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Abstract.

We develop 1D numerical methods for treating an interface separating
a liquid drop and a high speed gas flow. The droplet is an incompressible
Navier-Stokes fluid. The gas is a compressible, multi-species, chemically re-
active Navier-Stokes fluid (Fedkiw et al., 1996; Fedkiw, 1996). The interface
is followed with a marker particle, although the level set method will be used
for the eventual 2D extension (Sussman, 1995). Away from the interface,
we solve the equations with TVD Runge Kutta schemes in time and con-
servative finite difference ENO schemes in space (Shu and Osher, 1988).
Near the interface, we cannot apply this discretization, since the equations
differ in both number and type across the interface. Instead we use the
interface location for domain decomposition, and apply a moving control
volume formulation nearby. This is done in a conservative framework, com-
patible with the outer finite difference scheme. Full details are given for a
simple forward Euler time stepping scheme, and this has direct, although
algorithmically complicated, extensions to 2nd and 3rd order Runge Kutta
methods. Fature work will focus on the extension to 2D, and simplifications
of the higher order time stepping algorithms.

UResearch supported in part by ARPA URI-ONR-N00014-92-J-1890, NSF #DMS 94-
04942, and ARO DAAH04-95-1-0155.
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1. Introduction

The level set method has been used to model the interface between differ-
ent fluids. In this procedure, each numerical flux function is constructed
by staying on the appropriate side of the level set. These fluxes are then
differenced to update the conserved variables. This method works well for
most of the numerical domain. However, it does not work as well for points
which are adjacent to the level set. A point which is adjacent to the level set
will be updated using a flux from each side of it. Using these “straddled”
fluxes can lead to problems.

If the media on opposite sides of the interface are very similar, then
one is able to update a point adjacent to the level set by using “straddled”
fluxes. In (Mulder et al., 1991) the authors modeled two distinct gas phases
(e.g. helium and air) and had little trouble with “straddled” fluxes. This is
because the two gas phases are fairly similar. In (Sussman, 1995}, dissim-
ilar fluids are treated, such as water and air. In order to use “straddled”
fluxes, conditions are imposed to make the fluids similar: both are treated
as incompressible fluids, and their physical properties are averaged together
over a few points (around 2 or 3) near the interface in order to smooth out
the discrepancies.

There are times when the fluids on opposite sides of the interface are
quite different and we are not free to simply average their properties. Lven
worse, the equations on opposite sides of the level set may differ in number
and type. In these cases it does not make mathematical sense to use “strad-
dled” fluxes; a new method must be employed. We construct a flux located
on the moving interface, using sub-grid information. Then this interface fluz
can be utilized in a conservative way to update the points adjacent to the
interface, on one or both sides as required by the equations posed on each
side. In this way the different fluids do not incorrectly interact with each
other through interior flux points. They interact with each other through
the interface fluz using the appropriate mathematical model designed for
the interface.

We will study the 1D case of a liquid and gas, such as water and air. The
liquid is an incompressible Navier-Stokes fluid. The gas is a compressible,
multi-species, chemically reactive Navier-Stokes fluid (Fedkiw et al., 1996;
Fedkiw, 1996). The interface is followed with a marker particle instead of a
level set. In 1D there is little advantage to using a level set. In 2D we will
use the level set method, since it is the most efficient technique (Mulder et
al., 1991; Sussman, 1995). Away from the interface, we solve the equations
with TVD Runge Kutta schemes in time and ENO schemes in space (Shu
and Osher, 1988). The ENO schemes are implemented using Marquina’s
Jacobian method (Fedkiw et al., 1996). Near the interface, we cannot em-
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ploy standard methods, since the equations differ in both number and type.
Instead we use the interface location for domain decomposition. A moving
flux function is constructed for the interface in such a way that it is valid
for both domains. We use this moving flux function in a conservative frame-
work to update the conserved variables together with forward Fuler time
stepping. With some added algorithmic complexity, we can also directly
extend this time stepping technique to methods based on a composite of
Euler time steps, such as 2nd and 3rd order TVD Runge Kutta methods
(Shu and Osher, 1988).
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2. Equations
2.1. GAS PHASE MODEL EQUATIONS

The 1D Navier-Stokes equations for multi-species flow with chemical reac-

tions are
¥, + [FO), = F, (D). + 8
pu’
E=-p+ 5 + ph
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where t is time, @ is the spatial dimension, p is the density, u is the velocity,
E is the energy per unit volume, h is enthalpy per unit mass, p is the
pressure, N is the number of species being considered, Y; is the mass fraction
of species i, p is the mixture viscosity, k is the mixture thermal conductivity,
D; ., is the mass diffusivity of species ¢ into the mixture, and w; is the mass

production rate of species i. (Fedkiw et al., 1996) Note that

N-1
i=1

(7)
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defines the last mass fraction.

2.1.1. Energy and Enihaipy
We write the enthalpy per unit mass as

N T b N N

h=e+E:ZKei+—M=Zlﬂ(e§+ )=ZY;-hi (8)
P P i=1 g==1

where e;, p;, and h; are the internal energy, partial pressure, and the en-

thalpy per unit mass of the ith gas respectively. Using the first equality in

8 gives an alternate form for equation 2

b;
pY;

=1

2
w
E =pe+ p—zw (9)
where e is the internal energy per unit mass.
In a perfect gas, the internal energy, enthalpy, and specific heats are
functions of the temperature only. In this case we can write

h; = h(T) e; = e;(T) (10)
Cp; = cpi(T) Cyi = Cm'(T) (11)
dhi(T) = 6o (TYAT  dey(T) = c,i(T)dT (12)

where c,, is the specific heat at constant pressure of the ith species, and ¢,
is the specific heat at constant volume of the ith species (Anderson, 1989).
We can integrate the first equation in 12 starting from T = 298K to get

T
hi(T) = h3% + f ¢,.(s)ds (13)
298

where h2% is the enthalpy per unit mass at 298K for species 7. This is
also sometimes called the heat of formation at 298K, which is a standard
constant that can be found in the JANAF Thermochemical Tables (Stall
and Prophet, 1971). To speed up the actual implementation, we construct a
table of h;(T) for each species including every integer temperature between
0K and 4800K. We approximate the integral to desired accuracy, using
the CHEMKIN code (Kee et al., 1986) to give us the values of c,,(T') when
needed. This is done once at the beginning of the code. During computation,
if we need h;(T) for a non-integral value of the temperature, we interpolate
linearly. (Fedkiw et al., 1996)
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A calorically perfect gas has c,, constant, while a thermally perfect gas
has ¢, (T') a function of the temperature (Anderson, 1989). In regimes where
CHEMKIN does not have data for ¢, (T, we usually extrapolate with &
calorically perfect assumption.

