent to B = ATA. This method may be an alternative to the classical
W-cycle multigrid with sufficiently many smoothing iterations.

The second main application is based on the H?-boundedness of the local projec-
tion operators m¢. In Section 4, we use this fact for the construction of approximate
harmonic extension operators. This techniques has already been used in Bramble
and Vassilevski [BV96] for constructing preconditioners in the interface domain de-
composition {or DD) technique that allows for inexact subdomain solvers. Here, we
present another application in the dual to the DD method; namely, the domain em-
bedding technique. For the latter we refer to Nepomnyaschikh [Nep91b], [Nep9la),
see also Proskurowski and Vassilevski [PV94] and the references given therein. The
application of the H°-boundedness of the local projection operators in the domain
embedding context was possible due to an algebraic fact, that a strengthened Cauchy—
Schwarz inequality for the matrix implies the same strengthened Cauchy-Schwarz in-
equality for the inverse matrix. The detailed presentation is given in the last Section
4.

For practical aspects of the wavelet-like modification of the classical HB (hierar-
chical basis) or equivalently, of the bounded local projection operators m;, we refer to
Vassilevski and Wang [VW96b], [VW97] and Bramble and Vassilevski [BV96].

2. A STABLE RIESZ BASIS BY WAVELET METHOD

In this section we review the construction of local projections 7 which are H7—
stable, ¢ € (0,1], and provide computationally feasible Riesz basis for the finite
element space V = V. The bilinear form of main interest is the one from the second-
order elliptic problems. The method to be presented here was proposed by Vassilevski
and Wang in [VW96a]. It relies on the fundamental estimate due to Oswald [Osw94]
which characterizes the Sobolev space norms ||.|l,, o € [0,1] for finite element spaces:

k
(2.1) Y hFNQs — Qia)vll} < onllolls for all v € Vi
=1
Here, Vo C V) C --- C V7 is a sequence of nested conforming finite element spaces

contained in Hy = H}(§) obtained by J > 1 successive steps of uniform refinement of
an initial coarse triangulation 75 of the polygonal domain @ C R%, d = 2,3. The kth
level meshsize is denoted by hy and we assume that hy = Thy_y = 27¥ho. Also, the
kth level triangulation (the set of elements at level k) will be denoted by 7i. Finally,
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@k : L*(Q)) — V4 is the standard L*-projection operator. Here and in what follows
by || - |lo, @ € {0,1] we will denote the norm in the Sobolev space Hg (). (The space
H¢ is obtained by interpolation between the spaces H} and L2, see, e.g., Bramble

[Bra9s].)

2.1. On the basis construction. Define the L?-projection cperators @ : L2} —
Vi by the identity,

(Qrv,¥) = (v,¢) forallyp € V-

Here and in what follows by (.,.) we mean the standard L*-inner product. The L*-
norm will be denoted by ||.]fo.

Next, assume that there are computationally feasible approximations Q% : L*(f}) —
Vi to @ such that for some small tolerance T > 0 the following estimate holds:

(2.2) 1@k — @&)vllo < TliQvllo for all v € L*(02).
We also need the nodal interpolation operators Iy : C(f2) — Vi defined for any

continuous function ¥ by I = Zk ¢(m¢)¢fk) Here, {¢§’°), i=1,...,nx} is the nodal
i=1

basis of V4. That is, qSEk)(a:j) = §; j~the Kronecker symbol, when z; runs over all the
nodal degrees of freedom AN, of (the node set at kth discretization level} of Vi. Note
that {qbf-k—l), i=1,...,np-1} U {r,ﬁf-k), i=ng~1+1,...,n;} also forms a basis, called
the two-level hierarchical basis of V4.

Definition 2.1 (WAVELET-LIKE LOCAL PROJECTION OPERATORS). The projection
operators of major interest are defined as follows:

(2.3) T = I:I(Ij + Q5L — L)),

i=k
with my= 1.

It is clear that mpeh = if ¢ € Vi since [;¢p + Q¥ (L — L) = p = for j > &
based on (I;41 — I;)¥ = 0 and I;¢p = . This also implies that 7 = 7.

Note also that mp—1 (I — [x—1)¢ = Q41 (Ix— I—1)¢ and 7 — gy = (I — Q% _ ) (L —
Iy 1)k, Then, the components in the definition for the wavelet-like multilevel hier-
archical basis read as follows:

k
(2.4) {¢§O)ai =1,...,m0} U{(I - Q?—l)qbgj): i=mj1+ 1., m)
3=t

The above components {(/ — ?_Jqﬁ‘(j), ¢t = nj-1 +1,...,n;} can be seen as a
modification of the classical hierarchical basis components based on the interpolation
operator [ since (I - Q;_l)qﬁ?) = (I - Q% )I; - Ij_l)qégj); the modification of the
classical hierarchical basis components {({; — I J-_l)qﬁ,gj ), i=n;_1-+1,...,n;} comes
from the additional term Q%_,(f; — I j_l)qﬁgj ). In other words, the modification was
made by subtracting from each nodal hierarchical basis function ¢£j) its approximate
L*-projection Qﬁ_lqb,(j ) onto the coarse level k — 1. The modified hierarchical basis
functions are close relatives of the known Battle-Lemarié wavelets [Dau92].
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Observe that in the limit case when Q¢ = @ (i.e.,, 7 = 0 in (2.2)), we get
v = Qelen1 Qe litr - Quaa v = QuQryr - Quav = Qo

Therefore, myv = Qpv. Le., m; reduces to the exact L*-projection Q. As is well-
known, the L?—projection operators are bounded both in H2(}) and L%(f1). Note
finally that in this case we also have mp — mp1 = Qx — Q4—1. The decomposition of
V based on the operators (J — @r_; was a starting point in the construction of the
BPX-method in Bramble, Pasciak and Xu [BPX90] (see also the survey Xu [Xu92]}),
and its development later in Zhang [Zha92] and Oswald [Osw94]. This gives us a
hope that the hierarchical multilevel basis corresponding to the above choice of the
operators 7, may yield a stable Riesz basis if 7 is sufficiently small.

