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Abstract

We construct continuum shock profiles of finite difference schemes for system of hyperbolic
conservation laws through time-asymptotic analysis. Our approach differs markedly from previ-
ous ones using march mappings which yield discrete shock profiles with rational speed. Instead,
we obtain continuum shock profiles of any speed through strong point-wise estimates of time-
asymptotic states. For this we analyze the Green functions for the linearized evolution equations
and the spectrum properties of the stationary equations. A profile satisfies the basic conservation
property when it is obtained as the limit of profiles of rational speed of increasing denominators
as a consequence of continuum dependence. Finally the nonlinear stability of the profiles are
shown using the point-wise estimates.

1 Introduction

Consider system of hyperbolic conservation laws

u+ flu); =0, t>0, z€R, u=ulzt)€eR" (1.1)
and finite difference schemes
1 1
u™tHz) = u™(z)+ A (F[um](zr: + 5) — Flu™(z — -5)) : (1.2)
At
A= A

The purpose of the present paper is to study the continuum shock profiles and their stability. We
construct these profiles using the time-asymptotic analysis, particularly the point-wise estimates for
evolutionary equations, and also the spectrum analysis for linearized stationary equations. Previous
analysis for discrete profiles uses marching mapping, and applies only to waves of rational speed.
Our new approach yields continuum profiles for waves of any speed. We also obtain the basic con-
servation property and nonlinear stability of these profiles.

*Research supported in part by Army Basic Research Grant DAAH 4-94-GS 0045 and NSF Grant DMS-9623025.
tResearch supported by ARPA/ONR grant N00014-92-J-1830
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We note that the construction of discrete profiles of discrete speed p/q, (p,q) = 1,[3], [4], [13],
requires the shock strength to be much less than 1/¢. This is due to the application of center manifold
theorem to the g-th iteration of the linearized scheme. In particular, such an approach cannot be
applied to profiles of irration speed.

There is a qualitative difference between profiles of rational speed and those of irrational speed.
Profile of rational speed p/q repeats itself after g steps, while a profile of irrational speed never
repeats itself on the discrete level. Neverthless, our result shows that the states actually take values
from a smooth continuum profile. That the discrete profile does not repeat itself should not be
confused with numerical oscillations. Oscillations can arise due to the initial layer or the lack of
numerical dissipation. For discussions of related issues see {8] and [9].

Our study of continuum profiles should form a basis for further study of general solutions, which
contains interaction of shocks with smooth flows, other shocks, or with initial layers. Such a study
has heen carried out only for scalar equation [1].

System (1.1) is assumed to be strictly hyperbolic, that is, f'(u) has real and distinct eigenvalues
M) < Ag(u) < -+ < Ap{u) with eigenvectors normalized as follows:

Fw)ri(u) = N(w)ri(u),  Lu}f(u) = A (u)l(u), (1.3)
l,,g(u)"f‘j(u):&j, i,jui,Q,---,n.

The difference scheme (1.2) is in conservative form, and is explicit in that F[u™] depends only
on finite values of the function u™. We also assume the usual consistency property and (C-F-L)
condition, ¢.f. Section 2.

A travelling wave ¢(z — dt) with speed d is a shock profiles if

u™(z) = ¢lx — de), P(+o0) = u4 (1.4)

satisfies (1.2) and conservation property

S 6 +) - () = oluy —u), zER, )

j=—00

When the i-characteristic fields is genuinely nonlinear V;(u) » r;(u) # 0, {5], and scheme (1.2)
is dissipative and non-resonant, Section 2, we show that continuum shock profiles exist and are
nonlinearly stable.

For works on discrete shock profiles for systems see 3], {4] and [13], for stability of those profiles
see [6], [12] and for scalar equation see (2], [10] and [11].

In next section we give precise definition of shock profile and the dissipative difference scheme
and derive basic equations. Qur point-wise estimates require explicit construction of accurate Green
functions, which are done in Section 3 and 4. The construction of continuum shock profile is carried
out in Section 5 using an elaborate iteration scheme. The Green functions in near field are constructed
based on the linear difference scheme and in far field on the associated viscous conservation laws.
The conservation property of the scheme and the approximate profile is used crucially in estimating
the tail behavior of the time-asymptotic state through the point-wise estimate of the evolution of the
difference solution. This allows us to show that the time asymptotic solution of our linear difference
equation depends on 7 — st only, s the speed of the profile. To construct solutions for the nonlinear
equations through iterations we need to study the far field structure of the time asymptotic solution
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for the linear equation. For this the cancellation effects of the conservative source is important,
(2.12) and (2.13). The cancellation is easily seen for continuum viscous conservation laws . To
obtain a strong cancellation property of the pointwise estimate for the discrete equations we devise
a double iterations and reduce our problem to the study of schemes with constant coefficients. The
cancellation property is then obtained through the spectral analysis of the stationary scheme, (5.19),
and a uniqueness theorem to obtain the far field sturcture of the linear time asymptotic solution.
In this analysis, our thinking is new in studying the interior differencing, (5.21), rather than the
exterior differencing c.f. [3]. Further study of the profiles, particularly the conservative property,
(1.5), is derived in Section 6. A profile of irrational speed is always conservative and a profile of
rational speed can be reparameterize to be conservative. We show these by explicit construction of
conservative profiles through a limiting process of approximateing the speed with rational speeds
with increasing denominators. Our reasoning is based on the stability property of the solution’s
dependence on the initial data and the trucation error that an approximate profile gives raise to.
This process allows us to study the continuous dependence of the profile on its speed and to make
use of the increasingly fine conservative property of any given profile with rational speed of increaing
denominator.

The nonlinear stability of profiles are carried out in Section 7. In Appendix we simplify and
generalize the previous results on discrete profiles, which form the approximate profiles used in our
construction of exact profiles in Section 5.

Acknowledge: The writting of this paper was done while the authors were visiting Institute of
Mathematics, Academia Sinica, Taipei, R.O.C.. We would like to thank the Institute for the hospit-
ality.

2 Preliminaries

Consider the finite difference approximation

wIG) = L) (2.1)
COmG) = W) - AFPG + )~ FIIG - )

of the hyperbolic conservation laws

Here u™(z) ~ u(z, mAt) and A = At/Az. We assume that (2.2) is strictly hyperbolic:
Flwrs(u) = Nrs(w), Lu)f (W) =Xl(w), i=12,,m, A(u) < dg(uw) < o+ < Aa(w).  (2.3)
The scheme (2.1) is conservative and consistent with (2.2):
Fla] = f(@) for any constant state &. (2.4)

Assume that the scheme depends on finite 2k grid points:

Flu™(j — %) P = K)o w4 h = 1), m=0,1,2, -, j= 0,1, E2 . (25)



We also assume a strong (C-F-L) condition:

A“lm%%>4max{[)\i(u)§ i =1,2,--,n} (2.6)
for all u under consideration.
Remark: In the above setting we allow the variable z = jAz = j ( taking Az =1 for definiteness)
as being continuous. With this, due to Peter Lax, we may define the continuous travelling waves for
(2.1} as follows:
Definition 2.1. ¢(z — dt) is a continuous travelling wave with speed d for the finite difference
scheme (2.1) if

u™(5) = ¢(j — dAm + Z) satisfies (2.1) for j = 0,£1,£2,---, (2.7)
m=0,+1,+2,---, and for any given Z € {0,1], and
Y2 oz +14) — ¢(3)) = z(uy — u-) for all z. (2.8)

In (2.7), note that
w5 = $(j — dAm — dAAL + T);

is the shift of the travelling wave to the right by AdAt and therefore is the wave after the period
At and thus satisfies (2.1). The conservation requirement (2.8) is consistent with (2.4) and is the
discrete analogy of

[ ¥la+y) —bw)dy = 2(uy —u)

for a travelling wave ¢ (x — dt) of the PDE (2.2).
For a continuum travelling ¢(z — dt) of (2.1) we have form (2.8), (2.7) and (2.1), and (2.4) that

) = Y (G Mdm+1)+8) — 4~ D+ )
= 2 5 (Il - 2dm o+ 3) = FlolG - dam— 3))

= —MF($(o0)) = F($(—00))) = =A(f(us) — f(u-))-

Thus ¢(z — dt) satisfies the jump (Rankine-Hugoniot) condition

du- — uy) = flu) — f(u4)- (2:9)

It follows that, [5],

Ai(u-) + Aiuy)
2

where € ~ |u_ — uy} is of the same order as the strength of the shock, When the i-characteristic

field is genuinely nonlinear, VA;(u) - r;(u) # 0, shock (u_,u4) for the PDE (2.2) is physical if the

following entropy condition holds:

d= + O(€?) for some 4,1 < i < n,

Ai(ug) < d < Ag(u-). (2.10)



For (2.1) discrete travelling waves can be constructed when the speed is rational with respect to a:

Md = rational. In Appendix we show that accurate approximate continuum travelling wave ¢ with
speed not necessary rational, can be constructed with the property:

¢ (z) = O(1)e*e ", (2.11)

W) = W) - MFRG ) - PG - ) +EG—dm), (@12)
for u™(j) = ¢(j —dim).

