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Abstract

We construct, analyze and implement a new non-oscillatory high-resolution
scheme for two-dimensional Hyperbolic conservation laws. The scheme is a predictor-
corrector method which consists of two-steps: starting with given cell averages,
we first predict pointvalues which are based on non-oscillatory piecewise-linear
reconstructions from the given cell averages; at the second corrector step, we use
staggered averaging, together with the predicted midvalues, to realize the evo-
lution of these averages. This results in a second-order, non-oscillatory central
scheme — a natural extension of the one-dimensional second-order central scheme
of Nessyahu & Tadmor [NT].

Asin the one-dimensional case, the main feature of our two-dimensional scheme
is simplicity. In particular, this central scheme does not require the intricate and
time consuming (approximate) Riemann solvers which are essential for the high-
resolution upwind schemes; in fact, even the computation of the exact Jacobians
can be avoided. Moreover, the central scheme is ’genuinely multidimensional’ in
the sense that it does not necessitate dimensional splitting,.

We prove that the scheme satisfies the scalar mazimum principle, and in the
more general context of systems, our proof indicates that the scheme is positive
(in the sense of Lax & Liu [LL]). We demonstrate the application of our cen-
tral scheme to several prototype two-dimensional Euler problems. Our numerical
experiments include the resolution of shocks obligue to the computational grid;
they show how our central scheme solves with high resolution the intricate wave
interactions in the so called double Mach reflection problem, [WC}, without fol-
lowing the characteristics; and finally we report on the accurate ray solutions of a
weakly Hyperbolic system, [ER], rays which otherwise are missed by dimensional
splitting approach. Thus, a considerable amount of simplicity and robustness is
gained while achieving stability and high-resolution.
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1 Introduction

We study the approximation of two-dimensional conservation laws by second-order accu-
rate, non-oscillatory central difference schemes. The main feature of our central schemes
is simplicity: since no (approximate) Riemann solvers and related characteristic decom-
positions are involved, we derive efficient, genuinely multidimensional schemes, which
are independent of dimensional splitting.

The construction of our central scheme in the prototype two-dimensional case is
carried out in §2. It amounts to a simple two-step predictor-corrector method out-
lined in (2.15)-(2.16) below. In §3 we carry out the stability analysis which proves that
the two-dimensional scheme satisfies the scalar mazimum principle. In fact, our argu-
ments indicate that in the more general context of multidimensional systems, the central
scheme satisfies the positivity condition of Lax & Liu, [LL]. Finally, we implemented the
proposed central scheme for a variety of prototype two-dimensional problems, whose
results are reported in §4. In particular, we would like to highlight

¢ Scalar equations. The non-oscillatory behavior of the scalar results are found in
agreement with the maximum principle indicated above;

e Two-dimensional systems. Three canonical problems are considered — the rotated
Riemann problem, the Double Mach reflection problem, and a 2 x 2 weakly Hyper-
bolic system introduced by Engquist & Runborg, which arises in the macroscopic
closure of a multi-phase geometrical optics expansion, [ER]. The numerical results

- demonstrate the non-oscillatory, high-resolution content of our proposed central
schemes. It is in this context of systems of conservation laws that the simplicity
and flexibility of our central schemes are translated into efficiency. Specifically, one
can avoid the.time consuming computation of (approximate) Riemann-solver(s)
and the related characteristic decompositions — in fact, even the (exact) Jacobians
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associated with the problem are not required for the computation!. Moreover, this
flexibility enables to implement the central scheme without dimensional splitting,.

The motivation for our construction of the two-dimensional central scheme discussed
in this paper, originates with the one-dimensional central scheme introduced by Nessyahu
& Tadmor in [NT]. To begin with, we briefly recall this one-dimensional setup. Start-
ing with a piecewise-constant solution, ) wyx,(z), one reconstructs a piecewise-linear

approximation, w(z, ") = ¥ [@} + w) (ﬂa)] xp(2). Here, x,(z) is characteristic func-
tion of the cell, I, := {¢ l |¢—z,| < 42}, centered around z, = pAz, and w}, abbreviates a
first-order discrete slope which is reconstructed from the neighboring cell averages {0 }.
Let {w(z,t), t > t"}, be the exact solution of the conservation law w; + f(w), = 0,
subject to the reconstructed initial data at ¢ = {*; the distinctive feature of central

schemes — in contrast to Godunov-type upwind schemes, is that they realize this exact
solution by ifs averages over staggered cells, I e centered around z; 41 = (j + l) Az,

Let w;, 1 () := f I, w(€,t)d¢ denote these sta,ggered averages. Integration over the
control volume I L X [t” "] yields (- with the usual fixed mesh-ratio A := &%)

T G Y i

@3 (1) = 41 (87) — A [E . F(wigr(7))dr — AL, f(wj(T))dT] -

The averaging of the piecewise-linear data reconstructed at ¢ = {" yields w;,1(¢") =
L(w? + w}yy) + 5(w} —w),,). So far everything is ewflct At this point the fluxes on the
right are approzimated by the midpoint rule, z; tf, flw;(r))dr ~ f (wj(t”*'%)). The
CFL condition guarantees that the interface values, w;(7) = w(z;,7), 7 € [t", "), are
‘secured’ within a smooth region, so one may use Taylor expansion to approximate the

midvalue w; (t”*‘z) We end up with a predictor step for these midvalues,

n+1—
w; t = W) - “(f(wg))' (1.1)
followed by the corrector step described above
—n 1 —n —n 1 nti n+l
wj:% = 5(“’5 +B7,,) + g(w; — Wiyy) = A [f(wa) — flw; 2)] ‘ (1.2)

Here, w}, and likewise, f(w;)', denote spatial discrete slopes of the corresponding grid
functions. There is a variety of recepies for the construction of such slopes, e.g.,
[Sw],[LO]. These discrete slopes involve nonlinear limiters, which guarantee that the
central scheme (1.1)-(1.2) is non-oscillatory in the sense described below.

Acknowledgment. Research was supported by DARPA JONR Grant #N00014- 92-
J-1890 and ONR Grant #N0014-91-J1676. '

1.1 One-dimensional epilogue — no characteristic decomposi-
tions

The scalar central scheme (1.1)-(1.2) shares desirable non-oscillatory properties with
the scalar high-resolution upwind schemes. In this context we refer to proofs of total-
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. variation bounds ( - the TVD propeérty, [Ha2]), entropy stability (- cell entropy inequal-
ity, [OT]), maximum principle, etc., consult [NT],[Hu],[LT]. The distinctive advantage
of the central schemes, however, is due to their non-oscillatory behavior with systems of
conservation laws. Specifically, the vector of discrete slopes required in the corrector step
(1.2), w!, is now implemented using a straightforward componentwise extension of the
scalar recepies. In particular, for the discrete derivative of the flux in the predictor step
(1.1), we may use f(w;)' = A(w;)w}; alternatively, we can proceed with a straightfor-
ward componentwise computation of f(w;)', which does not even require the Jacobian,
A = f,,. In either case, intricate and time consuming characteristic decompositions of
upwind differencing are avoided — a straightforward componentwise approach will do for
the central scheme (1.1)-(1.2).

