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Abstract

In this paper, we consider using Galerkin projection methods for solving multiple linear
systems A z0) = ) for 1 < i < s, where the coefficient matrices AU and the right-hand
sides b{) are different in general. In particular, we focus on the seed projection method which
generates a Krylov subspace from a set of direction vectors obtained by solving one of the
systems, called the seed system, by the conjugate gradient (CG) method and then projects
the residuals of other systems onto the generated Krylov subspace to get the approximate
solutions. The whole process is repeated until all the systems are solved, Most papers in
the literature [6, 19, 21, 23, 24] considered only the case where the coeflicient matrices Al
are the same but the right-hand sides are different. We extend the method to solve multiple
linear systems with varying coefficient matrices and right-hand sides. We also analyze the
method and extend the theoretical result of the projection method for solving linear systems
with multiple right-hand sides given in Chan and Wan [6]. A theoretical error bound is given
for the approximation obtained from a projection process onto a Krylov subspace generated
from solving a previous linear system. Applications of the method to multiple linear systems
arising from image restorations and recursive least squares computations are considered. In
particular, we show that the the theoretical error bound of the method can be applied to
these applications. Finally, numerical results are reported to illustrate the effectiveness of
the Galerkin projection method.
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1 Introduction

We want to solve, iteratively using Krylov subspace methods, the following linear systems:
A@E = p 1 <5<, 1.1)

where A are real symmetric positive definite matrices of order n, and in general Al) # AW
and b =£ b for i # 5. Unlike for direct methods, if the coefficient matrices and the right-hand
sides are arbitrary, there is nearly no hope to solve them more efficiently than as s completely
un-related systems. Fortunately, in many practical applications, the coefficient matrices and the
right-hand sides are not arbitrary, and often there is information sharable among the coefficient
matrices and the right-hand sides. Such a situation occurs, for instance, in recursive least squares
computations [20], wave scattering problem [14, 4, 9], numerical methods for integral equations
[14] and image restorations [13]. In this paper, our aim is to propose a methodology to solve
these “related” multiple linear systems efficiently.

In [24], Smith et al. proposed and considered using a seed method for solving linear systems
of the same coefficient matrix but different right-hand sides, i.e.,

AX = [p) p ... p0)],

In the seed method, we select one seed system and solve it by the conjugate gradient method.
Then we perform a Galerkin projection of the residuals onto the Krylov subspace generated
by the seed system to obtain approximate solutions for the unsolved ones. The approximate
solutions are then refined by the conjugate gradient method again. In [24], a very effective
implementation of the Galerkin projection method was developed which uses direction vectors
generated in the conjugate gradient process to perform the projection. In [6], Chan and Wan
observed that the seed method has several nice properties. For instance, the conjugate gradient
method when applied to the successive seed system converges faster than the usual CG process.
Another observation is that if the right-hand sides are closely related, the method automatically
exploits this fact and usually only takes a few restarts to solve all the systems. In [6], a theory
was developed to explain these phenomena. We remark that the seed method can be viewed
as a special implementation of the Galerkin projection method which had been considered and
analyzed earlier for solving linear systems with multiple right-hand sides, see for instance, Parlett
[19], Saad [21], van der Vorst [26], Padrakakis et al. [18], Simoncini and Gallopoulos [22, 23]. A
very different approach based on the Lanczos method with multiple starting vectors have been
recently proposed by Freund and Malhotra [9].

In this paper, we extend the seed method to solve the multiple linear systems (1.1), with
different coefficient matrices (AU) # A(®) and different right-hand sides (Bl £ b)), We
analyze the seed method and extend the theoretical results given in [6]. We will see that the
theoretical error bounds for the approximation obtained from a projection process depends on
the projection of the eigenvector components of the error onto a Krylov subspace generated from
the previous seed system and how different the system is from the previous one.

Unlike in [6], in the general case here where the coeflicient matrices AW can be different, it
is not possible to derive very precise error bounds since the A5 have different eigenvectors in




general. Fortunately, in many applications, even though the AlUDs are indeed different, they may
be related to each other in a structured way which allows a more precise error analysis. Such is
the case in the two applications that we study in this paper, namely, image restorations and re-
cursive least squares (RLS) computations. More precisely, for the image restoration application,
the eigenvectors of the coeflicient matrices are the same, while for the RLS computations, the co-
efficient matrices differ by rank-1 or rank-2Z matrices. Numericai examples on these applications
are given to illustrate the effectiveness of the projection method. We will see from the numeri-
cal results that the eigenvector components of the right-hand sides are effectively reduced after
the projection process and the number of iterations required for convergence decreases when
we employ the projected solution as initial guess. Moreover, other examples involving more
general coefficient matrices (for instance, that do not have the same eigenvectors or differ by a
low rank matrix), are also given to test the performance of the projection method., We observe
similar behaviour in the numerical results as in image restoration and RLS computations. These
numerical results demonstrate that the projection method is effective.

The paper is organized as follows. In §2, we first describe and analyze the seed projection
algorithm for general multiple linear systems. In §3, we study multiple linear systems arising
from image restoration and RLS applications. Numerical examples are given in §4 and concluding
remarks are given in §5.