Here the error & is zero if ¢ is an exact travelling wave, (2.7). The approximate travelling wave is
constructed accurately and conservatively:

£(j) = O(1)ele VWl F(j) = i £(k) = O(1)ele~l, (2.13)

k=—00

For our study of the construction and the nonlinear stability of the travelling waves we require
the scheme (2.1) to be dissipative and satisfies certain non-resonance condition. We now describe
these notions. Linearize (2.1) around a constant state u:

Wt () = wn(f) - AT, Fi(w™(i — k+1) —w™(j - k+i- 1)), (2.14)
P = g—i(ﬂ) :
From (2.4),
% B
i =M, 1=1,2, RS
i=0

Thus, (2.14) becomes
2k
WPHG) = wlG) —AY fa WG~ k) - ol —k+i= 1), (215)

iw=1
w™(G) = S ulr()m, fazFi-n
=1

Plug in the Fourier modes to the above equations, we obtain

k

Afg) = 1+ AQZ fu (/7TRHE - gV Tk (2.16)
i=1

wP(j) = (A(E))me V.

Definition 2.2 The scheme (2.2) is dissipative if for some constants Cy > 0, Cs > 0,

1- Gyl < JAE)] < 1 - Calgl” (2.17)
for |6l 1, I=1,2,--+,m,
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and is non-resonant if
|4;(6)] =1 only for £ =0,1=1,2,---,m. (2.18)

Remarks: A non-resonant dissipative scheme possesses discrete travelling waves, Appendix. A suffi-
cient condition for a scheme to be dissipative is that the diagonalized equation (2.15) has nonnegative
coefficients. The random walk associated with such a scalar equation has nonzero variant, which is
the effective viscosity coefficient, c.f. (3.6).

Examples.
(1) Lax-Friedrichs scheme

mpira WMD) fm(G+ 1) - fenE - 1)
umg) = 5 —A 5
It is dissipative, but resonant, because the even grids, m + j =even, and odd grids,
m + j =odd, are independent. However, if one consider only one of these grids, say the
even ones, then it becomes non-resonant when the scheme is iterated twice:

LS - ™ (§ + 1) + 20™(F) +u™(j — 1)
4
._.% {[f(‘vm(.ff + 1))+ Flo™() + 2f (,Um(j + 1;+Um(j) _ Af(’um(J + 1); _ f(‘l)m(j)))

- [f(vm(j)) + F0™( - 1) +2f (”m(j) RS e LA 1”)]} |
v™(j) = u(2).

(2) Godunov scheme

W (z) = w™(g) — AE@™( +1),u™(5) - F@™(), u™( — 1)),

Here F(u_,uy) is the value ¢(0) of the solution ¢(z/t) of the Riemann problem (U g ).
The linearized scheme is

Wit () = (1 + 220w () — AW (G + 1) + v ()

for A <0,
ot (G) = (1= 220wl (d) + M) + wit(i - 1) (2.19)
for A > 0.
The scheme is non-resonant. It is dissipative if the characteristic speeds A1, Az, -, An

are nonzero. (lodunov scheme is well-known to possess sharp stationary shocks and does
not smooth out stationary waves.

(3) Modified Lax-Friedrichs scheme

™ (5) = w(j+1)+ um?fj) +um(G—1) | fn@+1) -2- fwrG-1))

(2.20)



It is non-resonant and is dissipative under the strong (C-F-L) condition
1
-5\* >3 mgx(])\l(u)[, T, |)\n('U-)|) (221)

For simplicity, in the remaining of the present paper, we will carry out our analysis for this scheme,
For convenience, we make the travelling waves ¢ stationary, d = 0, with the change of variable
z — x — dt so that (2.20) becomes |

it UMzrd+ D) +uM(z+d)+ut(z+d -1
oty < Ela A Pt D e d )

2 (G +d+ 1)~ fw+d = 1)
(2.22)

Consider a perturbation v™(z) of an approximate travelling wave ¢. We have from (2.22), (2.7) and
(2.8) that

v +d+ 1) +v(G+d) +ov™(j+d—1)

3
A+ d 1)+ 60+ d+ 1) - F9( +d+ D)
ARG+ d= 1) + 60+ d— 1) — F6G +d = D)} +EG),
() = W) - 40

or by Taylor expansion

() =

V™G = Le™() + QPTG +d+1) - QuTI( + d) + E()-
v($+d—tl)+v($+d)+v(:c+d—1)

L(v)(z) = 2 (2.23)
“%[f’(‘ib(ﬂ? +d+ D)z +d+1)— fdlz+d— D)v(z+d-1)],
Qlliz) = O@)(lw(@)® + @ — DY) (2.24)
For the discrete anti-derivative w™(j) we have
W) = K@™)() + QW™ +d+1) + QP +d) + F (), (2.2
_ wz+d+ ) +wE+d+wztd-1)
Kw(s) = -
A

-3 (f'(#(z +d+ 1)) (wlz+d+1) —w(z+d) - fld(z+d)(w(z+d) —wlx+d—1))):
w™(§) = > (i +E).

k=—0c0

This is diagonalized as follows:

Wit () = Ky () + Myle ™ ([) + Q"] +d + 1) (2.26)
+ Qg™ + ) + Fo(3),



W) = zf:lw;”um),
K, (h)(z) = Rz +d+1)+h{z+d)+h(z+d—1) (2.27)

3
-—%(Aq(m b+ D)(h(z+d+1) — h(z +d)) - %(h(a: +d) - (g +d—1)),
Az} = A(@(2)), rola) = ro(é(z)).
Here @, and F, satisfy the same estimates as in (2.23) and (2.13),
Me ™ (z) = —{-=((z+d)—l(z)) w™(z+d) (2.28)
My(z+d+1)

+] 5
+,\,\q(:; +d)

(=l (z) +l(z+d+ 1) f($lz+d+ 1) (z +d+ 1)

((z+d+1) = Lz +d) - w™(z +d)

((+d) — s +d— 1)) - w™(z +d - 1)]}

e

> 00 >

~=(=lg(z — 1) + Lz + d)) f'(d(z + d))v™(z + d))
d=(ly(@ +d+1) = 2z + d) + l,(z +d - 1))w™(z + d)

(Ig(z -+ d) — Lz + d+ 1))™(z + d + 1)

|

((lg(z) — lg(z + d))v™(z +d+ 1) + (lg(z) — lf{z+d— D)™ (z + d))

((z+d) = ly(z +d+1))v™(z+d+ 1)

){I(d = Mg (@) Xg(2)] + X Hlw™ (z + )
WP - (o™ + d+ Dl + [[v™ (@ + d)])-

L] e L] e L0 e 2] =D

I
S

4
]

3 Qreen Functions for Transverse Fields

The approximate Green function G(y,m') = Gz, m;y,m') for the operator K, of (2.27) is to
satisfy

Gy(y,m) = 6(y — z) (3.1)
and to minimize the expression K;Gy(-,m') — Go(-,m' — 1) for all m/, 1 < m' < m, where
K} h(y) = §(My—d+1) +h(y—d) +h{y—d~1)) (32)

+%f\)\q(y + 1) (hy—d+1)+h(y—d)) — %)\,\q(y)(h(y —d)+ hly —d+1)).