These advantages of the central framework were already borne out in several related
works of , e.g., [BS], [Ex], [Hu], [LT], [NT], [Sa2], [TW]. Here we provide one more simple
demonstration of this point in the context of the one-dimensional, constant-coefficients
test system proposed to us by Engquist & Osher, [EQ],

Uy (A’U;)_-,g - 0, A

li
=
= o

1
o), (1.3)
subject to discontinuous initial data (and periodic boundary conditions)

u(z,0) = 1

ual=,0) = {(1] N (1.4)

Careful numerical simulations are required to model the the propagation of such ini-
tial singularities. Let us recall that post processing and artificial compression of contact
discontinuities, e.g. [MO], [Hal], are just two remedies to the spurious oscillations which
are formed in connection with the numerical simulations of such singularities. Figure 1.1
compares the results of the central scheme (1.1)-(1.2) using the MinMod limiter M M,
outlined in (3.1'), with those of the upwind ENO-ROE scheme outlined in [JS]. Both
schemes used componentwise reconstructions of pointvalues from cell averages. Figures
1.1(a)-(b) demonstrate that the central scheme is able to perfectly resolve the disconti-
nuities carried by each of the characteristic variables, vy 2= u; + ug and vy := u; — us,
without spurious oscillations in the other characteristic variable. One can detect such
oscillations, however, in the second-order upwind results of Figure 1.1(c), oscillations
which become more pronounced in the third-order results of Figure 1.1(d). This type
of behavior repeated itself in a variety of test cases we have tried with different systems
and stronger jump amplitudes.
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Figure 1.1: The 2 X 2 system (1.3)-(1.4) evaluated with N = 40 cells and CFL=0.4 at
t = 0.5. Plotted are numerical and exact characteristic variables. Nessyahu-Tadmor NT
scheme (1.1)-(1.2) with MinMod limiter in (3.1'): (a) with MM, limiter; (b) with MM,
limiter. Results are compared with ENO-ROE scheme: {c) Componentwise 2nd order ENO-
ROE; (d) Componentwise 3rd order ENO-ROE.

2 The two-dimensional central scheme

2.1 A two-step predictor-corrector formulation

We consider the two-dimensional systemn of conservation laws

U+ f(u)z + g(u)y =0, (2.1)

subject to prescribed initial data, u(z,y,t = 0) = ug(z,y). To approximate (2.1) by a
central scheme, we begin with a piecewise constant solution of the form ) @} xpe(2, y)-
Here, @}, is the approximate cell average at ¢ = t", associated with the cell C,, = I, x J,

centered around (z, = pAz,y, = gAy),1.e.,Cp = {({,n) | |€ —z,| £ %—”—, 7 — 1y, < %3-}.
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As a first step, we reconstruct a piecewise-linear approximation of the form

w(z,y,t") = Z [ﬁ};q + w;q (m;‘:p) + w;q (y;yyq)] Xpa(Z, ) (2.2)

Here, w;,, and w}, are discrete slopes in the z- and, respectively, y-direction, which are
reconstructed from the given cell averages. To guarantee second order accuracy, these .
slopes should approximate the corresponding derivatives,

Wy, ~ AL+ we(Tp, Yy, ") + O(Az)? (2.3)

w;ag ~ Ay - w'y(xP: Ygy tn) + O(Ay)Z' (2'3‘)

As in the one-dimensjonal framework, the construction of our central scheme proceeds
with a second step of an exact evolution followed by staggered averaging.

Let {w(z,y,t), t > 1"}, be the exact solution of the conservation law (2.1),
wy + f(w)e + g(w), =0, t>1t", (2.4)

subject to the reconstructed piecewise-linear data (2.2), w(z,y,t"), at ¢ = #*. The
second (and distinctive) step is to realize this exact solution at the next time step
t = "1 by its averages over staggered cells, C, wlpel =1y 1 X Jiy1, centered around

j
($j+%:yk+%)'

Let ;. 1kt (t) = ]( w(z,y,t)dedy denote these staggered averages. (Here
Citd ek )
and below we abbreviate 4 = TBT [ to denote the normalized integral — normalized
B

B
over its length, area...). Let A := £ and p := ﬁ— denote the fixed mesh-ratios.

Integration of (2.4) over C; +1sd X [I7,37F1) yields

Byt g () = ][ w(z,y,t")dzdy +
Citrdrtd
t"+1

- A frmt" ieJk+% [f(w(zjs1,4,7) "f(u.’(mﬁy?"'))] dydr ) +

tn-{nl

- W ]€=tn l]'[xelﬂ% lg(w(z, Y41, 7)) — g(w(z, yk, 7)) dzdr } . (2.5)
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Figure 2.1: Floor plan of the staggered grid.

We begin by evaluating the cell average, f w(z,y,1")dxdy. It has contri-
c.
Y ]
butions from the four intersecting cells, Cik, Cjy1,k, Cip1,k41 and Cjpqq. Starting with
the intersecting cell Cj; at the South West corner — consult figure 2.1, Cfﬁ btk
21? 2
Cittpey NCsx, we find the average of the reconstructed polynomial in (2.2),

w(z,y,t")dedy =
GS‘W
i+l

Tirl [Yeel _n , T— & \ ¥ — Yk _
fm,- fyk [wjk T Wy ( Az ) + wy Ay ]dv’f»‘dy =

1. 1
= 70t E(“’}k + W) (2:6)
Continuing in a counterclockwise direction, we have
1 1 -7 1
w(mayat )dmdy = Wi+ _(_'w;'-l-l,k + w}+1,k), (2.7)
OSE 4 16
Jtdistd
n 1_, 1
w(z,y,t")dedy = ij-l-l,k-!-I ~ 16 (w;+1,k+1 + w}+1,k+1) ) (2'8)
G.NE
i+ ErtE
N 1_ 1
w(z,y,t")dzdy = Z“’?,kﬂ * 16 (W) k1 = Whppr) - (2.9)
OoNWwW
i+l

By adding the last four integrals we find the exact staggered averages of the recon-
structed solution at ¢ = t",

By = J(%w (g, ") dady = | (2.10)
3 !

g
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1
—_— L] — T ~ Tt — 7%
= ;‘f(wjk + W1k + Thggr + B ppa) +

1
+ “I"é‘{(w;k - w_;'-}-l,k) + (w;,k—i-l . w;+1,k+1) + (w;k - w_;',k-i-l) + (w}+1,k - w}+1,k+1)}-

fong n+l
Vit etz @)

(o1

\‘F \:I‘_\ fwix 1, 7:0Mydt

n
2 I

("j+1,3'k,tn+1,2)
""'---.;_x_+1
\]t\ ﬁ(w(x,yk,t))hdt
! Tetn
/ %12 / *
Lan

Figure 2.2: The central, staggered stencil.