2.2. Preliminary estimates. For an analysis of the multilevel basis (2.4) we need
some auxiliary estimates already presented in Vassilevski and Wang [VW96a].

The following result on estimating the error e; = (m; — Q;)v will play an important
role in our analysis:

Lemma 2.1. Let Cr be a mesh-independent upper bound of the L?-norm for the
operator I, — I,_y : 'V, = V,. Then,

(2.5) HRs—1v|lo € Crr||vile for allve V-

For a given o € (0,1], assume that 7 > 0 s sufficiently small such that,
1

(2.6) (1+ CRT)i”T < g= Const <1-

Then, there exits an absolute constant C such that for e; = (m; — Q;)v, v € V; there
holds:

’ k k
@27) Y h7|ellR < O A (Q; — Qi ol < Crlonllv|ll Vv e Vi

Remark 2.1. Note that in order to have L*-stability of the deviations one has to
assume that the tolerance 7 is level dependent, i.e., one needs a tolerance 7 = O(J1).

Then

k
(2.8) E les—1ll2 < CllvlZ,  for allv € Vi -

s=1

Lemma 2.2. Let V! = (I~ My_ )V, with VI = (I, — It.1)Vi, be the modified hi-
erarchical subspace of level k for any given L -bounded operators M;. Then, there are
positive constants ¢; and c; independent of k such that for any vy = (I — My_y )11 €

V2, with ¢; € VY,
(2.9) alld? < ol < edllnll?,  r=0,1.

We recall, that ||.]|; stands for the norm in the Sobolev space Hi(§Y) and |[.|lo denotes
the L*(Q)-norm.
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Lemma 2.3, Given v and let v§k) = (mp — mp—1)v. There exists a sufficiently small
constant Ty > 0 such that if the approzimate projections I satisfy (2.2) with T €
(0,70) (see (2.6}), then

J
ol ~ > by o3
k=0

For proofs of Lemmas 2.1, 2.2, and 2.3, see Vassilevski and Wang [VW97].

2.3. Stability analysis. Here we study the Riesz property of the wavelet-like mul-
tilevel hierarchical basis defined in (2.4); that is, we show the H'-stability of the
approximate wavelet basis defined in (2.4).

For any v € V let

g
(2.10) v=Y i+ > 3 il —Qiy)e"

;€N k=1 ZiEngl}

be its representation with respect to the approximate wavelet basis. The correspond-
ing coefficient norm of v is given by
1/2

J
(2.11) ol = Vhg™ D bt D h* > ek o (@=23)
zi€Np k=1 miEN,Sl)
QOur main result in this section is the following norm equivalence:

Theorem 2.1. There exists a small (but fized) 70 > O such that if the approzimate
projections Q% salisfy (2.2) with v € (0,70), then there are positive constants ¢, and
c; satisfying

(2.12) alpl’ < ol < el YoeV.

In other words, the modified hicrarchical basis ts a stable Riesz basis for the second
order elliptic and Stokes problems. The equivalence relation (2.12) shall be abbreviated

as [loll* = [lvlf}.

Proof. We first rewrite (2.10) as follows:

J
(2.13) v = Ev§k),

k=0
where, with %, =0,
(2.14) o= 3 el - Qi) e VL.
:t:.'EN,E!)
Furthermore, by letting ¢{¥) = 3 ck‘{cﬁ,{k) € Vk(l) we see that vik) = (I —Qs_)p®,
zieMY

Thus, by using (2.9) in Lemma 2.2 (with r = 0 and M;—; = @§_,) we obtain
(2.15) 615 =~ 1o 13
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Since ¢*) € Vk(l), then
||¢'(k)“3 = h;‘i Z Ci,e-
wieN Y

Combining the above with (2.15) yields

J
— k
lol® = 3 k22,

k=0
This, together with Lemma 2.3, completes the proof of the theorem. O

Corollary 2.1. For any fized o € (0,1}, denote

K
Iofl2 = > A% lo®)2, o = (m — v -
k=0

Then,

Ivll, = llolle

for all v € HZ(Q) (the latter space is defined by interpolation between Hy(Q) and
L(§)), see e.g. Bramble [Bra95]) restricted to the finite element space V = Vy. The
constants in the norm equivalence depend on o as indicated in (2.6). For o =0 as
mentioned in Remark 2.1, we have to assume a tolerance 7 = O(J 7).

3. ALGEBRAIC MULTI-LEVEL ITERATION (AMLI) PRECONDITIONERS FOR ATA

In this section we construct optimal order preconditioners for solving systems of
linear algebraic equations Ax = b transformed in the normal form ATAx = ATb
which may be useful for solving convection—diffusion finite element elliptic equations
and also in certain domain embedding methods (when A is symmetric).

Consider the homogeneous Dirichlet boundary value problem for the following
second-order elliptic equation:

(3.1) L(u) = -V (a(z)Vu)+b(z)  Vu+clz)u= f(z), =€,
where a = a(r) is a symmetric and positive definite matrix with bounded and mea-
surable entries; b = b(z) and ¢ = ¢(z) are given bounded functions; f = f(z) is a
function in H~1(Q2).

Note that we do not have here in mind the singularly perturbed case of convection

dominated problems of the form (3.1).
A weak form for the Dirichlet problem of (3.1) seeks u € Hg(Q) satisfying

(32) a(w,0) = fv) Vo e HY®),
where

a(u,v) = j‘; (a(z)Vu-Vu+b(z) Vuv + c(z)uv)de

and f(v) is the action of the linear functional f on v.
Let us approximate (3.2) by using the Galerkin method with, say, continuous piece-
wise linear polynomials. If V = Vj, denotes the finite clement space associated with



STABLE DIRECT WAVELET-LIKE FINITE ELEMENT SPACE DECOMPOSITIONS 7

a prescribed triangulation of {! with mesh size h, then the Galerkin approximation is
given as the solution of the following problem: Find uy € V}, satisfying

(3.3) a(un, @) = f(¢) Vo e Vi

It has been shown that the discrete problem (3.3) has a unique solution when the
mesh size h is sufficiently small. Details can be found in [Sch74], [SW96].