2.1.2. Bquation of State, Specific Heats, and Gamma
The equation of state for multi-species flow is

p=pRT (14)
where
R,
R= W (15)

where R, = 8314 J/(kmol K) is the universal gas constant, and W is the
molecular weight of the mixture given by

1

W= = (16)

S W
where W, is the molecular weight of the ith species.
Gamma, for the mixture is
¢

7= £ T (17)

S~ W

where ¢, is the specific heat at constant pressure of the mixture given by

N
cp = ZY;-CN (18)
i=1

(Fedkiw et al., 1996).

2.1.3. Temperature
Since various thermodynamic quantities are functions of temperature, it is
necessary to have a means of computing temperature from the primary con-
served variables (mass, momentum and energy or enthalpy) evolved during
the calculation.

We get an expression for the temperature by combining equation 2 with
equation 14 to get

T = C, + Coh(T) (19)

where C, and C, are constants if the conserved variables are fixed. This
equation is implicit for temperature.
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We rewrite equation 19 as,

HTY=T - — Gh{(T) =0 (20)
and note that
df (1) _ dh(T) _ _,ogT -1
g — -G =1 Gel) = 1= 75" = Sy @

where (T is a function of temperature. Since +(T) is always greater than
one, this shows that F{T') is a strictly decreasing function of temperature.
We solve equation 20 with Newton-Raphson iteration. (Fedkiw et al., 1996)

2.1.4. FEigensystem

The ENO spatial discretization is based on upwind discretization of the
characteristic fields, and so requires full characteristic data for the convec-
tive part of the system of conservation laws, i.e. the eigensystem of F'(U).
See appendix A for details.

2.2. LIQUID PHASE MODEL EQUATIONS

The incompressible liquid phase satisfies the general incompressibility con-
dition V - u = 0, which in 1D reduces to the trivial form

with the density also a constant. For water,

k
p= 1{)00m—g3 (23)

We will also assume the thermal conductivity is a constant, which is rea-
sonable in the liquid phase. For water in the temperature range from range
from 208K to 373K, the thermal conductivity is fixed at

J
mK sec

k=65 (24)

instead of a varying function of temperature.
Using these simplifications, the 1D Navier-Stokes equations for a non-
reacting, incompressible flow reduce to

O, + [P = [F(D). (25)

where

1-(5). 0= (@l ) B0 =(5) e
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where

2
W
E=pe+ @7)
which is in the form of equation 9. We use this form rather than the enthalpy
form to avoid use of the pressure, since there is no local equation of state
available for pressure anyway.

2.2.1. Comments on the Equations
The first equation in equation 25 can be written as

—Pz
uy = 28
t=, (28)
and by taking an x-derivative of both sides of this equation we get
Pas =0 (29)

implying that the pressure profile is linear.
Substituting equation 27 into the second equation In equation 25 yields

pey + puty -+ upe, +up, = Ky, (30)
which can be simplified with the use of equation 28 to get
pey +upey, = kT, (31)
or in conservation form as

(pe)s + (upe)s = (KT:)s (32)

for the convection and diffusion of internal energy per unit volume. It is
interesting to note that equation 28 determines both the momentum and the
kinetic energy. Thus, equation 28 cancels out the kinetic energy in equation
30 leaving only a conservation equation for internal energy, equation 32.

2.2.2. Temperature

As for the gas phase, we need to compute the liquid temperature from the

primary variables (momentum and energy). However, the incompressible

liquid does not have a local equation of state such as the gas law 14. Thus

we cannot follow the temperature calculation used for the gas phase. Here

we derive an appropriate relation for the temperature of the liquid phase.
Consider equation 8 for the vapor phase of the liquid,

P
h=e+ >~ 33
> (33)
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The vapor phase is a gas and thus satisfies the gas law, 14. Using this yields

e (5)
w

where W is the molecular weight of the liquid molecules. Thus the internal
energy of the vapor phase is

T (34)

e(T) = h(T) — (%ﬁ) T (35)

and we can write the internal energy of liquid phase as that of the vapor
minus the heat of vaporization,

o(T) = K(T) — (%) T — Hyop(T) (36)

where H,,,(T) is the latent heat of vaporization of the liquid as a function
of temperature. This quantity is tabulated for water and many other liquids.

To speed up the actual implementation, we construct a table of e(T) for
the liquid, and handle it in the same way as the enthalpy tables constructed
for each species. In order to construct this table consistent with the gas, we
first construct a table of enthalpy A(T') for liquid vapor. Then we construct
as much of a table as possible for the latent heat of vaporization Hoyop(T7)
(this obviously isn’t tabulated for very high or low values). Then we can
use equation 36 to construct a partial table of internal energies e(1") for
the liquid. We need to complete the table outside the range of tabulated
latent heat of vaporization H,,,(T). To do this, we assume that the liguid
is calorically perfect outside the temperature range of tabulated H,.,(T).
We integrate the second equation in 12 twice. First starting from T = Ty,
and then again starting from T = T,,,,

B(T) = e(Tmin) + Cy (Tmin) (T - Tmz‘n) (37)

G(T) = G(Tmam) + cv(Tmaw)(T - Tmaﬂ:) (38)

where T'.;. and T.,.,, were the lowest and highest temperature in the already
completed portion of the table of e(T"). Note that ¢, (Tir) and ¢,(Tpnqe) are
two different constants. We than use equation 37 to fill in the low temper-
ature portion of the table, and equation 38 to fill in the high temperature
portion of the table.