So far everything is ezact. We now turn to epprozimate the four fluxes on the right of

t"+1
(2.5), starting with the one along the East face, consult figure 2.2 ][ f flw(zjp,y,7))dydr.

We use the mldpomt quadrature rule for second-order approximation of the temporal

integral, f(w(z1,y,8"73))dy; and, for reasons to be clarified below, we use the
Y€ k+§ 7

second-order rectangular quadrature rule for the spatial integration across the y-axis,
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yielding -
i"+1 +
‘[ { . f(w(m.r-i-laya ))dydT ~a [ ( +12k) + f(w P41, k+1)] : (2'11)
JyLd .'c-l-i-

In a similar manner we approximate the remaining fluxes,

sntl

][ f w(E, Yry1,7))daedr ~ - [g(wJ vi1) +9( n:ék_;.l ] (2.12)

[ wel,

ft"“f flw(zj,y, 7))dydr ~ é" [f( n+2) + f( ;:El)] , (2.13)
Vel 1

ijﬁagwmeMW%Mﬂ) b)) e

1

The approximate fluxes in (2.11) - (2.14) make use of the midpoint values, w:: =

w(z;, Yr, t""“%), and it is here that we take advantage of utilizing these midvalues for the
spatial integration by the rectangular rule. Namely, since these midvalues are secured at
the smooth center of their cells, Cj, bounded away from the jump discontinuities along
the edges, we may use Taylor expansion, w(z;, yi, t"+%) = W+ Frwe(x5, yr, 1)+ O(AL)2
Finally, we use the conservation law (2.4) to express the time derivative, wy, in terms of
the spatial derivatives, f(w)' and g(w)',

7"'1"'12?‘ ) A Jis
Wy © = Wi — Ef(w);'k - 59(“’)}%- (2-15)

Here, f(w) ~ Az - f(w(as,yi, )s and g(wly ~ Ay - gz, 0,1y, are one
dxmensmnal discrete slopes in the z- and y-directions, of the type reconstructed in
(2.3'); for example, multiplication of (2.3')-(2.3") by the correspondmg Jacobians A and

B yields
flw)y = A(@;, )wi, g(w)y = B@f,)wiy-

Equipped with the midvalues (2.15), we can now evaluate the approximate fluxes (2.11-
2.14). Inserting these values, together with the staggered average computed in (2.11),
into (2.5), we conclude with new staggered averages at ¢t = t"*!, given by

n L,ow | —n n _n
s = (@0 + s + Bl + O sn) + (2.16)
1 A nt+i n+d
(Wi — Wi e) — 5 [f (wigis) — flwig” )]
16 2
1 A ntk %
i‘é(“’;,kﬂ - w;'+1,k+1) - [ ( 3+12k+1) f ( )]

1 nt
T~ whas) - [g(wa.m) o(wii?)]

+ 4+ o+ o+

+_
'l'g(w}ﬂ,k ™ w;'+1,k+1) ) [9 ('wj+12,k+1) 9’("”3-{-1 k)]
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In summary, we end up with a simple two—step predictor-corrector scheme (2.15)
- (2.16). Starting with the cell averages, w Jk, we use the first-order predictor (2.15)

for the evaluation of the midpoint values, w; : , which is followed by the second-order
corrector (2.16) for the computation of the new cell averages, ;“,;" ', This results in
a second-order accurate non-oscillatory scheme. As in the one-dimensional case — no
(approximate) Riemann solvers are involved - the non-oscillatory behavior of the scheme

hinges on the reconstructed discrete slopes, w',w", f(w)’ and g(w)".

2.2 A one-dimensional-like formulation revisited

The corrector step (2.16) bares a close similarity with the one-dimensional corrector
formula (1.2). Indeed, let us introduce the notation for staggered averaging in the z-
and y-directions,

1
< W, >k+%:: E(wjk + wj,k+1), <Wop > i = Wik +Wj+1,k).

5(

#Then (2.16) takes the simple one-dimensional-like form (compare the one-dimensional
corrector in (1.2))

Y71 1 nt+l nti
wji—é%,w% = < (w + B, )+ g(wh — Wi ) = ALf(wier) — f(wg )] a0 +

1 -1 — 7% 1
_(w-,k + w-,k-i—l) + "('wf,k - wt,k-i—l) - #[g(w k+1) ( )] >4l -
2 ‘ 8 _ 3

+ <

3 The maximum prixiciple for scalar approximations

It is well-known that the exact entropy solution of the scalar conservation law (2.1)
satisfies a maximum principle. In this section we prove that under appropriate CFL
condition, our central scheme (2.15)-(2.16) satisfies the same maximum principle. To
this end, it is essential to reconstruct the discrete slopes, w' and w", with built in Zmiters,
which we now briefly describe in the context of the prototype example

U -7 1 T — 7 —n — 7

w;k = MM{e(ij,k - wj,k)s §(wj+1,k - wjul,k)ﬂ G(Wj,k - wj—l.k)} (3.1)
rii] T ]' -7 ] -7 Tl

w}k- = MM{H(wj,k+1 - wj,k)v §(wj,k+1 - wj,k—l)ﬂ g(wj,k - wj,k—l)}' (3-1‘)

Here, the choice # = 1 coincides with the ‘classical’ so-called Min-Mod limiter, e.g.
[Hal],[SW] 1t guarantees that the corresponding piecewise linear reconstruction in (2.2),
w(z,y,t"), is co-monotone with the underlying piecewise constant approximation, 3 @ 2 Xpa-
The range of §’s, 1 < 8 < 2, allows for a further variety of accurate reconstructions which
satisfy the maximum pr1nc1ple, flw(- t")Mpe <[ 3 @3 Xpq(-)l|zoe- The essential feature
in the definition of these discrete slopes, however, is due to the Min-Mod (MM) function:
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its output equals the input variable with minimal modules among all its input variables,
unless the latter disagree in sign in which case MM = 0,

min, {v,} i v, >0, Vp
MM{vi,vs,...} = { max, {v,} if v, <0, Vp
0 otherwise

In particular, the so called clipping phenomena may occur, due to the reconstruction of
zero discrete slopes at extrema cells (— where forward and backward differences change
signs). The feature of clipping limiter is clearly necessary to retain the maximum prin-
ciple at the reconstruction step. It implies that the neighboring discrete slopes cannot
have opposite signs, and in particular

|w.’1'+1;k - w;,kl < max(]w;.+1,k|, I'w;’k[) < OlWsa, — Winl, 1<6<2, (3.2)
!w}.k-i-l - w}.kl < max([w},k+11, Iw",kD < glﬁ’j,kﬂ — Wik, 1<8<2 (3.3)