2 Derivation of the Algorithm

Conjugate gradient methods can be seen as iterative solution methods to solve a linear system
of equations by minimizing an associated quadratic functional. For simplicity, we let

file) = %mTA(i)m —~ 0Ty

be the associated quadratic functional of the linear system Az = p), The minimizer of 1
is the solution of the linear system Atz = pl), The idea of the projection method is that
for each restart, a seed system A® (k) = p(k} is selected from the unsolved ones which are then
solved by the conjugate gradient method. An approximate solution £ of the non-seed system
Azl = b)) can be obtained by using search direction p‘f‘ generated from the ith iteration
of the seed system. More precisely, given the ith iterate z! of the non-seed system and the
direction vector p¥, the approximate solution £U) is found by solving the following minimization

problem: .
min /3 (s} + ) (2.2

It is easy to check that the minimizer of (2.2) is attained at &0 = mf + np¥, where

()] b0 _ Gy
n= W and T‘g = b(J) — A(J)ﬂ?f: (23)

After the seed system AK)g(*) = b(%) is solved to the desired accuracy, a new seed system is
selected and the whole procedure is repeated. In the following discussion, we call this method



Projection Method I. We note from (2.3) that the matrix-vector multiplication A(j)pf is required
for each projection of the non-seed iteration. In general, the cost of the method will be expensive
in the general case where the matrices AW and A®) are different. However, in §3, we will consider
two specific applications where the matrices A and AY) are structurally related. Therefore,
the matrix-vector products A(j)pf can be computed cheaply by using the matzix-vector product
A(k)p;F generated from the seed iteration.

In order to reduce the extra cost in Projection Method I in the general case, we propose

using the modified quadratic function f;:
. 1 .
fi(z)= —é-a:TA(k):n - (b(J))Tm,
to compute the approximate solution of the non-seed system. Note that we have used A

instead of AW in the above definition. In this case, we determine the next iterate of the non-
seed system by solving the following minimization problem:

min f; (=] + apf).

The approximate solution #00) of the non-seed system AWz() = b9 is given by

{;‘;(3) = a;-: + api-c, (2.4)
where T 5
A T‘. i N .
1= iy od #=80 - A% (25)

Now the projection process does not require the matrix-vector product involving the coeflicient
matrix A® of the non-seed system. Therefore, the method does not increase the dominant cost
(matrix-vector multiplies) of each conjugate gradient iteration. In fact, the extra cost is just
one inner product, two vector additions, two scalar-vector multiplications and one division. We
call this method Projection Method II. Of course, unless AW is close to A®) in some sense, we
do not expect this method to work well because fj is then far from the current f;.

To summarize the above methods, Table 1 lists the algorithms of Projection Methods I
and II. We remark that Krylov subspace methods (for instance conjugate gradient), especially
when combined with preconditioning, are known to be powerful methods for the solution of
linear systems [10]. We can incorporate the preconditioning strategy into the projection method
to speed up its convergence rate. The idea of our approach is to precondition the seed system
A® g (*) = p(k) by some suitable preconditioner (%) for each restart. Meanwhile, an approximate
solution of the non-seed system AWz = bl is also obtained from the space of direction
vectors generated by the conjugate gradient iterations of preconditioned seed system. We can
formulate the preconditioned projection method directly produces vectors that approximate the
desired solutions of the non-seed systems. Table 2 lists the preconditioned versions of Projection
Methods I and IIL



for k=1, ..., s until all the systems are solved
Select the kth system as seed
fori=0,1,2, ... mrp1 % CG iteration
for j=k, k+1,..., s % unsolved systems
if j=k then perform usual CG steps
5 = (rEY TR G EA )T
E k ke kk
pi)km r,-:::-é,- ’kgf‘:l k& k&
of® = ()T (o )T Ak

kk __ Kk ,
xli-fjcl_m.i::’c ’.kki’ k&
Ti-i—l'—:ri’ “Ui’A(k)pi’

else perform Galerkin projection

i = )T )T AR = e T AL
xl';-gl - mJ: "j+mkﬂpi . K,k wl’cfl N a:k, j +m.t:JP£, Ik
rip =1 = 7 AU rh = = 7AW
end if end if
end for end for
end for end for
end for end for

for k=1, ..., s until all the systems are solved

Select the kth system as seed

for i=0,1, 2, ... My % CG iteration
for j=k, k+1,...,s % unsolved systems
if =k then perform usual GG steps

kk o ke Rk g kkNT kR
d; . ("";ik )T::k k/(ri-—l)TTi—l

':Ic’k:ri;c:_f[f’k%ilkk T A(k). bk
o = (Y () Ak

k& k& X
= sttt
¥ —_ H] k ¥
Tipgr =T — oy 4( )pi
else perform Galerkin projection

Table 1: Projection Methods I (left) and II (right). The kth system is the seed for the (k — 1)th
restart. The first and the second superscripts is used to denote the kth restart and the jth

system. The subscripts is used to denote the ith step of the CG method.

for k=1, ..., s until all the systems are solved

Select the kth system as seed
for i=0, 1, 2, ... M4 % CG iteration

for j=k, k+1,...,58 % unsolved systems
if j=Fk then perform usual CG steps
Bk g kbkT kg g kAT kK
5.“ = (?k )Tf"k k/(""i—i)Tzi-l
pil — Z‘-’ +6i’ p_x

i—1
o = P )T AG
R
BRI
2 = (C¥) i % preconditioning

else perform Galerkin projection
kg _ (kT kg Rk .k
o = (% ,)T’"; J/ (p; )TA(’ }Pi

for k=1, ..., s until all the systems are solved

Select the kth system as seed
for i=0, 1, 2, ... mgs1 % CG iteration
for j=k, k-+1,...,s % unsolved systems
if j=k then perform usual CG steps
it = gk e
p.' = z.! +61.’ p i

3

i i—1
Wk g kT Rk gr Rk k&
op" = {r; )TZ.' /(P )TA(k)Pi

1

k.k kK ok ok

" T T e

= s AT

Ziy = (C("))‘lr,-;l % preconditioning

else perform Galerkin projection
kg kRNT R g Rk k&
Y J. = (2 )7 ,J/ (P )TA(k)P;'

ko ok R
Ty = oA P

m;f:fl ~ xg=f+nfj:3};f= kR k K -y Kk
ripgn =T = 7 AU v =t = T AR
end if end if

end for end for

end for end for
end for end for

Table 2: Preconditioned Projection Methods I (left) and II (right)




We emphasize that in [6, 19, 21, 23, 24], the authors only considered using the projection
method for solving linear systems with the same coefficient matrix but different right-hand sides.
In this paper, we use Projection Methods 1 and I to solve linear systems with different coefficient
matrices and right-hand sides . An important question regarding the approximation obtained
from the above proeess is its accuracy. For Projection Method I, it is not easy to derive error
bounds since the direction vectors generated for the seed system AF) 58} = p*) are only AK)-
orthogonal but are not AU)-orthogonal in general. In the following discussion, we only analyze
Projection Method II. However, the numerical results in §4 shows that Projection method I is
very efficient for some applications and is generally faster convergent than Projection Method
1L

2.1 Analysis of Projection Method 11

For Projection Method II, we have the following Lemma in exact arithmetic.

