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Abstract

We present an investigation of the Hessenberg matrices that arise from
polynomial iterative methods such as the conjugate gradients method,
in particular of their various factorisations. Application of the results
to iterative methods, including a proof that (quasi-) minimising ierative
methods can always be written as a two-term residual smoothing methed,
is given.

1 Introduction

Many studies of iterative methods mention Hessenberg matrices. Since these
studies are mostly concerned with minimisation and orthogonalisation proper-
ties of the iterative methods, it is never quite clear how much the properties of
the Hessenberg matrices depend on such properties of the sequences they relate
to.

This paper brings together various facts on these Hessenberg maftrices, in
particular, various theorems on their factorisations. At first, the presentation is
isolated from the iterative methods the matrices arise from, but the results are
then applied to the iterative methods, thus stressing the fundamentality of the
Hessenberg matrix itself.

Section 2 introduces polynomial iterative methods and residual sequences,
and shows how they produce Hessenberg matrices with zero column sums. Ad-
ditionally, some simple results are derived for future reference. Section 3 brings
together a number of results on the LU and QR factorisations of Hessenberg
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matrices with zero column sums, prepatory to the theorem in Section 4 that
{quasi-} minimising iterative methods can always be written as a two-term resid-
ual smoothing method,

2 Motivation: polynomial iterative methods

In this section we will define polynomial iterative methods, and show how they
give rise to a special type of Hessenberg matrix, which we will then study in the
rest of this paper.

Polynomial iterative methods for the solution of a linear system Az = f use
the following basic ingredients: a starting guess z,, the corresponding residual
r1 = Ary ~ f, and the Krylov sequence

k1 =m, ki1 = Ak;. (1)

We write this more compactly by introducing a matrix notation for sequences,
e.g., X = (z1,T,...), and using a shift operator matrix

0 ]
10
J= (1) = 10
é
The Krylov sequence definition then becomes AK = KJ,

Definition 1 A polynomial method is defined as ¢ sequence X defined by

Tiy1 = 21 + ijuj,- =g+ Z.Ajulkluji
igi igi

where K is the Krylov sequence (1) and uy; are coefficients with vy # 0.

An equivalent definition is

Bip1 = + E kjug;
J<i

with different choices of u;;. Multiplying this equation by A, and noting that
Awiyr — Az = Azipy — f— Az + f =g — 74,
we find for the residuals that

Pigl1 =T+ ZAkjuj,;.
igi



In matrix form we can write these equations as
|
X ( 1 -1 ) =X(J-1)=KU, R(J-I)=AKU (2

with U a non-singular upper triangular matrix. This matrix formalism for
iterative methods was first used in [1].
Since R(J — I} = AKU = KJU, r1 =k, and

(é J-I):(I—J*) and (é JU):(% 3,)

we find that

v,

RI-JY=KV=R=KV(I-J),

that is, R = KU for some non-singular upper triangular matrix I/, From this,
it follows that r, = P;(A)k; where P,(-) is an n — 1-st degree polymial with its
coefficients in the n-th column:

Pn(t) = uﬂntnui + ooty

From equation 2 and R = KU we find that for some non-singular upper
triangular matrix U:

R(J-D=ARU or AR=R(J-DU'. (3)

We see that AR = RH with H = (J — I)U~! an upper Hessenberg matrix.
Note that H has zero column sums because J — [ has zero columnn sums, and is
irreducible, i.e., hiy1,: # 0.

Definition 2 A sequence R is called a ‘residual sequence’ for the system Az = f
if there is a polynomial iterative method X such that r; = Az; — f.

We summarise the above results:

Lemma 3 A residual sequence R for the system Az — f satisfies AR = RH
where H is an irreducible upper Hessenberg matriz with zero column sums.

Most of the rest of this paper will be concerned with such Hessenberg ma-
trices with zerc column sums.
We also state the converse of lemma 3:

Lemma 4 A R selisfying AR = RH where H is an trreducible upper Hessen-
berg matriz with zero column sums, is a residual sequence for a system with A.