Similar estimates apply to the reconstructed discrete slopes for the flux; for example

(W) — f(w)ie] < max(|f (W) el [f(w)ie]) <O (@710 0) — Fl@3)]. (3.4)

Theorem 1 Consider the two-dimensional scalar scheme (2.15-2.16). Assume that
the discrete slopes, w' and w', satisfy the (0-dependent) limiter property (3.2-3.3), and
likewise for f(w)' and g(w)' ( - e.g., the minmod limiter (3.1-3.1')). Then for any
0 < 2 there exists a sufficiently small CFL number, Cy ( - e.g. C1 = (v/T—2)/6 ~0.1),
such that if the CFL condition is fulfilled,

max(A - max|fi, (u)], - maxlg(u)]) < Co,

then the following local mazimum principle holds

|@?:%,k+%f < ma.x{|tD;?'k|, Iﬁ’?ﬂ,kl: Iﬁ’?,k-nlz I'L_ﬁ?+1,k+1|} (3-5)

Proof. Our key observation is to rewrite the new value computed in (2.186), ff);‘:i Y
21 2

as the average of four distinctive terms

i

1
—n-1 l
WirLbtl 4 x
1, . n 1, , ' n+d nt+l
{ 3 (@5 + ®Fy10) + 1 (Wi = Wi x) — 22 (fj+1,k = fik ) +
1 _n - 1 +1 nt i
T 3 (@pa1 + Dyriens) + 1 (Wik1 = W) — 22 (f;+1?k+1 —f j,k-{?i) +
1, . . . 1 +1 atl
+ 5 (B + W) + 7 (0 — whia) — 20 (9;;;51 ~ 95k ’) + (3.6)
1, . _ 1 ntl nel
+ 5 (w3‘+1,k + w?+1.k+1) + 7 (w;'+l.k - w}'+1,k+l) ~ 20\ Gipihir — Y4k
2 4
1
4

X {T1+Ta +Is + Lu} .
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Here and below we abbreviate, f, ik - f (w;a: 2).

We will show that each of these four terms, l:,,, can be written as an appropriate sum of

the cell averages at t", {@%,, W} 4, @741, @iy 41} 5O that w"‘j_':t,k+1 can be expressed

as a convex combination of these averages. This implies, in particular, that the local
. maximum principle (3.5) holds.

We begm by estimating the difference between two neighboring midvalues, say

1
;:: r = :: evaluated in the predictor step (2.15)

n+g ﬂ'+ —7 e
wj:f;k Wy * = Wiy, — W+ (3.7)
A
— S = F@)ie] = Elo()ps — o(w))

Since by (3.4), f(w)}, 5 and f(w)), cannot have opposite signs, their differences on the
right of (3.7) does not exceed

|F(w)ip6 — W)l < Ol F(@Fq ) — F0f)] < Oald} ;5 — D) (3.8)

“ Here and below, a := max|f.(u)| and b := max|g,(x)| denote the maximal speeds in

the z- and y-directions. The third difference on the right of (3.7), g(w)} Yeie = 9(w)ig,
represents a ‘mixed’ derivative (which allows for opposite signs); here we use the straight-
forward (3.1')

< lg(w)ipasl +lg(w)i] < (3.9)
< 0 “g(ﬁ?-i-l,k-i—l) - g(w?+1,k)| + Ig(w?,k-f-l) - g(@}‘k)]
< 6b [Iw;?;k+1 — @i |+ 10y g — T l] -

l9()sp1 4 — 9(w)3]

Using (3.8) and (3.9) we obtain an upperbound on the midvalues difference in (3.7),
which in turn, enables us to upperbound the corresponding flux difference

+1 n+% +
M — fix 2] < )‘ale-i-l g Wi 0| < (8.10)
< —2—)\a(2 + 8- )\a)]@?u,k — W] +
1 3 — 7 e 77
- “2—9 - Aa- ﬂb [ij,k'l'l - wjkl + lw?+1,k+1 - wj"f"l,kl] '

We now return to the first term, 7y, in (3.6): by (3.2) and (3.10), it does not exceed
2 < 31+ sl + (54 20(24000)) - il +
+ 0 2a-pblwli, — @)+ 0 Aa - pb|@fy g — B4
Thus

1 € Tu+Tie+Tis+ T (3.11)
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where
1 T 7 T w7 0
Tn = slof+fueh Tz = enal@ie — @kl exa:= g4 a(2+46-2a)
Tizs = Bl + 0%, T = Bl% 441 — T, B:=180da-pb.
In a similar manner we obtain
1 _ _ _ _
.| < §Iw7{k+1 + @ipq g ] + el Biyg g1 — w_?,k-{-ll + (3.12)
+ ﬁ]"f’r'b,k-i-l - "I’?kl + ﬁiﬁ’?ﬂ,kﬂ - ﬁ’?ﬂ,kl = Ty + Tao + Zos + Tp43
1 _ _ _
1Zs| < '2'|w?k + @ g | + @bl B oy — D] + (3.13)
+ !Bl@?+1,k - tﬁ_?kl + 5!w?+1,k+1 - ?I’;?;k+1| =:Ta1 + Taz + a3 + Las
and finally
1, _ - _ _
1Z4] < 'Z'Iw?+1,k + @7y gyl F i e — Tl + (3.14)

+ ﬂlﬁ"?+1,k - ’I’Ekl + ﬂlﬁ?-i-l,k-f-} - w?,k-l«l! = Ty + Tao + Taz + Lya.
We now conclude by re-grouping similar terms in the last four bounds; specifically, we
rearrange the summation of the last four bounds in (3.11-3.14),
4
Z-Tj = (T +Tio+Tas+Zus) + (Tor + Loz + Taa + Laa) + - - -
=1
and we obtain
- 1o 1
1wj+%,k+-;~| s 7 Z} sl < e
J:
1 1 —n = 7h =T
{ §lek + @7y g k| + (@ra + 28) |07 5 — W3] +
1 e 7 Tk Vil
+ Ele,k+1 + @Gy eprl F (e + 28) BT g1 — Wipqal +
+

1 -7 =T Xl Tiik
105k + Bl + (@ + 20) |07 — Thel +

1. _,. . —n —n
+ '2'[wj+1,k + w?+1,k+1l + (aw + 2ﬁ)|“’j+1,k+1 - 'wj+1,k[}'