From (2.26) and (2.27) we have the Duhamel’s principle:

W () = [ Goly, Owl(y)dy + Ty J2% (K3 Galy,m) = Goly,m' — 1)) w (v)dy (33)
F STy i Golyym) (Mfeo1um™)(y) + Qoo™ )(y + d+ 1) + Qglw™(y + d + 1) + Fy(y)) dy.
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The construction of G,(y, m'), ¢ # 1 is divided into three regions depending on e, which is equivalent
to the strength ||u. — u || of the shock,:

Regionlm——<m <m. B
We set G,(y, m') to be the exact discrete solution Gg(y, m') of (3.1) and

RG‘( m') — G,y,m’ — 1) =0, | (3.4)
*h{y) = 1(h(y—d+1)+h(y-—d)h(y—d—1))

+§Mq(ﬂs) {[hy —d+1) +h(y — d)] ~ [y — d) + h{y —d = 1)}

(o]

That is, G, solve the adjomt problem with constant coefficient Ag(x) replacing A,(y).
Region II: 1 <m <1-

The Green function G‘q for this far field case is well approximated by that for the continuum equation:

Wyt +5\q($)wqw He{T)we (3.5)

j‘q(m) = )\Aq(m) —d, plz )= % - %(A’\ (55))

which is dervied as an approximation of (2.26), (2.27) by Taylor expansion. We adopt the procedure
of constructing approximate Green function for (3.5) in [7]: :

0oy, 5) = (4 pig(y) (¢ — 5))71? exp — (Rllmsllpaleiizal ) (38)

m'(y) = M), aF i

For the discrete equation we set
Gy, m) = L0 94l m)8(y = 5)- (3.7)

Finally for the Region III, m — % <m' <m- —i» we consider the linear interpolation of G, and éq:

Gum)  fxm-lsm<m
o Gt miswemsn
Goly,m') = e(m —m' — 1)Gy(y,m') + (2 — (m —m"))Gy(y, m) ) .
form——-~<'n’z'<m‘“l

We now study G, and, in particular, access its accuracy by computing K;Gq(y, m')—Gy(y, m/—1):
For (G, we take the Fourler transformation T over £ € (=, 7):

T(R? 0 So)(€) = LV + 1+ eV7%) — Ly (z)(eV™ % — V™),
Sz g(z) = gz + d),



and so there exists C" > 0 such that

T(K; 0 S3)(€) = 1 — /=12 (2)6 — 362+ O(€%),
for [£l < |m — m’|“1/2+1/1°,
IT(R; 0 Sa)(€)] < 1—C"(m—m/)~ 5

for |€] > |m — m/|"2¥ 5.
Denote by

5(z)={ 1 ifz=0,

0 ifz#0.
We have

R B ifg—z+(m-m)d¢Z,
(Kq) 5(@} 33)“ { (K;OSd)m—m'g(rg_x_i_(m—m")d) ifg—~:c+(m—m')de Z.
Apply the discrete inverse Fourier transformation to (K2 o ,S'G;)”‘"‘mr

(}‘(;)m—m'g(g - w) — 51; Jr 6\/—_1(§—x+(m—m'}d)E(T(}_{; o Sd)m—m’ (g)dé-
=141],

|m - ¥+1165§5|57r ex/“_l(ﬁ—m+(m—m')d)§[T(R; o Sd)]m—m’(g)d&-l
< L~ — m)FH)Y(1 = Ol — )y

= O(1)e=¢tm="") for some C > 0,
27( !§l<im b oV =H(F—a+(m-m')d)¢ [1‘..,/ “TaN(z)E — §2+O(§3
= 1 V=10 (m=m)d)' [1 _ | /2
= 2wmn—’f15f S— (m++/ (m~m/) [1 V=T ()

1| =

1

dg‘

s m—mn
\/?ng m! - Bm m’ O((m mf)3/2)] d£’
eV =Ting"+(= ;+M>£ﬂ)(1+0( )%ﬁ)dg,

-

2

B B i 1 g HE-FOIEND)
=(1+0(1)(m-m')"? 10)\/47r(‘_‘(-\)\q($))2) T{l_q—_

n = Gzt (d—AAg{z )} (m— m}

Vet

2‘11'\,1’ m" ‘I‘g’l(m m"Tﬁ

From above and (3.4) we have
Gyly,m') = (1 +O(1)(m — m') ™)

g—z+{m—m')deZ
{ 1 _limerOg () d)(m-m'?

e AF-FOXENDm-m’) & Y — i
VA% = E0N (@) (m — ) 1)

(3.9)

+O( )e—C{m—m")chﬂ,?‘(m-(m_mr),m+(m_mr))5(’y — g)} .
The last expression in (3.9) is to indicate that the discrete operator R’; has finite speed. We also
have

fR Gq(y’m’)d’y = 1 Gq(y:m’) 2 0

(3.10)
Gy (ym') =0 forly—z|>m—m/

0<m <m,
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followed from the fact that our scheme is three points and that it is dissipative and thus K ¢ has
nonnegative coefficients, The accuracy of Gq is easily assessed
K2yl m') — Gyly,m! — 1) = (K — K2)Cqly, m)
= 3(Agly+1) - q(_))( oy — dym) + Gyly —d+1,m))
%OU M(@)(Cyly —d — 1,m) + Goly ~ wwwn
Moy +1) = 2®))(Goly — d+1,m) + Goly — d = 1,m))
( JU+1) = M@)(Goly — d+1,m) — Gyly — d—l,m))-
Recall that A,(y) is the characteristic speed of the wave ¢(y), and so by (2.11) we have

K;G'q(y,m’) — Gyly,m' — 1) = O())e WG, (y — d,m') + G,y —d—1,m"))
+OMe(Gyly — d+1,m’) — Goly — d = 1,m')),

N’I)ﬂ m|>¢

where the bounded function O(1) has derivative, which is of order O(1)e.
For the continuum G, (y,m') of (3.6) and (3.7) we have, { c.f. [7], where p,(y) is a constant.
Here additional error |m — m'|~** below arises due to the discrete approximation, (3.7).)

1Coly,m') — Gyly,m' — 1) = [O(1)e?e=W + O(1)|m — m! |Gy (y, m), (3.11)
for m' <m -1

Gy (u,mt) = O(l)gq_( m') for y >0 (3.12)
O(1)G, (y,m') for y <0,
=4 [ _matgtmemhie)? geebdgmomoo?)
G, (y,m) = Tyoztim-myacz(m —m')72 [3 Dlm-m?) +e  Pmomh) oy — 7)
for some positive constant C' and any constant D > 4 - max, (14,(y)). :
Finally, we consider the linear interpolation of G, and G|, for the region m — 2 <m/ <m - 1,
(3.8):
Gyly,m) = e(m —m' — 1)G,(y, m') + (2 ~ (m —m')G eN ’) (3.13)
K:G,(y,m') — Gyly,m! — 1) = e(m — m! — 1)[K3G(y,m') — Gy, m' — 1)]
+e(2 = (m )){KEG( y,m) — Gyly,m’ ~ 1)]

+€[G(y} - 1) - G'q('ys m' — 1)]:

In other words, the error in (3.13) is linear combination of those for G and éq plus e[C__}'q(y,m' -
1) — G (y,m' —1)). This last expression is estimated by comparing the expressions (3.9) and (3.6),
(3.7):

Goly,m' — 1) = Goly,m’ ~ 1)

(@@( m! — 1) + Gy, m’ — 1)),
2
=<

for - m <m-—=.

€
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Here we have used the property that A\, (z) — A,(y) = O(1)e. For notational convenience, we write

Gq(y: m’) = Z Qq(y, m’)a(y = g)

F—z+{m—~m')deZ

and the same with G, and éq. The Green function is function of (z,m;y, m’). From our explicit
form of this approximate Green function, one has that

NGz, myy,m') = —0,G(z,my+1,m)+0(1)eG(z, m;y,m). (3.14)
Ach(€) = h() - h(E-1).

The Duhamel’s principle (3.3) becomes:

WPt @)= 30 94(5:0)uf () (3.15)

F—x+mdeZ

+ Y g @ m)(Mle ™) (@) + Q™ 1T + d+ 1) + Qufw™ (7 + d) + Fy(7)

foat-(m—-m! )dEZ
1<m’/<m

Y [0 £ o) m —m| 7 g, (5, m e ()

F-z+{m—m'jdelZ
lgm"Sm—%

+ Y oW {e Mg, (g - d,m) + gy(§ — d — 1,m)]

ozt (m—m! JdED
m—%Sm’Sm

+elgg(§— d+ 1,m) — 3§ — d — 1L, m)]} wl¥ (5)
+ Y oWEr g lmm — 1) + 5,5 m - 1) wi ).

g—o+(m—m)deZ

mm»%Sm’Sm——%

4 Green Function for Compressible Field

The construction of approximate Green function Gi(z,m;y,m’) = Gi(y,m') for the compressible
field A; = M(z) — d, (3.5) follows the same procedure as in the last section. We set Gi(y,m') as
n (3.1), (3.4) with ¢ = i. The continuum function g;(z,%;y,s) = gi(y, s), instead of (3.6), is set as
follows:

1 ! () {mly)—m{z)+i—s)]?
0i(y, 8) = (4mp(y)(t — 8)) % exp (- I {mllomlerrimall) BCE
(A + (A =0, m' =&+ 25)™ (4.2)

This generalizes slightly that of [7], where the diffusion coeflicient p; is constant. There are two
solutions of (4.2), one with A4(co) =1, and the other A_(co) = I:

A =% Ecear”
ot ) = (R + 25y = (3, ”jﬁ)*@)

12



{““rf;)a'sy"—oo

A(m)asy—>oo,

(] 1 v Ai(r)
— (e N I;'T—v)-df
A_(y) = Ai(—o0) - m() dz,
, o 2uAl 5 2X(—00)
i) = O+ 25485 ) = (5 + 2y
[ fasy— -0
- —5}; as y — 0o.

