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Abstract

We adopt a non-oscillatory ceniral scheme, first presented in the context of Hyperbolic conser-
vation lews in [25] followed by [15], to the fremework of the incompressible Euler equations in their
vorticity formulation. The embedded duality in these equations, enables us to toggle between their
two equivalent represeniations - the conservative Hyperbolic-like form vs. the convective form.
We are therefore able to apply local methods, to problems with a global nature. This results in a
new stable and convergent method which enjoys high-resolution without the formation of spurious
oscillations. These desirable properties are clearly visible in the numerical simulations we present.

AMS{MOS) subject classification. Primary 65M10; Secondary 76C05

Keywords. Hyperbolic conservation laws, second-order accuracy, central difference schemes, non-
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1 Imtroduction

We are concerned with the approximate solution of fluid flows governed by the following system of
Euler equations,

@+ (- V)i = -Vp, (1.1)

which is augmented with the incompressibility constraint, V -# = 0, and is subject to initial conditions,
#(&, 0) = #o(Z). Here, # and p denote, respectively, the velocity field and the pressure.

In two space dimensions, system (1.1} admits an equivalent scalar formulation in terms of the
vorticity, w := V x @, which satisfies the conservative scalar equation,

wi + (uw)z + (vw)y = 0. (1.2)
Here, 4 = (u, v), is the two-component divergence-free velocity field, satisfying

uz +vy =0, (1.3)
Equation (1.2) can be viewed as a nonlinear conservation law,

w + flw)e + glw)y =0, (1.4)

with a global flux, (f,¢) := (uw,vw). At the same time, the incompressibility (1.3) enables us to
rewrite (1.2) in the equivalent convective form

we + twy + vwy = 0. (1.5)
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2 D. LEvy aND E. TADMOR

Equation (1.5) guarantees that the vorticity, w, propagates with finite speed, at least for uniformly
bounded velocity field, ¥ € L*. This duality — between the conservative and convective forms of the
equations, plays an essential role in our discussion below.

In recent years, there was an enormous amount of successful activity in the construction, analysis and
implementation of modern numerical algorithms for the approximate solution of nonlinear hyperbolic
conservation laws (1.4). A large variety of accurate, high-resolution methods were developed and

_investigated, e.g. [20], [10], and the references therein. We are therefore motivated to borrow the
methods and ideas developed in this contexi. Godunov-type schemes are primary examples for these
modern high-resolution schemes. Such schemes are based on piecewise-polynomial reconstruction of
pointvalues from cell averages, followed by the evolution of approximate fluxes. We distinguish between
upwind and ceniral Godunov-type schemes. The difference between these two types, lies in the way they
realize the evolution of these piecewise-polynomials: Upwind schemes sample the reconstructed values
at the midcells. They necessitate characteristic information (approximate Riemann solvers...) and
dimensional splitting, consult [13],[18] and [28], for example. Central schemes are based on sieggered
sampling at the interfacing breakpoints. Their main advantage is simplicity, consult [9],{25] and [15].

To be more specific, we concentrate on multidimensional extensions of the non-oscillatory, second-
order central Nessyahu-Tadmor (NT) scheme [25]. The central framework starts, at each time-level,
with a non-oscillatory piecewise linear approximation which is reconstructed from the piecewise constant
numerical data. This piecewise-linear approximation is evolved to the next time level and then realized
by its piecewise constant projection. The projection is based on steggered averaging which covers
both left going and right going waves centered at each midcell. Consequently, the evolution step
utilizes smooth numerical fluxes, which are bounded away from the center of the discontinuous Riemann
fans. And here, approximate quadrature rules can replace the costly (approximate) Riemann solvers
embedded in upwind schemes. It is therefore natural to use this central framework in more than one
space dimension — where we avoid Riemann solvers and dimensional splitting. In this context we refer
to the two-dimensional central scheme recently introduced by Jiang and Tadmor [15].

The paper is organized as follows. In §2 we briefly overview the central framework, including the
two-dimensional central-scheme [15]; we also outline a new two-dimensional third-order extension along
the lines of Liu and Tadmor in the one dimensional case [23]. In §3 we utilize this central framework,
introducing our central approximation of the incompressible Euler equations (1.2)-(1.3). We note in
passing that a similar treatment applies to the incompressible Navier-Stokes equations, where the central
discretization of its convective terms is complemented with an implicit Crack-Nickolson discretization
of the additional parabolic terms.