To shorten the exposition, we assume that a{-,-) is Hj coercive.

We summarize the assumptions on a(.,.):

e H} x H}-boundedness, i.e., there exists a positive constant v, such that
(3.4) a(v,w) < ya(ao(v, U))%(ag(w,w))%’, for all v, w € Hy(Q);

o Hj-coercivity, i.e., there exists a constant +; such that
(8.5) a(v,v) > y2ag(v,v) for all v € H}(Q);

Here, ag(.,.) is, for example, the principal symmetric and positive definite part of

al.,.).

3.1. Bounds of the local projection operators. We consider any local projection
operator m; : C -+ V. where C is for example space of continuous functions that in
particular contains V = V; the finite element space under consideration.

Let
(3.6) ao(mrv, ) < (ko )ao(Mryk, vy Tiyrov) for all v € C.

We assume that the norm—bound 7 of 7 in energy—norm may only depend on the level
difference kp > 0. Our main application, though will be when 7(kp) is independent
of ko, i.e., for stable local projection operators .

Of main interest are the discretization operators Ay : Vi — Vi defined by the
identity (Arp,¥) = a{p, ¢) for all ¢ and 3 € V.

Let Py be the associated with a(.,.) (non-symmetric) elliptic projection operator
P : Hy = Vi, ie., a(Pv,¥) = a(v, ) for all € V. Similarly, define P : Hg — Vi
by a(y, Prv) = a(y,v) for all ¥ € V.

Let also A; be the largest eigenvalue of the symmetric positive definite operator

associated with ag(.,.) restricted to V4, i.e, Ay = sup aﬁ;ﬁﬁu :
veV 0

We assume:

o Assumption I: (FULL ELLIPTIC REGULARITY) There hold the following optimal
L?-error estimates:

Allv — Prollg
Allv — Prollg

The first error estimate in (3.7) implies:

(3.8) Arao(v — Pro,v — Po) < ohf|Avlls, forallve V-

orag(v — Pyv,v — Pyv), forall v e H},
orae(v — Prv,v — Pfv), for allv € H}-

(3.7)

FARVAN

We also assume the following standard inverse estimate:
o Assumption II: (INVERSE ESTIMATE)

(3.9) A o2 B2 e 23T
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A main result of this section is the following estimate:
(3.10) [[Axmev]le < ornlke) | Arsrevllo for all v € Viyy,.
Based on the boundedness estimate for af(.,.) one has:
Akpllc = al(y, Arp)

< 1av/ao(w, )/ ao( Art, Axt))
< Y2/ Ak ao(h, )| Axd o

(3.11) |Asdlle < v2vVArv/ao(, )
< 2/Xin/a(, B} for all Y € Vi
Consider the estimates:
[Asmevllo < [lAgme(v — Peolflo + | AcPevllo
< 12A; (ao(mie(v ~ Pev), (v — Pev)))? + | ArPrvllo
< yenlko) (Arao(v — Prv,v — ka))% + Ak Prvllo
< mn(ko)oal|Av|lo + || AxPrvllo:

which shows

(3.12)

Now, noting that

HAkka”(z) = a(ka,Akka) = a(v, AkPk’U) = (AU,AkPkU) S ”AU”0||AkPk'U||Q,
we get
(3.13) [ AxPrvllo < || Avflo.

Combining estimates (3.12-3.13), estimate (3.10) then follows letting og = 1204 +1
and A = Ak+kﬂ.

3.2. Spectral equivalence estimates for the two—level preconditioner. In this
susbsection we derive some spectral relations and define a two-level preconditioner
based on the direct space decomposition Vigr, = (I — ) Vs, @ Vi

One then immediately gets the following spectral equivalence result: Let (Svy,v,) =

inf | Aktko |2, v € Vigi, , define the Schur complement of Biyr, = AL, Akt
VE Vi kg ? M

with respect to the direct decomposition Vipr, = (I — ) Vigs, @ Vi Le., let

A A } (I - ﬂk)VkM
. A = o,
(3 14) k+ko 1: A21 AZZ :| } Vk

Note that Ay = Ag.
Then S = B22 - Bz}Bl_llBu where Bk+k0 = {BTS}?—,.sml (= A{-ﬁ-kgAk'Fko)' That iS,

B = AL Ay + AL Ay

By = A A+ AglAzz

By = A'{QAH + A§2A21

By, = AL Ay + AL A, = Bi + AL Ara.
Noting then tha,t (A12U2,A12’02) = a(vg, Amvg) = O‘,(’Ug, PI:CAmUz) — (Ak’t)g, PI:AQ'UQ) S
Il PllollArzvaloll Axvallo < o(ko)llArzvzfloll Axvallo, i-e.,

Arzvallo < o(ko) |Akvallo, where vy = mpv, vy = (I — my)v,
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one gets the estimates, from (3.10) and (Svg, v2) < (Byva,vz) + || A12v2l3,
(Brvz, v3) < 05n* (ko)(Svs, va), (S0a,2) £ (1 + 0%(ka))(Brva, v2)

for all vy € V4.
Therefore, we proved the following result.

Lemma 3.1. The Schur complement S : Vi, — Vi of Bryr, = A{M‘}Ak%ﬂ with
respect to the direct decomposition Vig, = (I — 7k )Vipr, © Vi and the operator By, =
AT Ay, satisfy the spectral estimates:

1
1+ o%(ko)
The constant o(ky) is defined from the following norm bound:
1Pollo < olho)lloller for all v € Ve,
and admits the following asymptotic behavior with respect to kg — oo:

(3.15) o(ko) < Chyfhiyr, = 2% -

Proof. Estimate (3.15) is seen by duality, i.e., from Assumption I and the behavior of
Am =~ b2, 1e., Assumption IT (which is actually, standard inverse estimate). To see
that, consider the estimates:

ag(v — Pfv,v — Pfv) < 47 %a(v — Prv,v — Plv)
= ’}'1_26(’0,1) - PI:U)
L 1
< 727}—2 [ao('v: U)]Z [aﬂ(v - P]:(U: v PEU)P ’

(S'Ug, '02) < (BkUg,UQ) S G‘ZEnz(kg) (S‘Ug,’l)g) fOT all Yy € ‘/k

which imply,
(3.16) ao(v — Pfo,v — Piv) < 43/4; aglv,v) forall v-
Consider then the estimates (based on Assumption Iand (3.16)):
lv— Pfollo < Chy (ao(v — Pfv,v— P,’:v))%
< Chama /77 (ao(v,v))2

< Chiy/ Akt 1v]l0

< Chk/hk-i-ko ”v”(l:

which shows the desired asymptotic behavior of o(kg) since || Pivllo < [[vllo + ||v —

tolo = 2ol 0

As a corollary, one may formulate the following two-level method for By, .

