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Abstract. In applying multilevel iterative methods on unstructured meshes, the grid
hierarchy can allow general coarse grids whose boundaries may be non-matching to the bound-
ary of the fine grid, so special care is needed to correctly handle different types of boundary
conditions. Standard coarse-to-fine grid transfer operators with linear interpolants result in a
zero boundary condition for fine grid nodes which are not in the coarse grid domain, and are
not accurate enough at Neumann boundaries. In this paper, we propose two effective ways fo
adapt the standard coarse-to-fine interpolations to correctly implement boundary conditions
for two dimensional polygonal domains in such cases: (1) modified coarse grid boundaries and
(2) modified interpolations. We prove that all the proposed interpolants possess the local op-
timal L2-approximation and H'-stability, which are essential in the convergence analysis of
the multilevel Schwarz methods for second order elliptic and parabolic problems on unstruc-
tured meshes, and provide some numerical examples of multilevel Schwarz methods {and also
multigrid methods) to illustrate the efficiencies of these interpolants.
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1. Introduction. Unstructured grids have become popular in scientific computing be-
cause they can be easily adapted to complex geometries and sharp gradients in the solu-
tion [3, 12, 17]. However, in order to compete with structured meshes which can exploit the
regularity of the mesh, there is a need to develop efficient solvers on unstructured meshes in-
cluding good multilevel algorithms such as domain decomposition or multigrid methods. Since
no natural coarse grids exist as in structured meshes, practical multilevel domain decomposition
and multigrid algorithms must allow coarser grids which are non-quasi-uniform, with bound-
aries and Interior elements which are not necessarily matching to that of the fine mesh. The
traditional solvers need to be modified so that their efficiency will not be adversely affected by
this lack of structure and to ensure that a proper sequence of coarse subspaces exists for the
domain decomposition or multigrid methods.

Providing a coarse grid hierarchy for multilevel methods poses some difficulties when using
unstructured meshes and several different approaches have been developed recently (see for
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instance {14, 15, 18, 19]). One technique generates a coarse grid hierarchy by using indepen-
dent grids created by some grid generator (for example, the one which produced the original
grid). Another approach uses agglomeration techniques to create a coarse space hierarchy. Still
another method uses a graph approach by forming maximal independent sets (MIS) of the
boundaries and interiors of the mesh and then retriangulating the resulting vertex set. The
advantage of using a maximal independent sef approach is that the grids are node-nested and
thus efficient methods can be used to create the interpolation and restriction operators needed
to transfer information from one level to the other, A disadvantage however, is that for com-
plicated geometries, particularly in three dimensions, special care must be taken to ensure that
the coarse grids which are produced are valid and preserve the important geometric features of
the fine domain.

It was shown in [7} that for domain decomposition methods for elliptic problems on un-
structured meshes, the same optimal convergence rate can be achieved as in the structured case
provided that the coarse grid domain covers the Neumann bhoundary part of the fine grid do-
main, but no such requirement is needed for homogeneous Dirichlet boundary conditions. This
was demonstrated numerically in [7] with problems on the unit square by physically extending
the coarse grid domain beyond the Neumann boundaries and using linear interpolation.

In this paper, we will extend this idea to include interpolants with non-zero extensions which
do not require the coarse grid domain be modified to cover the Neumnann boundary part of the
fine grid domain and provide some analysis on a crucial step in the convergence analysis of
multilevel Schwarz methods on unséructured meshes using such coarse-to-fine interpolants. We
will follow the general framework for convergence analyses applicable to unstructured meshes
in [7, 8, 9], which can be viewed as a natural extension of the one formulated by Xu {23] for
structured meshes. Some preliminary results can be found in [5].

This paper is arranged as follows: The considered elliptic problem is introduced in Section 2
and the coarse-to-fine grid transfer operators along with several particular interpolants are
defined in Section 3. Section 4 demonstrates the optimal L?-approximation and H'-stability
properties of the interpolants. In Section 5, we provide some numerical results on multilevel
Schwarz (cf. [2] [24]) and multigrid methods using the coarse-to-fine grid transfer operators
proposed in Section 3. Previous numerical results on multilevel Schwarz methods on structured
grids can be found in |21, 24]. The results we present here, however, appear to be the first on
multilevel Schwarz on unstructured grids. We summarize some conclusions in Section 6.