We arrive at an implicit expression for the temperature from 27, which
can be written as

FT)=eT)+C=0 (39)
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where C is a constant if the conserved variables are fixed. Note that

df(T) — d'e(T) — 'T‘ f‘in\
dT - dT - c‘b‘( ) & U}

shows that f(T') is a strictly increasing function of temperature. We then
solve equation 39 for the temperature via Newton-Raphson iteration.
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3. Numerical Methods

We attempt to construct numerical flux functions at the midpoint of every
pair of grid nodes. They are constructed using 3rd order conservative finite
difference ENO (Shu and Osher, 1988) with Marquina’s Jacobian (Fedkiw
et al., 1996) on the convection terms along with conservative central differ-
encing on the diffusive terms. These fluxes are then differenced to update
the conserved variables. This method works well for most of the numerical
domain. However, it does not work as well for points which are adjacent to
the interface. A point which is adjacent to the interface would be updated
using a flux from each side of the interface. Since our equations differ in
number and type, it does not make sense to use these “straddled” fluxes.
Instead, we construct a flux located on the moving interface. This interface
fluz is constructed directly from the model equations valid at the interface.
Then the interface fluz is nsed in a conservative way to update the points
adjacent to the interface.

3.1. CONSERVATION METHOD

Our information is stored as point values on the grid. For normal nodes—
those not adjacent to the interface—we construct ENO numerical flux fune-
tions which update the point values to the desired order of accuracy. In a cell
which contains the interface, we do not construct a numerical flux function.
Instead, we construct a physical flux at the interface.

We wish to use moving physical fluxes to update the points adjacent to
the interface. For this purpose, we use the cell average framework. Thus,
a grid point which is adjacent to the interface has two stored values. The
point value is used to find numerical flux functions for updating the interior
domain, away from the interface. The cell average value is used to update
the grid point itsel.

Consider updating the cell average for a point adjacent to the interface.
We do this with two physical fluxes. One of them is obviously the moving
physical flux on the interface. The other should be constructed away from
the interface, where a numerical flux function already exists. To maintain
conservation and compatibility with the outer finite difference ENO scheme,
we use the pre-existing numerical flux function as an approximation to the
desired physical flux function at this point. Since the numerical flux is only a
second order accurate approximation to the physical flux, this degrades the
local order of our numerical method. Here a choice must be made between
order and conservation. We could get higher order by violating conserva-
tion, but we favor preserving discrete conservation to capture unresolved
phenomena that may arise from abrupt interface motion.
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Since the interface moves at the speed of the fluid which it separates,
the CFL condition limits its travel to one grid cell per time step. We will
eliminate the case where the interface lies exactly on & grid point. We can
always move it off the grid point by some small amount based on the order of
the method or on machine precision. Thus, there are two cases to consider:

1. The interface does not cross a grid point during the course of an Euler
time step. It ends up in the the same cell in which it started.

2. The interface crosses a grid point during the course of an Euler time
step. It appears in an adjacent cell at the end of the time step.

For the first case construction, refer to Case 1 in Figure 1 for illustration.
Tn this case the interface remains between the grid points x; and ;. The
pointwise values of the conserved variables here are U, and ﬁi+1, while
the cell average values are (U;)qy, and (Ti11) ave- We do not construct a
numerical flux function ﬁi+% in the cell which contains the interface. Instead,

we construct an interface ﬁux,_ﬁr. We still construct numerical fluxes away
from the interface, including F;_1 and Fys. At time n, we define A and

hY,, as the sizes (lengths) of the cells over which the cell averages (ﬁ?)we
and (U7 )aye are respectively defined. At time n + 1, we define R and
htl as the sizes of the cells over which the cell averages (U, and
(UP1) ave are respectively defined.

Since the interface moves at the speed of the fluid, we know that the
velocity profile is continuous at the interface, although the derivatives of
the velocity are not necessarily continuous. At time n, we can interpolate
to find the interface velocity v}. For our specific problem, equation 22 tells
us that the velocity profile in the liquid is constant. Thus, v} is identical
to the liquid velocity at time n, and the interface moves a distance of v}dt
during an Euler time step. So it is possible to find the future location of
the interface, before updating the conserved variables. Note that a level
set representation of the interface will have the same property in multiple
dimensions. This ability is essential for the numerical method presented
here.

We write the numerical scheme as

(TP kP = (U)o + dt(Fi_y — Fy) (41)
(ﬁgﬁl)aveh?ﬁﬁl = (ﬁir-tl—l)a.vehgl-l + dt(‘ﬁf - FE+%) (42)

which both can be read as: the new “stuff” equals the old “stuff”, plus
the flux in from the right, minus the flux out to the left. We can solve
equations 41 and 42 for (U7*),y and (U2 )as. by dividing by ht! and
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2! respectively. Remember that A7t and Ay are known, since we are

able to move the interface first. Once we find (U frtty . and (UF U4 40e We
still need to find the pointwise vaiues U and U7

Consider the second case where the interface moves into an adjacent cell,
and refer to Case 2 in Figure 1 for illustration. Since moving to the left and
to the right are symmetric, we only consider the case where the interface
moves into the cell to the right. It starts between x; and ;. and ends up
between Ty and Tiya- The pointwise values of the conserved variables here
are U” U=+1> and Uﬂ,z, while the cell average values are (U Yaves (U.,H)m,e,
and {U,;3)ave. Note that we do not know (UH_g)a.ve and must construct it.
Once_again, we construct an interface flux, FI, to replace the numerical
flux F; 3 Also, we still construct fluxes away from the interface, including

ﬁtm_, F,+;, and ng At time n, we have A%, h,,+1, and dx as the size of

the cells over which the cell averages (U Yaves (UH_l),m, and ( ,_+2)m,6 are
respectively defined. At time n - 1, we have dr, YA +1 and A1} as the size
of the cells over which the cell averages (U7™) e, ( .:f,m""il)aw, and (U:_‘;;l)we
are respectively defined.