Proof (sketch only): We will show later that H can be split as (J — I)V. Now
V' can always be written as Uz_lUl where Uy = (;g (I — J*) for some upper
triangnlar U}, Let f and X be such that Az; — f = r;, and define K = RU; ¢,
then R(J — I) = KJU;, whence X(J —I) = A"'KJU;, and from AKU; =
R(J — I} it follows that X(J —I) = KUj. Therefore AK = KJ. Qed

We prove a simple lemnma characterising when linear combinations of a resid-
nal sequence are again a residual sequence.

Lemma 5 Let U be ¢ non-singular upper triangular matriz with uy; = 1, and
let H be an trreducible upper Hessenberg mairiz. If H has zero column sums,
then U—YHU has zere column sums iff U has column sums identically 1.

Proof: Introducing the vectors ! = (1,1,...) and 0* = (0,0,...), we can formu-
late the zero column sums of matrix H as e H = 0%, The statement that U has
column sums identically 1 translates as ¢!/ = e!. Clearly, also &!U~1 = ¢t

Now, etU~YHU = ! HU = 0'U = 0*. For the reverse implication, note that
SUTTHU =0 =2 U H =0"= ' U™ = et for some scalar o,
and = 1 follows from u1; = 1. .

This lemima has the following implication for residual sequences: if R is a
residual sequence, and G is a transformation by means of an upper triangular
matrix, i.e., G = RU, or

6= vt

J<i
then G is a residual sequence iff the combinations are convex, that is, Ej s =1
for all i, Convex combinations of residual sequences occur in two places: de-
riving accelerated methods from stationary methods, and deriving minimising
methods such as GMRES and QMR from full orthogonalisation and bi-conjugate
gradients respectively.

3 TFactorisations of the Hessenberg matrix

In this section we will consider the LU and ()R factorisations of the Hessenberg
matrices of residual sequences. The staternents derived will be applied in the
next section.

Above we saw that such Hessenberg matrices are given in the form H =
(J — U (equation 3). For future use we prove a simple lemma, showing that
such a factorisation always exists for Hessenberg matrices with zero column
sums.

*The proof is elementary but tedious.



Lemma 6 Lel H be an upper Hessenberg matriz with zere column sums. If
H has mazimum rank, it can be faclored as H = (J — I)U.

Proof: The zero column sums imply that hg; = —hyi. Since the matrix has
maximum rank, the elements in the first column are nonzero. The first elimina-~
tion step then entails adding the first row to the second. This does not change
the column sums of any column, nor does it change the (column) rank of the
remaining block. Hence we can inductively repeat this argument. .

Sometimes we are interested in a factorisation of the form U(J — I} rather
than (J — U,

Lemma 7 A malriz (I—J)B with B upper triangular can be factored as C(1 —
J) with C' upper triangular if B has constant row sums; then C has consiant
column sums, equal to the row sums of B.

Conversely, a matriz C{I — J) with C upper triangular can be faclored as
(I — J)B with B upper iriangular if C has constant column sums; then B has
constanl row sums, equal to the column sums of C.

Proof: Assume we have a matrix that can be factored as both (I — J)B and
C(I — J) with B and C upper triangular. First we show that both B has
constant row sums, and C' constant column sums, and that the two constants
are related. Define row sums §; = Z:j bij and column sums 7v; = EJ- ¢j;. Then

C(I— J)e =Ce; =c1121 = (I— J)Be =116 = Be=cnie = ﬁ,‘ =€11=7".
Conversely,
et(I —J)B = €. B = bypel, = €C(I — J) = bnnel,

= e'C = bnnet = % = bnn = Bn.

Now we show that B and C can be derived from each other. The matrix
C can be derived by columns. First of all, ¢3; = b1 follows directly from the
above results. Suppose inductively that for some n the column c;n has been
solved, then for i < n the n + 1-st column, excluding the diagonal element,
follows from

Cin — Cin41 — bin — bi_1n
where we define bo, = 0. The diagonal element follows from the constant column
sums:
Catindl = Tngl ™ Z Cin41-
i<ntl

Conversely, we can derive B by rows. First, b1j = e1; — €141 can be stated
immediately. Assuming that the n-th row coefficients by,; have been solved, then
the n + 1-st row follows from

bn+1j — bn_f = €p41j — Cnglj4ls



where we define ci41 = 0. This concludes the statements to be proved. °

The QR decomposition of the Hessenberg matrix associated with a residual
sequence takes a remarkably simple form.