Definition 3.1. The operator
Ell 9 I EﬁlBlz
0 I
defines a two-level preconditioner to By, . Here ﬁn is symmetric positive definite

approzimation to By, and similarly, By is symmetric positive definite approzimation
to Bk or to SD = ng — Bz;BﬂlBlz.
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The analysis of the two-level preconditioner is based on Lemma 3.1 and in the case
of B = Sp, on the estimate

1
1 + Uz(ko)

which is proved in the same way as Lemma 3.1 using the inequalities:

(Sbvz, Uz) < (Bzzvz, Uz)
< (1 + 0 (ko})( Brvs, v2)
< (14 0 (ko))on? (ko) (Sv2, v2)
< (14 0*(ko))oin’ (ko)(Spve, va)-

(3.17) (Spv2,va) € (Brug,va) < osn*(ko) (Spva,ve) for all vy € Vi,

Here, we have also assumed that ﬁn is properly scaled, namely, that (Byvy,v1) <
(Ellvl,vl) for all vy, which implies the inequality (Svz,v2) < (Spuvs,v2), used in the
last line above. One can also show that (Byivi,v1) < (1 4 o¥{ko))ozn?(ke){Bv,v),
based on Lemma 3.1 and inequality { Bagvz, v2) < (1+0%{ko))oin?(ko)(Sva,v2). Thus,
Bi; and B, allow for approximations and the relative condition number of the two-

level preconditioner My with respect to B, can be estimated in terms of H(ky) =
(1 -+ o%(ko))ozn?(ko) and the constants involved in the spectral equivalence relations

o~

between B;; and B;; and between Ek and Bj. More details are found from Vassilevski
[Vas97], see also Bank [Ban96} and the analysis in the next subsection.

3.3. The AMLI preconditioner. In this section we define the AMLI preconditioner
and present the analysis of its relative condition number with respect to B = By y,.

One can generalize the preconditioner from Definition 3.1 to the multi-level case
in a standard way, cf. Axelsson and Vassilevski [AV90], Vassilevski [Vas92] or the
survey paper by Vassilevski [Vas97].

Definition 3.2. Let My = Ap. For s = 1,2,..., [fﬂ—] and m = min{J, skp}, k =
(s ~ 1)kg consider B,, = {Br,s}i,s:r The operator

Mm:[ﬁﬂ 0 Hf E;;Bu]
By Sk 0 I

defines the Algebraic Multi-Level Iteration (AMLI) preconditioner to By, Here, EH
is symmetric positive definile approzimation to By, and

(3.18) S71 = [1 - p(M7'Sp)] 55", Sp = Bas — Ba By Bia
where

(3.19) all) = 1 :jT(ﬁ)

ap—q

and T,(t) is the Chebyshev polynomial of first kind and degree v = vy, > 1. Also,
ay = 1+ o(ko) and a = ayoin?(ke) is o lower bound of the minimum eigenvalue of
M; ' By, which has to be estimated.
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Remark 3.1. To implement one action of M', as readily seen, one performs two
inverse actions of By, matriz—vector producits with the blocks By and Biz of B as

well as v inverse actions of My, (already defined by induction) and also v 1 actions
of Sp which is based on the actions of the blocks of B, By, By and By and one

more action of By]' for each action of Sp.

For the analysis of the AMLI preconditioner M,, the following estimate will be
useful:

(320) (S'Uz,'vg) S (SD’UQ,’UQ) all Ug,
provided §11 is scaled such that
(321) (Bll”!)], 'U}) S (ﬁnvl,vl) S (1 + ﬁ(kg)) (.8111)1,1)1) for all .

We also have:

(Byavg,v3) < (1 + (ko)) Biva, va) < (1 + 0 (ko))oin*(ko) (Sva,vs) for all v,
This estimate, lefting
(3.22) H(ko) = (1 + o*(ko))ogn’ (ko),
implies the strengthened Cauchy-Schwarz inequality

(3.23) (Bz1v1,v3) < y(ko) [(Buws, ”01)1% [( Baava, v2)]

]

for all vy, vs,

where y(ko) = /1 — T{le_u')'
The latter inequality in turn implies the estimate,
(3.24) (B, v1) < Hiko) (Bnv,v), for all v = vy + vy, v2 = mpv.
Choose now v > H(ky). Then there exists a sufficiently small & > 0 such that the
following inequality holds:
(3.25)

1+ Blko)H(ko) + 'Hz(k'o)

(a4

Hko)

(1-a"

v
aid (14 Va1 - Va)-t
=1
We note that (3.25) (after multiplying it by a) reduces to ZH?(ko) < 1 by letting
a— 0.
We are now in a position to prove the main result concerning the spectral equiva-
lence relations between the AMLI-preconditioner M,, and B,,.

1 .
25310*’:

Theorem 3.1. Assume that v > H(ko) and let a satisfy inequality (3.25). Then, the
following estimates hold:

(3.26) (Mpv,v) < (Bpv,v) < % (Mnv,v)  for allv € V.