We use A, my fory >0, A_, m_ fory <0.
From above we deduce

9is + igi)y + (1) gy = OQ)E (e + (¢ — 5) D)W (1 + H)gs.
The function g¢; has the property that, for any fixed k& > 0, c.f. [7],

~elzl g
} _ Ky | emd=gr(y, s) for zy <0,
Gi(y,s) = (1+Hgi(y,8) = { g7 (y, s) for ay > 0,

{p—y-2T(t—a)+0)? sy AE (1= 5)— Y2
ggh(y, s) = (47r(t — 3))”’% [ = l)‘D(t(-t- ¢ 6_'(“ ;{t—iaj < . (43)
The Duhamel’s principle (3.3) becomes:
wi )= Y g:(50wi(d) (4.4)
Fg—az+mded

+ Y a@m)(Miw™) @) + Q™G+ d+ 1) + Quw™ (G + d) + Fi(®)
f—z+(m—~m!)des

+ 0 0()é(e + (m—m)3)e W (g, m)wi (7)
§'~z+(m—m’)§ez
1<mi<m~ o

+ Y oW {e Mg - dm) + 5i(g — d = 1,m)]

f—z+(m—m/)deZ
m-2<m/<m

Ha @~ d+1,m) — 3G —d—1,m")]}ul” (@)
+ Y 0P Gigm 1)+ §(F,m — )] wl (@)

f—z+(m—~m')deZ
2

m——(m'(m—%

Similar to (3.14), it holds
Aggi(z,m;y,m') = —Aygi(z, myy + 1, m') + O()egs(z, m;y, m'). (4.5)

5 Construction of Travelling Waves

We will construct the travelling waves through time-asymptotic analysis. Consider an approximate
travelling ¢(z — dt), ¢(+oo) = uy, cf. Appendix B, satisfying the Rankine-Hugoniot condition

13



d(u- —uy) = flu-) = flug),
¢—Kp = O()del (6.1)
3 de+i) = o,

Linearize the difference scheme (2.1) around @, take anti-difference and diagonalize, ¢.f. Section 2,
to yield

witt = qu;”+Sq+Nq[vm]+Mq[e‘5|3|wm], (5.2)
wg = 0 )
Um = um"¢a
1]
w™z) = 3 v"(z+d),
j-—oo
W) = 3w (3). (5.3)
g=1

S,(z) = O()e*e Pl for q #1, (5.4)
Si(z) = O@)ee P,
Recall that M,[e~¢1%w™)] is a small linear term and N,jv™) is the nonlinear terms. We will construct
the exact travelling wave ¢ to be ¢ plus v® = limy,_,e v™. This is due in several steps. The first step
is to consider the simplified version of (5.2) when K, ¢ # 1, is replaced by a constant coefficient

operator with A, (¢(z)) replaced by XY = A,(u.), for ¢ < ¢, and Ay = Ag(uy). For the modified
Lax-Friedrichs scheme, (2.27), we have

Kh(z) = %(h(m+d+1)+h(m+d)+h(m+d—1)) (5.5)
—i\-;—o(h(:n-kd—i-l) h(z +d — 1)),

Ag(uy) when g > 4,

Q
}‘q

Ao Ag{u.) when ¢ < i.

1l

Consider the initial value problem

wit! = Kjwy+ 8, g#i, (5.6)
S, = O(x)ee™,
'w;n”l"l = Kiw;'" + S, (5.7)
Si(z) = O1(z)efe 9,
(z) — Si(z—1) = 02( )e%e e, (5.8)
w?(a:) = 0, 57=1,2,---,n. (5.9)

14



Here Oy(z) and Ou(z) represents a bounded continuous function. Note that in (5.7), we use the
original variable coefficient operator Kj.

Proposition 5.1.There exists a solution w™ of (5.6), (5.7) and (5.9) with the following properties:

Jlim w™{z) = ww(m) exists, (5.10)
0 _ e~dlsl 7 <0, . .

wP(z) = O(1) { | =0 if g > . (5.11)
w® = O(l)e¥l - (5.12)
v = wP(z) - wi(z—1) (5.13)

ee <l z <0 ifq>i

_ (|Jz|+1)°% z>0 1

B ee el >0 , .

oW { (ol +1)F z<0 TP
vP(z) = we(z) — wP(z — 1) = O(1)ee . (5.14)

Proof: For g # %, we apply the Duhamel’s principle with exact Green function

Gq(:ca m Y, m’) = Zg—m+(m—m’)dez gq(.’B, m; ¥, m’)é(y = g)
:u);n“l'“l (m) = Zﬁ—m;&m—&n-’)dez gq(-'r, m; g, m')Sq(g).

The Green function G, has been studied in Section 3. It is the same as G, of (3.4) when Ag(z) is
replaced with }\g. By (3.9), g, essentially is the heat kernel with convective speed )\g and diffusive
coefficient pd. Thus, the estimate (5.11) follows from the following Lemma 5.1 with § = 1. The
existence of the limit (5.13) is shown as follows: Consider the time difference of (5.6):

m4+1 0, m
“q = Koz
z(z) = O(z)ee4,
A7 = wptt ], m=12,-.

Similar to Lemma 5.1 below, we can deduce easily from above that

1 _(iﬂ—lom)2 .
Z;n(fﬂ) = O(l)m‘"ie Fgm O(l)ee—-eC’lm—)«qm|

for some constant C > 0. Consequently, w;n(:c) =3y z;"" (z) is a convergent sequence for each
fixed z. This completes the proof of (5.10), (5.11), for ¢ # <.
For the proof of (5.10) and (5.12) with g = 1, use the approximate Green function G; constructed in

Section 4 and also apply Lemma 5.2, 8 = 1, below. The solution w™{(z) is constructed as

w(z) = lim wl%(z) (5.15)

joeo W
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through the following iteration: Replace the L.H.S. w1 (z) and Duhamel’s principle (4.4) by

wgﬁ( ); the function w™ and F; on the R.H.S. are replaced by w}’,}' and S; respectively. (

Mjle<telym], Q;[w™] are zero in the present setting.) The consequence of (5.15) follows from
the estimate:

al(z) = O(1)ed e, (5.16)
“,J( ) = w::;(m)-—wf"ﬂ“l, jﬁl,?,---,
Z}) = 0.
From (4.4}, we have
— Ay _elwl A - et o
oty = Y O (e+ (m—m!) 2)e WGi(g, m)a] (§)
g—mt{m-m/ideZ
1<m'<m-1
+ S OWelee g7 — d,m) + 5i(g — d— 1,m)]

g—at{m-m'ideZ
m-—-2/eSm/<m

+Hgul§ —d+1,m) ~ Gilf - d - 1,m")|}a7 ()
+ S o [a (g, m ~ 1) +Gilg,m’ — DT ().

Jz+{m—m')de2
m—-B/ESm’Sm—%

With (3.12) on G and the induction hypothesis (5.16), the first sum on the R.H.S. above is O(1)ée ksl
by Lemma 5.2, 8 = 1 below. The second and the third sum is treated using (3.12) and (3.8) (with
q = i}; details are omitted. This shows the estimate (5.12). The convergence (5.10) for j = 1 is
shown as that of (5.10) for g # 4, above. Finally (5.11) and (5.13) is shown by considering the dif-
ference of the Duhamel’s principle in the above analysis and apply Lemma 5.1. When =, consider
difference A, of the Duhamel’s principle above and apply (4.5) to this difference. Finally, by using
summation by parts with (5.8) and Lemma 5.2 with § = 1. Q.E.D.

