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Abstract. We study the asymptotic stability of a plane CJ detonation
wave under the assumption of small resolved heat release (SRHR). We prove
that the solution exists globally and that the solution converges uniformly
to a shifted CJ detonation wave as t— + co for initial data which are small
perturbations of the CJ detonation wave. The weighted energy method is
used to overcome the difficulty arising from the sonic property at the end of
the reaction. The SRHR model allows us to treat the non-monotone spike in
the profile of the CJ detonation wave by the characteristic energy estimate.
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1 Introduction

We consider the combustion problem

Uy + (f(u) - Q(l - 62(1 - Z)))z = Elgy (1)
z, = kp(u)z, (2)

©(u) has the ignition form

w(u) = ¢ smoothly increasing u; < u < 2y,
1 u > 2u;

where u; > ug > 0, k, g,8, € > 0 are constants and u and 2z are scalar functions

of (z,t). f satisfies

fF(0) =0, f/(0) > 0, f"(u) > 0.

For a CJ detonation wave, there is a sonic point at the end of the reaction
zone. That is, the speed of the fluid at the end of the reaction zone is sonic.
This very property makes the late-time approach to the CJ detonation very
slow {4]. This phenomena suggests us to consider the SRHR (small resolved
heat release) model [1]. The model assumes two successive reactions. Most of
the heat is released in the first reaction, which is assumed to be instantaneous.
The test of the heat, the ’resolved’ fraction 42, is released in the second
reaction, which is given a finite rate. The SRHR model reflects the important
property that near the end of the reaction zone an ((6?) heat release is
associated with a much larger O(8) pressure drop [1]. Another motivation for

choosing this model is that the detonation is stable to local 2D disturbances
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when the heat release of the detonation is small compared with the energy
input to the flow by the supporting piston [3].

Under the assumption of SRHR, we are able to perform the characteristic
energy estimate [9] {10] for the CJ detonation profile which is non-monotone
due to the chemical reaction.

The weighted energy method [6] [13] is used to overcome the difficulty
arising from the sonic property at the end of the reaction. The selection of
the weight plays a crucial role. The weight depends on the rate of decay of
the traveling wave profile at the far field.

We study the initial value problem (1) (2) with the following data:

u(z,0) = ug(x) (3)
z(+00,t) = 1 (4)

where uy(z) is a small perturbation of the CJ detonation wave and satisfies
certain conditions to be specified later.

We prove global existence of solution to the problem (1} (2) (3) (4) and
that it’s convergence to a shifted traveling wave solution.

In Section 2, we prove the results about CJ detonation wave solution
including its decay rates at the far fields. Section 3 is the proof of the
asymptotic stability of the CJ detonation wave. The proof consists of a
construction of the weight function according to the rates found in Section 2

and the weighted energy estimate.



2 The CJ Detonation Wave Solutions
A CJ detonation wave solution is a solution of the following form
(u(z, 1), 2(z,)) = (Y(& — Deyt), Z(z — Dggt)) = ($(£), Z(£))

where ¢ = z ~ D¢t is the traveling wave variable and Dg; is the speed of the
CJ detonation wave. Then (19, Z)(£) solves the following ordinary differential

equations

Dot + FOW = b+ q(l - 81 - Z)Y (5)
7 = ke()Z. (6)

The boundary conditions are

Jim (5,2)() = (u,0) ("

The results about CJ detonation wave is the following.

Theorem 2.1 There is a unique solution (1, Z) to problem (5) (6) (7) (8).
The propagating speed Dy salisfies

Dgy =
Uy — Uy
and
Doy = f'(w). (9)
Furthermore,
[4(6) ~ wl = Olig), €= —o0 (10)



and

[1(€) — ol = O(e M), £ — oo
where C' > 0 depends on € and f.

Proof.

(11)

The proof of the existence and uniqueness of the profile can be found mn

Rosales and Majda [12] and the references therein. And so is the decay rate

of the profile as { — +o0.

We now determine the rate of decay of the profile as £ — —oc where

f'((=00)) = D¢;. To do so, we prove the following lemma, with which the

proof of the theorem is completed.

Lemma 2.2

RS ]
cof + ¢ * (cob + €1)® < <

ot + o E<és<bh

for some constants ¢, ¢, ¢, ¢y and &s.

Proof.
First, we have from (6) that

7€) =0(e*), £ <&

for some {3 < &,.

Then plugging Z into the integrated (5), we have

—Dos($(€) — w) + f($(8)) = flw) = e/(£) + 82qee™, £ <&

where ¢ >  is a constant.

(12)

(13)



Using the sonic property (9) of the CJ detonation profile around { — —oo,

we rewrite the equation (13) in the following form:

P(€) — co(1P(€) — w)? = —62geert

where ¢; > 0 depends on f and e.