2. The elliptic problem. Let us consider the following boundary value problem:

Lu=f in £
u=0 on Tp,
du
In
where L is a second order self-adjoint and uniformly elliptic operator, {2 a polygonal domnain,

I'p and T'y two curves consisting of piecewise straight lines, with I'p UTx = 842

We discretize the problem using piecewise linear finite elements and solve the resuliing
system of equations with the preconditioned conjugate gradient or GMRES method. Let T " be
a given fine triangulation of the domain Q with triangular clements, and V" be the piecewise
linear finite clement space defined on 7", Suppose 7 H ig a coarse triangulation of the domain
), with its elements forming a polygonal domain QH . With unstructured meshes, the MIS
coarsening strategy for generating a coarse grid hierarchy may produce coarse grid domains
whose boundaries do not match that of the fine domain. Note then that OH is allowed to be
non-nested and non-matching with €2, so in general we have QF & Q (see Fig. 1). Moreover,
we do not require the coarse grid 7 to have anything to do with the fine grid 7", i.e. none

=0 on Iy,
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of the nodes of 7 need be nodes of 7", but only that it is shape regular. No assumption
on quasi-uniformity is made on the grids Th and TH. Let VH be the piecewise linear finite
element space corresponding to the coarse grid triangulation TH and the boundary condition in
VH be defined as follows: each boundary node z¥ € 9Q# in T# is assigned the same boundary
condition type (Dirichlet or Neumann) as the ciosest fine boundary node to . By changing
boundary conditions for a few coarse boundary nodes, if needed, we may assume the coarse
boundary nodes are arranged in the way that two neighbors of each Neumann (resp. Dirichlet)
node are also of Newmann (resp. Dirichlet) type, with only two Neumann (vesp. Dirichlet}
nodes near two junctions between I'p and I'y to have one Dirichlet and one Neumann node as
its two neighbors.

It is inbuitively obvious that for the coarse grid, 7 H 1o assist in accelerating the convergence
of iterative methods on the fine grid, 7*, it cannot be allowed to be too small compared with the
fine grid. Therefore, we always assume that Q4 covers a significant part of . More accurately,
we assume that there exists a positive constant C such that for any point = € 9Q, we have

dist(z, A< ¢ d(r%),
where 77 is the closest element in 7% to @ and d(r'') the diameter of T,

3. Coarse-to-fine interpolations. As the coarse grid boundary A0 does not match
with the the original boundary (2, so the coarse space VH is usually not a subspace of the fine
space V7. In fact, even if QF = , V¥ may still not be a subspace of VP as the coarse elements
are often not the unions of some fine elements in the unstructured grid. To construct a coarse-
to-fine transfer operator, one may easily come up with the standard nodal value interpolant
associated with the fine space V. But notice that this interpolant is only well defined for
those fine nodes lying also in the coarse domain (1 and meaningless for those fine nodes lying
outside Q. A simple and natural way to remove this barrier 1s to assign those fine node values
by zero. This is indeed a reasonable and efficient thing to do when the assignment is done
along the coarse boundary part of Dirichlet type (which is also near the fine boundary part of
Dirichlet type). We shall denote this interpolant as the coarse-to-fine interpolant, 78

T2: Zero extension with unmodified coarse boundaries. Where coarse grid boundary
condifions are of Dirichlet type, the standard nodal value interpolants with zero extensions can
be accurate enough for interpolating fine grid values outside the coarse grid domain QF (cf.
Fig. 1a), we refer to [6, 7] for the theoretical and numerical justifications of ).

Although the interpolant 10 is appropriate to use at Dirichlet boundaries it is not accurate
enough, or not accurate at all sometimes, to use at Neumann boundaries, see the numerical
results in [7] and Section 5. To achieve better efficiency, we should modify this intergrid oper-
ator to account for the Neumann condition. We now propose two general ways to treat such
boundaries:

1. Modify the coarse grid domain to cover any fine grid boundaries of Neumann type.
9. Increase the accuracy of the interpolants by accounting for the Neumann condition
for those fine nodes in Q\QH.