In §4, we carry out stability analysis, which proves that our two-dimensional second-order central
scheme satisfies the scalar maximum principle (for the vorticity). This, in turn, implies by compensated
compactness arguments, that there is no concentration effect [8], and hence the convergence of our
central scheme follows, at least for wg € LP,p > 2, [21]. We end up in §5, with a couple of prototype
numerical examples. We present the problem of an incompressible jet in a doubly periodic geometry
subject to two different sets of initial parameters. First, following Bell, Colella and Glaz [3], we consider
the case of the so-called “thick” shear-layer: the numerical simulations obtained for this problem
demonstrate the stability and convergence properties of our central schemes. Second, following Brown
and Minion [4], we then proceed with a framework which involves smaller scales, the so-called “thin”
shear-layer. Here, our central scheme resolves the incompressible solution with no spurious vortices,
which are inherent with other numerical methods reported in the literature, e.g., [4],[29]. Our numerical
experiments show a remarkable speedup while retaining stability and high-resclution.

Acknowledgment: Research was supported by DARPA/ONR Grant #N00014-92-J-1890, ONR Grant
#N(0014-91-3-1076, NSF Grant #DMS94-04942 and by the Sackler Institute for Scientific Computa-
tions in TAU. Part of this work was carried out at the Mathematics department of UCLA; D.L. would
also like to thank the UCLA Mathematics department for their warm hospitality.
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2 The Two-Dimensional Central Scheme - A Brief Overview

We start this section with a brief review of the central framework presented in [15]. This will enable
us to introduce the methodology and notations to be used later. We consider the two-dimensional
hyperbolic sysiem of conservaiion laws

ue+ (e +g(u)y =0, (26)

subject to the initial data, u(z,y,t = 0) = uo(z,y). To approximate (2.6) by a central scheme, we
introduce a piecewise-polynomial approximate solution, w(-,-,t), at the discrete time levels, " = nA#,

w(z,y,t”) = ij,k(a’: y)Xj,k(-Tsy)n Xj,k(z:y) = ]-I,',k:
gk

where pj(z,y) are polynomials supported at the cells, I; ; := {(E, ¢) I[{ -zl < A5 -] < %"— }

An ezact evolution of w, based on integration of the conservation law (2.6) over the staggered control
volume, [; 1 ;41 X [t7, 17 +1), yields

1
G} e = m]j w(z, y,t")dyde— 2.7)
et Asdy Livyaed
1 it Y1 Y
- mom L [ vt ) - s o) o ar-

i s Tt
B A;cAy/T { l¢ (w(z, yrt1, 7)) — g {wlz, vx, 7)) dz}dr.

=i r=z;

Here, 1w}, is the cell average at ¢ = t" associated with the cell I;. Thus, the first integral on the RHS

represents the staggered cell average at time ¢", oy, Letd It consists of contributions from the four
E g
neighboring cells, -

1
ik P - % P~
Djyspty 1= Aa:Ay/,/;, w(e,9,")dyde =
k)

+d kb g

Tikd  fVe+d Tipg [VRH
j z/ Pj,k(ﬁ,y,t)dydw-l-/ j Pip+1(z, y, t)dydz+
EF {778 &5 yrt3

1
AzAy

Fip1 v;‘+%
+j j Pj+1,k(w,y,t)dydz+f
Tivk TVr 2

These integrals can be evaluated ezactly. It remains to recover the pointvalues {w(:,-,7)| 1" < r <
t"+1}, a task which is accomplished in two steps. First, we use the given cell averages to reconstruct
the pointvalues of w(:,-,1"), reconstructed as piecewise polynomial approximation. Second, we follow
the evolution of these pointvalues along the interfaces (z;,yx,7),t® < 7 < t"*+1. It is here that we
take advantage of the finite speed of propagation, guaranteed by the convective form (1.5): Thanks
to staggering, these interfaces remain free of discontinuities, at least for a sufficiently small time step,
At, dictated by the CFL constraint. Hence, the numerical fluxes — which remain bounded away from
the propagating singularity at (z; +1k +%), can be computed within any degree of desired accuracy by
appropriate quadrature rules.