Lemma 8 Let H be an upper Hessenberg matriz of mazimum rank with zero
column sums, and let H = QR be a decomposilion into en orthonermal ma-
triz and an upper iriangular mairiz. Then there is e¢ diagonal malriz o =
diag(£1,+£1,...) such that @ — Qo is given by

i )
= k<n = 1/ X
Zn n{n -4 1} =™ fntin n41

Furthermore, @ = (J — B, where B is an upper bidiagonal matriz.

Proof: H has zero column sums, so ) has zero column sums. The values given
satisfy this requirernent plus orthonormality of the columns. Since @ R decompo-
sitions are unique up o the sign of the columns of ), there is a diagonal matrix

o = diag(xl,+1,...) such that H = (Qo)R. Then, with o, = \/n(n+ 1)

1 -1

0y T 0y
(e
Q = 20:;1
/-1 \ (11
1 -1 2 2 1
= 1 -1 3 d""ag(ai )

Y
= (J 1) [diag(cs)(I — T")diag(i™")] ™"
that is, @ = (J — I)B~! with

We regularly encounter sequences that are derived from a residual sequence
by scaling, in particular normalised sequences. Let R satisfy AR = RH, and let
Q = diag(w;) be a diagonal matrix such that R = NQ. Then AN = NH with

H=QHO™. (4)



First we show any polynomial sequence can be scaled to a residual sequence.

Lemma 9 If N is an arbilrary sequence satisfying AN = NH with H an upper
Hessenberg matriz, then N can be scaled {o a residual sequence R,

Proof: First of all, the choice of w;y is immaterial. Let then w; be given; the
question is then how the other w; are to be computed. We have that

AR=RO1HQ =RH

where I has zero column sums.
Forn=12..:

1. Let wy, be given for & < n. This is true initially.

2. Fork<n hgyp = w;lﬁknwﬂ can be computed.

3. hpn = han.
4, From the zero column sum requirement, Aptin = — ) g, Pkn, and from
hatin = w;}_lhnﬂnwﬂ we can compute wy,1. .

We are interested in relations between the QR decompositions of Hessen-
berg matrices that are equivalent through diagonal transformations as in equa-

tion (4).

Lemma 10 Let Hy = Q.U and Hy = QU be QR decompositions of Hessen-
berg mairices that are related by Hy = QH,Q~ 1 where 2 is e diagonal mairiz.
Then there is an upper iriangular matriz T such that

Q2= Q' QiT, U =T Ui

If Hy has zero column sums, the QR faclorisetions salisfy
| Q1Q = (J-DB7Y  and Q.= (J-1)B;",
where By and By are upper bi-diagonal matrices, and T' = By By *.

Proof: We have H1§2 = Q U192 = QH, = QQsls, so Q1QQy = UiQU; T = T,
and T is clearly upper triangular. This proves the first statement of the lemma.

If H, has zero column sums, by lerama 8 its Q R decomposition satisfies Q)3 =
(J — I)B; !, where B, is upper bi-diagonal. Since J{€2(Q); is upper triangular,
QLT — I) is also upper triangular, but it is also of lower Hessenberg form,
hence it is of upper bi-diagonal form, say B; = @ Q(J — I).) From

QiJ - 1) =U1QUS ' By
2



we find that TBy = U, 02U, 1B, = B;. This proves the second statement of the

lemma. .

Corollary 11 IfQ is an orthonormal upper Hessenberg matriz (of size n+1xn)
and Q is diagonal such that Q~1Q has zero column sums, then

QlQ=-nB!
where B is of upper bidiagonal form.

Proof: Apply the previous lemma to H, = Q. .

4 Application to minimising methods and residual
smoothing

The factorisation results in the previous section can be applied to minimising
polynomial methods. We will show that minimising methods can be generated
by two-term ‘residual smoothing’ recurrences.

We will first give a brief review of (quasi-) minimising methods. This restates
results such as found in [2], but presented in a form more suited to the current
discussion.

