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1 Introduction

Image processing refers to the analysis and extraction of information from im-
ages. Some example of the tasks are: restoration, compression and segmenta-
tion [21]. Applications can be found in many areas, including medical diagnosis,
satellite surveying and surveillance.

Since the number of pixels for even a two dimensional image with modest
resolution often exceeds several hundred thousands, image processing involves
many computationally intensive tasks. The requirements for real time response
and multi-frame/band analysis add further to the need for fast and efficient
computational algorithms,

Traditionally, the standard methods involve computation in the frequency
domain [21], facilitated by efficient FFT (and more recently wavelet) algorithms.
In the last few years, there has been a new movement towards a more PDE-
based approach; see for example the recent review article by Alvarez and Morel
[1] and the books by Morel and Solimini [28] and ter Haar Romeny [34]. The new
models are motivated by a more systematic approach to restoring images with
sharp edges, as well as for image segmentation. The image is diffused {denoised)
according to a nonlinear anisotropic diffusion PDE, designed to diffuse less near
edges [29]. The PDEs are often designed to possess certain desirable geometrical
properties such as affine invariance and causality. Total variation based image
restoration methods belong to this new class of models.

From a computational standpoeint, the PDE formulations leads to compu-
tational problems which are often of a different nature from the traditional
frequency domain and algebraic approach and calls for new computational tech-
niques which can better exploit the fundamental nature of the governing non-
linear PDEs. As yet, the nonlinear diffusion models are considered somewhat
expensive compared to traditional methods and naturally a part of the research
in this area is directed towards making them more efficient while retaining and
improving their desirable geometric properties.

In this chapter, we shall consider the use of iterative methods for total vari-
ation models for image restoration. Iterations are needed for solving the nonlin-
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ear problem, as well as for the linear algebra problems which arise at each step.
Analogous to the situation for solving large discretized PDEs in several dimen-
sions, the size of the problems are large enough that direct solution methods
are too costly and iterative methods can be much more efficient.

The goal of this chapter is two fold. First, we would like to give a con-
cise and self-contained overview of the total variation image restoration models
and some existing numerical methods for solving them. Second, we would like
to review briefly some of our own research in this area. Specifically, we will
discuss two topics: the use of primal-dual Newton methods for solving a mini-
mization problem involving the highly nonlinear total variation functional, and
preconditioning techniques for differential-convolution type operators.

2 Image restoration

The recording of an image usually involves a degradation process: a blurring,
due to atmosphere turbulence, camera misfocus or relative movement, followed
by a random noise, due to errors of the physical sensors or to quantization.
The actual degradation model will depend on many factors, but a commonly
used model is that of a linear blurring operator and additive Gaussian white
noise, which is the one we will consider in this paper. Others may involve
nonlinear blurring operators, multiplicative noise, noise with more complicated
distributions and with possible correlation with the image.

The aim of image restoration is the estimation of the ideal true image from
the recorded one. The direct problem of computing the imaging system response
(blurred image) from a given image is often assumed to be known and well-posed.
The usual model for it is the convolution by a given kernel or peint spread
function (PSF), which, in most of the cases, implies that the inverse problem
of computing the true image from the observations is an il-posed problem. A
general principle for dealing with the instability of the inverse problem is that of
reqularization, which mainly consists in restricting the set of admissible solutions
and including some « prieri informaiion (non negativity, smoothness, existence
of edges, etc.) in the formulation of the problem. Both the accurate modeling
of the imaging system and the choice of regularization will be essential for a
satisfactory image restoration process.

Throughout this paper, the word image will refer to a real function u, defined
on Q = [0, 1}%, with u(z, y) being the intensity or grey level at pixel (z,y).



Figure 1: From left to right: original image, blurred image, observed image

2.1 Degradation model

Let u denote the ideal image to be estimated and z the observed image. We
model the imaging system as

2= Ku+4n,

where K is a linear operator (the blur operator) and n is a random field (noise),
of which we may know some of its statistics (see Fig 1).

The operator K is usually a convolution by a known point spread function
h,ie.,

Ku(z,y) = f h(z — %, y — Y)u(T, 7) dZ d7,
£

corresponding to a spatially invariant blurring process. Another interesting case,
which can be seen as a special case of the latter, is when the operator K is the
identity, which corresponds to denoising.