The first approach is motivated by the fact that standard nodal value interpolants can still
be used with efficiency where the coarse grid covers the Neumann boundary part of the fine grid.
This was first proposed and justified in [7]. We shall denote this operator as the coarse-to-fine
interpolant, Z;.

1}: Zero extension with modified coarse boundaries. Modify the original coarse grid
domain Q7 to make it appropriately larger so that it covers the Neumann boundary part of
the fine grid domain (see Fig. 1b). Let us still denote the modified coarse grid domain by QF.
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Then for all vH € V| the interpolant 7} is defined as

Tty = { vH(zh)  for wz € Qﬂ?j,

0 for 2} € Q\ Q7.
This is a natural extension of v by zero outside the Dirichlet boundary part of the coarse grid
domain. Similar zero extensions were used in Kornhuber-Yserentant [16] to embed an arbi-
trarily complicated domain into a square or cube in constructing multilevel methods on nested
and quasi-uniform meshes for second order elliptic problems with purely Dirichlet boundary
conditions,

Fig. 1. Zero ewtension interpolants: a) I3: With unmodified course boundaries; b) I}
With modified coarse boundaries to cover the parts where Neumann conditions exist (dashed
lines). Thick lines represent coarse grid boundaries.

Although the coarse-to-fine operator [ i+ works well for mixed boundary conditions, one has
to modify the original coarse grid so that it covers the Neumann boundary part of the find
grid domain, This can be difficult to do for very complicated domains. To avoid modifying the
original coarse grid, we now consider standard finite element interpolants which are medified

only near Neumann boundaries. To do so, we first introdnce some notation. Let 7 be any

coarse boundary element in 7H made up of the three vertices ;ch , 2 2z and which has an
edge on the boundary Q7 , denoted by zff 2. We use Q(af!, #H)} to denote the union of all
fine elements, if any, which has a non-empty intersection with the unbounded domain formed
by the edge 27 zH and two outward normal lines to zf' »7 at two vertices o, o (of. Fig. 2).
By including a few more fine elements in some Qzf, zH), if necessary, we may assume that

the fine grid part (Q\ ) is included in the union of all Q(zf', 2;"). Moreover, we assume
(H1) diam QzF  zH) < po diam
which implies the measure of Q(zf, #f) is bounded by the measure of i

]Q(x‘lgs wf)i <H !TI{-IL

where pp and p are two positive constants independent of H and h. Without any difficulty, the
constant po, and so p, can be allowed in our subsequent results to depend on the two nodes
zf 2, In this case, po and p will enter all the related bounds naturally.

We remark that (H1) restricts the size of the fine grid part near the edge 2 2f but outside
the coarse grid domain ¥, that is, each local fine grid part Q(zff, 2H) is not allowed to be
too large compared to its nearest coarse element T,f.f . This is a reasonable requirement in
applications.

Then the standard nodal value interpolant associated with the fine space V% can be gener-
alized outward to each local fine grid part Q(zf7, 2/} using three given linear functions 6y, f;
and 03 which are defined in U Q¥ but bounded in Q(zff, z#) U nll and satisfy

r

(8.1) 01(x) + O2(2) + Oa(z) =1, Ve e Qur.
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Fig. 2. Shaded region, Q(mff,mff), shows the fine grid part which is not completely covered by
the coarse grid domain.

Note that the functions €1, 8 and @3 above are not necessarily non-negative, and though they
are element Tff -related, we will not use any index to specify this relation in order to simplify
the notation. Then for any coarse function v € V¥, we define an operator ©y, by

040 (0) = 01 (@) (of") + Ba(” (of) + (o)™ (aF1), Vo € Qa2 ) U,
and assume that
{H2) Opetl = vH  on the edge afzl,
which means ©,v" is indeed an extension of vH. Tor convenience, later on we will always
regard ©xv' as a function defined also outside Qe zF)u T by extending it naturally.
With the above notation, we can introduce the general coarse-to-fine interpolant Zp:
DEFINITION 3.1. For any coarse function v¥ in VH  its image under the coarse-to-fine

interpolant Ty, is specified as follows:
(C1) For any fine node ¢ in QN O,

i
Ith(a:;‘) = vH(m;-”);

(C2) For any fine node :B;?' in QzH, zH) \ O with both o} and ¥ of Neumann nodes,