Our assertion concerning the convex combination — and hence of the local maximum
- principle follows, provided the following inequalities hold:

0

aya+28 = Z+Aa(2+9-)\a+29-pb)§% (3.15)
0 1

ap+28 = Z+pb(2+9-ub+28-)\a)§§; (3.16)

Clearly, for any 8 < 2, these inequalities are satisfied for sufficiently small CFL number,
Aa+ub. For example, for the ‘canonical’ MinMod limiter (with 8 = 1), we find that (3.15-
3.16) hold provided max(Ab, ub) does not exceed the largest root of 12k* 4+ 8x — 1 = 0,
which yields (3.5).
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4  Numerical experiments.— Two-dimensional high
resolution

4.1 Scalar numerical results

‘Theorem 3.1 does not indicate the optimal CFL limitation. By measuring the wave
propagation of the two-dimensional Riemann fan from the cell center at (2, 1 Yksds t™)
into the boundaries of that cell — consult Figure 1.1, we find the more realistic geometric
CFL restriction max(\a, ub) < 1. This is confirmed by the results quoted in Table 4.1,
where we record the test results with simple Linear oblique advection, u; + %, + u, = 0..

Limiter | N | L*™ error | L™ order | L' error | LT order
CFL = 0.200

40 4.91e-2 - 1.93e-2 -
MM, 20 2.12e-2 1.21 5.70e-3 1.76
160 | 8.90e-3 1.25 1.55e-3 1.88
320 | 3.70e-3 1.27 4.14e-4 1.90
40 1.06e-2 - 6.79e-3 -
MM, 20 2.73e-3 1.96 1.81e-3 1.91
160 | 6.86e-4 1.99 4.66e-4 1.96
320 | 2.35e-4 1.55 1.17e-4 1.99
40 1.08e-2 - 6.8%e-3 -
UNO 80 2.73e-3 1.98 1.74e-3 1.99
160 | 6.86e-4 1.99 4.37e-4 1.99
320 | 1.72e-4 2.00 1.09e-4 2.00
CFL = 0.475
40 4.53e-2 - 1.18¢-2 -
MM, 20 2.48e-2 0.87 6.40e-3 0.88
160 | 1.92e-2 0.37 4.33e-3 0.56
320 | 1.26e-1 -2.71 1.49¢-2 -1.78
40 1.34e-2 - 5.83¢-3 -
MM, 80 4.82¢-3 1.48 1.74e-3 1.74
160 | 1.41e-3. . 1.77 4.16e-4 2.06
320 1 5.07e4 1.48 1.29e-4 1.69
40 3.08e-3 - 5.80e-3 -
UNO 80 2.74e-3 1.73 1.74e-3 1.74
160 | 6.46e-4 2.08 4.11e-4 2.08
320 | 1.48e-4 2.16 9.41e-5 2.13

Table 4.1: Second-order central approximation of u; + u; + u, = 0 subject to ug(z,y) =
sin(w(z + y)).

Here and below, we report the numerical results of the central scheme (2.15)-(2.16)
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with the M M,-limiters in (3.1°-3.1'); both # = 1 and 8 = 2 were used. We also tested
the Harten-Osher UNO limiter [HO]

wiy = MM{A.D_?_%* + %MM(A%}‘_}',.‘,, AMDG), Ay — %MM(A%E;HA%E?H,&)}.

(4.1)
Second-order accuracy, measured in L'-and L*-norms, is detected for both CFL’s 0.2
and .475. As expected, the second-order accuracy with the MinMod limiters M M; and
MM, deteriorated due to the clipping phenomena. The fully second order UNO limiter,

however, retains the full L' second-order accuracy.

Next we turn to the two-dimensional Burgers' equation:

1 1
U + Q(uz)z + 5(”2)31 =0, ' (4.2)

subject to ’oblique’ initial data,

~1.0, >0,y >0;
) =02, z>0,y>0
wo(x,y) = 0.5, z <0,y <0;
0.0, = >0,y <0.

The non-oscillatory behavior of the computed solution with CFL = .475 is demonstrated
in Figure 4.1. In particular, no spurious oscillations are formed, in agreement with the
maximum principle proved in §3.
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Figure 4.1: The central scheme results for Burgers' equation (4.2) evaluated with 80 x 80
cells and CFL=0.475 at ¢ = 1. (2) with MM limiter; (b) with MM, limiter; (c) with UNO
limiter.

4.2 Efficiency and high-resolution with Hyperbolic systems

The proposed central scheme based on the predictor-corrector steps (2.15-2.16), offers a
simple and robust general purpose approximation for two-dimensional systems of Hyper-
bolic conservation laws. In this subsection we highlight these advantages in the context
of three prototype numerical experiments, governed by the two-dimensional Euler equa-
tions }

[

P é)u pv

pu put +p puv _

o0 + ouv + 0% + p =0, (4.3)
EJ, \uE+p) v(E + p)

¥

expressed in terms of the usual density, p, z- and y-velocities, u and v, total energy, E,
and pressure, p i= (y — 1)(E — 1 p(u? + v?)).
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For the reader convenince, we enclose a one page Appendix with our central scheme
code for the two-dimensional Euler system (4.3): The user supplies the number and size
of spatial cells, the CFL number, the numerical solution at initial time ”t”... (The code
contains self explanatory comments). The code then evolves this solution for two time
steps which complete a staggering cycle: regular cell — staggered cell — regular cell.
The code can be called many times to evolve more time steps. For simplicity, the code
is complemented with periodic boundary conditions in both x- and y-directions.

We begin with the oblique Sod's problem. Here we test the capability of our central
scheme to resolve waves which are oblique to the computational domain. Following [JS]
we initiate the two-dimensional Euler equations (4.3}, with the standard one-dimensional
Sod’s Riemann data, [So], whose initial jump discontinuity located at (z,y) = (2.25,0),
was rotated to make an angle ¢ with the z-axis — consult [JS}|§8.3] for details. Figure
4.2 shows that the density at ¢ = 1.2 is well resolved by the central scheme based on
a computational grid of 96 x 16 cells and CFL=0.475. Figures 4.3 compare the fully
two-dimensional computation vs. the rotated results of the one-dimensional one; thus,
the errors are "purely’ due to the oblique nature of the computational waves. As is {JS],
the deviations are negligible.