The noise n is assumed to be a Gaussian white noise, i.c., the values u{z, y)
are uncorrelated random variables with a normal distribution with mean 0 and
variance o2, for all (z,y) € Q.

2.2 Regularization

The inverse problem Ku = z is ill-posed nature in most cases due to the com-
pactness of the convolution operators with square integrable kernels. This means
that the problem has no solution and/or this solution does not depend contin-
uously on the data z. Since this data will contain measurements errors, direct
solutions of the inverse problem, in case of existence, will be useless. We thus
need to modify this inverse problem in order to turn it into a well-posed problem.
“This can be achieved by regularizingit, We can cite as regularization procedures
the following (more references can be found in the survey paper [24]):

¢ Direct Regularization Methods.



— Tikhonov Regularization.
— Truncated matrix factorizations, e.g. SVI} and RRQR.
— Mollifier Methods.

s Tterative Regularization Methods.
— Lanczos and Conjugate Gradient regularization.

Some of these methods require parameter specifications. We cite some param-
eter choice methods:

o Discrepancy Principle,
# (Generalized Cross-Validation,
e [-curve,

o Methods based on Error Estimation.

2.3 Tikhonov Regularization

We will focus on the paradigm of Tikhonov-like regularization in this paper. We
consider two variants:

1. Noise level constrained formulation: it consists in the solution of the
constrained optimization problem

Htin R{u)

subject to  ||Ku— z[|? = o?,

where R is a functional, the regularizalion funclional, that measures the
irregularity of u. The quadratic constraint acts as the restriction of the
solution set, since ||Ku — z||> = ||n]|? = ¢, and the functional R incorpe-
rates the a priori information of the image. This approach is equivalent
to the discrepancy principle.

2. Unconstrained formulation: if there is no good estimate of the variance
of the noise, then we may consider the unconstrained optimization problem

min f(u) = é—[}Ku — 2| + aR(u),

where o controls the tradeoff between a good fit to the data and an irreg-
nlar solution. It can be shown that ideally « should be chosen to be the
reciprocal of the Lagrange multiplier for the previous problem.



The regularization functionals used more often are quadratic functionals of
the type R{u) = [|Qul|}* where @ = I (the identity operator) or @ = V (the H*
semi-norm). This choice essentially gives a linear least squares problem, but has
the drawback of penalizing discontinuities in u. Therefore, this is not a good
choice if we are interested in edge restoration.

2.4 Algorithms for Tikhonov regularization with quadratic
regularization functionals

If we consider a quadratic regularization functional R{u) = [|Qu|j3, with a linear
functional ¢}, then we can write
K u— I1*
Vo 0

Thus the problem reduces to an ordinary least squares problem. In order to im-
prove efficiency, one must try to exploit the Toeplitz (or block-Toeplitz} struc-
ture of AT A, Since A can be very large (if the picture contains n x n pixels,
then K is n? x n?) we need efficient algorithms.

2
F(u) = oflQulff + [| Ku — 2|I7 = - [l Aw — £113-

2.4.1 Direct methods

Fast direct methods for structured least squares problems is an actively re-
searched area. The classical Levinson and Schur algorithms [20] can reduce the
complexity from @(n3) to @(n?) or O(nlog® n). The stability of these fast and
super-fast algorithms are still not fully understood [4]. More recently, fast algo-
rithms based on Gaussian-elimination with partial pivoting for Cauchy matrices
and matrices with displacement structures have been developed [25, 19}.

2.4.2 TIterative methods: Circulant Preconditioners

An alternative to direct methods is preconditioned iterative methods. This
approach was first proposed by Strang [33]. The idea is the following. The
conjugate gradient algorithm on the normal equations AT Au = ATz has the
advantage of only needing the products Av and ATv. If K, Q are Toeplitz
matrices then efficient algorithms can be employed to compute Av, ATv, for
instance, by embedding these matrices into circulant ones and then using FI'T’s.
However, the convergence rate will be governed by the condition number of A
and hence preconditioning will be essential for the feasibility of this approach.
Some preconditioners based on circulant maftrices have been proposed:



e {33, 5]: Tt consists in using a circulant matrix C' to approximate a Toeplitz
matrix T by first copying the main diagonals of T' to C' and then com-
pleting C to form a circulant matrix. This is illustrated in the fashion
outlined in the following picture.