Lemma 1 Assume that a seed system A® k) = p(*) Ras been selected. Using Projection
Method II, the approzimate solution of the non-seed system AD2() = pl9) at the ith iteration is
given by . . )

2h = 27 + VETH T (VT (2.6)

where mif’j is £th iterate of the non-seed system, V¥ is the Lanczos vectors generated by © steps

of the Lanczos algorithm if the seed system ‘A(k)m(k) = b%) s solved by the Lanczos algorithm,
TF = (VAT AOVE and rf? = 80 — APy

Proof: Let the columns of V¥ = [vf, v5, .. ., v¥] be the orthonormal vectors of the 1-dimensional
Krylov subspace generated by i steps of the Lanczos method. Then we have the following
well-known three-term recurrence

A(k)Vik = ‘/ikfik + ﬁf+1"’f+1eg1a

where ¢; is the ith column of the identity matrix and BE, is ascalar, From (2.4) (or see [24]}, the
approximate solution ch” of the non-seed system is computed in the subspace generated by the

direction vectors {pf’k} generated from the seed iteration. However, this subspace generated by

the direction vectors is exactly the subspace spanned by the columns of V¥, see [10]. Therefore,

we have
k

Moreover, it is easy to check from (2.4) and (2.5) that
GERTHW) — ARPy =0, £=1,2,...,i.

a? = mﬁ‘g +V¥z, for some z.

It follows that the solution w:-“’j can be obtained by the Galerkin projection onto the Krylov
subspace K*) generated by the seed system. Equivalently, mf’“" can be determined by solving
the following problem:

(IQ’“)T(EJ(-") - A(k)z), where z = mg'j +yand y € V}(k)°

6



Noting that the solution is z = ahd 1 vk (TF)~"1(VF)T (b9} — AR zkIY the result follows.

To analyze the error bound of Projection Method 11, without loss of generality, consider only
two symmetric positive definite n-by-n linear systems:

AL — 30 and AD®) = 5@,

The eigenvalues and normalized eigenvectors of A} are denoted by )\gj) and q,(:) respectively and

0 < )\gi) < )\.(;) <. - < )\g) for i = 1,2. The theorem below gives error bounds for Projection
Method 1T for solving multiple linear systems with different coefficient matrices and right-hand
sides.

Theorem 1 Suppose the first linear system AWz} = pV) 45 solved to the desired accuracy in
m CG steps. Let zy° be the solution of the second sysiem AD () = b obtained from the
projection onto K, generated by the first system, with zero vector as the initial guess of the
second system (3:8‘2 =0). Let the eigen-decomposition of #(2) — mé‘z be expressed as

i
2@ —ap? =3 eray.
k=1

Then the eigenvector components cy can be bounded by:
lex]| < Ex+F, 1<k<m,
where
By = | PEa®|alsin £(g, )| and F = [(AD) 7 [2)](49) = A2

Here V., is the orthonormal vectors of Km, Py = I — Vi TAVTAQ) s the AWD-orthogonal
projection onto Ky, and T, = v AWMV, is the matriz representation of the projection of A
onto Ky,.

Proof: By (2.6), we get zy” = 202 = Vo 1V Ib2). Then
2® — oy = (1= VaT'Vih A®) o = Pra® - VTV (a® - AW) o),
Since V,, is the orthogonal vectors of X, and

Apin(To) = min eTVIAOVz = min  yTABy > Aia(AD),

[j=]lz=1 y=Vz, ljyll=1

we have [[Vipll2 < 1 and [T 2 < (A~ ,. Tt follows that

jexl = \[P;tw(?)»-va,,:iv;‘(A@’-~A<*>)m<2>]T-q£2’
< (1P allqd® ol cos (g, PLe®)] + [1(AD) 12l (AP — AD)2 @,
< (PLa®|lg]sin (g, K| + 1AD) L2 (AD = Ao o

7



Theorem 1 basically states that the size of the eigenvector component ¢ is bounded by Fy
and F. If the Krylov subspace K, generated by the seed system contains the eigenvectors q,(f)
well, then the projection process will kill off the eigenvector components of the initial error of
the non-seed system, i.e., Ej is very small. On the other hand, F depends essentiaily on how
different the system A®)z(?) = b} is from the previous one AMg() = p(1) | In particular, when
(AW — AP, is small, then F is also small.

We remark that when A = A(® and b)) # b)), the term F becomes zero, and as q,(:) = q‘,(cz),
the term Ej becomes [|Pra()||2] sin L(q}(cl),lCm)ﬂ. It is well-known that the Krylov subspace K
generated by the seed system contains the eigenvectors q,(cl) well. In particular, Chan and Wan

[6] have the following result about the estimate of the bound sin L(q,(cl),](lm).

k=1 /5(1) _ (1)
Lemma 2 Let 8, = L{ADBD gy, 7 = C\TE,T—F’_) and wi = [] —-—m—)\g) - A,(j)
21y) where T;{z) is the Chebyshev polynomial of degree j. Then

)/Tm—k(l +

v=1

sin L(qg), Km) < wy tan . (2.7}

If we assume that the eigenvalues of A are distinct, then Ty,—r(1+27;) grows exponentially

as m increases and therefore the magnitude sin L(qil), Km) is very small for sufficiently large m.
It implies that the magnitude Ey is very small when m is sufficiently large. Unfortunately, we
(2)

cannot have this result in the general case since q‘(cl) # q;’, except in some special cases that
will be discussed in the next section.