Let 5/
1 ge
nlt)= o +er (ol + )’
and
€)= -—
= cof + ¢
It is easy to check that y, and y, solve the following ODEs
, é2qc
— C = e
y Oy (Coé + C1)4
and
Yy — oy’ =
respectively.

Since the source term §2gcekt for — u; is in between those for y, and
q

1y, hence ¢; and ¢, can be chosen appropriately such that

Y2(&s) < W(&) —w < y1(s)-

With the initial data ordered this way, we claim that

yz(f) < ’tlb(é‘) —u < 91(5)5 £ <&

The claim can be proved by a maximum principle argument. |



3 Asymptotic Stability of the CJ Detonation

Let
u(z,t) = {z — Dggt) + vz, 1)

Then v, in traveling wave variable ¢, satisfies
vy — Dogve + f(4 +ve) — f(¥) — 82q(z — Z) = evge.
It can be rewritten as

v, + W (v = evge + F + 82q(z — Z) (14)
where

h(w) = —Doy(u —w) + f(u) - flw) (15)
and

F=—(f(#+ve) = f(¥) = f($)ve)-

We make the following assumptions {4] [9]:

1. Small resolved heat release (SRHR):

There are two successive reactions. Most of the heat is released in the
first reaction, which is assumed to be instantaneous. The rest of the
heat, the 'resolved’ fraction 62 < 1, is released in the second reaction,

which is given a finite rate.

So inside the reaction zone ¢ < &g,

0< f_ ; Fp(E))e dE = 6, < C5., (16)

0 < fi{(€))e < 6, < Cho/q. (17)

This assumption makes the nonmonotone spike of the profile small so

that the characteristic energy estimate can be obtained.
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2. Assume a priori that
0 < suplvg(z,t)| =ds < 1. (18)
i

This assumption will be guaranteed by the smallness of initial data
and the stability analysis to be performed. The smallness condition

(18) implies that there exist £, and &, m > 0 such that {; < & < &

and
) =d(u) =0,  £{>6 (19)
) =dw)=1, €< (20)
—f(# ()¢ > m >0 b <E<& (21)

where £ is the maximum point on the CJ wave profile.
3. Zero initial integral difference:
[ tuole) - (a))do = 0 (22)
which implies that
v(Loo,t)=0. (23)

The reason for (23) to be true is that (1) makes the above integral

v(z,t) a conserved quantity, i.e.

d oo
7 [:o (u(z,t) — Y(z — Dgyt))dz = 0,
or

f+oo(u($vt) — p(z — Dgyt))dz = constant.

—0Co



Our main result is:

Theorem 3.1 Suppose that v, € H2N L2, , llvgllaz + [vol<es_ € 1 and all
the above assumptions hold, then the solution to (1) (2) (3) (4) exists globally

and satisfies v(-,t) € H*N L2, and

f:(“v('aﬂ“Hi’ + |U('}t)|<5>_)dt < O(“”o(‘)”}ﬂ + |'UO(')|<§>.,.)= (24)

for all T > 0 and some constant C > 0. Consequently, we have

sup  |ulz,t) —¥(z — Deyt)| = 0 as t — +o0, (25)
QB 0O
where
_JVEFE £50
<{>-= { 1 &> 0.
Proof.

The sonic property of the CJ detonation wave causes one coefficient to
vanish at the far field of the profile. This requires a nonregular perturbation
treatment [4] which leads us to a weighted energy method [13] treatment.
The weight depends on the rate of decay of the traveling wave profile at the
far field.

Let us construct the weight function according to the decay rates (10)
(11) of ¥(€) at the far fields.

We choose the weight function around ¢ — —oo in the following way [13]
(% — o) — w)

h(4)
As £ — —oo, we have from the sonic property (9) of ¢ at —oo and the
definition of A (15) that

>0, € <& (26)

w(¢) = w((()) =



Using the rate of decay of ¥ at —oo (10), we have
w(f) = 0(< £ >).

For £ > & + &, we take w(f) = 1, where §, > 0 is a constant. Using an
appropriate smooth function, which will be made clear below, to connect
these two functions on (&5, &5 + 6,), we finish the construction of the weight
function w.

Now let us derive our basic weighted energy estimates.