copy

ignored

complete to make
C circulant

e [14]: This is a variational approach. For a given matrix T (not necessarily
Toeplitz), it consists in finding the circulant matrix C which minimizes the
Frobenius norm of the difference C~T), ie., C = argmin [|[T—C||r. The

C circulant
solution amounts to averaging the entries in the eorresponding diagonals

of T, as illustrated in the picture below.

i
— ¢ — e
L average

-~

o
{

This preconditioner has the following advantages:

— It preserves SPD matrices.
- It is applicable to general A, not just Toeplitz T.
e Many other variants have been proposed (cf. the recent survey [13]).

There is also a vast literature on convergence theory for fast transform
preconditioners:

— For Toeplitz matrices in the Wiener Class (i.e. whose entries in a
row 1s absolutely summable), the spectrum of M —1 A clusters around

1 {93, [26], (3]



— For elliptic operators, the condition number of the preconditioned
matrix, X{M 1A}, can be bounded by O(1) independent of &, if the
type of boundary conditions of the preconditioner matches those of
the elliptic operator, and ({n) otherwise [6}, [17], [10].

For applications of some of these preconditioning techniques to Toeplitz least
squares problems, see [8, 7].

More recently, an idea that has received a lot of interest is to use early
truncation of the conjugate gradient method applied to the normal equation for
Ku = z as a regularization procedure [23].

3 'Total Variation Restoration

3.1 Total Variation Regularization

The main disadvantage of using quadratic regularization functionals such as
the H' semi-norm of u is the inability to recover sharp discontinuities (edges).
Mathematically, this is clear because discontinuous functions do not have bounded
H? semi-norms. To remedy this, Rudin, Osher and Fatemi proposed in [31]} the
use of the Total Variation

TV(u):/ﬂ}vuum " /n,/ug+ugdmdy

as a regularization functional. The intuition for the use of this functional is that
it measures the jumps of u, even if it is discontinuous. It is also connected to
minimal surface problems.

The following result illustrates the advantage of the use of the Total Variation
versus the quadratic functional given by the H'-semi-norm for a simplified 1D
problem (¢f. Fig 2)

Lemma. Let S = {f|f(0) = a, f(1) = b}.

1. For the total variation norm, we have that minges TV(f) = b —a is
achieved by any monotone, not necessarily continuous, f € S.

2. For the H! semi-norm, we have that I}Iélg,l fal(f’(m))?' dz has the unique
solution f(z) = a(l — z) + bx.

Thus, the total variation norm allows more functions, including discontin-
nous ones, to approximate a given noisy function, whereas the H' semi-norm
»prefers” the linear function over others.

To illustrate the suitability of Total Variation denoising we depict a com-
parison of several signal denoising algorithms in Fig. 3 .



Figure 2: TV(fs) > TV(fi) = TV(f2) = TV (fs) = TV (fs)

For simplicity, we will consider the unconstrained formulation of the Tikhonov
regularization. The problem is then:

8 min f(x) = oTV(x) + 3l|Ku— I,

which is a strictly convex problem. To minimize f(u), we will need its gradient.
By using integration by parts with Neumann boundary conditions on (1), it can
be shown that the gradient of the Total Variation functional is

Vu
VIV = -V {=]-
) (1)
Thus, the first order optimality condition for the problem (1) is given by:

(2) Vf(u):g(u)zwav-(]-gz—a + (K*Ku— K*'z) =0.

This is the problem that we need to solve to find the restored image u.

3.2 Computational challenges
The solution of (2) poses several computational difficulties:

e The problem size can be very large, due to the large number of pixels,
even for normal resolutions. This is even worse if 3D or video images are
considered. The use of iterative methods for linear systems is necessary
for most of the cases,
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Figure 3: Original image plotted with dashed line. The Fourier, Haar and
Daubechies plots correspond to truncated spectral decompositions and the H'
restoration to Tikhonov regularization using the H!-semi-norm as functional.



¢ The TV functional is non-differentiable at locations where [Vu| = 0, which
often happens in real images. This makes necessary the use of numerical
regularization, consisting in replacing the term [Vu| by +/|Vul? + 8 for a
small enough positive artificial parameter .