Lemma 5.1. Let D and )\ be positive constants, and € an arbitrarily small positive constant. Then
for A >0,

/ f(t—s) Al2g- LL%;\_%_!L -4 dyds

_ om{€F, w<0, ifp=1
(1) , x>0

= 0(1) { \/Ee_%ﬂs z 1< 0, ifB=2
(z+1+et)2, >0

and for A <0

t —atA(t—8)]% €
ef /;z(t“ s) Pl D e dyds
0
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, >0
_ om | Ve, z<, ifB=2
- om{ YU T
LAl +¢ ) <

Lemma 5.2: Let D be a positive constant and € an arbitrarily small positive constant, then for
x>0

w—y—e(t—s)]*
e L [0t — 5) P HED ¢ B dyds
z—yte(t—s))? €
Fe2 f (1 — 8Bl b e F dyds
_ O(l)ewﬂﬁ'_m for =1,
O()ee F  for B=2,

forxz <0
r—-y—ec(f—s 2 "
it —s)Pl%” s e B dyds
<|= _jzmyte t—5 2 ,
e B [E 0 (t— 8) P2 BEa e B dyds

I

_ O(l)e"éﬁi@nEL for =1,
OWee 5 for =2,

The proof of Lemmas 5.1 and 5.2 are by lengthy but tedious computations. We omit the proof, c.f.
Lemmas 5 to 7 of [7].
Remark 5.1.: The limit function w,(z) = w§°(z) clearly satisfies

we=Kjw,+8q, q#i (5.17)
w; = Kyw; + 5;. (518)

We have shown in Proposition 5.1 decay rates of e~*! or (|z|+ 1)~1 for v, = v%, ¢ # i. In below we
will show that v,(z) decays as e~ This is done in two steps, see Propositions 5.2 and 5.3 below
for solution of (5.17), g # .

Proposition 5.2. There ezists a solution v, of (5.17) such that

vy(z) = wy(z) — we(x — 1) = O(1)ee™ ! a5 z — 0.

Proof: For definiteness, we consider only ¢ > 4, so that A, > d. We first prove the proposition for
rational speed d = p/q, and shown that our analysis allows for arbitrarily large g. This would prove
the proposition for any speed d. Thus (5.17) becomes, with w = w,, S = Sy,

w(z) = aw(z +d + 1) + bw(z + d) + cw(z + d~ 1) + S(z),

o(z) = av(z+d+1) +bu(z+d) + ev(z +d— 1)+ S(z) ~ Sz — 1), (5.19)

with the constants a, b, and ¢ satisfy

17



1) c—a—d>0,{ ) >dg>1)
ii) a+ b+ c = 0 ( conservative scheme },
iii) S(z) = O(1)ee™ekl.

We want to solve {5.19) with the boundary condition
lim v(z) =0 (5.20)

Since d = p/q, we can divide any grid interval into ¢ subintervals of equal length and rewrite (5.19)
as

Vg = QUpygip b?)k+p + CVUg_gyp + Sy — Sk_q, (5.21)

k
’UkEU(yk), SkES(yk)w ykECE—I-E‘,k:O,ﬂ:l,ZEQ,"',

where z is any fixed value. For definiteness take z = 0.
This is rewritten as

U = At + S’;ﬂq - gl_gq, (5.22)
Vi41-2¢ 0
Vgqo_ o :
= , S=| ,
0
U 2gx1 o 2gx1
0 1 0 o 0\
0 1 0O :
A= ,
1
0 1
qu,l g --- 0 A2q,q~p+1 0o .- 0 qu,q+1 0 / 2qx2q
I 1 b
A2q,1 = _E’ AZq,q-p+1 = E’ A2q,q+1 = _E'

Here 7, and 3, are 2g-vectors and A is a 2¢x 2¢ matrix. Since A is of canonical form, its characteristic
polynomial is

1
chara(z) = E(—-:c"”“ + az®? + bz? + ¢)

and its eigenvectors are of the form



for any root o of the characteristic polynomial chara(a) = 0:
g(B) = —F+(aB+b+ch7)
8 = o

B =1 is a trivial root of g(3). Since g is convex and ¢'(1) = d +a — ¢ < 0 by (i), another root 3,
is greater than 1. Thus the roots of chary are

a € {™Vlle grllagVTile: j = 0,1, —1}, By > 1. (5.23)

Thus A has 2g distinct eigenvalues and thus a complete set of eigenvectors. We consider the
particular solution vy, of (5.22):

e = ARS8, - Siay).
ik

This sum converges because |A’~*| is bounded by a constant depending on ¢ but not on & — j <0,
and because S; = O(1)ee 7179, We rewrite the sum as

-1

T = > (A7 AFTHOS }:A LS 24 (5.24)
J%k =0
= Y ATTY AT — AN Sjhkrp-ng — D AT Se-2ghe
1=0 3=0 1=0
Denote the eigenvectors of A by
1
1 L)
¥ ﬁj—ak
5 2
€k = o ) .fk = ﬁ-‘{-a% +
20-1 Za-1
“ Byt aichml )

27 ZGQW\/_—lk/qa k :1a25“')q'

and write any vector g as

¢
=Y (axex + befr) .
k=1

We have
Ale, =ey, AYfp= B4 fr

(A7—1)g=(B+—-1) 2‘1: by fr-

k1

We now compare the Lo, norm of g and (A? — I)g. Suppose
9 1 .
1(A? = Dglloo = |(Bs — 1) D_(Biog)®

k=1
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for some 4 € {0,1,---
Qi =
Gio+q

AT = Dgllee =

<

-

&
i

,2q -~ 1}. Consider the case 0 < i3 < g; the other case ¢ < 1y < 2¢ is similar,

ig .
(ar + bef53 )Bzmo‘fj’l 1,

NE

=
{}
NS

i .
(ag + by ﬁ+)€2m°‘/w_1/q;

Gio+g — iy
B, =1

P

By =1)

2||9l] o

] = |Gio+q = Yio

'Thus A? — I is bounded on L, independent of gq.
Note also that on the range {fi, fa, -+, fq} of A? — I, the operator A% = f-'I and is therefore
contractive. To bound vy, it remains to consider the term of the form as the last term in (5.24).

We have
00 0 o0 .-0-to 0 —2)
100
010
01
A7l =
1 0
1 0 )
0 —4 0 0
0 0 0 -2
A_l == 0 3 sz : = 0
0 E 0 :
1 0 1 0
( aé \ ( as \
0 0 : .
0 . :
AT b =1 a,, |, A~ (g-p+1) = 0 )
d , Gg-p+1
: 0
1 0 .
0 .
\ 1/ \ 0
a a a
Gg—p =7, @1 =75 Gepti = 7
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and so

0

g—1 . g—t .

> A=Y SiuAH]

1=0 =0 0
\1)

Sk"'l \ ( Sk+q—p+1 \
Ske2 Sk+q-p+2
= —E Sk“}"’?’“l — E Sk+q—1
0 c? 0
0
Si 0
Consequently
= & a a
_ (@ _
U;—;OA Siilles < (c + cg)k<3<k+ 1551 = ey 3 S,
z = k/q,
o(@) = 0(1) max [S@)I.
z-yi<l
This completes the proof of Proposition 5.2. Q.ED.

We have thus obtained two existence results Propositions 5.1 and 5.2 for (5.17). Our next Proposi-
tion shows that these two solutions are the same.

Proposition 5.3 (Uniqueness) Suppose that a, b, ¢ are positive constants with a + b+c=1andd
is a constant with d < ¢ — a. Then, there the difference equation

Vi) =aV(z+d+1)+bV(z+d) +cV(z+d—1)
with lim |V(z)| =0,
|z|—+oo
has only trivial solution.
Proof: Using the same setup as in the proof of Proposition 5.2, we have
Vi = aVietptq + BViap + Vietp—g-
Write:

Vl-—2q+1

=i

: =D (aue; +bufs) =Ei+ F
v ) =

Vz+kq = FE, + 01 F
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Since limpoeo [V (2)] = 0, we have F} = 0 by letting £ — oo, and E; = 0 by letting k — oo or
k — —00. Q.E.D.
Finally we conclude from Propositions 5.1 ~ 5.3 that

Theorem 5.1. Proposition 5.1 holds with the sharper estimates:

vgo(z) = OL)ee™ ! a5 |z| — 00, ¢ # 1.