3 Applications of Galerkin Projection Methods

In this section, we consider using the Galerkin projection method for solving multiple linear
systems arising in two particular applications from image restorations and recursive least squares
computations. In these applications, the coefficient matrices differ by a parameterized identity
matrix or a low rank matrix. We note from Theorem 1 that the theoretical error bound of the
projection method depends on Ej and F. In general, it is not easy to refine the error bound Fj
and F. However, in these cases, the error bound Ej and F can be further investigated.

3.1 Tikhonov Regularization in Image Restorations

Image restoration refers to the removal or reduction of degradations (or blur) in an image using
a priori knowledge about the degradation phenomena; see for instance [13]. When the quality
of the images is degraded by blurring and noise, important information remains hidden and
cannot be directly interpreted without numerical processing. In matrix-vector notation, the



linear algebraic form of the image restoration problem for an n-by-n pixel image is given as

follows:

where b, 2, and 7 are n®-vectors and A is an n?-by-n? matrix. Given the observed image b, the
matrix A which represents the degradation, and possibly, the statistics of the noise vector 5, the
problem is to compute an approximation to the original signal z.

Because of the ill-conditioning of A, naively solving Az = b will lead to extreme instability
with respect to perturbations in b, see [13]. The method of regularization can be used to
achieve stability for these problems [1, 3]. In the classical Tikhonov regularization [12], stability
is attained by introducing a stabilizing operator D (called a regularization operator), which
restricts the set of admissible solutions. Since this causes the regularized solution to be biased,
a scalar p, called a regularization parameter, is introduced to control the degree of bias. More
specifically, the regularized solution is computed as the solution to

BREIC

The term ||Dz(p)i|3 is added in order to regularize the solution. Choosing D as a kth or-
der difference operator matrix forces the solution to have a small kth order derivative. When
the rectangular matrix has full column rank, one can find the solution by solving the normal
equations

2
min

#{1)

or min P Dz ()13 + 1Ib — Az (w)]3- (3.9)

(u*DTD + AT A)z = ATb. (3.10)

The regularization parameter p controls the degree of smoothness (i.e., degree of bias) of
the solution, and is usually small. Choosing p is not a trivial problem. In some cases a priori
information about the signal and the degree of perturbations in b can be used to choose p [1],
or generalized cross-validation techniques may also be used, e.g., [3]. If no a priori information
is known, then it may be necessary to solve (3.10) for several values of x. For example, in the
L-curve method discussed in [7], choosing the parameter p requires solving the linear systems
with different values of p. This gives rise to multiple linear systems which can be solved by our
proposed projection methods.

In some applications [13, 5], the regularization operator D can be chosen to be the identity
matrix. Consider for simplicity two linear systems:

(I + AT A)z; = Az, = AT, i=1,2.

In this case, we can employ Projection Method I to solve these multiple linear systems as the
matrix-vector product (pol + AT A)p in the non-seed iteration can be computed cheaply by
adding {u; I + AT A)p generated from the seed iteration and (pz — p1)p together. Moreover, we
can further refine the error bound of Projection Method II in Theorem 1. Now assume that m
steps of the conjugate gradient algorithm have been performed to solve the first system. We
note in this case that the eigenvectors of the first and the second linear systems are the same,




ie., q,(cl) = q}f). Therefore, we can bound sin Z(q,(cl), Km) using Lemma 2. We shall prove that if
the Krylov subspace of the first linear system contains the extreme eigenvectors well, the bound
for the convergence rate is effectively the classical conjugate gradient bound but with a reduced
condition number.

Theorem 2 Let st:f}’2 be the solution of the second system obtained from the projeciion onio Km
generated by the first system. The bound for the A .norm of the error vector after i steps of
the conjugate gradient process is given by

2
—_ V nr - 1
||a:(2) _ 9’}'2“31(2) < 4“56(2) - “’5’2”1(2) ( Tt 1) + 4,

where &, is ith iterate of the CG process for Az = b with the projection of 2’ —xy?® onto
span {q,(cl) 1 k=1,2,.-, £} as initial guess, K, = )\,(f)/ )\,E?I_)1 is the reduced condition number of
A® and

2
o+ |1PEa o tan 0 - (3.11)

£
5=5"a@ Hl B
kgl k Hi

Proof: We first expand the eigen-components of z{® — méﬂ,

o = S = 3
k=1

k=1
It is well-known [10] that there exists a polynomial p;(t) of degree at most i and constant term
1 such that

2@ _ @151,2 _ ﬁ,-(A(z))(a:(z) _ Eéa) _ E quz(f)'
k=£+4+1

By using properties of the conjugate gradient iteration given in [10], we have
1,2 : 1,2
12® - 2o = minp(AD) (= - 20"y
_ 1,2
“Pi(A(z)) (m{z) — &g )”?4(2)

= I 50N e lhe
k=1

= SR
k=1

IA

n £
= Y 20O + Y 0PN
k=f+41 k=1

£
= e® — 5?2 + S AP, (3.12)
k=1

10



Now the term [jz(?) — :E}’Z“i(z) can be bounded by the classical CG error estimate,

21
~1,2(12 1,2 e — 1
“:15(2) — B, ”A(g) < 4”m(2) - Ty HZA(Z} (\/—’?:;“_'1'_—1) .
rg).

Noting that [|[(ACH 1|y < 1/p, A® — A = (uy — py)I, maxi<x<e BF(AL '} < 1, and using
Theorem 1 and Lemma. 2, the result follows by substitution (2.7) into (3.12).