¢ The operator V - (WL“I) is highly nonlinear.

e The ill-conditioning of the operators V - (ﬁ%r) (when linearized, it is a

second order elliptic operator) and K* K (it is a convolution operator) can
canse numerical difficulties.

+ When linearized, the elliptic operator V - (T«J'—u{) has highly varying coef-
ficients, due to the presence of the term ﬁ'

o If K # I, then one needs to efficiently precondition the sum of an elliptic
operator and a blurring operator. While good preconditioning techniques
are available for the individual operators, preconditioning the sum is much
more difficult. We will consider this issue in Section 5.

3.3 TV Restoration Algorithms

There are several iterative schemes which have been proposed in the literature
for solving the optimality equation (2).

o The Time Marching scheme proposed in Rudin, Osher and Fatemi [31, 30]
consists in finding the steady state of the parabolic PDE

uy = —g(u), u(0) ==z

It is equivalent to the steepest descent method. It can use the projected
gradient method to handle noise constraints, The drawback of this method
is that explicit methods can be slow due to stability constraints. Implicit
methods can also be applied but then one has to deal with the nonlinearity
and the solution of the resulting linear systems.

o In Vogel [35], the Fized Point Lagged Diffusivity Iteration is introduced.
This method consists in linearizing the nonlinear differential term in (2)
by lagging the diffusion coefficient 1/|Vu| behind one iteration. Thus,
u™*! is obtained as the solution to the linear integro-differential equation

(—aV . ([V;';u”[) + I{*I‘f)uﬂ-‘-l = I{*Z

10



This algorithm can be interpreted within the framework of generalized
Weiszfeld’s methods, as introduced in [37]. As proved in that paper, this
method is monotonically convergent, in the sense that the objective func-
tion evaluated at the iterates forms a monotonically descreasing sequence,
and that the convergence rate is linear. In practice, this method is very
robust.

¢ In Vogel and Oman [36] and Chan, Chan and Zhou {12}, Newton-type meth-
ods are considered. Unfortunately, the domain of convergence of Newton’s
method applied to solve equation {2) is extremely small, specially when
the regularizing parameter 3 is small. A continualion method is needed to
make this method work efficiently. However, controlling the continuation
process is not easy and many heuristic must be used to make it an overall
efficient procedure.

4 A Primal-dual Method for Total Variation Min-
imization

The difficulty of the linearization of (2) is caused by the singularity of the square
root that appears at the denominator. In this section, we briefly describe a
special linearization technique that we have developed in [15] which has proven
to be very efficient and robust compared to the methods mentioned earlier.

4.1 A linearization based on a dual variable

The key idea is to introduce a smooth auxiliary (dual) variable:
Vu

WEW‘

Note that |w| = 1. Then we rewrite (2) as a system of equations in the {(w,u)
variables:

flw,u) = - w|Vu|— Vu =0
glw,u)= —aV-w+K*Ku—-K*z =0

and linearze it instead of the u-system:
v
—aV [ o ) + K Ku— K*z =0,
[Vl

This approach is similar to the primal-dual method of [16, 2] for minimizing a
sum of Euclidean norms.

We cite in the following some heuristic explanations for the advantages of
this technique:

11



s The vector Tg%{ is the normal vector to the level sets of u (c¢f. Fig 4).
Thus, w is smooth and well-defined if the level sets are smooth whereas
if we linearize it we will lose this property. Moreover, V . w = & is the
curvature of the level sets of 4 and the tirne marching method can be
regarded as a curvature-driven flow. Hence, w is a natural variable to use
in a geometry-based image restoration algorithm,

1 ’
L
Level sets

Figure 4: w variable is the normal to the level sets of u.

o The better global convergence behavior of Newton’s method for (w, u)-
system is due to the fact that this system is more globally linear than
the u-system. To back up this assertion, we consider the following scalar
example: we use Newton’s method to find the solution of f(z) = w —

T —_ —
v 0=
g(z) = w\/zt+ B —z =0 for w= 109999, = le— 4,2 = Vu (cf. Fig
5). We find that Newton’s method applied to g(z) = 0 converges for any
initial guess > 0 and applied to f(x) diverges for any initial guess > 2.
Note also that the graph of g(z) resembles a linear function in almost
all the horizontal axis, whereas the graph of f(z) resembles a rational
function.