Proof. The proof follows from a standard induction argument. We have My = By,
hence (3.26) holds for any o < 1. Assume now, that for some s > 1 and £ = (s~ 1)ko
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(3.26) is valid. Then for ((M,, — Bn)v,v) = ((ﬁu — Bi)vi,m) + ((gk — Splvg, vq)
first the following estimate hold:

0 < (My — Bp)v,v), forallv,

due to the choice of the polynomial p, in (3.19) (and « as in (3.25)), the induction
assumption, and (3.17).
We will use next the following technical fact,

sup  pu(t)
py(t) ]. 2 tE[a’I, (12]
I —_— 1 k =
S“P{l YO [avﬁnz(ko)’ =TT
t€fey, oa]
" and that sup p,(¢ TETTY , where a; = 7*—1:" and oy = 1 + o?(ko).
t€[oy, az} 1+T”(ﬂ2 of1 (
Therefore, for a = - = u(‘}‘co), t Isup ]p,,(t) (I_-I-[?W’ g=7; ?, which in particular
Eloy, o
implies that
te[zllj.pazlpy(t) — _4¢ 4(1-V3E)* (1 +VE)>
o e C
= (1—&)” ~ H(ko) o > 0

a[Sarv@ea-va] T
Also, by the choice of By (see (3.21)), the spectral relations (3.17) and inequality
(3.25), we have:

(M — By )v,v) < B(ko){Buivi, v1)

+(Sp(! — pu(M; ' Sp)) " vz, v2) — (Spv2, v2)
< B(ko)H(ko)(Bmy, v)

+(Spvq, vg) sup {% i tE [a,\min(BgiSp), )\max(Bk_lSD)]}
< B(ko)H(ko)(Brv,v)

+(Baava, vg) sup —(%—) rte [aAm;n(Bk_lSD), Amax(B,:lSD)]}
< B(ko)H(ko)(Bmv,v)

+(Sva, va) (ko) sup { 228+ t [a—%ﬂ—‘(—ﬂ L+ 0%(ko)| }

< 8 BlhoYH (ko) + ol (=8 :  (Buv,v)
[t§(1+\/§)v—l(1_\/§)f—l]

< (2 = D)(Bpnv,v)-
The latter inequality completes the proof. O
Now, we emphasize the asymptotic behavior of H(ko}. Assume at this point that the
local projection operator m : Viqr, — Vi is Hl-bounded, i.e., n(ks) is independent
of ky. Such operators are available based on approximate wavelet modification of the
classical HB (hierarchical basis) as described in the previous section (see, Definition

2.1). Then, one has:
(3.27) Hko) = (ko) = 2%, ko — o0,
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From complexity requirement we also have the restriction on v,
2k > 4.
The latter inequality together with v > H(ko) = 2** show the following main result:

Theorem 3.2, In three space dimensions, d = 3, the AMLI preconditioner M,, is
both, of optimal complezity, and spectrally equivalent to B,, if ko is sufficiently large
and the polynomial degree v satisfies 2% > v > H(ky) ~ 22k,

3.4. Estimation of the condition number of B,,. In this section we show that
the condition number of the major block By; on the diagonal of By, grows at most

3
like (ﬁi—) , hence for ky fixed By; is well-conditioned.
0

We begin, for any v; = (I —m)v, with the standard approximation property of the
L?—projection operator Qy:

|Qrvi —~ villo < Che/ao(vi,v1) < Chiyy '/ (Anvi, v).

Then, based on the deviation estimate (2.7) (recall that m; is close to the exact
L?-projection operator (}) and on the coercivity estimate (note that mpv; = 0):

”kaﬂlo = ”(Qh - Wk)'Ul”D < Chk\/ Go(’vl, “Ul) < Chwfl (A11U1,’U1),

one arrives at the following approximation estimate:

loalfs < (NQrvrllo + Jlor — Quvallo)?* < e A (Arrvr, vr) < e AL [ Anwalfo|vallo.
Therefore, one gets
(3.28) Mellviflo < e lAuwillo.
We also have, using estimate (3.11) and the proven L?-coercivity of A;q, (3.28),
Aziviflo < [|Avillo

< etk 2(Avy,0n)E

=/ Metho E(A“vl,vlﬁ

< mﬂ! (Il 4uv ol llo)
< /22 Ao,

61)\k Ti

Then, since By, = AL Ay + AL Ay, using (3.11), the latter estimate, and the co-
ercivity one (3.28), the required eigenvalue bounds stated in the next theorem are
proven.

Theorem 3.3. The following estimates hold:

a2 < lnnlf o Bunw) o |y 4 (ﬂ)%mo [l 41301 |3

[N I Y 1k [2AH

IA

2
A
Y2 k+ko 232 .
1+ ("h) a2 Ak'*“kﬂ

3
That is, the condition number of By grows at most like (A"A;:“) ~ 2% Therefore,

for bounded ky (as required in our application), the block By, will be well-conditioned
and hence relatively easy to approzimate (such as in (3.21))}.
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Remark 3.2. Note that the results of Theorem 3.3 are proven without the full regu-
larity Assumption I.

4, BOUNDED EXTENSION OPERATORS

In this section we review one more application of the bounded local projection op-
erators 7 to construct H*-bounded extension operators, first used in Bramble and
Vassilevski [BV96]. Here we emphasize on the application of such bounded exten-
sion operators in the case of constructing preconditioners for finite element elliptic
equations by the domain embedding technique.

The main fact used in the presented domain embedding technique is that one
can transform the given problem based on bounded extension operators to a more
stable form that allows for approximate solutions (preconditioners) in the embedding
(more regular) domain 1. We also take advantage of an algebraic fact (perhaps
first proven here) that a strengthened Cauchy-Schwarz inequality for the matrix
implies a strengthened Cauchy-Schwarz inequality for the inverse matrix with the
same constant.