Below, we present {wo possible constructions of such central schemes — the second-order by Jiang
and Tadmor, [15], which utilizes the MUSCL piecewise linear interpolant [18]; In addition we introduce
a third-order two-dimensional extension of the one-dimensional central scheme by Liu and Tadmor, [23],
which utilizes the non-oscillatory piecewise-parabolic interpolant from [22].

T i1 LER ST
f Pi+1e+1(2, Y, t)dyde
+d Y¥e+d
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2.1 The Second-Order Central NT Scheme

Following the two-dimensional scheme in [15], which extends the one-dimensional NT scheme in [25}, we
start with a reconstructed piecewise-linear MUSCL approximation, w(z, 3,1") = 3, ; pie(®, ¥)x;,5(=, ),

- T —z; y—9
pix(z,y) = }‘,k+w’-,k( Az’)-%w},k( Ay"). (2.8)

Here, w x and w k, are respectively, the discrete slopes in the x-direction and in the y-direction,
which are reconstructed from the given cell averages. Second order accuracy is guaranteed wherever
these slopes approximate the corresponding derivatives, w} , ~ Az - wg(z;, yx,%") + O(Az)?, w W)y~

Ay - wy(z;, ¥, 1) + O(Ay)?. With this choice of linear approximation, the first term on the RHS

of (2.7) - the staggered average, W7 [IRRNE yields by a straightforward computation,
=1 . 1 i T =T bt 1]
Yisi el = :g(‘”‘,k B gy + B + Dy g+

1, ’ ' ;- 1. \
+ig(w,',k = Wip1p + Wiear — Wigrk4r) T ‘i‘g(wj,k W) pps + Wigs e~ Wipr )

Next, we turn to the numerical fluxes on the RHS of equation (2.7). They are approximated by
the second-order midpoint quadrature rule for the time integral, and by the second-order rectangular
quadrature rule for the spatial integration. For example, approximation of the first flux on the right
yields

e AtA
Y, e+t +3
./ ./ F(w(zjin, 3, T)dydr ~ =—=(f730 + fiyiien): (2.9)
T=t" Jy=yx
Analogous expressions hold for the rema.mmg fluxes. The rmssmg midvalues, w; ',r , are predicted using
a first-order Taylor expansion (where X := £% and p := A , are the usual fixed mesh-ratios),
+% A I '
win® =i = 5k = g (2.10)

Equipped with these midvalues, we are now able to use the approximate fluxes outlined in (2.9),
which yield a second-order corrector step of the form

- 1 + +4
By = <R )+ 50— =M = ) e+
_ _ 1 +3
+ <“2“(w.'fk+w.':k+1)+"8"(wfk g a) = f‘(gnkfl 9’::%)>j+;-- (2.11)

Here, we employ the following abbreviation for staggered-averaging

1 1
< Wy, pagi= (Wi H W), < Wk >5440= Wik + Wikse).

Note that the predictor-corrector central scheme, (2.10)-(2.11), is an extension to the canonical ﬁrst-
order Lax-Friedrichs scheme based on piecewise-constant reconstruction, (with p;; = @;; and wj, =
wj » = 0). It is remarkable that such a relatively simple extension yields a considerable lmprovement in
the resolution of the first-order Lax-Friedrichs scheme, while retaining its robust stability properties,

2.2 A Third-Order Extension

We extend the work of Liu and Tadmor [23] who dealt with a third-order one-dimensional central
acheme. To extend it for the two-dimensional framework, we start with a piecewise parabolic recon-
struction, w(z, y,t") = 3 ; ; pi {2, ¥)x;,1(%, y), which consists of quadratic pieces of the form (ignoring
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mixed terms)
_ n ' .'n_., 1, fz—2z; z
pik(e,y) = wip+wi +§"’: ~ ;T

1

2

Y=Yk Y— Uk
i (A—y)+ o (5) 212

The conservation requires that the cell average of p; (2, ) coincide with the underlying given average
ibj k, i.€., we require fj 1 = W;,i; in addition, we place the further constraints that the cell averages of
pjx over the four neighboring cells coincide with their underlying given averages, #;+1,441. By that,
the free five coefficients in (2.12) are uniquely determined as follows. We start with the reconstructed
pointvalues, w},; unlike the second-order schemes, these pointvalues need not coincide with the cell
averages, and are given by

Wiy = Wk~ gAYk T gg Wik (2.13)

