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TOTAL VARIATION BLIND DECONVOLUTION
TONY F. CHAN* aND C.K. WONG!

Abstract. In this paper, we present a blind deconvolution algorithm based on the total variational
(TV) minimization method proposed in [10]. The motivation for regularizing with the TV norm is that
it is extremely effective for recovering edges of images [10] as well as some blurring functions, e.g. motion
blur and out-of-focus blur. An alternating minimization (AM) implicit iterative scheme is devised to
recover the image and simultaneously identify the point spread function (PSF). Numerical results
indicate that the iterative scheme is quite robust, converges very fast (especially for discontinuous
blur) and both the image and the PSF can be recovered under the presence of high noise level. Finally,
we remark that PSF’s without sharp edges, e.g. Gaussian blur, can also be identified through the TV
approach.

1. Introduction. It is well-known that recovering the image u (resp. the PSF
k) with known PSF (resp. image) is a mathematically ill-posed problem. One of the
most successful regularization approaches is the TV regularization method [10] which
can effectively recover edges of an image. The mathematical formulations that we used
in the image recovery problem is stated as follows [11]:

, 1
(1) min f(u) = rx}}niuk*u—zniz{m—}—ajs;}VuIdac

where « is a parameter.

In this paper, we are going to recover u and k without any a priori knowledge of the
PSF and the image. There are many existing algorithms for simultaneously identify u
and k, see for instance, [6, 8, 9, 12, 13]. As this blind deconvolution problem is ill-posed
with respect to both k and u, You and Kaveh [12] proposed regularizing u and k by
considering the joint minimization problem:

. !
(2) min f(u, k) = mingflk = u — 2|7 q) + anllullzn + eollk|F.

In our work, we will follow the approach in [12] and combine it with the TV regu-
larization approach (1). More precisely, we regularize both the image and PSF by the
TV norm instead of the H! norm. The motivation for using TV regularization for the
PSF is due to the fact that some PSE’s can have edges. Figure 1 shows the four typical
PSF’s [7] out of which the motion blur and the out-of-focus blur are piecewise constant
functions with discontinuities.
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Figure 1: Some typical PSF

We formulate the blind deconvolution problem as:
: 1
(3) Iﬂ,l,z;nf(u’ k) = min »2—[|k *u— 2|72 + 051./9 |Vu|dz + a?‘/n |Vk|dz.

Here ¢ and «, are positive parameters which measure the trade off between a good fit
and the regularity of the solutions u and k. Such an approach of using TV as a special
case of anisotropic diffusion for recovering u and % is also employed independently by
You and Kaveh in their more recent work {13]. In our work, we focus on devising fast
numerical algorithms for solving the minimization problem (3), which are derived from
previous works on numerical methods for solving the image restoration problem (1)
when k is known [2, 3, 4, 11]. Moreover, our algorithm can recover both the images and
PSF’s without any a priori information on the PSF (e.g support size). A preliminary
version of our work can be found in [5].

In the next section, we will devise an alternating minimization scheme, which is
an cfficient method for solving (3). §2 will discuss how to choose the regularization
parameters oy and «,. Finally, numerical results will be presented in §4.

2. Blind Deconvolution by TV Regularization. To devise numerical schemes
for (3), let us write down the first order optimality conditions, namely,

0 Vk
(4) Fimu(—m,—y)*(u*k—z)—azv-(W):0, z e,
and

0 Y
(5) 8—£:k(—m,—-y)*(k*u—z)—a1\7-(W%)mﬂ, x e
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Here * denotes the convolution operator.

Before we solve for v and &, it is useful to note that for given u (resp. k), f(u,-)
(resp. f(,k)) is convex function with respect to k (or u}. Therefore, with an initial
guess (u® k°) for (u, k), we can minimize (3) by first solving f(u® k') = min, f(u®°,)
using (4) and then f(uwi, k') = min, f(-, k') using (5). Hence, we develop an alternating
minimization (AM) algorithm in which the function value f(u", ") always decreases as
n increases. More precisely, the algorithm is stated as follows:

Assume we have u" and k»,

e Solve for kn+l

6 gt v. (Ve
(6) ut(—x, —y) * (u" * —2) — oy (W)“
e Solve for untt
+1 +1 4 yntl Vurtl

We remark that a variant of the AM algorithm is to solve (7) first before (6) which
corresponds to solve the minimization problem, f(u!, k%) = min, f(-, k°) first and then
flul, k) = ming f(ul,).