We next return to the nonlinear problem (5.2).- Our interest is in the large-time behavior W™ =
S0 iMoo witry and 9% = Y1, limy, o0 vf"r;. For this we set up the following iteration:

wihl = Kl + (Ky ~ KDwi +5,+ Ny[77°] + M[e~<lg), (5.25)
Neirststnn e, e e
=l =1y 5 =lig;

mo__ 0 —_
weo =0, Wy i1 =0,

—¢lz] .
el ooy _ | [ wlloo€®e™ for g # 14,
e )= { 10T gl (520
with the a priori hypothesis:
_ ; O{l)e~¢=l, z >0 :
o0 — i2
Wai(z) = € { o), 2 <0 for g < (5.27)
oo ; OWe k5 <0
Woi(z) = cit2 { Oglge 50 forg>1
— 00 — i+2  —¢|lz
16 e t2eell,
15(z) = dte del  9=1,2,--,m
"ng}(m) - wg?;(x) - wqo,(_;'~1(m)1 J= 1;2: 2]
’I—J;E(I:) - Ug}(ﬂ:) - U;c;__l($), J= 11 2) ' I
5 o= 3 (B~ 1) T
=1
@y = (B =~ Du-1) T
=1
I, = L= L= 0(1)e B 2] (5.28)
= O(1)eet? for q # i,
II, = II,; - 10,4,
1L, = I ; - I1L, ;1.
Since N[#}°] is a second order nonlinear term,
() = 0I5} + 17721]lec) max, 11957 @)lloo (6.29)

= O(1)e e,
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The function M,[e~*17lw] is linear in w, therefore

I, = O(1)ee Pleh+2 for g #1, (5.30)

I, = O(1)ée Pl k+2
From the difference between (5.25)s with index j and j — 1, we have from (5.27) that

~;T;|:;.11($) — KO ;nJ_H + O( ) j+3e—e]m|’
q,3+1 = 0
From (5.28), (5.29), {6.30) and Theorem 5.1 we have that
72,1 (z) = O(1)e e eIl

which yields the a priori hypothesis (5.27) for j + 1, when ¢ # 4. Q.E.D.
This and (5.14) yield the following main theorem of the existence of nonlinear travelling wave of the
difference scheme.

Theorem 5.2. There ezists a solution to w, = K, + Sy + Ny[v] + M,le~lw] with the property
that .

vz) = wlz)—wlz—-1) (5.31)
v(z) = O(1)eel,

and that u(z) = v(z) + ¢(z) is an ezact travelling wave of the difference scheme (2.20) satisfying
that
ug{z) = O(1)e2e ek, (5.32)

6 Continuous Dependence and Conservation Laws of Travel-
ling Waves

In this section we show that the continuum travelling wave ¢(z — dt) can be constructed to satisfy
the conservation (2.8):

Y (Blz+4) - ¢()) ==z(uy —u), z€R. (6.1)

Jje

We first consider the case the speed d = p/q is rational. Let dy = py /2"q, (p#,2¢) = 1 be such
that dy — d as i’ — oo, and the shocks (u..,,u"i) has speed dy, i = 1,2,---. Let ¢p{z — dt) be the
travelling wave constructed in the last section

do(00) = Uy, ¢o(—00) =u_.

Consider the conservative function

¢ (z) = fw mt% $o(y)dy (6.2)



and the travelling waves ¢y{z — dyt) as constructed in the Jast section to be the time-asymptotic
state with initial values:

(6.3)

Similarly, with ¢y given, we construct traveling waves y¢ connecting (u_, u,.) with an initial value:

li(du(z) —u-)

Lud —u.)

#¢°(z) = ¢ (z) + (uy — ) (6.4)

Note that, due to {6.2), ¢, is conservative:
2 (ulz+35) — dulf)) =2(uy —u.), z€R
€z

This implies trivially that the functions ¢9(z) are also conservative. Consequently our construction
processs in the last section can be applied to yield.
Since dy = %, we have, by telescoping the equation (2.1), with u™(z) = ¢z (z — dym), we have

i . k
Z qﬁti(ﬂﬂ' +j -+ .'130) — gﬁzr(j + .'IIO) = 3’)(’(1,:_ — 'Lb_), T = zi'q, Iﬂ c Z, i) e R (65)

j=—00
This implies that the initial values of (6.4) is conservative with respect to the speed d = p/q:

k

=5 K€L me R. (6.6)

i g+ +zo) — 98" (G + 7o) = x{uy —u_), =

j=—oo

The conservative property for ;¢(z — dt) (6.6) is sufficient for applying the construction scheme in
the last section. ' '
Set

vi(z) = ¢; — 93 ().

Proposition 6.1. The functions {v1,vq,- -} form a Cauchy sequence,
s (2) — ve(2)leo = O(1){d; — dile ¢ 4,k=1,2,--+, for some C > 0.

Proof:

Write down the equations for v; and vg:

vi(z) = VL[¢v(z + d;) + Nyfvs](z + dj) + E;(z + dj), (6.7)
u(z +dj—dp) = VL[Ge( + dj) + Ni[vg](z + dj) + Ex(z + dy), (6.8)
N;[l(z) = Llg]+vl(z) — L[¢)(z) — VL[$lv(x) (6.9)

_ /01 /01 OV2L[$5 + 07v;)(v;, v;)(x)dTdf

1 1 1
= )\fo /0 OV F (¢S + O7v;]{(vj, v5)(z + 2)d‘rd9
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1l .
_,\[0 /0 OV2F[¢] + 07v;)(vj, v;) (@ — .é)df,—dg

E(x) = L]z +ds} — H5(2),

Nifm) = Y Ni(z+1),
[<0

Filz) = Y &z +1).
i<o

5’1) = Ui = Vg,

dw(z) = ) du(z+1),
<0

wi(z) = Y vs(z+1), for j=1,2,---.
1<0

From our construction of v; and vk, Section 5, we can conclude that

Iv3(2) | = O()Pe™L, Jup(e)lloo = O(1)e%e™ ", (6.10)
lvj(z — (d; = dv)) = vs{@)]| = O(1)€*|d; — dyle™1". (6.11)

(6.10) gives the upper bound for v; and v (6.11} follows from the estimate for —J— c.f.: (5 32). This
and (6.9) give the difference in the nonlinear terms Nj{v;] and Ny[vg]:

NGl (2) = Melod @)oo = OQ) (I€260(@)|oo + €*]d; — dile™), (6.12)
Hence, we can decompose Njiv;] — Ni[vg] as follows
Nifvjl(e) = Nelve)(@) = Nsldv)(e) + O(1)eldy = dfe™. (6.13)

Similarly, we also have
1F5(2) — Fe(@)lloo = O()€%|d; — dile™". (6.14)

From (6.7), (6.8), (6.12) and (6.14), we have the linear equation for év:

fv(z —d;) = VL[$fldv(z)+ v(:c +d; — di) — v(z) (6.15)
+N;k[6v](z) — Njwldv](z — 1) +O(1)€d; — dyle™H!
= VLNv(z) +N;x[0v](z) = Nj[dv](z — 1) + O(1)e?|d; — di|e 1,
swz —d;) = Kldwl(z) + Njx[ov)(z) + O(1)eld; — dile™", (6.16)
Klh|(z) h{z) + VF[#] - (h —coh){(z), (ocoh)(z)=nh(z—-1).

Similar to construction of the discrete shock profile in the previous section, for solution év of (6.15)
it satisfies that

i

180(z)]lo0 = O(1)]d; — dele™", (6.17)
Q.E.D.

From a similar reasoning to Proposition 6.1. it yields the following estimate for the function (6.4)
156°(2) — k()| = O(1)]d; — dile™ ¥
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for some constant C' > 0; details are omitted. By the same reasoning we have

I56() — xd(@)| = O(L)|d; ~ dile™ .

This implies that { d(x), 2¢(z), -+, } is a Cauchy sequence with limit

' 1

Clearly ¢(z — dt) is a travelling wave, ¢(too) = uy. The conservation laws (6.6) and the above
estimates yield the approximate conservation laws:

S od(@+ 7+ za) — vd(F + o) = x(uy — u) + O(1)|d; — d],
jez
k

yerps kez;\ mgeR-
2vq

Tr =
This yields, in the limit ¢ — ¢ as © — oo the conservation law (6.1) for ¢.

When the speed d is irrational, we may apply the conservation law (6.1) to travelling waves with
nearby rational speed. We also need to make use of the above reasoning of continuous dependence of
the travelling waves ( as time-asymptotic state) on the initial data. This establish the conservation
laws (6.1) for any speed d. We now summarize our main result on the continuum profile as follows:

Theorem 6.1.Suppose that a shock (u-,uy) of the hyperbolic conservation laws (1.1} is suffi-
ciently weak, ||u. — uy] < €, € depending only on the function f(u) and the scheme. Then the
continuum shock profile, (2.7) and (2.8), of a dissipative, non-resonant, (2.17), (2.18), difference
scheme exists. Moreover, the profile with strength O(1)ep is unique up to a phase shift.