T (a}) = Onv? (z});
(€C3) For any fine node ¥ in Q(zff, 2\ QF with both {7 and = of Dirichlet nodes,
Ith(m?) =0

(C4) For any fine node 2 in Q(zff, )\ Q¥ with one of zfl and =¥ the Neumann node
and one the Dirichlet node,
Ith(:c;-") = 0, if wj-” is a fine boundary node of Dirichlet type;
T (2}) = @th(mf,-‘), otherwise.
The following are two concrete examples of interpolants which satisfy the above definition

and assumptions. We only give the corresponding forms of Op’s required in the definition:
7i: Nearest edge interpolation. Define the interpolant at ae;‘ by using the nodes of the

coarse boundary edge closest to ¢} (see Fig. 3):

() = Ma () + (1= A F),
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h
]

Fic. 3. More accurate interpolants: o) T2: Fine nodal values oulside the coarse domain are
interpolated with coarse nodal values on the nearest course grid edge; b) I3: Fine nodal values
outside the coarse domain are interpolated with nodal values on the nearest coarse element i
Thick lines represent coarse grid boundaries or elements, and dotted lines show the coarse nodes
used to interpolale the fine nodal value ai az;‘.

where zF and 2 are the nodes of the coarse boundary edge closest to z¥, and A is the ratio

of the lengths of two segments of the edge #ffzF cut off by the normal line passing through

r
m;} to the edge (see Fig. 3). This kind of interpolation was used by Bank and Xu [1] in their
construction of a hierarchical basis on an unstructured mesh.
I3: Nearest element interpolation. Define the non-zero extension by using barycentric

functions (see Fig. 3):
el = M ) + Mol () + Mi(ef)" (=),

where A, Ar, A; are three barycentric coordinate functions (also known as area or volume coor-
dinates) corresponding to .

Remark 3.4. Note that the functions A;, A, and A; used in the definition of I;"; satisfies
AL A, Ap 2 0 for 2 € 7, but not so for w? ¢ . In the case as shown in Figure 3b), we have
zb & rff, M(z) 2 0,A(2) > 0, but A(z) < 0 and M(z) + A(z) + Xi(z) = 1. By (H1), we
always have

(@) <, Pe(@) <pr, and (@) <, Ve e Q2 un,

where iy is a constant independent of h and H but depending only on the constant g in (H1).

4, Stability and approximation properties of the interpolation operator. The
convergence proof for the overlapping multilevel domain decomposition and multigrid methods
require the coarse-to-fine grid transfer operator to possess the local optimal L?-approximation
and local Hl-stability properties [7, 8, 9]. The locality of these properties is essential to the
effectiveness of these methods on highly non-quasi-uniform unstructured meshes.

Purely for our theoretical analysis, we now introduce a triangulation TH  Extend :TH to a
larger but, still shape regular triangulation TH the corresponding domain denoted by Q| such
that the Neumann boundary of Q¥ is contained in 2 but the Dirichlet boundary remains the
same. Let VH be the corresponding piecewise linear finite element space on TH with completely
homogeneous Dirichlet boundary condition. Then we have

VH = 1I:}ng'lbr
For simplicity, for any coarse element Hin TH, we let

d(+#) = diam (+7), N(rf) = union of coarse elements adjacent to 8,
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Similarly, d(+*) and N(r") are defined for any fine element 7% in T%. We then have the following
local optimal L?-approximation and H 1_gtability for the operator I on the coarse space v,

LEMMA 4.1. Let I be any interpolation operator defined in Definition 3.1 and v any
coarse function in VH | if we extend v onto VE in any way, still denoted by v | then for any
e TH, we have

(1) S =" o < CPEDIFR wiemys
EarH 2o
rhe A
(12) Z |Ih”H‘1;rh = C|UH|1,N(TH):
rhncH g
chﬁH
(13) S = Taf|f o < Cd () R L ey
rhe(e;’ o) rHeN(+H
(14) Z |Ithl§,'rh < ¢ Z |vHﬁ,N(TH)!
rheQfal e THeN(r[T)

where QzH,2H) is any region os introduced in Section 3.