05} / / /
V4
I/,l
| 5 3 F S

(a)

1.0 T
NT-MM

a8 N e NT-MM2 ]
mmmms NTAUNO

06

0.4+

02

1 3 3 4 3
(b)

Figure 4.2: Oblique Sod’s problem computed with the central scheme: (a) Density contours
computed with MM, limiter for initial data rotated with angle ¢ = arctan1. (b) Density
at y = 0 with rotated initial data, ¢ = arctan 1.
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.08 1 T T T T 0.06

0.04} 0.04¢
a0zt 0.02f
0.00 0.00
0.0z E 002k
arctan 1
O04F 0 e arctan2 -0.04
s gretan 4
(a) OB (b) 0Oy

0021

arclan 1

o0k e aclan2
————= argian4
(¢) 09—t

Figure 4.3: Figures (a)-(c) compare the two-dimensional oblique computation of the density,
pg, vs. the rotated one-dimensional computation, p1p, at y = 0; ps — p1p computed with:
(c) MM, limiter; (d) MM, limiter; (¢) UNO limiter.

Our next example is the double Mach reflection problem, [WC]. The two-dimensional
Euler equations (4.3), are initiated with a right-moving Mach 10 shock positioned at
(x,y)=(1/6,0), and makes a 60° angle with the z-axis. The computational domain
consists of the box [0,4] x [0, 1]. Boundary conditions: bottom boundary consists of the
exact post-shock conditions at [0, 1/6] followed by reflective boundary conditions for the
rest; at the top boundary, the flow values are set to describe the exact motion of the
Mach 10 shock. We refer to [WC] for a detailed description of this problem.

Figures (4.4)-(4.6) show the numerical results of the central scheme (2.15)-(2.16), us-
ing the MinMod and UNO limiters. It is remarkable that such a simple ‘two-lines’ algo-
rithm, with no characteristic decompositions and no dimensional splitting, approzimates
the rather complicated double Mach reflection problem with such high resolution. This
should be compared, for example, with the higher (- forth and fifth orders) (W)ENQ
schemes in [JS][§8.3]. Couple of remarks are in order.

o The two-dimensional computation is more sensitive to the type of limiter than in
the one-dimensional framework [NT]. In the context of the double Mach reflection
problem, the MM, seems to yield the sharper results.

¢ No effort was made to optimize the boundary treatment. The staggered stencils
require a different treatment for even-odd cells intersecting with the boundaries.
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A more careful treatment is now studied in [TW]. The lack of boundary resolution
could be observed at the bottom of the two Mach stems.

0.5

(a)

0.5

(c)

Figure 4.4: Double Mach reflection problem computed with the central scheme using M M,
limiter with 960 x 240 cells and CFL=0.475 at ¢t = 0.2. (a) density (b) x-velocity (c)
y-velocity
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(d)

(¢)

Figure 4.4: (cont’d) Double Mach reflection problem computed with the central scheme
using M M; limiter with 960 x 240 cells and CFL=0.475 at ¢ = 0.2 (d) pressure (e} entropy
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(c)

Figure 4.5: Double Mach reflection problem computed with the central scheme using MM,
limiter with CFL=0.475 at ¢ = 0.2 (a) density computed with 480 X 120 cells (b) density
computed with 960 x 240 cells (c) x-velocity computed with 960 x 240 cells
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05}

©

Figure 4.5: (cont’d) Double Mach reflection problem computed with the central scheme
using MM, limiter with 960 x 240 cells and CFL=0.475 at { = 0.2 (d) y-velocity (e)
pressure (f) entropy
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()

Figure 4.6: Double Mach reflection problem computed with the central scheme using UNO
limiter with CFL=0.475 at ¢ = 0.2 (a) density {b) x-velocity (c) y-velocity
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(d)

(e)

Figure 4.6: (cont’d) Double Mach reflection problem computed with the central scheme
- using MM limiter with CFL=0.475 at ¢ = 0.2 (d) pressure (e) entropy

‘A key feature of our central scheme is its efficiency, due to the fact that all the
central computations reported below are free of the time-consuming characteristic de-
compositions and dimensional splitting. This in turn, is translated into fast, simple,
“two-lines’ algorithm summarized in (2.15)-(2.16).

Table 4.2 quotes the CPU time, in seconds, for the computation of the two-dimensional
Euler equations (4.3) subject to initial ’sine’ density wave:

(po, o, vo, po) = (1 + 0.2sin(x (z + y)),1,—-0.5,1).

We record the timing for two versions of the central scheme. The Jacobian-free version,
which employs a straightforward componentwise computation of the discrete derivatives
" f(w)" and g(w)', and we compare it with the other version which utilizes the-Jacobians
A = f, and B = g, to compute the discrete derivatives of the fluxes, f(w)’ = Aw’
and g(w)' = Bw'. We should emphasize that both versions yield comparable results,
although as expected, the latter version using the explicit Jacobians performs with
slightly better resolution. Which of the two versions is preferable depends on several
factors:
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¢ Whether the exact Jacobians are available. For example — gas-dynamics equation
with tabulated pressure yields tabulated pointvalues of the flux (or requires an
implicit computation of such); its Jacobians could only be interpolated.

o The specific hardware configuration. In this context we note that the Jacobian-
free version requires, instead, additional computation of limiters (of the fluxes
evaluated at the midvalues). Associated with these limiters are switches whose
speed is configuration-dependent.

o The size of the computed system. Thus, for example, the computations of the
larger 7 x 7 MHD systems reported in [TW], perform much faster with the
Jacobian-free version.

N, | Ny | MM, limiter | MM, limiter | UNO limiter MM, limiter+
Artificial compression
CRAY C-90, with default compiler flags

flw) = Avw', g(w)' = Bw'

200 | 100 2.69 3.22 3.43 4.06

400 | 200 20.38 24.76 26.47 32.44
f(w) and g(w)' are obtained by componentwise limiters

200 | 100 | 2.99 | 4.02 | 4.50 | 4.33

SUN Sparc20 (60MHz, SuperSparc), compiled with “r8 -fast -O3”
flw) = Avw', g¢g(w) = Bw'

100 | 50 10.79 14.29 16.28 18.30

200 | 100 92.27 119.13 136.98 159.26
f(w) and g(w)' are obtained by componentwise limiters

200 100 | 13393 | 188.88 | 22349 | 203.34

Table 4.2: CPU time in seconds for the central computation of the two-dimensional Euler
system, with N, cells in each spatial:dimension and NV; temporal iterations, using various
limiters,
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4.3 Two-dimensional prologue —no dimensional splitting

Dimensional splitting, e.g., [RM], is an effective, widely used tool to solve multidimen-
sional problems by piecing them from one-dimensional problems — one dimension at the
time. Still, in the context of nonlinear conservation laws, dimensional splitting encoun-
ters several limitations; we refer, for example, to the important results of Crandall &
Majda in [CM].