4.1. Wavelet—like extension operators. In this section we describe a general
framework of constructing computationally feasible H'-bounded extension operators
£ that extend data defined on a interface boundary I' into the interior of subdomains
{;}1_, that compose the original domain €. In the domain embedding application
(to be considered in the following section) we will have p = 2 and {2 will be a given
in some sense irregular domain. ! will be the embedding, computationally more
regular, domain (e.g., parallelepiped) which will contain €. Then Q; = Q\ Q1. Fi-
nally, the interface I' will be (a part) of 8 across which (2; is embedded n {2, i.e.,
I'= 691 N 692,

Consider the bilinear form a(u, @) = [ aVu -V de, u, ¢ € Hj(Q) and let V =V

Q
be the finite element space of continuous piecewise linear functions corresponding to

a triangulation 7;, which we assume is obtained by J > 1 successive steps of uniform
refinement of a an initial coarse triangulation 7y of ). We also assume that the
non-overlapping domain partitioning of £

(4.1) Q=TURHUDU...UQ,

consists of subdomains §); that are coarse—grid domains (that is each ; is completely
covered by elements from 7). This implies that the interface I' is also completely
covered by boundaries of elements from 75, Let kg be the meshsize corresponding to
To, then ki = 2 %ho will be the meshsize corresponding to 7; if we divide each edge
of the elements of T;_; in two equal parts to create the elements of 7y.

The coefficient a = a(z), z € { which can be a d x d symmetric positive definite
matrix, bounded uniformly in . It is is assumed that a vary smoothly in each €
but may have large jumps across I'. For the purpose of constructing preconditioners
for a(.,.) it is sufficient to assume that a is piecewise constant with respect to the
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partition {£2;} of Q. Let

_ gTa(z)¢

Pimax = SUp IaX =7

(4.2) sl LR
. imin = inf min g_T_Ta(m)g
Pi,min o€ terd £ &

be bound of the variation of the coefficient matrix a(z) in each subdomain €, ¢ =
1,2,...,p.

Definition 4.1 (EXTENSION OPERATOR). Define the following extension operator
& Vg2V, by

J
Eovle, =Y ENa — di1)ps @i = @lag, -
k=1

Here E} is the trivial eztension of any function ¥; € Vi|aq, by zero al the interior kih
level nodes in Q; and g, : L*(80;) — Viloq, are the L*—projection operators restricted
to the boundaries of §);.

It is clear then that

P
(4.3) a(Eop, o) < Zpi,max/V&)% - VEpidx -
128

i=1

Using the following |.|;-seminorm characterization of space H'(Q;) N Vilg,

J
> i Y A

viv= 3, v, vkerin‘ k=1
k=1

used for v := Eyy; and replacing vy, with EY(g: — gi_,)w: in (4.3), we end up with the
following upper bound,

P J , ,
a(&op, Eop) < )0 pimax 2 b IER(GE — i )eilld a,
(44) i=1 k=1

P J } )
<l le,-,max kzl hi (g — gh_)willd, 50,
1= fuad

Next, use the quasi-optimality of the L?(8%;) projections {qi}7_,; namely:

J J
L , _1yy (R
45) Y h'ld - g )eillden > i > bt e oo,
k=1 wi= 3 o, oW e Vilaq, k=1
k=1 ¢
Given an arbitrary v € V such that U!an.- = ¢;. consider the decomposition,

J

U|n,-' = QB(UIQ;) + E(Q;c - Qi—1)(”|n,~) :

k=1

Here )}, are the L*(£;) projections onto the spaces Vil .
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I I3 . J
Letting ¢{” = (Q} — Q-1)(vln,)oq, we et 9i = Qi(vlg)|og, + 3 @1 There

fore, we can use this decomposition in (4.5) to get:

J . . J . .
> b gk — gia)@illd o0, < C 30 B IH(QE — Qi) (V)| o, 17, a0

k=1 k=1
J . .
(4.6) < C’ki_ll hizll(Q'k - Ql—l)(vlni)“gﬁ;
< CIVvllj o
< Cpimin | a(2)Vv -V vdz -
£1;

Here, we used a standard inverse inequality to bound boundary integrals fan,- by
domain integrals fﬂ

Combining (4.4) and (4.6), by summation over 7, and taking infimum over v € V
such that v}y, = ¢, the following main norm-bound is proved:

Theorem 4.1. The eztension operator & defined in Definition 4.1 is H'-bounded
and satisfies an estimate of the form:

a(Eo9,E0d) <o inf  a(v,v) forany e V.-
VEV: vfp=¢
Here, o depends only on the local variation of the coefficient matriz a(z) defined in
: Pi,maz
(4.2), i.e., on joax Co.
For practical computations, however we have to replace the exact L?(9€;)-projection
operators ¢} by their computationally feasible approximations 7} as introduced in Sec-

tion 2, Definition 2.1 {defined respectively for the finite element spaces restricted to
the boundaries 3€%;).

Definition 4.2 (WAVELET-LIKE EXTENSION OPERATOR). Define the following ex-
tension operator & : V|, =V, by

J
(4.7) &Pla,- = ZES("L - 7";;—1)991'1 Pi = ‘Plaﬂ,- '
k=1

Then using Corollary 2.1 (based on Lemma 2.1 for o = % and the norm character-

ization of H(95Y;)) one has the following modification of Theorem 4.1.

Theorem 4.2. The extension operator € defined in Definition 4.2 is H'-bounded
and satisfies an estimate of the form:

(4.8) a(£¢,E¢) < ”vevilﬁr:qs“(”’”) Jor any ¢ € V.-

Here, 1 depends only on the local variation of the coefficient matriz a(x) defined in

: Pi,maz
(4.2), i.e., on max oimee,
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4.2. Approximate harmonic extension operator and related strengthened
Cauchy—Schwarz inequality. Let A be a stiffness matrix coming from a finite
element discretization of a second order elliptic problem on a domain §) with Dirichlet
boundary conditions. Let now §; be a subdomain of £ which is exactly covered by
elements of the given triangulation of ). In practice we are interested in a problem
formuiated in {1; which for a reason of simplicity we then embed in a more standard
computational domain {2 such as rectangle or parallelepiped in three dimensions. Let
the interface boundary across which {2, is embedded in  be I'. We consider, for the
original problem formulated in {; Dirichlet boundary conditions. In such a way, if
we use domain decomposition ordering of the degrees of freedom in 2, with respect
to the partitioning O = Q; UT U Qy, O, = 2\ Oy, the stiffness matrix A, associated
with the original problem will be a principal submatrix of A, the matrix associated
with the problem in the extended domain {1, i.e., we will have,

Ay A O } 0
(4.9) A=A Ao Ap|} T .
0 A Az} D=0\

The methods that we will be interested in for solving the problem
(410) A1X1 = bl,

will be based on the existence of efficient preconditioners for the matrix A, i.e., for
problems in the standard computational domain (2.