We write the numerical scheme as

(TP ot + (O T = (T areh? + dt(Fiey — Fr) (43)

(TP aoch s = (U8 )anehfys + (Uhn)aveds + dt(Fr — Fipg)  (44)

which can both be read as: the new “stuff” equals the old “stuff”, plus the
flux in from the right, minus the flux out to the left. In equation 43, we need
to find (T 40e and (U7 ave along with their pointwise values U 7+ and
U"’“’"1 In equation 44, we find (U “*1),")& by dividing by Ay . After this, we
still need to find the pointwise value U5

A note on the CFL condition. The size of the cells adjacent to the
interface will not necessarily be dx, like the cells in the rest of the doma.m
However, it is easy to see that thexr size will always be larger than % and
smaller than 2£2. Thus, the minimum cell size for use in the CFL condltlons
& and this determines the largest stable time step.

3.2. FINDING UNKNOWN CELL AVERAGES AND POINT VALUES

In equation 44, we need (DC,,,I_Q)Gme Since the cell averages are only known

for the cells adjacent to the interface, we need to construct (U,+2)Me We
use a 2nd order, piecewise linear construction given by

. in 4 glin . + [0
(U;—zl-z)ave = ks SH-Z o (45)




14 R. FEDKIW ET AL.

which is depicted graphically in Figure 2.

In equations 41, 42, and 44 we can solve for (T Y ey ( ”“H)m,e, and
(U"‘“)mJe From these we have to reconstruct the point vaiues U7, URY',
and U" respectively. We only show how to reconstruct the point value
U7t from the cell average (U 7t e, since the other two reconstructions
are symmetric to this one. We use a 2nd order, linear reconstruction which

is consistent with the cell average,

i FFn41 .
U:H_l — (U )ave _ ?z—l dﬂ? + Uﬁ-iii (46)
h +

dm+

which is depicted graphically in Figure 2. Since these reconstructions could
give non-physical values, we find the pointwise value at the interface using
the same reconstruction

-t __fIn+l .
U= ((U‘ Jove — U1 ) (d‘” +hﬂ+l) + O (47)

d:l} + hn+1

and check to be sure this value is within the physically allowed range (pos-
itive densities, etc). If not, then we replace equation 46 with

Ot = (U7 a0e (48)

which is & 1st order accurate reconstruction.
From equation 43, we need to find (U?""),,,. and (U]} U7+ e along with

their pointwise values Urtt and U,f_fil To do this, we we define the total
cell average through

(1) ae (4 + BEE) = (UP) goedz + (O aweh T (49)

where (ﬁT)ave is the total cell average. We can combine equations 43 and
49 to get

(UT)ave(dm + h'?»}—nl = ﬁ?)aﬂeh'? + d‘t(ﬁ—% - F.I) (50)

and then solve for (Uy)ap. by dividing by dz + hit!. We use a 2nd order,
linear reconstruction which is consistent with the total cell average,

r7 (_j ave Un—+1 by
gt = | Wndewe =Vt ) g 1 7 (51)
4=z

Oyt =20+ - O24! (52)
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(ﬁr+1)ave = ﬁin+1 (53)
- (T )one (d2 + RERD — (T2 g0ed
(Y g = ol T ;;21}1 i Jave®® (54)
i1

which is depicted graphically in Figure 2. Note that equation 54 comes from
a rearrangement of equation 49. Since these reconstructions could give non-
physical values, we find the pointwise value at the interface using the same
reconstruction

n Ur)ave — UL\ /3da o

e (( O ) (57 +hi) + 02 ()
de | i
2 2

and check to be sure this value is within the physically allowed range. If
not, then we replace equations 51, 52, 53, and 54 with

Ot = Urt = (0P 000 = (U5 ave = (Ur)ave (56)

which is a 1st order accurate reconstriction.

3.3. INTERFACE FLUX

We have discussed how to implement the interface fluz, Fy, in the numerical
method. Next we will consider its construction. The interface flux will model
the physics of the interface. The general physical flux looks like,

p
put +p— T
L. (B +p)u—umy — G
F=F@)-FE@=| ¥ -pDin)s 0

PMYN—1 - pDN~1,m(YN"-1)-'B

but this can be greatly simplified.

Since the interface moves with the speed of the fluid, and it separates
two fluids, there are no particles crossing the interface. Thus, there is no
convection of mass, momentum, or energy across the interface. Likewise,
there is no mass diffusion across the interface. So, equation 57 reduces to

0 0
( P?P—Tni1 P ; %”u’m
u\p — Tll) - Ql ’U.(p - —,U’U.a,) - kTa:
Fy= 0 = "o (58)
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where p — $pu, is the net force on the interface. This force changes both
the momentum and the kinetic energy. Also, —kT,, is the diffusive heat flux
across the interface.

Since we have a conservative scheme, the interface flux must have some
consistency with both sides of the interface. It makes physical sense that
both temperature and velocity are continuous. In addition to this, we note
two principles of the interface which will help us:

1. The net stress on the interface is zero.
9. Heat which flows into the interface flows back out.

These are equivalent to

)., = (o5
( 3” gas d 3#‘ liguid ( )

(6T5) 05 = (K13) (60)

gas liguid
and obviously also give jump conditions for the interface. With these con-
ditions, we see the F; in equation 58 is consistent with both sides of the

interface. Note that in our case equation 59 reduces to
4
- gju’ua; = Pliquid (61)
gas

since the velocity in the liquid is constant.

3.4. EVALUATION OF THE INTERFACE FLUX

We will consider Figure 1 with gas on the left and liquid on the right. The
opposite case is symmetric.