Proof. The inequalities ({1) and (I2) correspond to the parts where the fine grid domain is
completely contained in the coarse grid domain. Their proofs can be found in [7, 8]. The last
two inequalities ({3) and (/4) correspond to the fine grid parts which are not covered by the
coarse grid and which we shall prove here. We give the proofs only for the cases (C'1) — (C2),
the other case can be proved similarly.

We first prove inequality (I3), i.e. L2-optimal approximation. For any fine element 7" in
QzH,zH), as Ipv? is linear on 7" we can express

3
Ty (2) = Y Tao (2})e!,
da=l
where z (i = 1,2,3) are the three vertices of b and ¢ (i = 1,2,3) the corresponding basis
functions of V" at these three nodes. Then by definition of Zy and the boundedness of &
(i =1,2,3) we have

TR < CRE)Y @ ()’
i=1
< o) ) + T @) + 0 @)}

Summing over all 7 € Q(zf’, z¥) and vsing (H1),

Szl < Of{eFERY + T EEP + 0T @) )
rh ez o F) T*
< G + 07 @) + @ @) il
< O
Using this and inequality (a - b)? < 2(a®+¥%), Va, b€ R!, we obtain
S T3 < 2 3, W O
rheQ(@H @) rhe(zf o ¥)

CHUHHEHN(TI}’{)'

AN

1A
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Noting that the left-hand side of the inequality doesn’t change by replacing v by v¥ plus any
constant, we obtain by Poincaré inequality that

S - T < GO vy

rhefiel 6 )

This proves (13).
We next prove (I4), i.e. Hl-stability. For the ease of notation, we assume that Q2,2
can be covered by 71 plus two extended coarse elements rH and ff € Q¥ (see Fig. 4).

Fic. 4. Fine grid element (shaded} in aH 2 which is covered by i plus two extended
coarse elements, 'rlH and Tﬁq,
Let us define
H : & A OH
= H _ v (z), ifzeQn
Onv” (2} = { onti(z), ifzec\Q¥.

It is easy to see that Oy is continuous and belongs to # YFE uQ(zf, zT)), and by definition
of Zj, and &y, we have

IhUH(x) - fh@th(m)a Ve e ﬁf-f U Q(:ﬂ{{a :B,,I:I)

Here 1 is the standard nodal value interpolant defined on the finite element space V. We
have to bound [ZxvH ], _, for all #* € Q(=f, 2H). By the triangle inequality,

(4.2) o2 < 2ATnOn" — o2 o + 2007 [
For the first term in (4.2), we have by standard interpolation theory (see Ciarlet [10]),
(4.3) (D)3 = [BaOnvt — B0 [ < CHIORY o .

Let the maximum of @507 be reached at some point zo which must belong to cither 7 U rf
or 7 or N(rf)\ r#, and denote it by m(zo} = 10407 |} , .+ We consider only the two cases:
2o € TH UTH or ey € ff as the case of 2o € N(ri)y\ r# is similar to the one for xg € . For
either case, we can always construct a shape regular element r} with zo as one of its vertices
such that 73 ¢ 7 Ur# for the former and 7 C 7H for the latter and d(r}') is of the same size

as d(r") (see Fig. 5). Then it follows from the inverse inequality that for 2q € T U7,

(I)s < CdX(r*)m(zo) < CAH IO} oy < CIOWT L 1
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Fig. 5. A shape regular elemend, T, whose diameter is of the same size as e Q(zf, 2H)
(shaded).
while for g € Tff ,
(Ns < Cd*(t"ym{zo) < Odg('r")lvﬂﬁ’mﬁ{. < Cp* :f,-r{*'
Summing (I)s over all 7" € Q(aff, z]), and using (4.2)-(4.3), we obtain

(4.4) Yoo i < C(iéhﬂHﬁﬁ;f + 1080y ar + |”H|§,N(T!ﬁ{))'

rhe{wf @)

Note that O is linear over Oz, 2f), uniquely determined by values o7 (&), vH (2H)
and v (2ff), thus we derive immediately by direct calculations (cf. Fig. 5) that, with w¥ =
Ot

W < ClwH () — B () + (w (oF) = w ) + (0 (o) = )"}
Using the assumption (H2), we know
wl(2fl)y = v* (of'),  wf(f) =" (ar).
Combining with the definition of @, the boundedness of ¢; and (3.1) yields
W2 < C{P(ef) — o7 () 4 (0 (&F) — o () + (0" () — o7 (1))