The linearization of the u-system yields

[""’v' (E‘;ul(f - %Z;f)v) * K*K)] bu=—g(u)

and that of the (w, u)-system yields:

[ Vu|  —(I - 2Z¥)V

—aV. K*K [ ?: ] T [ 5&03 ] !

12
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#x)

Figure 5: Plot of f(z) and g(z). The vertical axis has been scaled by 10~

which afier eliminating the éw variable yields:
T
[m—aV- (ﬁ(f— yrg—:ﬁ—)V) + K*K] du = —g(u),
w T
bw = ragr(l — 494 )Vou — w + iy

Note that the cost of solving the (w, u)-system is comparable to that for the
u-system. The main cost in solving the system in du in both cases.

4.2 Dual definition for TV norm
The definition of the Total Variation as

TV(u):L[Vu|dm:/n1/uf_+u§dmdy

is not well-defined if 4 is non-smooth. An equivalent dual definition that is
well-defined for non-smooth u is the following (cf. [18]):

TV(u) = max{f uV-wdzdy: w=(w,ws), w; € C®(R), |wie < 1}
o)
Hence, another formulation for the TV restoration problem is:

1
n'E'n [I!?é)i a/nuv-wdxdy+ 5]1Ku-mz||2.

1t can be shown that this leads to an equivalent primal-dual formulation.

13



4.3 Numerical Results for the Primal-Dual Method

We will now compare numerically the convergence behavior of the primal-dual
method to that of the primal-Newton method under several circumstances. The
continuation procedure used for both algorithms is based on a trial and error
strategy, together with backtracking heuristics to minimize the work caused by
possible errors. The line scarch on the u variable is based on sufficient decrease
for the L2-norm of the gradient of the objective function. The line search on the
w-variable is a simple and inexpensive algorithm $o ensure that |w(z,y)| < 1
throughout the iteration, by taking a fraction of inf(, yyen(sup{s: |w(z,y) -+
séw(z, y)| < 1}) (see [15] for details).

We show in Table 1 the work required by both algorithms to find the solution
of the Total Variation restoration problem for the noisy image (K = identity)
displayed in Fig 6, obtained from the true image, also displayed in TFig 6, by
adding a random noise whose distribution is normal of zero mean and variance
o? = 1200, resulting in a SNR=as 1. The target parameter § we have used is
0.01 x 2562, The parameter o has been set to 1.18, which has been computed
from the Lagrange multiplier obtained from the solution of the constrained
problem. The stopping criterion for the intermediate Newton'’s iterations, i.e.,
during the coniinuation, before solving the problem for the target 3, has been
to achieve a relative decrease of 102 for the L?-norm of the gradient of the
objective function. The relative tolerance for the last subproblem has been
104,

Figure 6: Original, noisy and denoised image, SNR= 1.

We use the conjugate gradient method preconditioned by the incomplete
Cholesky decomposition as linear solver. We have used an adaptive relative
tolerance on the Buclidean norm of the residual as recommended in [27, Fq. 6.18]

o = 0.1iffn=0,
* 7 | min(0.1, 0.9{lgnll*/llga-111%).

In order to be able to apply the conjugate gradient method to the (w, u)-system,
we have replaced its Jacobian by its symmetric part, which is an SPD matrix.

14



Furthermore, this Jacobian converges to a symmetric matrix and therefore the
convergence is still locally quadratic by results in [27].

In Table 1, under the columns headed by NWT, we have the total number of
Newton iterations required to solve the problem and under the columns headed
by CG, we have the total number of (inner) CG iterations, i.e., matrix vector
multiplications, including all iterations incurred by the backtracking procedure.

primal-dual Newton primal Newton

NWT CG NWT CG

continuation, no line search 25 186 70 265

continuation, line search on u 25 187 b3 210

continuation, line search on wérw i3 51 53 210
no continuation, line search on udew 12 58 Not converged

Table 1: NWT:=# nonlinear iterations, CG=4# CG iterations

The conclusions that can be drawn from this experiment are:

¢ The most crucial factor for the primal-dual method is controlling the dual
variable w via the step length algorithm mentioned above. In fact, our
experience is that this algorithm with the dual step length control is glob-
ally convergent for the parameters o and 8 in a reasonable range. A line
search for the primal variables almost always yields unit step lengths.

o The primal-dual method with the dual step length control algorithm does
not need continnation to converge, although using it might be slightly
beneficial in terms of work.

o The primal-dual method with the dual step length control has a much
better convergence behavior than the primal method.