3.4.1. Mass Fractions

In order to evaluate the viscosity and thermal conductivity on the gas side
of the interface, we need to know the mass fractions. The first N — 1 mass
fractions are interpolated from the gas, since they do not exist in the liquid.
The Nth mass fraction is formed from those using equation 7. We interpo-
late to high order, but reduce the order if non-physical values are predicted
at the interface, i.e. any negative mass fraction. Mass fractions may also be
predicted to be greater than one, but equation 7 shows that we cannot have
a mass fraction greater than one without another mass fraction being nega-
tive. The third, second, and first order interpolations for the mass fractions
are Y = (¥y,--,Yy.1) are

5 ﬁ”’zﬁq*‘?‘-z n 4T :
Yro= ( Sda? )(h* _'é') +
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3V —4¥; s + Vi (10 92\ | 3
( 2dz ) (h" B 7) Ty (62)
) _: - 17;2—1 n dz ot
Y= (T) (h@: - —2‘“) +Y; (63)
vV, =Y, (64)

respectively.

3.4.2. Temperature and Thermal Conductivity
Given the interface temperature Ty, we can compute discrete approxima-
tions to 7%, in both the liquid and gas phases using one sided differences.
Note we should not difference across the interface, since T is not necessarily
smooth across the interface.

Thus the discretized form of the energy flux equation 60 yields an im-
plicit equation for 77,

f(Tr) = (kTw)gas - (kTw)quuid =0 (65)

(the thermal conductivities are functions of T; as well, in general, and also
of the known mass fractions at the interface in the gas phase).

In equation 65, we replace T, on the gas side of the interface with the
following third order discretization,

A :TI_“T;', :TI_Tz'—l :TI_Tz'—B
R
A - (- A, (PR A (R - A

A4——— :A5_

dx 2dz

L () A (%) A
® dx

(66)

where 1", is a function of T;. We replace T; on the liquid side of the interface
using the symmetric, third order equivalent to equation 66.

Finally, we solve equation 65 for T using Newton-Raphson iteration. As
an initial guess for the interface temperature we use the average

T,+T;
(Tr)o=—"—5"" (67)
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although a k-weighted harmonic average would yield and even better guess.

The resulting T is used to evaluate the kT, term in the interface flux. It
is important to use the exact same numerical discretization of T, to evaluate
the interface flux as was used in the Newton-Raphson iteration, i.e. equation
66. If we used a different discretization for the interface flux evaluation,
say fourth order, than there is no guarantee that equation 60 holds in the
discretized form. If equation 60 does not hold in discretized form, there
could be problems with both accuracy and conservation, depending on how

the interface flux is treated.

3.4.3. Velocity and Viscosily
Now that we know the mass fractions and the temperature at the interface,
we can compute the viscosity on the gas side of the interface using Chembkin
(Kee et al., 1986).

The velocity will be continuous at the interface, although its derivative
is usually not. Since the velocity in the liquid is constant, the interface
velocity,uy, will be identical to the liquid velocity. Also, u, = 0 on the
liquid side of the interface. To compute u, on the gas side of the interface,
we use the known interface velocity, u;, to interpolate u,, to third order

A= e e Ay =

n dz *
hi — G

Uy — Uiy Uy — Uiz
o dz ! Ay = ——5
hi 4 S R+ 5%

(hp + 22V A — (B — %) 44
2dzx

Atﬁ"' ‘ JA5:

(h + 32) A, — (A} + %) A;

. (68)

Uy =

3.4.4. Pressure

The pressure at the interface is interpolated from the gas phase, since we
do not have a local equation of state for the pressure in the liquid. We
interpolate to high order, but reduce the order if non-physical values are
predicted at the interface, i.e. if p < 0. The third, second, and first order
mterpolations for the pressure are

P —2piy +Pis - 2
o= () (R-5)

. dp, ;
(317: ;... 1 +p1—2) (h:l — d;) _{...pi (69)

2dx
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_ (P~ Pi no__ d_ﬂ? ]
br= ( dx ) (ht 9 ) +p1 (70)

Pr=npn (71)

respectively. Note that this is the same as that for the mass fractions.

Since we know p, p, and u, in the gas, we can use equation 61 to find
the pressure on the liquid side of the interface. In 2D this would also include
any pressure jump due to surface tension forces. This in turn provides the
pressure boundary condition needed to solve the global equation for pressure
inside the incompressible liquid.

Note that our procedure of interpolating pressure in from the gas phase,
and using the pressure balance across the interface to deduce pressure on
the liquid side, makes the implicit assumption that a pressure shock does
not exist at the interface. If one does, a brief transient error may result
during the time it takes for the shock to be transmitted one cell.

3.5. PRACTICAL USE OF THE INTERFACE FLUX

Once the interface flux has been constructed, it has a single value which is
used on both sides of the interface. Most of its terms are identically zero,
but we do have a non-zero flux for both momentum and energy.

If momentum, pu, and total energy, F, are included in the congerved
variables on both sides of the interface, then we just apply the interface
flux to update the conserved variables according to equations 41 and 42 or
equations 43 and 44, depending on which are relevant. In equation 1, for
the gas side of the interface, U contains momentum and total energy as
conserved variables, as can be seen in U in equation 3. In equation 25, for
the liquid side of the interface, U contains momentum and total energy as
conserved variables, as can be seen in 7 in equation 26. Thus, if equations
1 and 25 are our conservation equations for gas and liquid, then no special
treatment is needed.

Suppose that we used equations 28 and 32 for the liquid. Then one has
to be careful when updating. Equation 28 can be rewritten as

(pu)s = —pa (72)

since p is a constant. Then, we can update the momentum using the interface
flux. This is straight forward. It is not as easy to see how to handle equation
32. In fact, there are two choices:

1. We can maintain conservation of total energy, E, which will maintain
global conservation of energy.
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2. We can maintain conservation of internal energy, pe, which is dictated
by the special incompressible assumptions leading to equation 32. This
will not maintain global conservation of energy.

