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COMPLEX SINGULARITIES FOR BURGERS EQUATION WITH
COMPLEX VISCOSITY

D. SENOUF! R. E. CAFLISCH* AND N. ERCOLANT}

Abstract. A meromorphic solution to Burgers’ equation with complex viscosity is analyzed. The
equation is linearized via the Cole-Hop{ transform which allows for a careful study of the behavior of
the singularities of the solution. The asymptotic behavior of the solution as the dispersion coefficient
tends to zero is derived. The time evolution of the poles is described by infinite dimensional Calogero
type dynamical system. A continuum limit of the pole expansion and the Calogero system is obtained,
yielding a new integral representation of the solution to the inviscid Burgers’ equation.
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1. Introduction. Many nonlinear dispersive systems exhibit rapid oscillations in
their spatial-temporal dependence in the regime of small dispersion. In this paper we
consider Burgers equation with an imaginary “viscosity” coeflicient v = ¢, given by

(1’1) 1»bt + 'gb"»bw = if’/)m:m € ? 0

It is perhaps the simplest example of a nonlinear dispersive equation, but has received
surprisingly little attention.

Equation (1.1) can be solved using the Cole-Hopf transform which yields an inte-
gral representation involving the heat kernel. For small |v| = ¢, the resulting formula
for 1, can be approximated using the stationary phase method. A new method used
to compute the solution is found through pole dynamics. This method is based on ob-
taining the time dependent locations of the complex poles of the function 1, by solving
an infinite system of coupled ODEs. Finally, in the zero-dispersion {or zero-viscosity
limit) ¥ — 0, the poles coalesce onto a branch-cut, and the zero-dispersion solution is
described by branch-cut dynamics. This method may be of general interest as a new
(to the best of our knowledge) method for solving the inviscid Burgers equation.

These methods will be formulated in general, but illustrated for a special choice
of initial data, namely the cubic polynomial

(1.2) P(z,0) = 42® — z/t,

which is chosen for its generic features for the inviscid equation (see {1, 6, 10]). In this
initial data, £, is positive and corresponds to the time of first singularity formation for
the inviscid problem. The cube root singularity found at the origin at ¢ = £, is known
to be a generic singularity for the inviscid Burgers equation. It is due to the coalescence
of two conjugate branch points of order two in the complex plane. For further details,
see [1, 2, 3, 6, 13]. Moreover both cases ¥ = 0 and v # 0 can be completely analyzed,
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and in the case v # 0, there is an instantaneous generation at ¢t > 0 of a countable set
of complex spatial simple poles. For this initial data, the small dispersion (¢ — 0%)
stationary phase approximation of the solution and its zeroes can be evaluated rather
explicitly, at least for ¢t =1,.

There are three main points to this work: First, in the purely dispersive case in
which v is imaginary and small, the solution 9, of (1.1) develops rapid oscillations.
Second, these oscillations are caused by the presence of complex poles in ¢ which
have moved close to the real axis. This result, which is clearly demonstrated through
numerical computations in [13], is important in providing a tangible cause for the
formation of the oscillations. Third, the branch cut dynamics provide a slowly varying
(but incomplete) description of the pole locations.

2. Integral representation, pole expansion and pole dynamics for v € C*.
Consider a complex viscosity coefficient v = ee®, ¢ > 0 and |6] < 7/2. According to the
Cole-Hopf transform 1), = —2v 8, log(¢, ) linearizes equation (1.1) into the diffusion
equation for ¢,. Thus the solution for the initial data (1.2) is given by

(2.1) E,(z,t) = En(z,t) = /m ex «” (Ey—l-a‘yz —y4) dy
. 4 ] eet H] . P ¢ t .

A rigorous justification of this solution is presented in [11].

According to the Cole-Hopf transformation, the only singularities in 1, come from
zeroes of E,(z,t). These come in opposite pairs z, = ta,(t,v), since E,(—z,t) =
E,(z,t). Furthermore, one can show that the infinite product representation of E, is

(2:2) B,(z,) = C,(1) II ( = L,))

It follows that

oz Unt) oz & vz
(2.3) P (2, 1) = e =7 —;mzma?‘(t,y)'
A more symmetric expression for 1, is
z had 1
(2.4) 1/),,(37,'!:) = ? — 2Vﬂ:2_°° m‘j‘
n#o0

Using partial fraction expansions, we find (see [11] for more details) the associated
Calogero dynamical system for arbitrary v € C*: Let

) da,
a, = at !’ G_p = —Oy,
then
a v ks 1
2.5 dy = == — — — 4 —_— v N*.
( ) ay " a, Va'ngafgl_arzs n e
I#n