We see that the perturbation term § contains two parts. One depends on the ratio jp /i
of the regularization parameters between two linear systems and the other depends on how well
the Krylov subspace of the seed system contains the extreme eigenvectors. We remark that the
regularization parameter y in practice is always greater than 0 in image restoration applications
because of the ill-conditioning of A. In particular, yy # 0. If the ratio yy/p is near to 1, then
the magnitude of this term will be near to zero. On the other hand, according to Lemma 2, the
Galerkin projection will kill off the extreme eigenvector components and therefore the quantity
wy tan B in {3.11) will be also small for k close to 1. Hence the perturbation term 4 becomes
very small and the CG method, when applied to solve the non-seed system, converges faster
than the usual CG process.

3.2 Recursive Least Squares Computations in Signal Processing

Recursive least squares (RLS) computations are used extensively in many signal processing and
control applications; see Alexander [2]. The standard linear least squares problem can be posed
as follows: Given a real p-by-n matrix X with full column rank n (so that X TX is symmetric
positive definite) and a p-vector b, find the n-vector w that solves

min ||b — Xwll. (3.13)

In RLS computations, it is required to recalculate w when observations (ie., equations) are
successively added to, or deleted from, the problem (3.13). For instance, in many applications
information arrives continuously and must be incorporated into the solution w. This is called
updating. It is sometimes important to delete old observations and have their effect removed
from w. This is called downdating and is associated with a sliding data window. Alternatively,
an exponential forgetting factor 8, with 0 < f# < 1 (see for instance [2]}, may be incorporated
into the updating computations to exponentially decay the effect of the old data over time. The
use of B is associated with an exponentially-weighted data window.

3.2.1 Rank-1 Updating and Downdating Sliding Window RLS
At the time step t, the data matrix and the desired response vector are given by

ﬂ?(t - P + I)T dt
X)) = : and d(t) = : (3.14)
w(t)T dipt1

11



respectively, where p is the length of sliding window (one always assumes that p > n). We solve
the following least squares problem: min, ) ||d{t) — X {)w(t}|]s- Now we assume that a row
¢(t+1)7 is added and a row z(t — p + 1)7T is removed at the step ¢ 4 1. The right-hand-side
desired response vector d(t + 1) is modified in a corresponding fashion. One now seeks to solve
the modified least squares problem ming,qyqy [Jd(E+1) — X (f+ 1}w(t+1)|}2 for the updated least
squares estimate vector w(t + 1) at the time step £ + 1. We note that its normal equations are
given by

IXOTX () + 2+ Dat+ )T —e@t—p+ Dzt —p+ 1) wt+1)
= X@)Tb(t) + dipr2(t + 1) = di_ppaz(t —p+1). (3.15)

Therefore, the coefficient matrices at the time step ¢ and ¢ 4+ 1 differ by a rank-2 matrix.

3.2.2 Exponentially-weighted RLS

For the exponentially-weighted case, the data matrix X (£) and desired response vector d(t) at
the time step t are defined [2] recursively by

X(t):[«/ﬁi((g;n} and d(f)m[ﬂdgi”)]:

where # is the forgetting factor, and aT({t) = (Zg Ter, ", Trong1), With X (1) = 2T(1) and
d(1) = d;. The RLS algorithms recursively solve for the least squares estimator w(t) at time ¢,
‘with ¢ > n. The least squares estimator at the time ¢ and ¢ + 1 can be found by solving the
corresponding least squares problems and their normal equations are given by

XOTX Owt) = X(6)Td()
and
BXOTXE) + et + Da(t+ 1) w(t + 1) = BX ®)d(t) + dsaz(t+ 1), (3.16)
respectively. We remark that these two coefficient matrices differ by a rank-1 matrix plus a
scaling,
3.2.3 Multiple Linear Systems in RLS computations

We consider multiple linear systems in RLS computations, i.e., we solve the following least
squares problem successively

min () [|d(2) ~ X (Ow(t)l]2
minyger) [d(E+1) = X4+ D+ Dls (3.17)

MMy (145) 1t + ) — X (t 4 s)w(t + s)le,

12



where s is an arbitrary block size of RLS computations. The implementation of recursive least
squares estimators have been proposed and used [8]. Their algorithms updates the filter coef-
ficients by minimizing the average least squares error over a set of data samples. For instance,
the least squares estimates can be computed by modifying the Cholesky factor of the normal
equations with O(n?) operations per adaptive filter input [20]. For our approach, we employ the
Galerkin projection method to solve the multiple linear systems arising from sliding window or

exponentially-weighted RLS computations.
For the sliding window RLS computation with rank-1 updating and downdating, by (3.15),
the multiple linear systems are given by

1st system : X)X @)wlt) = X7 b(t)
2Ind system : [(XHTX () + z(t+ Vet + )T — st —p+ Dzt —p+ '] wit +1)
= X)) + depre(t +1) — dippaz(t —p+ 1)

(s + 1)th system : XX+ E et + f)z(t + ) — i::n{t —p+ et —p+HT| wit+s)
j=t i=1
= X@OTbE) + Y degjult+7) — D dioprglt —p+3). (3.18)
i=1 J=1

For the exponentially-weighted case, by (3.16), the multiple linear systems are given by

1st system : X7 X (t)w(t) = X@)Tb(t)
2nd system [BX )T X () + 2(t + Dat + D)T] w(t + 1) = BX ()T b(t) + deprz(t + 1)
(s + 1)th system : AXBTXE) + i: Bzt + Nel(t +5)7 | w(t+s)
j=t
PR + 3B degalt+ ). (3.19)
i=1

According to (3.18), the consecutive coefficient matrices only differ by a rank-2 matrix in
the sliding data window case. From (3.19), the consecutive coefficient matrices only differ by a
rank-1 matrix and the scaled coefficient matrix in the exponentially-weighted case. In these RLS
computations, Projection Method I can be used to solve these multiple linear systems as the
matrix-vector product in the non-seed iteration can be computed inexpensively. For instance,
the matrix-vector product for the new system can be computed by