3.5.1. Conservation of Internal Energy in the Liquid
The kinetic energy is defined as

pu?
where p is a constant in the liquid. Thus u uniquely determines both the
momentum and the kinetic energy. Therefore, the entire interface flux for
energy is not needed. On the liquid side, we rewrite the interface flux as

0

Pliguid

“’_kTm tgui
FI — ( [})l quid

(74)
0
with the kinetic energy portion of the energy flux deleted.
One should be careful when using this method since it is not conser-

vative. Using the unaltered interface flux yields a change in kinetic energy
of

AKE = dt(up) (75)

across the interface. Using the altered interface flux in equation 74, the
change in velocity is

Au = dt (’i) (76)
p
across the interface. The corresponding change in kinetic energy is
A 2 2 2
AKE = ”_(EJ“T?‘)— - B = dt(up) + dt (g—p) (77)

across the interface. Note that equation 75 gives the conservative update of
the kinetic energy, while equation 77 differs from the conservative update
in the second order term. These updates were done for Euler’s Method. For
third order Runge-Kutta, the error in conservation would be fourth order.
This method is only conservative up to the order of the temporal scheme.
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3.5.2. Global Conservation of Total Energy
To keep the scheme entirely conservative, we have to move the truncation
error seen in equation 77 to a different location. This is done by using the
same value of the interface flux on both sides of the interface. Again, we
only need modifications on the liquid side.

The velocity is used to compute the kinetic energy which is then added

to the internal energy to get the total energy,

+ (pe)” (78)

o pu®)
B ==

which is updated to E™" using the interface flux. We also update the
momentum with the interface flux and find the new velocity. Then the
internal energy is reconstructed as

n+13y2
(pe)"*t = E P(“z ) (79)

to finish the conservative scheme. The change in internal energy across the
interface is

A(pe) — AE — (P(uﬂ+l)2 B P(U")2) — kT, — 4 (g;) (80)

2 2

when it should only have been —kT,. Here the second order error is in the
non-physical conversion of kinetic energy to internal energy, which is not
dictated by equation 32.

3.6. DISCRETIZATION IN THE LIQUID

We use equations 1 and 25 as our conservation equations for gas and liquid,

so that momentum and total energy are included in the conserved variables

on both sides of the interface. Thus, we use the same value of the interface

flux on both sides of the interface. The gas equations are easily discretized

(Fedkiw et al., 1996), but the liquid equations require some thought.
Consider the the first row in equation 25,

which can be updated once we know the pressure. Since the interface eval-
uation process gave us the pressure on both sides of the droplet, we can
compute p, as a constant since the pressure profile in the droplet is known
to be linear from equation 29. Thus p, is just a source term. Since fluxes are
needed to properly do the interface portion of the calculation, we decom-
pose this spasially constant source term into fluxes. Each flux is assigned
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the known pressure value at the flux point. Then, differencing the fluxes
gives us back our spatially constant source term p,.
Consider the last row in equation 25,

E, + (uE +up), = (kT5)s (82)

which can be simplified using the fact that density is constant in the droplet.
Constant density, along with u, = 0 from equation 22 implies that (KE), =
0 in the droplet. These considerations simplify equation 82 to

where up, is a constant, since velocity is constant in the liquid, and pres-
sure is linear. Thus up, is a spatially constant source term. Once again we
decompose the source term up, into fluxes, where each flux is evaluated as
the known value of up. Differencing the fluxes gives us back our spatially
constant source term up,, since u is constant. The diffusion term kT, is dis-
cretized with conservative central differencing. The convection term {upe),
is just the convection of internal energy and can be discretized with ENO,
using u as the upwind direction.

In equation 81 and equation 83, we have written all the terms defining
the fluxes at the cell walls. This allows us to easily apply our interface
method.

3.7. SPECIAL STABILITY CONSIDERATIONS

Th numerical method designed above generates a small amount of noise
which propagates into the surrounding gas. To stop this, we lower the accu-
racy of the flux adjacent to the inferface so that 1t is only second order. This
single flux acts as some sort of a filter. The reasons for this mild instability
are still unclear at this time.
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Figure 1. In case 1, the interface stays between grid nodes. In case 2, the interface
crosses a grid node and ends up in an adjacent cell.
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Figure 2. Geometric representation of the transition back and forth from cell averages

to point values.
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4. Runge-Kutta Methods
For time integration of an equation of the form
U, = f(0) (84)

we use the TVD Runge Kutta methods (Shu and Osher, 1988). First order
TVD Runge Kutta is forward Euler,

g+t = U™ 4+ Atf(T™) (85)
Second order TVD Runge Kutta is Heun’s predictor-corrector method,
i = 0" + Atf(0™) (86)
rn4-1 320 1z Fin 1z T
Urtt =U"+ At §f(U)+§f(U) (87)
A third order TVD Runge Kutta method is given by,
U* = U™ + AtF(0™) (88)
Tk Fn 1. =20 1 P
g = 0n + At (Zf(U )+ 2 /(T )) (89)
ZINN | n 1z Tn 1z T 22 Tk
Urs =04+ At Ef(U)-i-gf(U)—%gf(U } (90}

The scheme in the previous section was described using Euler’s method.
Our scheme can be extended to second and third order TVD Runge Kutta
as well. Each partial Runge Kutta step is seen as an “Euler type” step
where the right hand side is the average of the right hand sides from the
appropriate time levels. For points “away” from the interface, the right
hand side is evaluated in the standard way. However, one must be careful
for points “near” the interface.

Normal fluxes are only computed in cells which do not contain the inter-
face. Cells which contain the interface contain the special moving interface
flux. To compute the right hand side for a partial step of a Runge Kutta
method, we intersect the normal fluxes across all time levels that are used
in the right hand side of the partial step. Then we use these intersected
fluxes to find the convective derivative on the right hand side for each time
level. Then the convective derivatives are averaged in the appropriate way.