As in (2.4), one can express (2.5) in a more symmetric way as

(2.6) -2 ;f\;“ — Vn € N*.
I#£n.0
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Note finally that the pole expansion (2.4) and the dynamical system (2.6) represent a
general solution to Burgers’ equation which may be valid for general initial data.
One can further simplify (2.5) by multiplying both sides by e, and introducing
the variable
@

(27) Ky = -'I;"

The corresponding system of ordinary differential equations (2.5) becomes free of v so
that

1dk,  Fkn _ Kn = 1 "
(28) '2""Et——7—- 7 "1“41'&“'%; - 1, Vn € N*.
I#n

3. Asymptotic analysis of ¥,(2,t) for v = i, as € — 0%, t > t,. When
v = i¢, € > 0, we evaluate the asymptotic behavior of E, as ¢ — 0% using the method
of stationary phase. We find that all three saddle points are relevant within the caustic
lz| < |z,(t)| — &/2, where § > 0 and where £#,(t) are the second order branch points of
the inviscid solution (see [11, §6]). For a discussion on such caustics, cf. [8, 9]. When
t>t,z € (—00,—,(t) = §/2) U (z,(t) + §/2,00), v = i¢, € = 0, the same analysis
holds and one recovers the characteristic solution outside of the caustic consisting of
one relevant saddle point. The transition from within the caustic to outside is not
uniform as the asymptotic behavior at the caustic z = +2,(¢) is degenerate (2 saddle
points have coalesced).

The most interesting part of the expansion is within the caustic z € (~z,{?), z,()).
The caustic z = z,(t) corresponds to the envelope of the characteristics of the inviscid
Burgers solution, and is also determined by the system of equations

_ _ Ry
(3.1) { 0=w,(zz)=a/t+ 20z 42",

0=w,,(z,)=2a— 1222,

where w(z,z) is the phase function of the integrand in the definition of E,(z,t). This
system represents the conditions for the phase function w to have saddle poinis of
multiplicity two, thereby yielding a curve in the (z,t) plane on which two saddles of
multiplicity one coalesce into a saddle of multiplicity two. From the second equation
in (3.1), we find Z,qy.i.(t) = £+/2/6, and from the first,

3 20\ ¥/?
(32) T = Tegustic = t(4zcausﬁc(t) - 2azcau.rﬁc(t)) = :Ft (“’é’") - :Fﬂ?_,(t),

where @,(t) = i (3t,)~%/%(t, —1)*2t71/2 is the second order branch point of the disper-
sionless solution described in {11, §6]. Here we are only concerned with the dominant
behavior of E;,, thus we only retain the first term:

(3.3) Bz,t)= ¥ w;fszm)exp (w(ng))(uo&)),

s=0,1,2

as ¢ — 01, with

(3.42) w(z,(z,1),z) = %z, tal—= 50

(3.4b) w,(z,(z,t),2) = 0, w,,(z,(z,t),2) = 20 — 1222,
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The values of the saddle points 2z, = z,(z,t) are determined by the three roots of the
first equation in system (3.1), i.e. the first equation of (3.4b). They are specifically

Zg = WA + wz B
(35) Z1 ﬁsz-!-WB
l Zg = A +8
with w = *™/3 and
(3.6) A(z,t) = (86)7/% {fz + Va7 - aF
' B(z,t) = (8t)"% . {/z — /27— zL.

Note that all three saddle points are real when z,z, € R and the discriminant A =
z? — g2 < 0, that is J¢| < |2,(t)], and in this case 4 = B (see [11, Appendix B]).
Therefore we have 2z, € R, w(z,,z) € R, and w,,(2,,2) = 2a ~ 122 € R. Hence all
three terms in the summation signs are oscillatory and equally relevant. Note however
that the expansion derived for E;, is only valid within |z| < |z,], and in order to get an
expansion uniformly valid across = ®z, one needs to derive a uniform expansion as

- presented in [5, 8]. This analysis is similar in spirit to the one of Jin, Levermore and
McLaughlin in [7, §2.2] and that of [5). The dominant behavior of the solution 1;(z,t)
is found from the Cole-Hopf representation, so that within the caustic || < |z,| — 6/2,
following the derivation presented in [11, §3], we find

wizy,z}
23:0,1,2 Zy '€ e / V wzztzn (l?j
Ea:ﬁ,l,z e e / vV wzz(zs! "’:5

S o1 g 7, - € SHR - fewa) |y, (2, )| Y/? L 000
= = ; €).
):_!;0,1,2eﬂ,i‘!;—‘l—-}arg(wu(z.,z)) . iw“(z“m)l._llz