BX(BTX () + ot + Vet + 1) ]p = fpr + 20+ Da(t + 1),

where p; = X(t)TX (t)p is generated from the seed iteration. The extra cost is some inner
products. We remark that for the other linear systems in (3.18) and (3.19), we need more inner
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products because the coefficient matrices X (1)TX (t) and X (¢t + s)TX (¢ + s) differ by a rank-s
or rank-2s matrices,

We analyze below the error bound given by Projection Method I for the case that the
coefficient matrices differ by a rank-1 matrix, i.e.,

‘4(2) frrd _4(1) + prrTj
where r has unit 2-norm and each component is greater than zero. For the exponentially-
weighted case, we note that
o z{t+1)

Bl +1)[I2’

By using the eigenvalue-eigenvector decomposition of A} we obtain

A® = QAW +pz2")QT,

AW = x)Tx (1), and p=|lz{t+ 1)z

with @ = [¢ (1) (l) (1)] A is a diagonal matrix containing eigenvalues ,\( ) of AW and
2=QTr. It has been shown in [11] that if ,\(l) # )\(2) for all k, then the eigenvalues ,\( ) of A®)
can be computed by solving the secular equat;on
(T
s
¢(/\) =1+ E ( (1))
=1 )
Moreover, the eigenvectors q](f) of A? can be calculated by the formula:

@ QMM - \Pn-197r

= , 1<k<n. 3.20
C T IA® = AP DTy, (3:20)

Theorem 3 Suppose the first linear system AMz() = () is solved to the desired accuracy inm
CG steps. Then the eigenvector components cy of the second system are bounded by |cx| < Eg+F,
for 1 < k < n, where

By = P2 3 bral[sin 26, Kol and = Jalfl(A) 7o,
i=1

and
(a{)Tr
)

Yik = 3
n (Q{I))Tr ’
=1 | D0

Hiaty)

where {qt(l)} is the orthonormal eigenvectors of A and K,, is the Krylov subspace generated
for the first system.
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Proof: We just note from Theorem 1 that |cx} < [(Pra®)T - q,(cz)I + | Ao+ T2 @),
By using (3.20), Theorem 1 and Lemma 2, we can analyze the term |(PLz(T. q,(cz)! and obtain

|(PEa®)T - g] = 3 bl foos(al™, Pa®)| < 1PEe P 3 byl sin (0, K| 3
i=1 i=1

Since |vik| and |sin A(q,(l),lCm)l are less than 1, we have

Be<|Phe@ly | 3 iz K|+ X bnad| (3:21)

small and large 1 remaining <

From Lemma 2, for ¢ close to 1 or n, |sin L(qgl),lcmﬂ is sufficiently small when m is large.
Moreover, we note that if p > @, then

)\,(cl) < )\E) < )\g_gi, k=1,2--,n—1 and A <A@ <A 4,

if p < 0, then
AV —p<aP <0, and A, <A <A, k=23 m,
.

see [10]. Therefore, if the values (q,;(l))Tr are about the same magnitude for each eigenvector g;
then the maximum value of |7, x| is attained at either ¢ = k or ¢ = k+1. We may expect that the
second term of the inequality (3.21) is small when £ is close to 1 or n. By combining these facts,
we can deduce that Fy is also small when k is close to 1 or n. On the other hand, if the scalar p
is small (i.e., the 2-norm of rank-1 matrix is small), then F is also small. To illustrate the result,
we apply Projection Method 1I to solve ANz = 5(1) and (AW 4 prrT)z(?) = @), where A1)
= diag(1,---,100) and r, 5 and 5() are random vectors with unit 2-norm. Figures 1 and 2
show that some of the extreme eigenvector components of 5() are killed off by the projection
especially when |p| is small. This property suggests that the projection method is useful to solve
multiple linear systems arising from recursive lease squares computations. Numerical examples

will be given in the next section to illustrate the efficiency of the method.

4 Numerical Results

In this section, we provide experimental results of using Projection Methods I and II to solve
multiple linear systems (1.1). All the experiments are performed in MATLAB with machine
precision 10715, The stopping criterion is: [|rf’j |2 < tol x |JbU)|a, where tol is the tolerance we
used. The first and the second examples are Tikhonov regularization in image restoration and
the recursive least squares estimation, exactly as discussed in §3. The coefficient matrices Al
have the same eigenvectors in the Example 1. In Example 2, the coeflicient matrices AliDs differ
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Figure 1: Size distribution of the components of (a) the original right hand side (), (b) 52
after Galerkin projection when p = 1. Size distribution of the components of (c) the original
right hand side (), (d) () after Galerkin projection when p = 0.1.
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Linear Systems (1) | (2) | (3) | (4) || Total
Starting with Projection Method I || 36 | 37 | 43 | 49 165
Starting with Projection Method IT || 36 | 48 | 55 | 76 || 205
Starting with previous solution 36 | 54 | 66 | 87 || 243
Starting with random initial guess || 38 | 60 | 74 | 93 270

Starting with Projection Method I | 9 | 9 | 9 | 11 38
using preconditioner
Starting with Projection Method II || 9 9 |11 | 16 45
using preconditioner
Starting with previous solution 9 | 13|16 | 23 61
using preconditioner

Table 3: (Example 1) Number of matrix-vector multiplies required for convergence of all the
systems. Regularization parameter u = (1) 0.072, (2) 0.036, (3) 0.018 and (4} 0.009.

by a rank-1 or rank-2 matrices. We will see that the extremal eigenvector components of the
right-hand sides are effectively reduced after the projection process. Moreover, the number of
iterations required for convergence when we employ the projected solution as initial guess is less
than that required in the usual CG process.