There is a grid point or two left which are not updated. These are up-
dated using the interface method with the new averaged interface flux and



26 R. FEDKIW ET AL.

its nearest averaged neighbor which lives in the intersection described above.
Essentially, these points are updated in a conservative way using some of the
interpolation described in the previous section. We have employed second
and third order Runge Kutta methods and prefer third order. We will not
spell out the details of the higher order Runge Kutta here, since there are
many cases and it is quite lengthy. (More to come on higher order Runge
Kutta in a future report.)
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5. Numerical Examples

In the figures, we do not show the actual values of density and pressure for
the water droplet. Density is not shown, since it is is off the scale reasonable
for the gas. Pressure is not shown, since it is not computed in the 1D water
model. Tt has a linear profile and must be calculated using the pressure in
the neighboring air. We use “place holder” values for the density and the
pressure, just to show the location of the water droplet. However, the values
for the velocity and the temperature are unaltered.

5.1. EXAMPLE 1

We take a 1-D domain of length 10cm and a grid with 100 points. We have
solid wall boundaries on both sides of the domain. Inside the domain we
have an incompressible water droplet and a compressible, thermally perfect
gas. We will assume that they are both inviscid for this calculation.

The water droplet is five grid cells long and starts at rest near the left
hand side of the domain with an initial temperature of 298K. The rest
of the chamber is filled with argon gas which also starts at rest with a
temperature of 1000K. The gas to the right of the drop is at standard
atmospheric pressure, while the gas to the left of the drop hag a pressure
over five times higher than atmospheric pressure.

We expect the high pressure air to drive the droplet to the right. The alr
on the left will expand and cool, while the air on the right will be compressed
and heated. Eventually the droplet will compress the air to the right enough
to allow a net force to the left which will slow the droplet and reverse its
direction. This process will repeat and the droplet will bounce back and
forth in a spring like fashion.

Third order ENO with Marquina’s Jacobian is used to discretize the
relevant fluxes. Then our phase interface method is coupled to third order
TVD Runge Kutta in the appropriate way.

Figure 3 shows the droplet after a short time. It is being driven to the
left by the pressure difference. The droplet continues to the right. The air to
the left is decompressed and cooled, while the air to the right is compressed
and heated. This can be seen in Figure 4 where the velocity of the droplet is
over 302. Note that the pressure on the right now exceeds that on the left,
and the net force is now to the left slowing down the droplet. The droplet
will keep slowing down until it comes to a complete rest for an brief instant,
before it starts moving in the opposite direction. Figure 5 shows the droplet
almost at rest, just before it turns around in the other direction. Figure 6
shows the droplet moving in the opposite direction Now it is decompressing
and cooling the air on the right while it compresses and heats the air on
the left. This process continues, mimicking a spring-like phenomena.
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Note that we conserve total energy. Thus there will be an error in the
computation of the internal energy in the water. Equation 80 shows that
5 = - - - . 2

the internal energy will decrease In a nonphysical way proportional to £

Since -g—z is larger on the right hand side of the droplet then on the left, for
most of our computation, we would expect the temperature on the right of
the droplet to be lower than that on the left. This can be seen in figures 4,
5, and 6.

5.2. EXAMPLE 2

We take a 1-D domain of length 10cm and a grid with 100 points. We have
solid wall boundaries on both sides of the domain. Inside the domain we
have an incompressible water droplet and a compressible, thermally perfect
gas. We will assume that they are both inviscid for this calculation.

The water droplet is five grid cells long and starts at rest near the right
hand side of the domain with an initial temperature of 298 K. The rest of the
chamber is filled with argon gas which also starts at rest with a temperature
of 1000K . Near the center of the domain, we impose a pressure jump. The
gas to the right of this jump is at standard atmospheric pressure, while
the gas to the left of this jump has a pressure over five times higher than
atmospheric pressure. This is a “Sod” shock tube problem with a water
droplet included in the tube.

We expect the pressure jump to split into a shock, a contact discontinu-
ity, and a rarefaction. The shock will travel to the right of the domain and
collide with the water droplet, reflecting off in the opposite direction.

Third order ENO with Marquina’s Jacobian is used to discretize the
relevant fluxes. Then our phase interface method is coupled to third order
TVD Runge Kutta in the appropriate way.

Figure 7 shows the shock traveling to the right toward the water droplet.
Tt hits the droplet, reflects off, and then travels in the opposite direction
as shown in figure 8. Note that the shock will impart momentum to the
droplet forcing it to the right with high pressure. This can be seen slightly
in figure 8. Figure 9 shows the solution at a later time, where it is more
apparent that the droplet is moving to the right. Here, the velocity of the
droplet is positive and the velocity of the air to the right of the droplet has
a linear profile.

Figures 10 and 11 show the same example with 400 points, just to illus-
trate convergence. Note that there is a peak in the density and a dip in the
temperature by the droplet after reflection. This is the standard effect due
to loss of room to interpolate.
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5.3. EXAMPLE 3

We repeat example 1, except this time we allow the flow to be fully viscous.
Once again the droplet is driven to the left, slows down, and reverses
direction. Figure 12 shows the droplet after reversing direction. Comparing
this to figure 6, we can see that the cold droplet is absorbing heat from the
hot gas. The gas temperature profile near the droplet is falling, while the
corresponding density profile is increasing.
Figure 13 shows the drop after reversing direction once again, now trav-

eling to the right.
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Figure 8. The water droplet is initially driven to the right from the pressure difference
in the air. Inviscid case.
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Figure 6. Now, the droplet moves to the left. It decompresses and cools the gas to the
left, while it compresses and heats the gas to the right. Inviscid case.



34

den

R. FEDKIW ET AL.

2.5F ™

1.5 er————

T

0.5

Tartaies et

o} 0.02 0.04 0.06

x 10° press

0.08 o.1

55k,

sb -
45F ¢

4t 3
3.5} -

at .

2.5

2F

1.57

1t

+

.

0 0.02 0.04 006

Figure 7. ‘The shock is traveling to the right and is about to

droplet. 100 grid points.

0.08 0.1

x-vet

30071

250+

200

150

100

0.1

1400+

1200

1000 p==-.