Next, the first-order discrete slopes, w} , and w}’k, are reconstructed as follows?,

why =0 A5 ., W) = 0 ARE],, (2.14)
and finally, double-primes stands for the reconstructed discrete second derivatives

w;-’,,, = Qj,kAiAf_‘!f)j,k, w}‘,k = ﬁj,kA!_’;_A{'!T)M. (2.15)

The extra free parameters, 6,5, (0 < 6;; < 1), are limilers designed to avoid spurious extrema,
so that they guarantee the overall non-oscillatory nature of the central scheme. Generically, 0;; =
1~ O((Az)? + (Ay)?), retains the third-order accuracy in most of the computational domain, with the
possible exception at critical cells. For further details on the reconstruction of such one-dimensional
limiters consult, e.g., [22],[23].

The staggered averages on the RHS of (2.7) yield the same formula as in the second-order scheme,
consult (2.9). As with the second-order scheme, the piecewise-parabolic reconstruction (2.12), is also
evolved in time using the central Godunov-type framework. To retain third-order accuracy, however,
we use the Simpson (rather than the midpoint) quadrature rule for time integra.tion

To this end, we first use the Taylor expansion to predict the midvalues, y W :’ and w""*'l )
+ AtY (A1)? .,
Wit = o+ ( 2 ) wis t+ 3) Wk (2.16)
. At)?
w;.‘,',‘c'l = wiy+ Atd], + g-m)——w;‘lk.

Here, %}, and @}, denote, respectively, the first and second time derivatives, which are replaced by
spatial dliscrete derivatives as told by the conservation law (2.6).

These predicted values are then used in conjunction with the Simpson rule, yielding the corrector
step

_ 1,_ . 1
w;.,f;,ﬁ% = < 5(1”?,. +fy, )+ ‘8'("’;‘,. — Wiy, ) >pes + (2.17)
1,_ _ 1
+ < E(Wfk + B 4) + -(w? E— Wike1) Zipd —
A
3 [< F. = fi. 2epy H4< f"+% Ak >k+% +<fh-57 >k+%] -

n+4
-8 [< a1 =90k >jsd +4< g k+1 -9 >j+% +<gif - >j+§] -

1Here and below, we used the usual notations for the one-sided and centered differences, i.e., Az w(z) = +({w(r +
Az) — w(z)) and Ap = (A4 — A_).
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3 The Central Incompressible Scheme

We now turn our attention to the two-dimensional incompressible Euler equations, (1.2), which we view
as a two-dimensional nonlinear conservation law with flux, (f, g) = (uw, vw). We are aware, of course,
that this is not an Hyperbolic equation, due to the globa! dependence of the flux on w, which can be
read from the Biot-Savart law,

-
’

@(#,1) = f R@ - o)w(e, t)de', R(#F) = (cm2) (3.18)

Yet, according to the convective form (1.5), the vorticity, w, propagates with a finite speed, as long
as the velocities, u, ¥, remain uniformly bounded. This convective formulation (due to the incompress-
ibility), is the key property which enables us to utilize the central schemes (2.10)-(2.11), (2.16)-(2.17)
— schemes which are of inherent “local” nature, in this context of “global” incompressible equations.

In every step of the incompressible computation, one has to reconstruct the velocity field, i, from
the known values of the vorticity, w(:, -, "), according to the Biot-Savart law (3.18). This could be
implemented in one of several ways, consult e.g., [2],{3],[4],[6],[7],[14],[29]. We shall mention two options.

For a periodic setup, for example, this reconstruction can be done efficiently using spectral methods.
Thus, by applying the Fourier transform for the elliptic system

{ Uy + vy =0 ’ (3.19)

Vr — Uy =W

we obtain
o thy - Loty Lo 1 I P
o) = - o ®, 4 = g Epe®, B =g L u(@)e=F2d3. (3.20)
Alternatively, we can use a streamfunction, v, such that Ay = —w, which is obtained, e.g., by
solving the five-points Laplacian, Ay; r = —wj . Then, its gradient, Vi recovers the velocity field
Yik+r — ik — i1k + Vi k
Yih+i = JTyL—’ Vitdr = J—Am'l'" ' (3.21)

Observe that in this way, we retain the discrete incompressibility, centered around (j + 4,k + %),
Afujpys + A4 =0 (3.22)