1’1_3.:’-1'
Clf |2 .
I 1,70

IA

2 —

The same result is true for [wf|? 5 =
T3

(4.4) that

i@pof i‘rH' Thus we obtain frorm these estimates and
T3

oo izl S CRTE ey

ez o)

This proves (I4). O

Lemma 4.1 plays a crucial role in the convergence analysis of multilevel Schwarz methods,
let us just state the following results for the stability and approximation of the coarse space
VH to the fine space V* which immediately give rise to the convergence and condition number
bounds for the two-level additive Schwarz methods [7, 8, 9]. As multilevel additive methods
need some more tools, for example, stability of the inverse of the coarse-to-fine interpolant and
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construction of a good partition of a fine function over the subspaces of all grid levels, we refer
to Chan-Zou {9] for more details.

Let Q be an open hounded domain in R2 which is large enough so that it contains both {2
and QF, and E : H(Q) — H'() be a linear extension operator satisfying

Pula=w,  |Bull, 4 < Cllwla Ywe B ().

See Stein [22] for the existence of such an extension operator. Let Qu : L3O — VH be
Clément’s interpolant. We refer to Clément [11] for its definition and Chan-Zou [8] and Chan-
Smith-Zou [7] for its use in domain decomposition contexts, Evidently,

(QawNgn e VE, vl e L2H(OH).

LEMMA 4.2, Given any interpolation operator Iy satisfying Definition 3.1, then for any
ut € VP there exists wil ¢ VE such that for all TH € TH, we have

(1) > it = Zpu i e < CA(rINBU™ [} yipmys
rhﬂr}fiﬂ
rhCH
(12) Z lIhuH|1_~rh < GlEuhh,N(-rH):
rhnrHge
ThcﬂH
(13) ST et T < OB Y B gy,
rheq(zf o) THEN(T)
(14) PR U S R D L Ve
ezl 2 H) THEN(TE)

Proof As stated in the proof of Lemma 4.1, the proof of the inequalities (I1) and (12) is
easy and can be found in [7, 8]. We next prove (I3) and (I4).
For any u® € V?, we choose uff € VH by

u = QpEul|gr € vHE,

This w satisfies the required results. The H'-stability ({4) is an immediate consequence of
Lemma 4.1 and the H'-stability of Qg. We now prove (I3).
On the fine domain Q" = Q, we can split ul — Tpu® into two parts:

(4.5) ot = Tpul = (Bu” — QuEut) + (QuEu® — ThQuEu").

First term estimate in (4.5): if Neumann boundary condition is imposed at least at one of
the two coarse nodes mf‘r and zZ in the space VE  we derive by assumption on Q,(m}%r ,zH) and
properties of Clément’s interpolant Qg that

ST Bt - QuEButg . < |Eu* — Qu BuM3 nirry

rheq(ed o)

IA

Cdz(""rf»f) Z |Euhl%,N(rH)‘
THeN{r{T)

If Dirichlet boundary condition is imposed on both nodes ¥ and zH in the space VH | the
result follows from Poincaré inequality.
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Second term estimate in (4.5); we obtain from Lemma 4.1 that, with o" = Fuh,

Yo 1Quvt —ZhQuv I} < CEENIQEY ity

rheQUzf 2 F)
Then using the stability of Qg yields

S QuEw - TQuBetE . <GP Y0 B ey

rr ezl =) THEN{7)
Now (I3) follows from (4.5) and the above two estimates for the 1st and 2nd terms in (45). O

5. Numerical results. In this section, we provide some numerical results of domain
decomposition and multigrid methods on unstructured meshes for elliptic problems on various
fine grid domains (see Figure 6). The well-known NASA airfoil mesh was provided by T.
Barth and D. Jesperson of NASA Ames, and a fine, unstructured square and annulus were
generated using Barth’s 2-dimensional Delaunay triangulator. All numerical experiments were
performed using the Portable, Extensible Toolkit for Scientific Computation (PETSc) {13],
running on a Sun SPARC 20. Piecewise linear finite elements were used for the discretizations
and the resulting linear system was solved using either multilevel overlapping Schwarz or V-cycle
multigrid as a preconditioner with full GMRES as an outer accelerator.