800

600+

400

0

0.02 0.04 006 0.08

coliide with the water

0.1




NUMERICAL METHODS FOR A ONE-DIMENSIONAL INTERFACE 35

den

0.5¢

press

4.5t

4

3.5t

3F "

2.5¢ ™

2..

1.5F

1t

oy

0 0.02

0.04 0.068 0.08 0.1

x—vei

30071

250+

200+

1501

100} -

507"

»

0.02

0.04 0.06

temp

.08

6.9

2000

1800

1600

1400+

1200

1000

800T™, .

600

4003

o

0.02

0.04 0.06

Pigure 8. 'The shock has reflected off the water droplet and is now traveling to the left.

100 grid points.

0.08

0.1



36 R. FEDKIW ET AL.

den

1.5¢

(o] 0.62 0.04 006

press

0.08 0.1

5.5F

5-

4.5r -

4k

3.5t

3F

2.5¢

2k .

1.5t

1

0 0.02 0.04 0.06

0.08 0.1

250

200

150

100

50

2000

1800

1600

1400

1200

1000

800

600

400

faemp

0

0.02

0.04

0.06

Figure 9. 'The droplet has a positive velocity and is moving slowly to the right. The air
o the right of the droplet has a lnear velocity profile. 100 grid points.

0.08

0.1



NUMERICAL METHODS FOR A ONE-DIMENSIONAL INTERFACE 37

den Xvel
3007+
2.5r R ...{_
- 250+
2F ] 200} ;
1.5} \ ] 150¢ I
'. 100} § )
— 50} - :
0.5k . , X o ob—4 . . a
o 0.02 0.04 0.06 0.08 0.1 o 0.02 0.04 0.086 0.08 0.t
x 10° press temp
5.5 -_.\ 1 1400F —_— E
5F i _ .
3 - -
i or -
a5t Y ) 120 .
3 .
ar 1 1000/ . —_—
3.5 b
al | 800 .
2.5}) k
. 800} 1
2 3 - 4
1.5F ' E 400+ i
1t . . . — — . . . .
0 0.02 0.04 0.06 0.08 0.1 ¢} 0.02 0.04 0.06 0.08 0.1
Figure 10. The shock is traveling to the right and is about to collide with the water
droplet. 400 grid points.



38

den

R. FEDKIW ET AL.

2.2F

1.8F

1.61

1.2¢

0.6

T

&) 0.02

0.04

0.08

press

1 -

) 0.02

0.04

0.06

0.08

0.1

x—vel

300

25071

2001

1501

100} ;

507+

0.02

0.04 0.06 0.08

temp

0.1

1800

1600

1400

1200

1000

800

600

400

)

K

0

0.02

0.04 0.06 0.08

Figure 11. The shock has reflected off the water droplet and is now traveling to the left.

400 grid points.

0.1



NUMERICAL METHODS FOR A ONE-DIMENSIONAL INTERFACE 39

den x—vel
1.05 7 : - - ]
1t : —2) ", a
0.95} " 1 S S 1
0.8} 1 -8 S
s S | * -
o.8s5} . =8 : ]
0.8} . -10r ; T
O.75 b ; —12r 1
~14p -
0.7} . 3
- -16} O 1
0.65} . e
L L A 1 _18 L 1 I 1 L ]
0 002 004 006 0.08 0.1 0 002 004 006 008 0.1
x 10° press temp
' ' ' 1600F ' ‘ 3
PR - l
o5l ] 14001 -
1200} 1
2t J
1000} -
1.50 - 800} .
600 | 1
1l ]
400} B .
0 002 004 006 008 0.1 0 002 004 006 008 O.1

Figure 12. Now, the droplet moves to the left. It decompresses and cools the gas to the
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6. Conclusion

We have developed a new approach to multiphase flow involving a lig-
uid droplet hit by a high speed gas flow, or more generally for any mixed
compressible-incompressible flows. Qur approach is based on decomposing
the domain into distinct regions where the respective, different, model equa-
tions apply, and discretizing each region with the most appropriate tech-
niques. Proper boundary conditions are imposed on the internal interface
boundary, mainly in terms of continuity or conservation conditions. In order
to maintain discrete conservation and use finite difference ENO methods in
the gas phase, we developed a novel formulation using a Lagrangian control
volume method near the interface. Novel time stepping schemes are also
developed for nodes near the interface, since a given node will change its
unknowns and governing equations as the interface passes over it.

For basic proof of principle and to investigate the details of of the novel
spatial discretization and time stepping required near the interface, we did
this initial theory and computations in 1D, Our experiments showed good
results for both smooth flows and flows with shocks reflecting from the
liquid surface, Future work will extend the method to 2D, using a level set
representation of the interface.



42 R. FEDKIW ET AL.

A. Eigensystem
Congider F( ff) defined in eqguation 3.

The eigenvalues of the Jacobian matrix of f(ff ) are

M=u—c (91)
M= =2V oy (92)
M =yt (93)

The left eigenvectors E”, are the rows of the following matrix.

by you 4 by _hw 1 b =bz zhan—1
2 2e 2 2 2e 2 2
1 bz — b3 b]_ﬂ _bl b]_ Z1 blzN__l
Y, 0 0
. (94)
: I
—~Yn-1 0 0
by _ w4 by _biw 1 b zhim ., zhiznes
2 2e + 2 2 + 2c 2 2 2

The right eigenvectors Rr , are the columns of the following matrix.

1 1 0 --- 0 1
U—2c U o -- 0 uw+c
H—UC H—ﬁ 21 ot BN H""Lﬂc
Y Y, Y, (95)
: : I :
Yyt Yn_1 Y1

oo [E g Bt (9
P P
’le N1
b = e2 ! bp=1+bu®—bH, by=bh ZY;Z‘ (97)
=1
1 1
zi_h‘lth_ch(WzWW—N)T (98)

For more on the eigensystem, see (Fedkiw et al., 1996).
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