In this subsection we provide one more numerical evidence for the difficulties en-
countered with dimensional splitting, and with this we highlight the advantage of the
our ’genuinely’ multidimensional central scheme (2.15)-(2.16) to circumvent these diffi-
culties. We consider the 2 x 2 system

(),

‘The system (4.4) was introduced by Engquist & Runborg, [ER], as part of a whole family
~~of multi-phase modeling for geometrical optics expansions. The first member of this fam-
-ily, (4.4), represents a one-phase solution consisting of a single ray of strength g(r,#) :=
Vui +uj, located at a distance r = r(z,y) and an angle 6(z,y,t) 1= arctan(ug/u;)
relative to the (single) point source. We note that the system (4.4) is only weakly Hy-
perbolic in the sense that its linearized symbol contains a 2 x 2 Jordan block; this seems
to play an essential role in the difficulties associated with the computation of this system

w?
R

4/ w1 Uy

' =
ch I ( vare . (4.4)
—druz —
Vit / 2+ /,

Ur L

by dimensional splitting methods.

Az Lax-Friedrichs(LxF) Godunov Nessyahu-Tadmor(NT)
unsplitted splitted splitted splitted

L' results: error | order || error | order | error | order | error order
1/10 0.0778 - 0.01268 - 0.1130 - 0.048 -
1/20 0.0433 | 0.85 |} 0.01543 | -0.28 | 0.065 | 0.8 0.0357 0.43
1/40 0.6229 | 0.92 | 0.01226 | 0.33 | 0.0404 | 0.69 || 0.0181 0.98
1/80 0.0118 | 0.96 || 0.0079 | 0.63 || 0.0235 | 0.78 | 0.00839 1.11
1/160 0.00599 | 0.98 || 0.00454 | 0.8 0.013 | 0.85 {| 0.0039 1.11

L% results: | error | order | error | order | error | order || error order
1/10 0.949 - 0.0662 - 3.038 - 0.278 -
1/20 0.397 1.26 0.07 -0.79 || 2.911 | 0.062 | 0.235 0.25
1/40 0.171 1.21 0.056 | 0.32 | 2.867 | 0.022 || 0.191 0.3
1/80 0.0771 | 1.15 | 0.0369 0.6 2.834 | 0.017 §| 0.0857 1.15
1/160 0.0363 | 1.09 { 0.0215 | 0.78 i 2.815 | 0.61 || 0.0589 0.54

Table 4.3: Accuracy of LxF , Godunov and NT (1.1)-(1.2) schemes (with
dimensional splitting) for the one-phase geometric optics problem (4.4) at ¢ = 0.85.

and without
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- Following [ER], the system (4.4) is solved over the rectangle 0 <z <1, 0 <y < 2,
subject to zero initial conditions (to avoid overflow, we initialize u; = uzj—0 = 1071%),
The system is then activated by exact inflow boundary conditions along the left bound-
ary, z = 0: in this case, these boundary values were taken from an excat point source
solution, g(r,t) = max(0, (t — r)®)/r, located at (—0.2,1).

In Table 4.3 we quote the numerical results from [ER] - the (fully) two-dimensional
Lax-Friedrichs (LxF) scheme vs. the splitted versions based on the one-dimensional
LxF scheme, Godunov scheme and NT scheme (1.1)-(1.2), which were complemented
with dimensional splitting. Best results were obtained with the two-dimensional Lx¥
scheme — the forerunner for all central schemes: the unsplitted version achieves (close
to) the expected first-order accuracy in both L' and L® norms. The following three
'splitted’ versions which employ dimensional splitting, yield less accurate results. Indeed,
a considerable loss of accuracy is observed with the splitted version of the LxF scheme!.
The first-order upwind Godunov scheme, the forerunner for all upwind schemes, yields
better L! errors; yet, measuring the L™ errors and consideration of the contour plots
in [ER] show that the splitted version of Godunov scheme also fails to capture the full
strength of the underlying computed rays. The same failure occurs with the splitted .
version of the second-order NT scheme: dimensional splitting causes the first-order L!
errors and further loss of accuracy in terms of the L™ errors. In all three cases, this
failure is attributed to the dimensional splitting.

These results should be contrasted with Table 4.4 where we quote the numerical
results of the ’genuinely’ two-dimensional central scheme (2.15)-(2.16) using the MinMod
limiter, M M,. Both versions — with and without the exact Jacobians, achieve close to
the expected second accuracy. Figure 4.7 confirm the high-resolution of our central
scheme.

Discrete derivatives... | N | L error | L™ order | L* error | L' order

20 | 2.27e-2 - 6.19e-4 -

flw) = Aw' 40 | 8.12¢-3 1.48 2.14e-4 1.53

g{w)' = Buw® 80 | 2.97e-3 1.45 7.38e-5 1.54

160 | 1.10e-3 1.43 1.97e-5 1.91
20 | 2.83e-2 - 8.7de-4 -

componentwise 40 | 1.13e-2 1.32 2.89e-4 1.60

80 | 4.51e-3 1.33 1.03e-4 1.49

160 | 1.68e-3 1.42 | 2.86e-b 1.85

Table 4.4: Accuracy of the central approximation for the one-phase geometric optics problem
(4.4) with M M, limiter. '

'We thank Olof Runborg for these results
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Figure 4.7: One-phase geometrical optics problem (4.4), computed by the two-dimensional
central scheme with 40 x 80 cells and CFL=0.475 at ¢ = 0.85. Ray strength of exact
solution in (a) is compared with central scheme computation with M M, limiter in (b) and
with UNO limiter in (c). Exact contour plot in (d)} is compared with M M; and UNO limiters
computations in (e) and (f), respectively. (g) and (h) are vertical cuts at z = 0.2 computed
with MM, and UNO limiters.
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5 Appendix — a central code for 2D-Euler equations

subroutine EULER2D(nx,ny,dsx,dy,cfl, gamma, thata, tf, te,u)

Ak G RN RN AR TR AR AR ON RN EN T AR EARRTIAAASARARRIANT "

* INPUT nx, ay: # of cells in x-, y-direction
di, dy: wiep size in x-, y-direction
afl: CFL & gamma: adliabatic constant of gas
theta: conmtant paramaster in the limiter {aee {3.1)}
tf: £inal time to stop iteration; t¢: ourrent time
ur conservative variables at time *“te?
sntries of "u" needed: u{3d:({nx+3d),3:1({ny+3),4)
OUTPUT u: conssrvative variables after 1-stage time iteration
REMARK Redet paramaters "num", "nym” to adjust dimension of
arrays; Modify boundary conditicns balow whan necesssry.
CAUTION u{i,3,*) whan io=l is on the cell with solid-line
in Figure 2.1, i,s, meaning u{i+1/2,5+1/3,%)
AR MR AR A A R AR RIS AT NI A AT PN NI AR AT A AN P AR SIS TARNT SIS N oS