Our approach to generating a coarse grid hierarchy is to find a maximal independent set of
the boundaries and the interior of the fine grid of the mesh, and then retriangulate the resulting
set of vertices (other coarsening algorithms can be used here). This process is then repeated
recursively for the desired number of levels. An example coarse grid hierarchy of the airfoil
mesh retriangulated with Cavendish’s algorithm [4] is shown in Figure 7 where (3? refers to the
first coarsening of the fine grid, G* is the coarsening of G%, and G is the coarsening of the GL.

The interpolation matrices are formed by taking each fine node and searching for the coarse
grid element in which it lies, then interpolating with the values of the coarse nodes which
made up that element using linear interpolation. If the coarse domain does not cover the fine
domain, then the linear interpolant, 77, leads to a natural extension by zero, which is only
appropriate for Dirichlet boundary conditions. If no such coarse grid element can be found
{when m? e O\QT), and a Neumann boundary condition is imposed at the fine node, then one
of the interpolants defined as in Section 3 is used (Z},Zf, or Z}}). The restriction matrices are
taken to be the transposes of the interpolation matrices.
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FiG. 6. Some fine grids: an unstructured square with 385 nodes (left), NASA airfoil with 4253
nodes (center) and an ennulus with 610 nodes (right).
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We shall present numerical results for Schwarz solvers and multigrid methods. For partition-
ing, all the domains (except the coarsest) were partitioned using the recursive spectral bigection
method [20], with exact solves for both the subdomain problems and the coarse grid problem.
To generate overlapping subdomains, we first partition the domain into non-overlapping sub-
domains and then extend each subdomain by sorne nuinber of elements.

Tn all the experiments, the initial iterate is set to be zero and the iteration is stopped when
the discrete norm of the residual is reduced by a factor of 1075,

For our first experiment, we use additive Schwarz to solve the Poisson problem on a unif
square with homogeneous Dirichlet boundary conditions. Because the fine domain is so simple
and Dirichlet boundary conditions are given, non-matching boundaries are not an issue here
and no special interpolants are used. We provide these results simply for completeness, as
multilevel Schwarz results on unstructured grids have not been previously found in the literature
to the authors’ knowledge. Table 1 shows the number of GMRES iterations to convergence with
varying fine grid problem and varying number of levels. Providing a coarse grid greatly improved
convergence, and without it the method is not scalable to larger problems. Interesting things
to notice are that for a fixed number of levels, multilevel Schwarz is mesh-size independent, but
that the number of iterations increases with the number of levels for a fixed problem size. This
had also been previously observed for structured meshes using a multilevel diagonal scaling
method in [21] and is due to the additive nature of the method. Also, increasing the amount
of overlap improved convergence, but in practice, a one-element overlap was sufficient.

In our second experiment, we solve a mildly varying coefficient problem on the airfoil:

"é%((l + :By)g%) + %((sxn(?yy))g—;) = (4y + 2)sin(3y) + 927 cos(6y)

with either a purely Dirichlet boundary condition or a mixed boundary condition: Dirichlet
for # < 0.2 and homogeneous Neumann for # > 0.2. For this problem, the non-homogeneous
Dirichlet condition is v = 2 + #%sin(3y). Table 2 shows the number of GMRES iterations
to convergence using additive multilevel Schwarz with the different boundary treatments. We
see the slow increase in iteration number as we increase the number of levels nsed. More
importantly, we see the deterioration in the method when Neumann conditions are not properly
handled.

Tn Table 3, we show results for the same problem, but solved using a hybrid multiplicative-
additive Schwarz (multiplicative between levels but additive among subdomains on the same
level). As in the additive case, deterioration of the method occurs when mixed boundary
conditions are present. However, we can achieve optimal convergence rates, even with a varying
number of levels with the hybrid method. Still further improvement can obtained when using
a multiplicative method (both on the subdomains and between levels) and the method behaves
much like multigrid (see Tables 4-5). In fact, this is nothing more than multigrid but with
a block smoother. A V-cycle multigrid method with pointwise Gauss-Seidel smoothing and 2
pre- and 2 post-smoothings per level was used to produce the results in Table 5.