There are some existing numerical methods for solving the above nonlinear type
PDEs, for instance, time marching [10], lagged diffusivity fixed point (FP) schemes [11]
and primal-dual methods [3]. Due to the robustness and simplicity of implementation
of the fixed point algorithm, we apply it to solve (6) and (7) in this paper. The idea
of the FP method is to first linearize the nonlinear PDEs (6) and (7) by lagging the
diffusive coefhicients |Vk}1+1| and iVuL“I by one iteration, and then apply the fixed point
method to solve linear problems for k#+! and u"*+! respectively. More precisely, the FP
iterative method is described as follows:

e solve for k7 by (iterating on ¢)

Vk?+1
(8) ut(—z, —y) * (u" = kY — 2) — V- (le;:"lﬂ) =0
e solve for u™*+! by (iterating on 1)
o) b, )« (gl =) - ¥ - () o

After discretizing (8) and (9), determining k™! and «**' amounts to solving two
independent linear systems. [t was discussed in [2] how to solve such systems by apply-
ing the conjugate gradient (CG) method in which cosine transform preconditioners are
used to speed up the convergence rate of the method. The cost per CG iteration will
be dominated by two 2D FFT operations.

Unfortunately, numerical experiments indicate that the AM algorithm as stated
above in its simplest form, does not always yield physical solutions. It is because the
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minimization problem (3) may not have a unique solution. For example, it can be
easily observed that if (u, &) is a solution, then so are (22£, 2Lu), (—u, —k), (u(z tc,y &
d), k(z F ¢,y F d)) for any real constant ¢ and d.

In order to obtain a physical solution, we need to impose conditions on v and %.
We have chosen to impose the following conditions:

[ b e dy =1,

(10) u(m7y)3 k(mﬂy) 2 0?
and
k is centrosymmetric, Le k(z,y) = k(—z,—y).

We remark that besides the above conditions, we don’t have any other a priori assump-
tions on the PSF, e.g. the type or the support size of blurring function.

In Figure 2, we try to compare the recovered (1D) images and the identified PSF’s
before and after imposing the conditions. We observe from Figure 2a that if we don't
impose the extra conditions (10), the AM algorithm can converge to the “wrong” so-
lution. Figure 2b shows that the recovered u and k& match the original image and PSF
after the conditions were imposed. Therefore, it is necessary to add the conditions in
order {o obtain a reasonable solution. Finally, we remark that we have no proof yet that
(10) guarantees uniqueness of (3} but in practice (10} leads to tremendous improvement
in performance, robustness and convergence of the algorithm.

In the following, we give the full details of the algorithm:

Alternating Miminization (AM) Algorithm:

e Start with u® = z and k° = é(z,y), the delta function. Assume we have u”* and
km,

» Solve for kn*1 by (iterating on ¢)

. VA
u(—z, —y) * (U * kI —2) — V- VErH]) = 0

Impose

knti(z,y) if koHi(z,y) >0
n-|-1 —_ 3 )
ki (e, y) { 0 otherwise

H

k(ma y) = (k(ma ',ij) + k(—a}, —y))/z

kn+1 _ kn+1
 Jakrti(z,y) dz dy
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Figure 2a: Recovered image (left) and Identified PSF (right) without constraint
dot: True image/PSF, solid: Recovered image/PSI
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Figure 2b: Recovered image (left) and Identified PSF (right) with constraint
dot: True image/PSF, solid: Recovered image/PSF
Q.’l == 10.~.4} a2 == 10.....5

Figure 2: Comparison of the recovered images and identified PSF’s before and after
imposing conditions. Notice that, without constraints, the recovered u and k can be
“flipped” versions of the desired solutions.



e Solve for unt! by (iterating on ¢)

nt1 ntl 4 o mil Vuify

Impose

wt(z,y) if wt(z,y) >0
n+1 _ J ,
ut(z,9) { 0 otherwise.

3. Choice of regularization parameters. In this section, we are going to point
out that the regularization parameters oy and @, respectively depends directly on the
noise level and the severity of the blur in the observed image. To understand this, let
us first consider the following noise-constrained minimization problem:

(11) mikn/(|Vu| +a|VE|) dz

subject to
& * v — 2|2 = o2

where ¢ is the noise level. The Lagrangian for (11) is
A
fwk)= [IVul + @ [VHdo + 3 (kw2 - 0%

where A is the Lagrange multiplier. It follows that the minimization problems (3) and
(11) are identical if &y = 2/X and oy = 2a/A. By making use of the noise-constrained
formulation (11), we are going to describe some gunidelines for selecting the parameters,
oy and o

Clearly, if the SNR is small (or ¢ is large), then A should be small so that [ |Vu|is
sufficiently large to regularize the image. Therefore, a good heuristic is to assume that
A is proportional to the SNR. Hence, we expect ey = 2/) to be directly proportional
to the noise level ¢ and the numerics we have so far also support this argument, see
[11]. The parameter o, on the other hand, controls the support or the spread of the
PSF. When a, gets bigger, the TV regularization for k, [ |Vki, is required to be small
in order to minimize (11). Therefore, the peak of k will be lower when «, gets bigger.
Since we impose the constraint, { k = 1, the PSF must spread out. Hence, ¢, can be
chosen proportionately according to the amount of desired deblurring.