U, (z,1) = + Ofe)

Since w,,(z,,z) € R, we have that arg(w,,(z,,2)) = T(1 — sgn{w,,(2,2))), and there-
fore

Ea—e 197%s " e-—%w(z.,x)—}%’sgn{w,,(;,,x)) f Iwzz(z‘” m)l"l/z

2320’1'2 e—%w(z.,:u)‘!—i}sgn(wu(z.,z)) . [wzz(z”m)l—I/Z

‘I’ie(m5t) = + O(E)

The asymptotic behavior of the solution is then found from the relation

] ‘I’,-e(;t: t)

hlost) = 3 - =0,
Thus the presence of three competing oscillatory terms in the asymptotic behavior of
W, is reminiscent of the oscillations observed in the solution ;.. Such oscillations are
also seen in computations of the pole dynamics [13].

4. Continuum limit of the pole expansion and the Calogero dynamical
system. From the equation for the pole dynamic, one can obtain a set of equations
for the inviscid limit which give a new representation of the solution to the inviscid
burgers equation. Recall the pole expansion

T e dve z o 1
1) D= Yagag T X e



and the pole dynamics: ¥r € N*,

(4.1b) dnﬂ—t——-——uéivanz =—~—--—2 E

1=—c0 On T @’
!;én I#n,0
Assume that
(4.2) a,(t,v) = F(nly|,v,1) = f(nlv],1) + e.(t,v)

in which e,(t,») is a small error term that goes to 0 as v — 0. Now let || — 0 so that
7 = v/|v| remains constant. Then, at least formally,

1
2"#2" an(ly V) — 2, 0) 2”'”‘; F(alvl, t) [{GK)
y—{ dcl
) =hoar. [ e e

Moreover, this approximation shows that the representation (4.2) is valid for all time
if it is true at ¢ = 0. It then follows that

(442) Lo =22 e Vf:, f(C,t)d—C’f(C’,t)’
and
(4.4) o =2 [~ G e #1GH)

A straightforward calculation shows that 1(z,t) is a solution to the inviscid Burgers’
equation

(4.5) o+, =0

for any choice of 7. We refer to the system (4.4a) and (4.4b) as the branch cut dynarmnics
equations, for reasons shown next.

These equations can be rephrased in a second, non-parametric formulation involv-
ing a moving curve I'(?) in the complex plane (which may consist of several disconnected
parts) and a density function p(z,t) defined for z € I'(#). In particular ['(?) is the image
of f(¢,t) for { varying over the eal line. The density function p(z,1) is defined by (see

[12, §5])

1
(4.6) plz,t) = )
in which z = f({,t). Then d{’ = p(z', ) d2’ and
pZst)
4.7 'qb(mt)—--w—Z p()xwz’dz'

This formula can be extended into the complex z-plane but is discontinuous across the
curve I'(t), i.e. I'(2) is a branch cut for the function 4. Variations in the arbitrary
complex parameter 7 correspond to variations in the branch cut T'(t) for ¢, without
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change in the branch point. An application of the Plemejl formulas at a point z on
I'(t) shows that limiting values ¢, and t_ from the right and left, respectively, are

/
4
(4.8) Pe(z,t) = % — 2nf “;—(2:3;; d2’ F 2nmip(z,t).
It follows that the difference of 1. is
(4.9) P_(2,1) — ¥, (z,1) = dymip(z, 1),

and the average of ¢, is

B(z,1) = 5 (50) + ¥ (1))

=%_9 Mdzﬂ é
i [\(3)2“2’
_z_ L S |
(4.10) =72l [ e = oY

Since 0 = 1, + Pp, = b + (39*), for both ¢ = 1, and ¢_, it follows that p satisfies
the conservation equation

(4.11) po+ (¥p), = 0.

Therefore the branch cut dynamics equations (4.4a) and (4.4b) are equivalent to the
motion of T'(t) by the velocity ¥(z,t), and the evolution of the density p(z,t) through
(4.11).

The usefulness of this method in the present contexf is its relation to the pole
dynamics for the viscous (or dispersive) Burgers equation. An interesting equivalent
form of the branch cut dynamics equations (4.4a) and (4.4b) is found by considering
the change of time variable

r=1t -ty
g((,7)= 7 f((01)

for any constant ?;. The resulting equation for g is

(4.12)

0g _ ® d¢’
(4.13) 5‘;(@ T) =2 P‘V'_/_m a(¢,m)—g(¢, )’

If n = 1/(4xi), and if the left hand side was replaced by its complex conjugate dg/dr,
this equation would be identical to the Birkhoff-Rott equation for a vortex sheet [4].
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