Example 1 (tol = 10~*): We consider a 2-dimensional deconvolution problem arising in
ground-based atmospheric imaging and try to remove the blurring in an image (see Figure
3(a)) resulting from the effects of atmospheric turbulence. The problem consists of a 256-by-
956 image of an ocean reconnaissance satellite observed by a simulated ground-based imaging
system together with a 256-by-256 image of a guide star (Figure 3(b})) observed under similar
circumstances. The data are provided by the Phillips Air Force Laboratory at Kirkland AFB,
NM through Prof. Bob Plemmons at Wake Forest University. We restore the image using the
identity matrix as the regularization operator suggested in [5] and therefore solve the linear
systems (3.10) with different regularization parameters . We also test the effectiveness of the
preconditioned projection method. The preconditioner we employed here is the block-circulant-
circulant-block matrix proposed in {5}.

Table 3 shows the number of matrix-vector multiplies required for the convergence of all
the systems. Using the projection method, we save on number of matrix-vector multiplies
in the iterative process with or without preconditioning. From Table 3, we also see that the
performance of Projection Method 1is better than that of Projection Method II. For comparison,
we present the restorations of the images when the regularization parameters are 0.072, 0.036,
0.018 and 0.009 in Figure 3. We see that when the value of p is large, the restored image is very
smooth, while the value of y is small, the noise is amplified in the restored image. By solving
these multiple linear systems successively by projection method, we can select Figure 3(e) that
presents the restored image better than the others.
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(e) | (f)

Figure 3: (Example 1)} Observed Image (a), guide star image (b}, restored images using regu-
larization parameter u = (c) 0.072, (d) 0.036, (e) 0.018 and (f) 0.009.
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Linear Systems M2 B3| 4] (5| Total

Starting with Projection Method I || 45 | 31 | 28 | 25 | 24 | 153
Starting with Projection Method II || 45 | 37 | 32 | 31 | 29 || 174
Starting with previous solution 45 143 | 44 | 42 | 40 || 214

(a)

Linear Systems M@ ]3] (4] (5 | Total

Starting with Projection Method 1 || 68 | 51 | 45 | 36 | 30 | 165

Starting with Projection Method II || 68 | 55 | 49 | 42 | 35 249
Starting with previous solution 68 | 61 | 59 | 56 | 54 308

(b)

Table 4: (Example 2) Number of matrix-vector multiplies required for convergence of all the
systems. (a) Exponentially-weighted RLS computations and (b) Sliding window RLS computa-
tions

Example 2 (tol = 1073): In this example, we test the performance of Projection Meth-
ods T and II in the block (sliding window and exponentially-weighted) RLS computations.
We illustrate the convergence rate of the method by using the adaptive Finite Impulse Re-
sponse {FIR) system identification model, see [15]. The second order autoregressive process
2+ 0.824—1 + 0.1z;_2 = v; where {v;} is a white noise process with variance being 1, is used to
construct the data matrix X (t) in §3.2. The reference (unknown) system w(t) is an n-th order
FIR filter. The Gaussian white noise measurement error with variance 0.025 is added into the
desired response d(t) in §3.2. In the tests, the forgetting factor 3 is 0.99 and the order n of filter
is 100. '

In the case of the exponentially-weighted RLS computations, the consecutive systems differ
by a rank-1 positive definite matrix, whereas in the case of the sliding window computations, the
consecutive systems differ by the sum of a rank-1 positive definite matrix and a rank-1 negative
definite matrix. Table 4 lists the number of matrix-vector multiplies required for the convergence
of all the systems arising from exponentially-weighted and sliding window RLS computations.
We observe that the performance of Projection Method [ is better than that of Pro jection Method
H. The projection method requires less matrix-vector multiplies than that using the previous
solution as an initial guess. We note from Figures 4 and 5 that the eigenvector components of
42) are effectively reduced after projection in both cases of exponentially-weighted and sliding
window RLS computations. We see that the decreases of eigenvector components when using
Projection Method ! are indeed greater than those when using Projection Method II.

In the next three examples, we consider more general coefficient matrices, i.e., the consecutive
linear systems do not differ by the scaled identity matrix and rank-1 or rank-2 matrices. In these
examples, the matrix-vector products for the non-seed iteration may not be computed cheaply,
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Figure 4: (Example 2) Exponentially-weighted RLS computations. Size distribution of the
components of (a) the original right hand side 5, (b) b(2) after using Projection Method I, (c)
b2 after using Projection Method II, (d) () — A z(1) (using the previous solution as an initial

guess).
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we therefore only apply Projection Method II to solve the multiple linear systems. However, the
same phenomena as in Examples 1 and 2 is observed in these three examples as well.

Example 3 (tol = 107'2); In this example, we consider a discrete ill-posed problem, which
is a discretization of a Fredholm integral equation of the first kind

fb K(s, ) f(t)dt = g(s), c<s<d

The particular integral equation that we shall use is a one dimensional model problem in image
reconstruction [7] where an image is blurred by a known point-spread function. The desired
solution f is given by

F(£) = 264005 1 o{=4(405)), _g <t< g

while the kernel K is the point spread function of an infinitely long slit given by

(AN

sin[n (sin s + sin t)] }2 T e

w
K(s,t) = (cos s + cost) { [7(sin s +sin )] ? z

We use collocation with n (=64) equidistantly spaced points in [~ /2, 7 /2] to derive the matrix
A and the exact solution z. Then we compute the exact right-hand sides b = Az and then
perturb it by uncorrelated errors (white noise) normally distributed with zero mean and standard
derivation 10~4. Tlere we choose a matrix D equal to the second derivative operator (D =
tridiag(—1,2 — 1)). Different regularization parameters p are used to compute the L-curve
(see Figure 6) and test the performance of the Projection Method II for solving multiple linear

systems _
(1 DTD + ATA)e® = ATh, 1<i<s

We emphasize that the consecutive systems do not differ by the scaled identity matrix.