In our second experiment, we compare the primal-dual Newton, fixed point
and time marching methods for a picture of a satellite contaminated with arti-
ficial noise 4. For the primal-dual Newton method, we use the step length algo-
rithm for the dual variables, no continuation and the same parameters as in the
previous experiment. The same parameters are used for the fixed point method,
except that we have used a fixed linear relative residual decrease 7, = 0.1 (it is
in this case oplimal according to our experience). We have used a line search
based on sufficient decrease for the time marching method. The stopping cri-
terion for the time marching method is based on the iteration count since we

4given to us by Prof. Bob Plemmons of Wake Forest University

15
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Figure 7: Convergence comparison of primal-dual, fixed point and time-
marching: at the left we plot the FEuclidean norm of the gradient of the Total
Variation restoration fanctional versus iterations and at the right we plot the
percentage of pixels that differ by more than 1 pixel value(the pizel tolerance,
since the dynamic range of the image is 256) from a pre-computed high accuracy
solution.

have not been able to achieve the prescribed accuracy in a reasonable amount
of time. In Fig. 7 we plot the convergence history of this experiment and in
Fig. 8 we display some of the intermediate results for the primal-dual and fixed
point methods.

The conclusions we draw from this experiment are:

¢ The primal-duaal algorithm is quadratically convergent, as can be seen from
the left plot in Fig. 7, whereas the others are at best linearly convergent.

¢ The primal-dual algorithm behaves similarly to the fixed point method in
the early stages, but in a few iterations can attain high accuracy.

¢ Both the primal-dual and fixed point are able to restore the large scale
features of the image after only a few iterations, but the fixed point method
takes much longer to completely restore the finer scale features, as it can
be seen from the right plot in Fig. 7 and the horizontal cross sections
plots in Fig. 8.

e The cost per iteration, as well as the memory requirement, of the primal-
dual method is between 30 and b0 per cent more than for the fixed point
iteration. The cost of an iteration of the time marching method is roughly
the same as that of an inner CG iteration for the primal-dual method, but
both the primal-dual method and the fixed point method require far less
(CG) iterations than the time marching method.

16
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Figure 8: The size of the original image is 256 x 256 and the signal to noise ratio
is approximately 1. The plots are horizontal cross sections of the corresponding
images at pixel 130.
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5 Cosine Transform Preconditioners For Total Vari-
ation Image Denoising and Deblurring

In this section, we will treat the issues regarding preconditioning the conjugate
gradient algorithm used for the solution of the lincar systems arising in Total
Variation image restoration.

5.1 Preconditioners for Total Variation image restoration

Let us denote by A = al + K*K, where L corresponds to the differential
operator of either the fixed point iteration or Newton’s method.

When K = I, the matrix A will correspond to an elliptic differential oper-
ator and there are many possible preconditioners for it, e.g. SSOR, ILU, MG,
DD [22, 32]. We have satisfactorily used ILU preconditioning in our numerical
experiments. In [35, 36] a multigrid preconditioner is used.

When K # I, there exist many preconditioners for each of the summands
of A separately, e.g. the elliptic preconditioners mentioned above and circulant
preconditioners [33] for the convolution operator K*K. However, a precondi-
tioner for the sum of both terms is not easy to find.

In Vogel and Oman [36], the following operator splitting/ADI type precon-
ditioner is proposed:

M = (K*K + 1) (aLs(u™) + 12 )(K* K + 1112

This approach works well when o is very large or very small, but the interme-
diate cases are often the ones which are of interest.

In the rest of this section, we shall briefly describe a preconditioning tech-
nique that we have developed in [11] which can be applied to both terms.