Actually, the uniqueness in the above theorem has yet to be shown and is a consequence of the
nonlinear stability of the profile to be shown in the next section.

7 Nonlinear Stablity of Shock profiles
Consider the perturbation of a shock profile ¢(z — dt), ¢p{£00) = Ueo!
wl(i) = ¢(3) + @°(5), i=0,%1,%2,.--. (7.1)

We first extend the initial value u°(f) conservatively as follows: Let @°(z) be any smooth function
satistying

m+% .
[ @@)ds =), i=0,%1,%2,--. (7.2
-3

The extension is then set as:

' (z) = /:+% #°(y)dy, =z €R. (7.3)

BOf

From (7.2) and (7.3) the following is an extension of (7.1},
u’(z) = ¢(z) + @°(z), =z €R. (7.4)
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This extension, along with the conservative property (2.8) for ¢, yields the conservative property:

w™(z) = ¢(z — Adm) +7™(z), ~ (7.5)
Zﬁm(w—kj)ﬂZﬁO(i), t€Z, m=0,12,---. (7.6)

These conservation laws are usual to determine the shift zo of ¢ and to the strength Cj, g # 7 of the
diffusion waves that the perturbation gives rise to:

S A1) = zo(ur — u-) + > Cyrglu) + 3 Corgluy). (7.7)

i€z g<i g>1

Since our interest is in the time asymptotic behavior of the solution, the diffusion waves §; is
accurately approximated by the diffusion waves for the parabolic PDE:

1
Ogt + Agblgw + "é“(Q?)m_: tqBgzs, (7.8)
if g-field is g.nl. ( normalized by VA, -ry = 1)
Ot + Agfgz = Labgazs (7.9)

if field is linear degenerated.
/Rﬁq(x,t) =Cq qF1,
| pglu-)  for g <4,
He = { pe(uy) for g >4,
A(u-)  for g <1,

M = { ) (7.10j

Agluy) for g >,

and, to have conservative property, we set

o = [ oty myay (r.11)

By a change of variable we may assume, without loss of generality, that the sfift zo is zero and so
we have from above

W™(z) = dla—dim)+ 3 0(z, m)rg(u) + ) Og(z, m)re(uy) + 0™ (z), (7.12)

g<i g>i
S vz +4)=0, zeRm=0,1,2,. (7.13)
jEZ
With (7.13) we consider the anti-difference:

0
w™(z) = Y, vz + ). C (7.14)
j=—o0
The equations for w™ follows from the difference scheme and (7.8},
w;”"'l(m) = K|wg)(z)+ Mq[e_el‘"‘wm] (z) + Q™ Nz +d + 1) (7.15)
+ Qqlv™|(z -+ d) + F*(z)
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where we have followed the notation of (2.26) expect for F,, which represents the error created by
the diffusion waves ( instead of due to the approximate profile as in (2.26):

zy= 3 Cjib;( +ZDqu9 vk + 016 (=), (7.16)

JEG

We apply the Duhamel’s principles in Sections 3 and 4 when the source terms M, and (), are assumed
to be known through the following a priori estimates:

wz)| < Moy(z,m)E, g4, (7.17)
wi(z)| < Méy(z,m)3, (7.18)
()] < Md[g(am)®? + 3 Py(z, m)*? ~ (7.19)
FED]
(et + 1) m + 2]+ 1)7F + xg(m,m)], g #4,
)| < MS[gi(z,m)** + 3 P5(z,m)*/? (7.20)
J#t
+(jz + 1) Hm+ 2] + 1)), g #4,
Wit (z) — vtz —1)] < Mﬁ[’gbt:cm +}:1/)J )2 (7.21)
Ji
W™ (z) - wi(z)| < My (z,m)*? + 3 y(m, m)*/* (7.22)
i#g

+0,(z,m) + Xq(z,m)], ¢ #1,
- w(z) < Méli(e,m)* + 3 Pz, m)? + xi(z, m)),
J#i

where the various algebraic-decaying function are defined as follows:

(-0 (m+1))?

O,(z,m) = (m+1)"te mew (7.23)
polz,m) = [(x— AN(m+1) )2+m+1]"%,
bi@m) = [(ol+em+1) 2 +m+1] ",
Falzm) = [lo—Sm+ )P+ (m+ 1?7,

Xo(z,m) = min(xg(z,m), (m+1)"H(|z| +1)7%),

(m+ 1)_5(1 + e(jz| + em) Y temel=l { 1 for |z < C(m+1),

0 otherwise,

xi(x, m)

for some constant C' > 0,
1 1 for0<z<A(m+1)—vm+1, g>i
Xolz,m) = |z — AIm[ (L + €z +1)72 ) { 1 for0>z>X(m+1)—-vVm+1, ¢<i
0 otherwise.

The estimates of (7.17) ~(7.22) are done by using the Duhamel’s principle, (3.15), (4.4) derived
in Section 3 and 4. We assume that the functions w™(z) and v™(z) in the M, and @), satisfy the
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estimate (7.17) ~(7.22). The initial perturbation is assumed to satisfy

() = O(1)6l% +1]7%4, (7.24)
(i +1) — @) = O[> +1]"%*, i=0,+1,£2,.-, :

with these we may compute the R.H.S. of (3.15) and (4.4) for w™(z), m = 1,2,---,2 € R. The
computation involves the convolution of the approximate Green functions with power of the power
of functions in (7. ). The approximate Green functions G(z,m;y, m') are accurately approximated
by those for the associated viscouse conservation laws, (3.12), (4.3), except for m' close m, where
they are close the heat kernels, (3.9). Thus we may apply the stability analysis for viscous shocks
[7], to obtain the stability of the shock profiles for difference schemes; details are omitted. We have
the following stability results:

Theorem: Suppose theat the perturbation of a shock profile ¢(z —dt) of a dissipative, non-resonant
difference scheme satisfying (7.24) for § small. Then the difference shceme has a global solution (7.12)
satisfying (7.17), (7.18), (7.19) and (7.20).

A Existence and Structure of Discrete Shock Profile by a
Marching Map

In this appendix, we will simplify and generalize the existence theormem of discrete shock profiles
given by [3], {4] and [13].
Let ug be a state such A\;(up) = p/g and normalize the nonlinearity by setting

Li(uo) -+ V2 f (uo) (ri(ua), ri(uo)) _ 4
(o) Fy (o, )7 (o) '

We write the equation of a discrete travelling wave ¢ with a discrete p/q as a recurrancy relationship:

qb(m _p) = EQ(QS(LE + q)) T ¢(:’E - Q))) forz € R? (Al)
jgglm ¢ + ) = us.

In particular, this scheme £ is the modified Lax-Friedrichs scheme, hence the recurrancy relationship
can be transformed into a nonlinear march mapping 7 in an open set U C R*™™ around a point

ﬁ(] = guﬂs Ug, - - :uﬂ)i:

2q

. 2
7' . quxn R an,

Uz U1
U3 U2
T(@) = , U= ,
Uag Ugzg—1
i Uag
where t solves
Ug—p = LI(t, Ung, * + +, 1)
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Then, the limit conditions in (A.1) for ¢ become to find a state o = ($(1), - -+, $(2¢))* such that

. - g =
jgglooT (o) = i, (A.2)
T4 \
_, Ut
4+ =
Uy

The existence of such a state q?;g is reduced into a state on the center manifold M of T at its fixed
point iy c.f. [3], [4]. On the other hand, for any state satisfying one of the limit conditions in (A.1)
will be on the set defined by the following equation

¢ = {(ul,uz,--- ugq)t:H(u;,---,ugq):pu_—q)\f(u_)}; (A.3)
Hl o) = Sty = A F(@ulla + 1), £010)

Hence the existence of such a state is reduced into that on J = C N M c.f. [4]. ( This set J is an
invariant curve for 7, since both C and M are invariant under 7.) One can show that this set J
is a 1-dimensional curve connecting @, and 4. for this modified Lax-Rriedrichs scheme. On this
curve, one could easily show the existence of the state ¢ € J, c.f. [4].
Next, we will establish a parameter for ¢(z) such that
19/ (2)]] = O(1)e4+0@ dhusl 17 () || = O(1)e’e~ 1+ cliuei, (A.4)
li(uo) - V2 f (uo) (ri{uo), ri(uo))
ki = < 0. A
' Li{ug) Fi (o, uo)ri{us) (A-5)