Table 5 shows the number of iterations required for convergence of all 10 systems using
Projection Method II and using the previous solution as initial guess having the same residual
norm. We see that the projection method requires 288 matrix-vector multiplies to solve all
the systems, but the one using the previous solution as initial guess requires 3656 matrix-vector
multiplies. In particular, the tenth system can be solved without restarting the conjugate
gradient process after the projection.

Example 4 (tol = 107°): We consider the integral equation

ab [ F(t)dt
f(s) + ?_/0 24 d? — (c2 _d,’2)cos(s+t)

=g(s), 0<s<2n, (4.22)

corresponding to the Dirichlet problem for the Laplace equation in the interior of an ellipse with
semiaxis ¢ > d > 0. We solve the case where the unique solution and the right-hand side are
given by

f(s) = e=**cos(sins), and g(s)= f(s)+ e*®*cos(zsins), 0 <s<2m,
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Linear Systems MA@ @G 16)] (7)) ]9 ](10) | Total
79 33| 25 26 12312115

Starting with Projection 38 27 1 288
Method 1I

Starting with previous || 79 | 44 | 37 | 34 | 32 34 { 28 1 35| 30 ] 23 376
solution

Table 5: (Example 3} Number of matrix-vector multiplies required for convergence of all the
systems with p; = 0.005 x 51,-

00737 kb—e\L

: L s x T :
64 6.5 B8 87 88 69 7 71 72
jeast squares residual norm <10

Figure 6: (Example 3) The Tikhonov L-curve with regularization parameters used in Table 4.
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Figure 7: (Example 4) The convergence behaviour of all the systems (i) ¢ = 2.0516 and d =
0.3893, (ii) ¢ = 2.3822 and d = 0.4265 and (iii) ¢ = 4.7374 and d = 0.9017.

where z = (¢—d)/(c+d). The coefficient matrices A®) and the right hand sides b*) (k= 1,2,3)
are obtained by discretization of the integral equation (4.22). The size of all systems is 100.
The values of ¢ and d are arbitrary chosen from the intervals [2, 5] and [0, 1} respectively. We
emphasize that in this example, the consecutive discretized systems do not differ by low rank or
small norm matrices.

The convergence behaviour of all the systems is shown in Figure 7. In the plot, each steepest
declining line denotes the convergence of a seed and also for the non-seed in the last restart.
Note that we plot the residual norm against the cost (the number of matrix-vector multiply)
in place of the iteration number so that we may compare the efficiency of these methods. We
remark that the shape of the plot obtained is similar to those numerical results given in [6] for
the Galerkin projection method for solving linear systems with multiple right hand sides. If
we use the solution of the second system as an initial guess for the third system, the number
of iteration required is 13. However, the number of iteration required is just 8 for Projection
Method 11 to have the same residual norm as that of the previous solution method; see Figure 8.
Figure 9 shows the components of the corresponding right-hand side of the third system before
the Galerkin projection, after the projection and using the previous solution as initial guess.
The figure clearly reveals that the eigenvector components of b® are effectively reduced after
the projection.

Example 5 (tol = 10~7): The matrices for the final set of experiments corresponding to the
three-point centered discretization of the operator —d%(a(a:) 4y in [0, 1] where the function alz)
is given by a(z) = ¢+ dz, where ¢ and d are two parameters. The discretization is performed
using a grid size of h = 1/65, yielding matrices of size 64 with different values of ¢ and d. The
right hand sides of these systems are generated randomly with its 2-norm being 1. We remark
that the consecutive linear systems do not differ by low rank or small norm matrices in this
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Figure 8: (Example 4) The convergence behaviour of the third system, (a) with projected

solution as initial guesses, (b) with previous solution vector as initial guess and {c) with random
vector as initial guess.

Linear Systems MTRQTE WG 6)](7)[(8)]() (10) || Total
Starting with Projection || 83 | 82 | 80 | 75 62 | 53 | 47 | 21 | 26 | 24 553
Method II
Starting with previous 83 | 83 | 83 | 83 [ 83 | 83 | 83 | 83 | 84 83 831
solution

Table 6: (Example 5) Number of matrix-vector multiplies required for convergence of all the
systems with c; = 0.1551 x 0.9524% and dj = 7.7566 X 0.9524%,

example.

Table 6 shows the number of iterations required for convergence of all the systems using
Projection Method II and using previous solution as initial guess having the same residual
norm. We observe from the results that the one using the projected solution as the initial
guess converges faster than that using the previous solution as initial guess. Figure 10 shows
the components of the corresponding right-hand side of the seveth system before the Galerkin
projection and after the projection. Again, it ilustrates that the projection can reduce the
eigenvector components effectively.
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5 Concluding Remarks

In this paper, we developed Galerkin projection methods for solving multiple linear systems.
Experimental results show that the method is an efficient method. We end with concluding
remarks about the extensions of the Galerkin projection method.

1. A block generalization of the Galerkin projection method can be employed in many appli-
cations. The method is to select more than one system as seed so that the Krylov subspace
generated by the seed is larger and the initial guess obtained from the Galerkin projection
onto this subspace is expected to be better. One drawback of the block method is that
it may break down when singularity of the matrices occurs arising from the conjugate
gradient process. For details about block Galerkin projection methods, we refer to Chan
and Wan [6].

2. The literature for nonsymmetric systems with multiple right-hand sides is vast. Two
methods that have been proposed are block generalizations of solvers for nonsymmetric
systems; the block biconjugate gradient algorithm [17, 16], block GMRES [25], block QMR
[4, 9]. Recently, Simoncini and Gallopoulos [23] proposed a hybrid method by combining
the Galerkin projection process and Rishardson acceleration technique to speed up the
convergence rate of the conjugate gradient process. In the same spirit, we can modify
the above Galerkin projection algorithms to solve nonsymmetric systems with multiple
coefficient matrices and right-hand sides.
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