For ease of presentation we will reorder the block matrix A into the following two-
by-two block form:

(4.11) A= [Au Am]} QLU

Ay Apl} T

Note that Ay is block diagonal with blocks on its main diagonal A; and A,. Hence if
we derive a preconditioner §11 for Ay, it will induce in a natural way a preconditioner
By for the original matrix A; whose inverse actions can be computed via By Ly =
(5 [5] &)

11 0 } QZ Ql.

For the construction of the preconditioners for Aj; we will need a mapping &
that transforms data given on the interface boundary I' to data in the interior of
Q\T = Q; UQ,. The requirement that we impose on this mapping is to be bounded
in the energy norm defined by the bilinear form a(.,.) from which the stiffness ma-
trix A is computed. In vector-matrix notation, we have a (rectangular) matrix
[#12] % ?\F=Ql Y22 such that the following estimate holds:

w ([ ) ([ ) <] ]

Here 7 is a positive constant (> 1) independent of the mesh size. In other words, the
mapping £ that extends a given data on I' into the interior of the subdomains {}; and
), is approximate “harmonic” with respect to the given bilinear form a(.,.). Using
functions-bilinear form notation we can write (4.12) as

a{€vqy, Ev2) < linf a(v,v),

Vip=v2
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i.e., the extension provided by the mapping £ is quasi-optimal. The case = 1
corresponds to the exact “harmonic” extension, i.e., Ejp = —A[Aj;. The latter
mapping is impractical since it would require exact solutions in the subregions and

this was our original intend (i.e., to solve a problem posed in §); with a coefficient
matrix Ay; recall that Ay = [%‘ XQ] {g; ). A possible choice of computationally

feasible approximate harmonic extension mappings £ is given in Definition 4.2 (see
aslo Theorem 4.2).
Cousider now the (square) transformation matrix,

po [ Bu]} iU
“jl0o I|}T

and then consider the following transformed matrix (for this approach we refer to

Vassilevski and Axelsson {VA94] and Bramble and Vassilevski [BV96]),
- Ay A

4.13 A=ETAE= [J‘ ,32] :

(1.13) A Ag

One easily derives the relations:

An = Ay

42}:12 = A + A bz

An = An+ ELAn

Ao = (5] A%

The important observation is that the first block has not been changed after trans-

forming A to A. Also notice the form of the block A\zz of A. On its basis the estimate
(4.12) takes the equivalent form:

(4.14)

~ 17T -~ T ‘
(415) vIAyvy <y inf {:;] A [Xﬂ = inf [Xj A [:;] (V1 = vi — E1ava) -

It will be demonstrated in what follows that the transformed form of A, A is more
stable in the sense that it allows for certain approximations of the blocks on the main
diagonal of A and also allows for approximations to its corresponding Schur comple-
ments and the same applies for the block-entries and respective Schur complements

of the inverse of A. The main tool in proving these facts is the following strengthened
Cauchy-Schwarz inequality valid for the two-by—two block structure of A:

(416) Vg‘//{m?l S v ?fAlﬁl \/Vgﬁzg\fg, for all 61, Vo,

wherey = ,/1 — %, i.e.,v € [0,1) (strictly less than one). This follows from inequality

(4.15) as shown in Vassilevski [Vas92] (see also the proof of Theorem 4.3).
We will be needing the following corollaries of the strengthened Cauchy—Schwarz
inequality (found already in Axelsson and Gustafsson [AG83]).

Lemma 4.1. Let A be a symmetric positive definite, two—by—two block matriz,

An A
A=
[Aﬂ Azz] ’
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that satisfies the strengthened Cauchy-Schwarz (or Cauchy—Bunyakowsky-Schwarz)
inequality,

B

1
VgAglVl S ¥ [v'fAnvl] 2 [VgAng] fO‘P all Vi, Vi,

for some positive constant v strictly less than one. Consider now the following Schur
complements of A:

Sl = An - AlgA;;Agl and
Sy = Ay~ AzlAﬂlAlz'

Then the following tnequalities hold:

valvl 2 (1 - ’Yz)V;I'AnVl fOT all Vi

(4.17) vISove > (1 —v*WlAypve for all v

4.3. The strengthened Cauchy—Schwarz inequality for the inverse matrix.
In this section we prove the main result on which our construction of the domain
embedding preconditioners is based. Namely, we show that given a two-by-two block
matrix A, symmetric positive definite, for which a strengthened Cauchy-Schwarz
inequality holds with a constant v € [0,1) (as in Lemma 4.1}, then for the induced
two-by-two block structure of A~! the same strengthened Cauchy-Schwarz inequality,
with the same constant v holds.

Theorem 4.3. Let A be a symmetric positive definite, two-by—two block matriz,

Air An
4.18 A= .
(4.18) [Azl An
We assume that there exists a positive constant ~y, strictly less than one, such that the
following strengthened Cauchy-Schwarz {or Cauchy—Bunyakowsky—Schwarz) inequal-
ity holds:

1 L
(419) Vg’AZ]_V]_ S Y [vauvl] 2 [VgAzz\fg] z fOT‘ all Vi, Vo
Consider then B = A™! = [gn gm] partitioned according to the block partitioning
21 D2

of A as in ({.18). Then for the same constant v € (0,1), the following strengthened
Cauchy-Schwarz inequality holds:

1 1
(4.20) Vg’Bglvl S ¥ [VianVl] ? [VanVg] z fOT all Vi, Vg
Or equivalently, we have:
1 w17 . [vi]
(4.21) viByv; < T [v: B [vl , forallvy, va-