To define the velocity field at the integer gridpoints, (z;, ), required in the predictor steps (2.10)
and (2.16), we may now solve

1 1
g8kt k) = Wity 5000+ V41E) = Yya g (3.23)

Observe that with this integer indexed velocity field, the discrete incompressibility relation (3.22)
amounts to

< Uj41, — U Ppgl + SUp41 = Vb 254l
Az Ay

=0. (3.24)

We are ready to introduce our central approximation of the two-dimensional equations (1.2)-(1.3).
Assume the cell-averages of the vorticity at time ¢ =", &7 ;, are known. Then the following algorithm

calculates the staggered cell-averages of the vorticity, w;'ﬁ k44 at the next time step, t = ¢*13.
FI

Algorithm:

1. Reconstruction



NON-OSCILLATORY CENTRAL SCHEMES FOR EULER EQUATIONS 7

(1a) Reconstruct the discrete vorticity slopes.

For example, for the second-order method, calculate wJ & and wJ 4+ With the following

family of so-called Min-Mod limiters, see e.g., [13],[30].

Wi = MM} —83e), 5@k = 3-1), 0@ — T )},

G = MM{BEkgs — T0), 5@ 4 ~ Tema) 6@ — o)} (3.25)
Here, M M, denotes the Min-Mod (MM) function,

ming{z;} ife; > 0,Vi
MM{z;,2,..} = { max{z;} ifz; <0,Vi
0 otherwise.

and 8, 0 < # < 2, is a free parameter, which retains the non-oscillatory properties of the
approximate solution. For the third-order method, the first and the second-order discrete
slopes are outlined in (2.14)-(2.15).

(1b) Calculate the pointvalues of the vorticity, w},, at time { = t". Note that in the first-order
and second-order approximations, these pomtva.lues coincide with the given cell averages,
w} = &7 ,. Starting with the third order method, however, pointvalues may differ from

the cell averages. For example, by (2.13), the third-order accurate pointvalues are given by
1
Wiy = @5 = 3398k — 2395

2. Prediction

(2a) Prepare the pointvalues of the divergence-free velocity field, 4(:,-,1"), from the
reconstructed vorticity pointvalues, w?,. To this end, use a direct summation of the
Biot-Savart relation (3.18), or any of its equivalent procedures mentioned earlier
spectral (3.20), streamfunction solver (3 21) (3.23),...

(2b) Predict the midvalues of the vorticity, w . For example, in the second-order case we use
S At~ Bno 3.26
Wik = Wi = U Wi T SV ke (3.26)

Observe that here we use the predictor step (2.10) in its convective formulation (1.5), that
is, (f/,¢') = (uw', vw'). For the third order scheme, we also have to predict the pointvalues
of the vorticity at time t"*! as well, utilizing (2.16).

3. Correction

(3a) As in step (2a), use the previously calculated values of the vorticity to compute the
divergence-free pointvalues of the velocily, at time i, (-, -, 1" +§), (- and at time t"+!
for the third-order method).

(3b) Finally, the previously calculated pointvalues of the velocities and vorticity are plugged
into the second-order corrector step (2.11) (- or (2.17) in the third-order method), to

compute the staggered cell-averages of the vorticity at time "+, w":_'% e

We close this section by noting that this algorithm which deals only with the conveciive terms, can
be extended to handle parabolic terms. As a direct consequence, the central schemes presented above,
can be applied to the two-dimensional incompressible Navier-Stokes equations, wy + (uw)e + (vw)y =

(w“ + wyy), with u; + v, = 0. In terms of stability considerations, the usage of the implicit

Fack-Nickolson scheme for handling the parabolic terms, is preferable.
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4 The Maximum Principle

In this section we prove that under appropriate CFL condition, our second-order central scheme satisfies
a maximum principle. The approximate solution therefore imitates the maximum principle of the exact
vorticity solution.

The theorem we state and prove, is similar to that of Jiang and Tadmor [15}, in the context of
scalar conservation laws. However, this equivalence is far from being trivial due to the global nature
of our non-local “fluxes”. In order to apply the methods of [15] in our context, it is essential to take
advantage of an appropriate discrete formulation of the incompressibility condition.

In the following, we let Ue := max; p{}u; x|, |v; |}, denote the global bound on the values of the
velocities.