5.2 Optimal Discrete Cosine Transform Preconditioners

Recall that the matrix of the one-dimensional n-discrete cosine transform is

Cn:1/2_6ﬂ cos((zml)(%_l)?r), 1<i,j<mn,
n 2n

which is an orthogonal matrix. Furthermore, if v is an n-vector, then the product
Cyv can be performed in O(nlogn) operations.

18



We denote the set of matrices which can be diagonalized by the discrete
cosine transform by

Buxn = {CLA,Cp | Ay is a real diagonal matrix}.

Given A,, we define the optimal cosine transform preconditioner for Ay,
c(An), as the minimizer B, of the Frobenius norm of the difference B, — An,
[|Br — An]|F, over all matrices By, € Bnyn. The matrix ¢(Ay) is always sym-
metric and it can be shown that ¢(A,) is positive definite whenever A, is so.
More details can be found in [10].

The construction cost of ¢(Ay), for different types of matrix A,, is shown in
Table 2.

An cost of constructing ¢(4,)
general O(n?)
Toeplitz (from K) O(nlogn)
Diagonally sparse (from L) O(nlogn)

Table 2: Construction cost for the optimal cosine transform preconditioner.

The matrix of the two-dimensional n x n-discrete cosine transform is C,, @ Cp
and the optimal two-dimensional cosine transform preconditioner for a matrix
Apxn is similarly defined as the matrix c3(Anxn) = Bnxn that can be diagonal-
ized by the two-dimensional cosine transform and which minimizes the Frobe-
nius norm ||Buxn — AnxnllF, over all those matrices that can be diagonalized
by the two-dimensional cosine transform. The construction cost of e2(Anxn),
for different types of matrix Ay, xn, is shown in Table 3.

An cost of constructing c{A,)
general O(n?)
2d Toeplitz (from K} O(n?logn)
2d diagonally sparse (from L) O(n” logn)

Table 3: Construction cost for the two-dimensional optimal cosine transform
preconditioner.

5.3 Cosine Transform for TV denoising and deblurring

Since the matrix A is a general dense matrix, from Table 3 we deduce that the
cost of constructing the preconditioner cp(A) would be n?, which can easily be
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Preconditioner #. CG iterations
Cosine + diag. scal. 204
Cosine ounly 348
diag. ascal. only 462
no preconditioning 922

Table 4: Comparison of the work for the TV image restoration with different
preconditioners

prohibitively large. Therefore some simplifications have to be done in order to
reduce this cost. Since

e3(A) = ea(K* K + al) = col K*K) + ex(al) & ca(K)*ea(K) + aea(L),

Wwe propose
M= Cg(I{)*Cg(.K) + 0!:’,‘2(1;)

as a preconditioner for A.
Heo(K) = C*'A1C and  ep(L) = CTARC, then

M= (Oﬂ ® Cn)t (A;Al + GAZ) (Cn ® Cn):

which is easily invertible in O(n?logn) operations using the FFT. We can also
incorporate the technique of diagonal scaling for taking into account large vari-
ations of the coefficients of the differential operator. Note that the cost per
conjugate gradient step is O(n?logn).

5.4 Numerical Results for Cosine Transform Precondi-
tioners

In this section we compare the work used to perform b fixed point iterations
using the conjugate gradient method with different preconditioners. This work
is measured in inner CG iterations,

The test and original images are displayed in Fig 9 and the parameters
that have been used are: # = 0.01, o = 107% and conjugate gradient relative
tolerance = 10~2. The results are shown in Table 4. It can be seen that the
diagonally scaled cosine transform preconditioner can reduce the number of
iterations by a factor of more than 4 compared with using no preconditioning
at all. Other tests in [11] show that the performance is also insensitive to the
value of «.
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Figure 9: Original image, blurred and deblurred satellite image.

6 Conclusion

These nonlinear PDE based image restoration methods are very promising.
Their primary advantage is a systematic way of preserving sharp edges. There
is a nice mathematical framework and the techniques can be extended to more
general image processing tasks such as segmentation and object recognition.
There is also the possibility of combining them with the FFT/wavelet based
methods as well. While these methods are still relatively expensive compared
to traditional transform and frequency based methods, well established PDE
and CFD numerical schemes can be used to make them more efficient. In par-
ticular, iterative methods can play a significant role and we have attempted to
show some of the possibilities in this chapter.
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