Multiplying (14) by wov and integrating by parts, we get

d oo 1 +oo ] o0
%/ —wvidz -|—/_m —§(wh)"(v,b)1,[)€v2 dé + e[_ wv?d.f

—eo 2 o

-/ :O(F + g8z~ Z)wo dé + | 6:5" 4527w (o dE. (27)
Here we have used (5), the equation for the wave profile ¥, to have
h() = ethe + ¢6*Z.
Use definition of w {26) to have

(wWh)() = 2> 0, w = O(——), £ < & (28)

e
(wh)"(¥) = h"() > 0, £ > &+ b
With a proper choice of w on (£, & + &), so is the sign of (wh)?(¢) for

wf
b < €< ot by Here ()= 2 on (6 €1 o)
Noticing that Z(£) decays exponentially as § — —oo, by taking [£;] large

and

enough and § small enough, the last term on the right hand side of (27) can

be absorbed into the two terms on the left hand side.
1 €3+bo
— S(wh) (W) dE + f wo2de),

£a+bo 3
(o] —xD

£a+50
] 4822w (1 Yovg de < C6( ]

—00
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where we have used the Schwarz inequality.

Since ¢ > 0 for £ < & and ¢, < 0 for { > &, we do the estimates
separately.

In the region £ > &, the sign of 1, is a good one. While in the region
£ < &, we use the characteristic energy estimate [9] {10] and the SRHR
assumption to control the increasing part. The underlying reason that we
could do this is because the SRHR assumption {4] assumes that the increasing
part (resolving part of the energy) is much smaller than the decreasing part
(the heat released instantanously at the front) of the CJ detonation profile.

Now we use the characteristic energy method [9] to estimate the increasing
part of the second term on the left hand side of (27). The idea is to integrate
the weighted equation for v along characteristic direction to get v? and then
plugging it into the integration. The key conditions here are that {1(¢) —
(—o0)| and |tb¢| are bounded by 6,/7, see (16) and (17).

Let
i
S0 =500 = @wwe)
Then from (10), (15) and (26} we have that
S(4(E) = 0(), S'W(E) = Ol =) € = —oo. (29)

Multiplying (14) by wvS, and then integrating from —oc to £, we have
éqﬂ(f,t) - f_ © ) (—wvv, + ewvv,, + a8 (z - Z) w v + Fuv)dy
= / S (—wvv, + ¢6%(z — Z)wv + Fwv)dn+
[ S (mt)n + eS(E)wvog) +e [ S )by—wvvy)ay
- f S(n)(—wvv, + g8%w(z — Z)v + Fuwv — ewv?)dn

+eS(€)wvv + e/é S (3 (—wow,)dy.
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Now multiplying the above inequality by #(£), and integrating from —oc to

&, using Schwarz’s inequality and Fubini’s theorem, we have

[ Sore e de

= [* ()¢ S(E0(© v &t

+ ]60 f H(€)eS —vv, + ¢8%(2 — Z)v + Fv — ev?)dn d¢
S’(¢ ()nw(n)(—evv,)dn dE

df + Céye / w()v? dt

§ mw(n)(—vv, + ¢6*z — Z)v + Fuv)d€ dn

)¢S ((m))(m)yw(m)(—evv,)dE dn.

_|_
\
“‘-a

We ha,ve used X
PYe(EHw(é) = O(m), { — —oo,

which can be made small by choosing |€s| large enough.
Further use of the above equality, (9), (16), (17), (29) and Schwarz’s

inequality leads us to

f&’ -1-v2(¢, (e de
<3 / SU(E, ld¢+0(61+52) [ wien? ae
+C8 = [ w(n)(~502n, D) + Cy [ wn){a8?(z = Z)o -+ Fo) do.

£
Solving for / é—vz(f,t)d)(f)f df and plugging it back into (27), we have

—o0

d gptool +oo ] € [too
e _ 2 _ " 2 — 2
o /_oo 4wv d:.n'—}--/_m0 2(wh) (¢)|’l/)€|’t) dé + 2/_00 vadE

<of J:O(F + g8z — Z))wv dt. (30)
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Now noticing that § can be made small by the SRHR assumption, we
+00
estimate f q6%(z — Z)wv d¢ in the same way as in {9].

Smallness assumption (18) allows us to treat the higher order term F'.

We conclude at the following main estimate
+oo ]
dtf —wv"’dw +f —(wh)"(¢p)|telv? dE + e/m wvldf < 0.

Or

+oo ] t ptoo ] t ptoo

/ Suwvids + j / (k) () 1lo? dE +e f ] woldé < Clugl?.

-00 0 J—oo 0 J—oo

Similarly, we have the following estimates

[ Svde e [ 77wz < Cuolt + foogl?)

o 2%

and

oo i ptoo
foo §U§£d$ + 6/ L &fdf < O(|U'0[2 + H”O&“ )

for ve and vge respectively. Here the main estimate for v has been used to
get the above estimate for v,. So is for vg,.

Hence

[u(e,t) = #(@ = Doyt)| = Iva(, 1)
=@ [ vy, )dy)t

+o0 1
g(/ (wtdw-{—f v? (z,t)dz)?
< (8l = 0, £ — +oo.
That finishes the proof of the Theorem.
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