Theorem 4.1 Consider the two-dimensional central scheme (2.10)-(2.11), complemented by the stream-
function computation of the velocity field (3.21)-(3.23). Assume that the discrete slopes, w' and W', are
reconstructed using the 6-dependent Min-Mod limiler (3.25). Then for any 6 < 2 there exisis a conslant,

m such that if the CFL condition is fulfilled,

200
max(A, ) - Uso < Cp, (4.27)
then the following local mazimum principle holds
‘:_f% p | < max{ 17 61y 10T 1 s 107 gt 19541 4} (4.28)

Remark: Of course, the CFL bound Cj, is far ferom the optimal Cy = %

—n+1

Proof: The main idea is to rewrite & as a conver combination of the cell averages at ",

itdE+d
- n+1
@7 el @741 2} 9] ,k+11 |67 4 1,641]- We start by writing &7 iidk4 88 B SUM of five terms
a;.‘f bl = x {T)+To 4+ Ta + Zs + Is}, (4.29)
with
Wik~ W51k Wi b4l = W41 k4
—_ = 2 k) 3 —_— - i 1, J 3
Il = < wr:k >J+'§' + 2 s I2 =< "*’T:H-l >J+% -+ 2 P
_ Wik~ @i k4t - Wignk = Wipt k1
Ty = <w§" >k+l+-’+q...£:.:!;_, I4=<w}'+1 >pap + i+l 4:.1+.+,

s

I

n+% ﬂ+, n4 n4 n+ +
—2A [(f +1§k )+ (f +1 k+1 ; k-fl)] 2u [(9,,;.--%1 .9',, %) 4+ (9;‘4..1%];4.1 9,4.1 k)} .

By the reconstruction of the Min-Mod limiter, wj,k and w},; ;, cannot have opposite signs (con-
sult [30]), and hence Z; does not exceed

1._ _ g,. _
1Z:| < ‘é‘lw;'l,k +&7 1l + &'i“’?ﬂ,k — @7l (4.30)

Similar bounds hold for Z»,Z3 and Z4.
Next, we invoke the discreie incompressibility (3.24), which enables us to reformulate Ty as the sum
of differences of vorticities

+3 +1 +
Is = =20y (Wiers —Wiko) =
+3 +i +4‘L +% +3
- 2(pv; : "f‘)‘"n : ;‘+1 R (w:,k+1 ; k)~

+ +
- 2y +1 k41 AU +1%,k+1 “”"+1%k) (w], +1 k41— .:l.k-fl) -

2(# ,+1 k) ( ,+1 B+l ;+1 k)
Hence,

IZs] < e [All'ui + 22+ @)\ Tsal + 4T3l + (0 + 2#)1154], (4.31)
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with
- S nth ntl nti
Ton = Wipe— Wik Is2=Wiedy —wip®
L nt+i nt+d . nts nt g
Isa = Wipres — Wi kit FATIES “’_i+1,k+1 - Wiy

Using the predictor step in its convective form (3.26), the difference between every two neighboring
midvalues of the vorticities in each of the T5;,j = 1,2, 3,4, can be written in terms of the values of the
vorticities and the velocity field at time ¢ = ™. For example,

- _ A ; / \
Isn =@y p— @ — *[“?+1,kwj+1,k — uf g i — [ i+, Kha1e = YR k) (4.32)

According to the Min-Mod limiter in (3.25), both |w} ., ;| and jw} kt do not exceed @IG‘; o1 = @7 ls
similarly, |w} 41, %) and |} ;| do not exceed O|@T,) 11— ;+1,kl and 9] WP e~ Tkl respectively. Hence,
the term 151 in (4.32) is upper-bounded by

|Zs1] < (14 AU )|wlyy o — whel + "9Uoo [1‘*’?+1,k+1 =Wl el wf kg — w;-‘,,,i] .