Table 6 shows some multigrid results for the Polsson equation on an annulus. The forcing
function is set to be one and both kinds of boundary conditions were tested. A V-cycle multigrid
method with pointwise Gauss-Seidel smoothing and 2 pre- and 2 post-smoothings per level was
used. When mixed boundary conditions are present, the deterioration is less pronounced in
the multigrid method, but it still exists. It it interesting to note that in our previous multigrid
experiments on a quasi-uniform annulus (see [5]), the observed deterioration in the method was
much more dramatic than those observed here with the unstructured annulus. We believe that
this was due to some extremely poor element aspect ratios on the fine grid in the quasi-uniform
case, compounding the effect of the poor approximation on Newmann boundaries.




Multilevel methods on unstructured meshes 14

Tasie 1
Additive multilevel Schwarz iterations for the Poisson problem on a unit square grid. All
grids (except coarsest) were parlitioned using RSB. Tables show the number of GMRES itera-
tions to convergence.

Dirichlet boundary conditions

#of | #of 4t of # overlap elements
levels | nodes | subdomains || 0 | 1 | 2
6409 256 84 | 63 50
1 1522 64 45 | 36 27
385 16 26 | 19 16
1522 64 19 | 16 16
385 1
2 385 16 19 | 15 15
102 1
102 4 171 16 15
29 1
6409 256  [[28124] 25
1522 64
385 1
1522 64 32726 26
3 385 16
102 1
385 16 31128 26
102 4
29 1
6409 256 43 | 37 37
1522 64
385 16
4 102 1
1522 64 42 1 37 37
385 16
102 4
29 1

6. Conclusions. When using general unstructured meshes, the coarse grid domain may
not necessarily match that of the fine grid. For the parts of the fine grid domain which are not
contained in the coarse domain, special treatments must be done to handle different boundary
conditions. The transfer operators using linear interpolation with a zero extension is the most
natural to implement and is effective for problems with Dirichlet boundary conditions.

For problems where Neumann boundary conditions exist however, zero extension is no longer
appropriate and special interpolants should be sought. Our nurmerical results show the signif-
icance of the assumption that when standard interpolations with zero extension are used, the
coarse grid must cover the Neumann boundaries of the fine grid problem, otherwise deteriora-
tion of the methods occurs. The deterioration is most significant when using additive multi-
level methods, but can still be seen for the multiplicative methods. When coupled with highly
stretched elements, the deterioration can be very significant, even for multiplicative methods.

Although modifying the coarse grid domains to ensure that this assumption is satisfied is
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TABLE 2
Additive multilevel Schwarz iterations for the elliptic problem with mildly varying coeffi-
cients on the airfoil grid (G*) with 4258 unknouns. All grids {ezcept coarsest) were partitioned
using RSB, with 1 clement overlap. Tables show the number of GMRES iterations to conver-
gence. * indicates identical resulls since no coarse grid was used.

Dirichlet boundary conditions

# of Special Interpolant Used
# of levels | Grids | subdomains || Zp [ Z} | 7 I
1 G? 32 2] * *
2 e 32 15 | 16 | 15 16
G? 1
3 el 32 23287 23 25
G? 8
Gt 1
4 G3 32 32133133 35
G* 8
Gt 2
G° i
Mixed Dirichlet/Neumann boundary conditions
# of Special Interpolant Used
4 of levels | Grids | subdomains || Zp | Z; | Zp 1;
1 G 32 51 * | * *
2 G* 32 431415 16
G2 1
3 e 32 53 | 21 | 23 23
G* 8
Gt 1
4 a3 32 61|27 | 29 30
G2 8
G 2
G° 1

effective, this approach can be problematic to implement for particularly complicated domains
or can sometimes generate coarse grid domains which deviate significantly from the fine domain.

An alternative is to modify the interpolants so that non-zero extensions be used on those fine
grid boundaries which have Neumann conditions and which are not contained within the coarse
grid domain. Since we are using the multilevel methods only as preconditioners, the extension
need not be particularly accurate; we used either constant extension with the nearest boundary
nodal value or extension using the barycentric functions of the nearest coarse grid element,
neither of which are difficult to implement. We showed that these more accurate interpolants
possess the local L?-approximation and H _gtability which are essential for proving optimal
convergence rates for the multilevel Schwarz methods on unstructured meshes.
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