Proof. Consider the following block—factorization form of A,
A I 0 An 0] [1 Al Asn
AgAT I 10 Sy |0 I ’

where S, = Ay — Ag1 A Arz is the corresponding Schur complement. Note that S5
is symmetric and positive definite. This block-factorization form of A implies the
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following block factorization of B = A~

B! —AjlA] [AG O I 0]
0 I 0 St i{—-AnA7t I

This factorization in turn shows the following exact representation of B = A%

B= [A;: + A AnS; An Ay —A;f{}izsgl]
=5 AnAy 53 ’
1.e., we have,
Bu = Ay + A7 AnSy An AL,
B]z = __AI-IIAleZ—l
821 — —S;lAglAl_ll, and
ng = S;l.
As it is shown in Vassilevski [Vas92], the strengthened Cauchy-Schwarz inequality
(4.20) and the inequality (4.21) are equivalent. This is seen by looking at the non-
negative quadratic form
(v +tw)TB(v + tw) — (1 — v))v] Byyvy > 0,

for any real £ and any vectors v, w of the form v = [ ] and w = [}, ]. Le,,

72"?811"1 + QVanVﬁ + vIByvatt > 0-

(4.22)

Its discriminant D = (vI By;vy)2—42vT By vi vl Byyve must be non-—positive, and this
is inequality (4.20). The converse is also true — the non-positivity of the discriminant
D (which is the strengthened Cauchy—Schwarz inequality) implies that the above
quadratic form is nonnegative, and this is (for ¢ = 1) inequality (4.21).
To show (4.21), we use the formulas for the block entries of B given in (4.22).
The given strengthened Cauchy-Schwarz inequality (4.3) for A implies the following
relations between matrix blocks of A (due to Lemma 4.1):

Vgngz > (11— 72)V2TA22v2 for all vs,
which implies
VIAZIV, > (1 = 4*)vi Sy'vy  for all v,.
The latter inequality used for vy = Az;v, reads,
(4.23) vi A At Agivy > (1 — YW A28,  Agyvy  for all vy,

Similarly, for the other Schur complement §; = Ay — Aj3A;,) Ay, the original in-
equality also implies (due to Lemma 4.1),

vI(A1 — A Az  Ag vy = vISivi 2 (1 — VT Auvy for all vy,
or which is the same,
’)(ZV’"IFAHV} k V?AIQAE;AHVI for all V-

The last ineguality, together with (4.23) imply

2

?‘LWQVTAHVI 2 VTAuS;lAzlvl for all vy
s
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The latter inequality is equivalent to (by letting vy 1= Ajlvy)
2

g
l—v
Then we have,

T A-1 T 4-1 -1 -1
2V1 All vy 2 Vi All A1252 A21A11 Vi for all Ve

— 2 —
—1__112 viAnvi = (1+ s Vi AL vi
2 Vrf(A;ll + A;11A123;1A21A;11)V1
= V:IFBHVI, for all Vi

The latter inequality shows, since A;ll = By — 31232—21 By, is a Schur complement of
the symmetric positive definite matrix B, that

. T
vIByvy < = 1‘1’1f[¥;] B[]
- 2

Thus the proof is complete. i

4.4, The construction of preconditioners for A;; on the basis of available
preconditioners for A. In this section we present our approach of deriving precon-
ditioners for the principal submatrix A;q of A (where A is partitioned in a two-by-two
block form as in (4.18)) on the basis of any available preconditioner for A itself. Here
we assume that either A itself satisfies a strengthened Cauchy-Schwarz inequality or

that it can be transformed to A = ETAE, with E = [é EI” ] , for which a strengthened
Cauchy-Schwarz inequality holds. The crucial part of the construction of the pre-
conditioners is that the actions of E;; and ET, on vectors vy and vy, respectively, be
computable. For the domain embedding application ;2 comes from the approximate

harmonic extension mapping & (see (4.12)).
Let now M be a given symmetric positive definite preconditioner to A and let the

following spectral equivalence relations hold:
(4.24) 1T Av < vIMv < y,vT Av, for all v,

for some positive constants «;, y;. Hence M~! will be spectrally equivalent to B =
A™Y. Then E'M1E-T will be spectrally equivalent to B = A™! = E-'BET,
As a corollary, we obtain that By, = [I, 0]B[}] will be spectrally equivalent to
[I, OJE*M*ET[L] = [I, —Ep]M™} [_ég] By Theorem 4.3, By is spectrally
equivalent to A7} (= Efll = B — 312.52_21 ﬁgl, see (4.14) and (4.22)), hence

1, 0 M BT [3) = 1, ~BulM [y ]

provides the inverse actions of a spectrally equivalent preconditioner to Aq;.
More specifically, from (4.24) used in the following equivalent form

vy WIBv < VIET "M E-Tv < 47T By, for all v,

we get as a corollary, letting v = [} ],

- e — I — -
Yz IVTBHIVI S_ VT[I, —'Elz]M 1 [—Eg;] Vi S 1 IVfBHVI .
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The latter inequality combined with the inequality from Theorem 4.3,

T 4-1 Tp-1 1 T 4-1
viALvi £viBiwv < T 72v1 Aljvy, for all vy,

imply the desired spectral equivalence relation:

(4.25)

- - - 1 -
Yo lvanlvi < V?[I, —Elg]M 1 [_El;;x"z:l Vi S Y1 11_«—72\/"{1‘11]1\/; for all Vi

That is, we have:

Theorem 4.4. Let M be a spectrally equivalent preconditioner for A and let £ =
[gﬁ'}’] with computable actions of E\; and EL,, transform A to A= ETAE, for
which a strengthened Cauchy-Schwarz inequality with a constant v € [0,1) holds.
Then the mapping

[Ia “Ew]M_l [WI{L‘}';} ’

provides the inverse actions of a spectrally equivalent preconditioner for the principal
submatriz Ay of A. More specifically, the spectral equivalence relations ({.25) hold,
and hence we have the estimates:

Cond ([I; ~Ep ] M1 [Hég] Au) < T L Cond (M™1A) < I »

- -9y’

where the constants v, and v; are from the spectral equivalence relation (4.24).
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