In our numerical experiments, the initial guess for v is chosen (unless stated oth-
erwise) to be the observed image z as it is the only available approximation of u. The
initial guess for £ is chosen to be the delta function §(z,y) because in the case of no
blurring, §(z,y) would be the expected PSF (which can be achieved by setting o, = 0).
If the recovered image isn't deblurred enocugh, we restart the AM algorithm with a
larger value of oy, which increases the support of the identified PSF, until a reasonable
recovered image appears. We will illustrate the above ideas experimentally in the next
section.
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Finally, we can combine this idea with the method of continuation on ¢,;. More
precisely, we start the algorithm with a small o, and ¥% = 2 and £ = 6. When we
restart the AM algorithm with a larger oy, we can make use of the solution (u, k) from
the smaller o, as an initial guess, which should be a better approximation to the true
solution than {u® k%). We have not explored this idea fully in this paper.

4. Numerical results. In this section, numerical results are presented to illus-
trate the efficiency and the effectiveness of the AM algorithm. The results show that
the image and PSF can be recovered even under the presence of high noise level with
just a several number of AM iterations. We will also compare images that are recovered
by using the TV norm with those obtained by the H! norm. Moreover, we will perform
a experiment to support the continuation idea proposed in §3 on how to choose the
regularization parameter «,.

The test image is the satellite image shown in Figure 3 from Phillips Laboratory
at Kirkland Air Force Base, New Mexico and was provided fo us by Professor Robert
Plemmons of Wake Forest University. The image originally consists of 256-by-256 pixels.
To simplify the computational work, we down sample it to become a 127-by-127 pixels
image. Currently, our codes are written in MATLAB with machine precision roughly
equal to 10-18, At each step of the AM algorithm, we iterate the FP iteration 10
times. Within each FP iteration, we are required to solve a linear system and we do
it by applying the CG method. In order to speed up the convergence rate of the CG
iteration, we preconditioned the linear system by a cosine transform preconditioner that
we developed earlier [2]. The CG iteration is stopped when the relative residual is less
than 0.1. We have find that such a low tolerance for the inner iteration is good enough
and is most effective for the FP method. ™~

Figure 4 illustrates the ideas on choosing the regularization parameters proposed
in §3. Figure 4a shows the PSF, which is a out-of-focus blur, and the blurred image
(without noise). Figure 4b shows the recovered images and the identified PSF’s for
varies ;. The parameter oy is fixed at 2 x 10-° as it produces the best recovered image
in case the PSF is known. We see that the recovered PSF has increasing support as
a, increases. When «, = 10-8 or 10-7, the support of the identified PSF’s are smaller
than the true PSF (c.f. Figure 4a), and the recovered images are only slightly deblurred.
When o, = 103, the recovered image is in sharp focus. If we further increase the value
of ay, says to 10—%, the spread of the PSF becomes too large and the recovered image
becomes irregular. Therefore, by varying o, we can easily pick up the appropriate
recovered image.
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Figure 4b: Recovered images (left) and PSF’s (right) with
ay = 10-7, 10-6, 10-5, 10~4, (from top to bottom) and ¢y = 2 x 106, Observe that
as o, increases, the spread of the identified PSF also increases. When «, is too small
(e.g. @, =106 or 10-7), the images are not sufficiently deblurred. When o = 105,
the image is in sharp focus. When we further increase «,, the image becomes irregular.




In Figure 5, we show that the AM algorithm can effectively recover images and
identifying PSF’s even in the presence of high noise level. Figures 5a shows the observed
image which is blurred by the out-of-focus blur shown in Figure 4a. The observed image
in Figure 5b is in addition polluted by Gaussian noise with SNR = 5. After performing
3 AM iterations on both the observed images, we obtain very good recovered images. In
particular, we can see in Figure ba that an antenna appears in the recovered image (c.f.
Figure 4a). Moreover, even with a high noise level (Figure 5b), the AM algorithm can
still recover a very sharp image. In Figure 5¢c, we display the images that are recovered
from the TV regularization scheme (1) assuming the exact PSF is known. Comparing
the recovered images in Figure 5a,b,c, we find that even if we don’t know the exact PSF,
the AM algorithm can still recover images that are almost as good as that recovered
with the exact PSF. This experiment demonstrates the robustness of the AM algorithm.