+*

% ¥ % ¥ F ¥ FE S N B

parameter {(num=408, nym=d408, md=l, mowd}

real a{0nxm, 0snym, ma)

renl £{0snxm, Ginym,mn}, g{0:nwm,0:nym,mn)
real ux(0:oww, Ginym mn), uy{0inwm,1nym,en}
real  Fx{O:nxm, Oanym,mn}, gy{0inwm,(inym,om)
real bufx(0:nwm,0inym), bufy{0:nm,lrnym)

aom(a,b) = ¢.5*%(aign{l., s)+sign{l.,b))*ain{aba{a), abe({b})
a2z, a,b} = xam{ x*xom{a,d), O0.5*{ush) )}

nie = oK + md
nys = ny + md

gml » gama - 1.0
gm2 = 0,5 * gml

AR AR AT AR AN RN AR AR AR AA RN AR RRAARERNRAE AN AR R AR RANANARTR RS R

* gtart a 2-stage time iteration
do do = 0, 1

« Pariodic boundary condition im both x~ & y-direction
dom = i, ma
do 1 = 0, ma
do § = md + 1, nye

u(i, Jsm) = u(nx+l, J,m)
u(nxe+isl, j,m) = ui{md+i+l,J, m)
anddo
anddo

do ] =0, md
do i =0, nue + md + 1

u(l, 3, m) = ufi,ny+], m}
ul{l,nye+i+i,m) = u{i,md+Jj+1,m)
anddo
anddo
anddo

* Compute numerical slopss for u in x~ & y- directicn
* (denoted as "ux" & "uy”, resp.)
dom =31, mn
do j = md - 1, nya + 2
do i =md - 2, nxe + 2
purxil,d) = u{i+l,d ,m) - w(l,dm
pufyi{l,d) = u{i, J+1,m) - u{i,Im}
anddo
anddo
do ] = md, nye + 1
do 1 = nd, nwe + 1
(i, d,m) = smm2{ theta, bufx(i-1,]), bufx(i, 4} }
uy(i,d,m) = 3om2{ theta, bufy(i,J-1}, buty(i, i} }
anddo
anddo
anddo

* Compute the fluxes £ & ¢ and maximum wave spesds
* in x- & y-direction (denoted am "em X" & "em. ¥", resp.)
en x « l.ea-15
am y » l.e-15
do j wmd -~ 2, nys + 3
do 1 »md -~ 2, Pxe + 3
u(i, 3,1}
u(i, .2}
u{i,d,3}
u(d,j. 4
xmt / den
ymt / den
gmi * ang - gm2 * den * { VeX ¥ vex + vay * vey )
m:l.-luxt( gamna * pre / dan }
am _x = max{ em x, abs{vex) + cvel )
oy = max( Y, abs{vey) + ovel )
£{i,3,1) = xmt
£(i,4,2) = vex * ymt + pre

EEE IR

#(1,7,3) = vex * ymt
£(1,1,4) = vax * { pra + eng }
ot 1.1} = ymt
gi{i,},2}) = vey * xmt
g(1,3,3) = vey * ymt + pre
g{i,3,4) = vey * { pra + eng )
anddo
enddo

? Compute numerical slopes for £ & ¢ in X- & y- direction
* (denoted as "fx" & "gv", TeEp.)
dom= 1, mn
do { =md - 2, nye + 2
do i = md - 2, oxe + 2
bufx(i, ) = £(i+1,3 ,m) « £(i.d,m)
bufy(i,d) = g(i, J+l,m) =~ g(id,m)
anddo
anddo
do J = od, nye + 1
do i = xd, nxe + 1)
fxui{l,4,m} » xom2( theta, bufx(i-1,j), bufx(i,§)
gr(di,3,m) w yxmmi( theta, bufy(i,j-1), bufy{i.J)
anddo
anddo
anddo

)]
}

* Computs the £flux values of £ & g At the center of the four faces

* (Esa Figure 2.2 & ¥g. (2.15))
doJ = mi, nys + 1
do 1 = md, nxe + 1

den w» u{i,],1) -~ dtcax2+*fx{l,j,1) - dtcdy2*gy(i,],1)
x=mt w uli,f,2) ~ dtcana*fxi{l,],2) - dvcdy2*gy(i,].2)
ymt w u(i,J,3) ~ dtcdx2*fx(i,],3) - dvody2*gy(i, 3,3)
eng = u(i,, 4} « dtcdx2*fx(i, ], 4) - dtcdyd*gy(i,i.4)
vax = ymt / den
veay = ymt / den

pre w gmi * ang - gm2 * den ¥ ( vex ¥ vax + vey
£(i,3,1) = xamt

£(1,1,2) = vax * xmt + pre

£(1,4,3) = vax * ymt

£{1,],4} = vax * { pre + ang )
g{l, 3,1} = ymt
o{i,3,2) = vey ¢ xmt
g(i,3,3) = vay * yut + pre
g(i,3.4) = vay ¥ { pre + eng )
snddo
anddo

* Compute time step slie
1f{io.eg.0} then
at » ofl / sqrt( (em x/Ax)**2 + (em y/dy)**1 )
1f{ { to + 2.%4t ) .ge., tf ) then
ac = 0,5 * ( &f - to )
wndif
endif
dtode2 = 0,5 * Az /
dtedy2 = 0.5 * At /
te » tg + 4t

dx
dy

* vey )

* Compute the values of "u" st the next time level (mes (2.16))

dom = 1, mn
4o j mwd + 1 - lo, nye - 10
do i=md + 1= io, nie - 1o

bufx{i,§) =0.25 * { wi{l,d, =) + u{i+«l, i, m)
& + ull,J+1,m=) + ul(l+l, d+1l,m)
& + 0,0625 * ( ux(d,], m) ~ ux(i+i,j, m)
& » uxid,3+1,m} - we(i+i, J+l,m)
& + uy(l, 3, m} + uy(i+d, i, m)
& ~ uy{il,d+1,m} - uy(i+l,J+1,m)
& + dtadw2 * { £(i,3, = - £{i+1,1, m)
& + E{i,J+i,m) -~ E£{i+1,3+1,m)
& + dtedy2 * { g(i,d, wm + g{isl, ], m)
& = gi{i,d+i,m) - gfi+l, J+i,m}
anddo
anddo

do 4 = mX + 1, nye
do i » m% + i, nxe
wii,j,m) = bufx{i-io,J-lo}
snddo
anddo
unddo

anddo
* ¥nd of the 2-stage time ltaration

—

AT AN RRE AR RN RN R AN AW R T IR RN R TR RN AR R AR AN RN ANNANNR TR oS

return
and
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