Similar estimates apply to the remaining terms, Ts2,Zg3 and Z54.
Adding all these estimates, we find that @ L which we decompose as the sum, 4 x {Il +T51+

L kL
Ia+.. .}, does not exceed

1

9
1% { lofy +@ ,k+1i+( +4e,u2U2+2(p+2A)Um+69,\pU'~’)]m;,,+1_w_;.§,¢|+...}

which in turn, does not exceed the maximum of {|&} |, 1@7;, il @7 & +1l: 10741 2411}, provided that the
following inequalities hold

g + 4062 U2, + 2(p + 20)Us + 662uUZ < % g: + 462202 +2(2p + MUy +602pUZ <

The last two inequalities yield the CFL condition (4.27). w

5 Numerical Results

5.1 The “thick” shear-layer problem

Qur central scheme was implemented for a two-dimensional model problem taken from [3]. The problem
is of a jet in a doubly periodic box, (0, 2x) x (0, 27), governed by the Euler equations (1.2)-(1.3). The
initial fow consists of a horizontal shear-layer of finite thickness, perturbed by a small amplitude vertical
velocity of the form

-{ tanh(}y—x/2)) y<7
~ | tenh(;(37/2-y)) y> 7 (6.33)
v = § - sin(z).

Here, the “thick” shear-layer width parameter, p, is taken as {& and the perturbation parameter, §,

equals 0.05.

The second-order calculations were done with discrete slopes calculated by the “classical” Min-Mod
limiter (3.26) with # = 1. The third-order calculations, however, were carried out withouf limiters
{using # = 1 in (2.14),(2.15)). This is an oscillatory reconstruction, yet remarkably, this does not affect
the overall stability and convergence properties of the approximated solution. It is a matter of further
investigation to fully understand the reasons for such a behavior.

For this periodic setup, the velocities were reconstructed from the calculated pointvalues of the
vorticity using the straightforward spectral method, (3.20), efficiently implemented via the FFT with
the complexity of O(n? log(n)).
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Figure 5.1 displays a typical contour plot of the vorticity. Figures 5.2-5.7 describe the evolution
of the vorticity computed using the second-order central scheme (2.10)-(2.11), while figures 5.8-5.13
describe the corresponding results obtained by the third-order central scheme (2.16)-(2.17).

Note that the oscillations in the third-order runs, can be barely noticed. Both, the second and third-
order results represent the solution o the desired accuracy; their difference is due to the added high-
resolution in the third-order computation. At large times, the second and third-order solution approach
each other, due to the embedded dissipation of the schemes (compare figure 5.7 with figure 5.12). The

lack of sufficient resolution, does not affect the stability of the numerical solution.

120}
100}7,
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60}y

40

20
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Figure 5.1: “thick” shear-layer, second-order, t = 8 , 128 * 128
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Figure 5.14: Enstrophy for second-order scheme

Figure 5.14 shows the behavior of the discrete enstrophy in different runs of the second-order scheme.
Indeed, the most obvious phenomenon is the decay in the enstrophy, which is due to the embedded
numerical viscosity in the scheme (the Min-Mod limiter decreases the extrema, among other things).
Still, two other phenomens can be observed: First, for a fixed time step, Af, using a finer grid lowers
the rate of the decrease in the enstrophy, as expected. Second, for a fixed grid, using a larger time
step, also lowers the rate of the decrease in the enstrophy. Applying a larger time step, means that up
to a fixed time, less iterations are being used, and thus, the dissipative properties of the scheme are
less effective, The behavior of the decrease in the enstrophy indicates that our central schemes, does
supply sufficient resolution at early stages {17].

5.2 The "thin” shear-layer problem

In [4], Brown and Minion revisit the problem of a doubly periodic shear-layer with a “thin” width
parameter, p. They present an upwind Godunov-projection method for the Navier-Stokes equations,
and study its behavior as the viscosity term tends to zero. Their results show the appearance of
spurious vortices on coarser grids. The beginning of spurious roll-ups are also evident in some of the
calculations of E and Shu [29], who solved the Euler equations at the “thick” shear-layer setup, using
an ENC method. Brown and Minion also refer to similar results by Rider and Henshaw, [4], using a
Lax-Wendroff method and a centered fourth-order difference primitive variable based method.

Using our scheme, we run several numerical simulations equivalent to those conducted by Brown
and Minion. As in the “thick” shear-layer setup, we studied the Euler equations, subject to the initial
data (5.33). This time, however, the shear-layer width parameter, p, was taken as g, and the same
6 = .05 was used.

Figures 5.15-5.20 describe the evolution of vorticity computed by the second-order central scheme.
1t can be clearly seen, that there are no spurious vortices in our results. The “thin” shear-layer results
show the exact convergence and stability nature of the central scheme, as in the case of a “thick”
shear-layer. This again demonstrates the huge potential of our central schemes.
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