In Figure 6, we display the recovered images after 0, 1, 2, 3 AM iterations. We see
that after the first AM iteration, we already have a very good recovered image. Hence,
the AM algorithm is a efficient method for minimizing (3).

Figure 7 tries to justify our use of the TV instead of the H? regularization for w
in (1). In this experiment, we assume the PSF is known and we compare the images
recovered by the TV and the H! regularization. The observed image in Figure Ta
is obtained by blurring the satellite image by the PSF shown in Figure 4a and then
polluted with noise (SNR = 10). Figure 7b,c show the recovered images obtained
by using the TV and the H! norm for various regularization parameters o. The H!
regularization produces its best image when « is 10-2 while for the TV regularization
it is when « is 10-5. We see that the best recovered image for the TV regularization
is better than that of the H?!, as the former can effectively reproduce edges and give
sharp contrast.

Figure 8 shows the recovered u and k& by minimizing (3) ezcept we replaced the TV
norm in k£ by the H! norm. In the experiment, ¢ is fixed at the value 2 x 10~ and
we vary a,. We can observe that the recovered images are not as good as using the TV
norm for k. This justifies why we use the TV norm when recovering & instead of the
H' norm.

Finally we show in I'igure 9 that the TV regularization approach is also good for
identifying PSF’s without edges (e.g. the Gaussian blur, g, (z,y) = exp(—y(z? + y2))).
Figure 9a shows the observed image which is blurred by Gaussian blur (with v = 200)
without noise. Unfortunately, we observe that the convergence rate of the AM algorithm
is slower than in the case of out-of-focus blur. For example, Figure 9b shows that there
is still a lot of improvement in the recovered image from 3 to 35 AM iterations. This is
almost surely due to the ill-conditioning of the Gaussian blur operator. Although the
PSF k is not perfectly identified, we can still recover an image u which is even better
than the image obtained by solving (3) with H?! regularization in % (c.f. Figure 9c).
However, we should note, however, that the AM algorithm converges much faster when
we use H! regularizatin on k. One way to speed up the convergence rate of the AM
algorithm is by using a good initial guess for k (e.g. a guide star). In this case, we
perform a variant of the AM algorithm, in which at each AM step, we recover u before .
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k. Figure 10a shows that if we make use as initial guess for k a blurring operator of the
correct type (Gaussian in this case) but with a slightly wrong parameter y (v = 300
instead of v = 200), then we can obtain a better solution than starting with the generic
delta function (c.f. Figure 9b). In fact, if our initial guess for k¥ happens to be the exact
solution gqqo (see Figure 10b), the algorithm will leave this alone and produce almost
an exact solution in 3 iterations.

We conclude that the AM/FP algorithm is a robust and efficient method for solving
the minimization problem (3) and we have justified the choice of using the TV norm
for regularizating u and & instead of the H! norm. The case of highly ill-conditioned
blurring operators such as Gaussian blur still requires more investigation to improve its
rate of convergence.

Acknowledgment: The authors wish to thank Dr. Guillermo Sapiro for helpful discus-
sions and bringing the paper {13} to our attention.
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after 3 AM iterations
o =2 x 1075, ay =15 x 10-5, SNR=5

0.2
04
-05 50

~0.8]

[

-1 =05 [ L3 1

Figure 5¢: Recovered image by (1)

Left: SNR = 00, =2 x 10-%,

-0z

—0.4)

0.8

~0.8]

-1
-1

=45 us

with known PS
Right: SNR =5, a=2x 10-5

1

Figure 5: These figures shows that the AM algorithm can recover images with high
noise level and that the recovered images are almost as good as that recovered with
the exact PSF.
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Figure 7c: Image recovered by TV norm with given PSF
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Figure 7: Comparison of using TV norm and H* norm in image recovery problem.

Notice that TV is better than H?! as it can effectively reproduce edges and give
sharper contrast.
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Figure 9b: Recovered image (left) and PSF (right) after 3 (tob) and 35 (bottom) AM iterations.
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Figure 9c: Recovered image (left) and PSF (right) after 3 AM steps
TV norm in » and H! norm in k. o = 107%, ey = 1076,

Figure 9: Comparison of using TV norm and H! norm for k. Although the
convergence in this case is not fast, TV is still good for recovering PSF without edges.
The H! norm on k solution u is not as good as the “converged” TV solution but it
converges much faster.
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Figure 10: Recovered u and &k when AM starts with good initial guess. Observe that
the convergence of the AM algorithm improves a lot if we have a good approximation
to k°.
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