Minimising methods can be considered as convex combinations of an un-
derlying residual sequence. Introducing the matrix £ = (8;1), we can state
the following result on how convex combinations of a residual sequence can be
computed.

Lemma 12 Let R be a residual sequence, satisfying AR = RH, end lel G de-
rived by laking conver combinations of the R sequence. Then there is an upper
triangular matriz V such that

G(J — E)=—~ARV or g1 =g — ZArjvj,-. (5)
igi
Proof: Since G consists of convex combinations of R, there is an upper triangular
matrix V; with column sums identically 1 such that G = RVi. Then Vi(J — E)
is an upper Hessenberg matrix with zero column sums. In lemma 6 we showed
that such a matrix can be factored as (J/ — I)Va. Noting that H = (J - I)V3
for some upper triangular V3, we now have

G(J - E)= RW(J — E) = R(J — )Va = RHV; Vo = RHV, = —ARV;



where V; is an upper triangular matrix. ©

In minimising methods, the matrix V in equation (5) is chosen to satisfy
some minimisation property. The method can be based on the sequence K, or
on a normalised scaling N = RQ™? of it.

Forn > 1, gny1 — g1 is the n-th column of ARV, that 1s,

Int1 — 1 = (ARV)n = ARnpvn = Rpjp1Hpvy. (6)

Assume now that R is an orthogonal sequence, and note that with e; = (1,0,...)*
we have g1 = Gey = Req. Then

lansillzamyy = lRer — (ARV)nllpagamy
(use 6): = [[Rny1€1 — Rogy1Hnbnllp2(gmy
(use R = NQ and N orthonormal:) = {|Qu41e1 — Qﬂ+1anﬂ|}Lg(Rn+1)
) = [ ]

We see that Hgﬂ.;.lﬁ can be minimised by minimising v,. If R is not orthogonal,
and we simply minimise vy, this is referred to as ‘quasi-minimisation’.

Now let H, = QnU, be a decomposition into an orthonormal matrix and
an upper triangular mastrix. Define

' 7,
Qn=[Q,, T A o]

*

where the final column of Q,, is chosen to make @, again an orthonormal matrix,
then H,, = Q,U,. We now find

Elgﬂ-‘—llELz(RN) = ”HT’1“61 - Hngnvﬂ LQ(R""“l)

El’"l “q(n+1) - ﬁn Qnvn

L2{R~+1)

where q(ﬂ-[-l)’ = (‘111; ey QIn-E-i)-
Obviously, lign+1]} is minimised if

Uty = q( ) (7)

and its value is |g1p41]. This fact was derived earlier, but differently, in [2].
Simple manipulation now gives the formula for updating G:

G(J = I) = RQ™'QDquw1

where Dq = diag(q11, q12, -+ )-
Now for our main result.



Theorem 13 If R is a residual sequence, and G a sequence of convezr combi-
nations derived by (quasi-) minimisation as in equation 5, then R and G are
related by a two-lerm recurrence of the form

oigigr + (1 — ai)gi = i

Proof: Since H has zero column sums, so has 271Q. Thus, by lemma 8 there
is an upper bidiagonal matrix B such that

Q" lQ=(-DB"' =G - I)= R(J— )B"'Dguy.

Now observe that

1 =* Wi
DélBe=D51QtQ(J—I)em 1 * * ‘ 9 = wie.

Since DélB has constant column sums, in fact, identically wq, by lemina 7 there
is an upper bidiagonal matrix B with column surns identically 1 such that

G(J - DG Bwi* = GB(J - 1),

Factoring out the J — I matrix, we find GB = R, that is, the G sequence can
be derived from the R sequence by a two-term recurrence of the form

aigiv1 + (1 — ai)gi =i

This is the basis for ‘residual smoothing’ methods [3]. .

5 Conclusion

We have shown how there is a close relationship between polynomial iterative
methods and Hessenberg matrices with zero column sums. We have derived
various facts about such matrices, and applied these to iterative methods, in
particular showing that (quasi-) minimising methods can always be generated
by two-term ‘residual smoothing’ methods.
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