The tangent space My = dT3, M at iy is spanned the vectors
El = (r1{uo), -+, 11{wo))’s E; = (ris1(ta), -+ - riga (u0)),s

S

E (rica(u),+»Tica(u0))'s  Bpor = (ra(uo), -+, ra(uo)), (A.6)
i1 = (rica(uo), -+, i (w))'y En = (riluo), -+, 7ilwa))’

En+1 = (0, T’i(uﬂ)a 27"1'.(“0)1 Tty (2q - l)r‘i(uﬂ))t'
In the terms of the basis {El, Eg, ey En+1} the matrix d7z,(%) is represented by

Il

AT (ilo) 1, = T . (A7)

{Eﬂl ;E'21"‘aE.n+1}

Now, we need to parameterize the set 7 in terms of the coordinates of El, sy En+1. Next, by a
straight calculation we have the following

VE‘lH(ﬁO) = (p ~ Mg (uo))r1(uo), T Vﬁi_lH(ﬁO) = (p — Aghi_1(t0))7i-1(u0),
V5., H (@) = (p — AgAipr (uo))risa (uo), 5., H (i) = (p — AgAn(uo))ra(uo), (A.8)
vEnH(ﬁG) =0, Vg;nHH(_'o) = qu(an uo)Ti(Uo)-
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Then, by using Taylor’s expansion to compute the coordinates (ej, - yens1)t = Z};‘ﬂl eJE of 7,
that is, we expand the function H in term of the coordinate of M,

C—of(u) = H(@) + ¥ Vg Hlne+ sV H@NEn BN+ (A9)
k#n
From (A.9), on the curve J the coordinate e, -,€n_1, €xq1 can be expressed in terms 6f en. We

are particularly interested in the coordinate e,11, which is a function of e,:
k
en+1(en) = 55(1 + O(e))(e- — en)(—€4 — €n), (A.10)

where k; is defined in (A.5) and where e_ and ¢, are the E\,-components of the points #_ and i,
and they satisfy that

. +e.=0(), e =0(1)e

Therefore, we choose the En-component as a parameter for the curve J. This curve can be repres-
ented as an interval [e;,e_}. Denote J(en), €, € [e4,€_], the invariant curve.

Since .7 is an invariant curver, 7 mduce 1- dzmensmna,l dynamical system on 7. From the matrix
representation (A.7), the change of its E,-component mostly contributed from its En+1 component.
Then, this induced dynamical system t can be represented as

ky

tie, e, +(1+0(€))ens1 =en+ 5 — (14 0(e))(—e4 — en){e~ — €n). (A.11)
From {A.11), one has that
) = 1+ 1“21 (14+0(1)6) ((—e + €) + (—e + ), (A12)

t"(e) = ki+0O(e).
Taking the following rescale for the system (A.11):

ey = €&p,
t{en) = et(&n),
it results B _ .
At, _ t(En) —en (B, — =)
Ae,  —kie 2
(A.13) concludes that this dynamical system is a discretization of é = 3(e — < )(e — £). From this,
one can conclude that

(A.13)

[t7(0) — t772(0)] = O(1)e*ekreldl, (A.14)
[t7(0) — e_| = O(1)ee F1¢lil  for 5 <0, (A.15)
[t7(0) — e4] = O(1)ee il for j > 0. '
Now, we parameterize the discrete shock profile ¢(z) as the following:
$(i+6) = JEO0+m)), j=0,+L%2,-.-, 6€0,1], (A.17)
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where m(#) is a function defined satisfying that

m'(0) = O(1)€%,
m!'(0) = O(1)é, (A.18)
£(0) - m(0) = m'(1).

This gives a C! parameterization for ¢; and {¢(j + zo)}; solves the discrete shock profile for any
constant zg. Since

¢'(z) = T'(t*(m(z — k) - tF(m(z — B)) = O(L)t*(m(z — k))', with k = [z].
we need to evaluate t*(m(8)) for any k € Z and 6 € [0,1).

th(m(0))' = t'(tx-1) - £ (m(0) =--- (A.19)
= t,(tk_l) . t’(tk_g) ' t’(tk_3) e t’(t(}) . m’(@),
here t, = t*(m(6)).

Substitute (A.15) into (A.12), one conclude that

log (Jt/(tr—1) * t'(tg—z) - t'(bx—3) - - - t'(to)])

k k €)ky . i
= 3 togle ()] = 3 o {1+ LS (e, — Bmio)) + (- - (o)}
= Bla 0@y k= -ma+ome e

From above and (A.18), we have that
t5(8) = O(1)e2e<hlkl, (A.20)
Take one more derivative for (A.19), then it follows
t5(m(6))” = t'(tr-1) - t'(tk—2) + t'(bx—s) - - t'(to) - m"(6) (A.21)

+ ;t’(tm) A (ber) 8 () - 7 () - (8 (8))7 - (8 (b)) - (m(0))".

Substitute (A.20) and (A.17) into (A.21), then it follows that
tk(m(ﬁ))” — 0(1)636—(1+O(e))eik1|lk|' (A.22)
(A.20) and (A.22} conclude (A.4).

B Construction of an Approximate Discrete Shock Profile

Let ¢o(z) be a discrete shock connecting (u_, ul ) with a discrete shock speed do = ;Lg such that

d{) = )\So,
so(wd —u) = f(ul)~ f(u-).
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Let {(u_,uy) be an entropy condition satisfied shock and
g —ud | < €t (B.1)
|d —do| < €t, d=2As, s(u-—uy)= f(u)— flug).

Set

- Li{ug) (do(z) — u_)

¢’($) = ¢0($)-+ (u+“u+) lz(uo)(ug_ ___u_) (BZ)
Then we define conservative functions:
b = [ wan
3z) = [ _+ $(r)dr = d(z) + f f (@ +78) — ¢'(z — 70))dbdr (B.3)
= d(z)+2 f f / & (@ + (2p — 1)r8)r*0dpdidr.
Since ¢!!(x) = O(1)eleeI*,
f) = ) +0l)ee o (B.4)
d(z) = ¢o(z) +0O(1)€ el
The conservation laws clearly hold:
S s +d) - () = fR 3z +7) — Br)dr = z(uy —u_). (B.5)
From (B.5), it follows that
S @ +e-d -+ + A (Flle+i+3) - Flile+i-3)| =0 B8

i€z
We consider the equation error for the anti-difference function. We consider only z < 0, the case
z > 0 is similar,

1= Y (~fa—d+35)+ da+4) — X (Fldle+5+ Yy Flae+i- %))) (B.7)

F <0 ?
[ G- et n e ) - (e - e)

= () = uYar+ [ k)= )b =2 (Fld +5) — f).

m—d—i—%

From (B.7),

1= " % (br) —u) dr - » (Fldlw + 3) - @) + OWeld — dole™  (B8)

—d+}

— /: do+3 (g?)(’f’) - ‘U._) dr — A (F[qnb](:r -+ -;—) - f(u_)) + O(l)fld » dole—elxl;

i
—d+3
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For the discrete shock profile ¢, we have

% | o<k<po—1 0<k<go—1 %

Comparing (B.8) with (B.9), we have

I = —1—- Z (qbo(:c - % + %) mu_) _ /:‘*% (do(7) —u.)dr

90 p<k<po-1

) ([¢o](m+1—§-)—f(u_))+ [ Flryar

90 pek<go-1
E+1 ]
// ¢0$““~i-+ +~£)d9dp

G<k<pg 1 46 Qo
, k70
B f/F[qbo Byl + 1= = o Jrdbar.
0<k<go—1 g3 Go

Substitute F/{¢o] - ¢(z) = (1 + O(€))¢(z) and ¢§(z) = O(1)e*e~ into (B.10) to yields
I = O(1)ebeel,

Comparing the following identities

[ Figr)ar = Flgola+5)+ OWVAFId] - dole)
= Flgo)(z + ;) +0(1)ee e,

Flle+ ) = Fldo+ 0@ (o + 3) = Fléol(a + 1) + 0(0) e,

5)

L s (ae-fap-u)-a % (F[qbo](z-t—l—ﬁ)-f(u_))}zo.

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

and with (B.11), (B.12) and (B.13) we conclude that the equation error for the anti-difference is

2

J=0

Apply difference in z to (B.14) to yield, c¢.f. (B.14),

~4(a - d) + #(e) A (FIAE + 3) - Flfl(s - 3)) = O(1)ete~.
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