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Abstract

Controllability is a fundamental concept in control theory, Given a linear control system,
we present new algorithms for estimating its distance to uncontrollability, i.e., the norm of the
norm-wise smallest perturbation that makes the given systemn uncontrollable. Many algorithms
have been previously proposed to estimate this distance. QOur new algorithins are the first
that correctly estimate this distance at a cost polynomial in dimension of the given system. We
report results from some numerical experiments that demonstrate the reliability and effectiveness
of these new algorithms.
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1 Introduction

One of the most fundamental concepts in control theory is that of controllability. A matrix pair
(A, B) € C™™ x C"*™ js controllable (see Kailath {20, pages 85-90]) if the state function z = =(t)

in the linear control sysiem
t=Az+Bu (1.1)

can be directed from any given state to a desired state in finite time by an input » = u(t). Un-
controllability could signal fundamental trouble with the control model or the underlying physical
system itself {Byers [11]).

A large number of algebraic and dynamic characterizations of controllability have been given
(Laub [21], for example). But each and every one of these has difficulties when implemented in
finite precision (Patel, Laub, and Van Dooren [27, page 15]). For instance, it is well known that
(A, B) is controllable if and only if

rank([A— AILB])=mn, forall A\eC(, (1.2)

where C is the set of complex numbers. However, it is not clear how to numerically verify whether a
system is controllable through (1.2). More critically, equation (1.2) does not provide any means to
detect systems that are “nearly” uncontrollable, systems that could be equally troublesome. From
these considerations, it became apparent (see Laub [21] and Paige [26]) that a more meaningful
measure is the distance to uncontrollability, the norm distance of the pair (A, B) from the set of all
uncontrollable pairs:

p(A,B) = {|[[AA,ABll|z: (A+ AA,B + AB) uncontrollable.} (1.3)
It was later shown by Eising [15, 16] that

p(4,B) =mino, ([A~ Al B) , (1.4)
where ¢,(G) denotes the n-th singular value of G € C*(*+m)  Demmel [12] shows that p(A, B) is
closely related to the sensitivity of the pole-assignment problem.

Many algorithms have been designed to compute p(A, B). However, the function to be min-
imized in (1.4) is not convex and may have as many as n or more local minima. It is not clear
just how many local minima there are for any given problem (Byers [11]). Methods that search
for a local minimum tend to be efficient but have no gnarantee of finding p(A4, B) with any accu-
racy, since p(A, B) is the global minimum (Boley [4, 6], Boley and Golub [5], Boley and Lu {7],
Byers [11}, Elsner and He [17], Miminis [24], and Wicks and DeCarlo [31]); and methods that
search for the global minimum (Byers {11}, Gao and Neumann {18}, and He [19]) sometimes do have
this guarantee, but require computing time that is inverse proportional to p?(A, B), prohibitively
expensive for nearly uncontrollable systems, the kind of systems for which computing p(A, B) is
important. While the backward stable algorithms of Beelen and Van Dooren [2, 3, 30] and Demmel
and Kagstrom [13, 14] are efficient and very useful for detecting uncontrollability, they often fail to
detect near-uncontrollability.

In this paper, we propose new methods to correctly estimate p(A, B} to within a factor of 2.
They are based on the following bisection method:



Algorithm 1.1 Bisection Method.
Set § := omin ([4, B}) /2.
while é§ > p(4, B)
§:=6/2.
endwhile

The bisection idea was used to compute the distance of a stable matrix to the unstable madtrices
(Byers [10]). It was then used to compute the L, norm of a transfer matrix (Boyd, Balakrishnan
and Kabamba [9]); a quadratically convergent version of this later method was developed by Boyd
and Balakrishnan [8].

There were past attempts to use Algorithm 1.1 to estimate p(A, B) as well [11, 18]; but they
have resulted in potentially prohibitively expensive algorithms. The critical difference between our
new approach and earlier attempts lies in how to numerically verify whether § > p(A, B). Our new
approach is based on a novel verifying scheme (see Section 3.2). Paralleling the development of
Boyd and Balakrishnan [8], we have also developed a generally quadratically convergent version of
Algorithm 1.1. With very little modification, our new methods can be used to detect the uncon-
trollable modes for any given tolerance. The knowledge of such modes is essential if one wishes to
remove them from the system.

Complexity-wise, these new algorithms differ from previous algorithms in that they are the first
algorithms that correctly estimate the distance at a cost polynomial in the matrix size. In fact,
they require O(n®) floating pointing operations. The main cost of these new algorithms is the
computation of some eigenvalues of certain sparse generalized eigenvalue problems of size O(n?).

In §2 we review methods of Byers and Gao and Neumann to minimize the function in (1.4)
when X is restricted to a straight line on the complex plane. In §3 we present our new methods
to minimize the function in (1.4) over the entire complex plane. In §4 we present some numerical
results. And In §5 we draw conclusions and discuss open questions.

2 Minimization Methods over a Straight Line

Define .
g(r) = 0oy ([A - (Aa + e‘gr) 1, B]) , (2.1)

where 7 is a real variable. To motivate our new methods to minimize the function in (1.4} over
the entire complex plane, in this section we present Algorithm 2.1 below to estimate the global
minimum of g(7) to within a factor of 2 for a given complex number Ay and a real angle 8. This
algorithm is a variation of the bisection schemes of [11, 18], which can actually compute the global
minimum.

Algorithm 2.1 Bisection Method over a Straight Line
Set & := g(0).
while § > g{7)
§:=6/2.
endwhile



We will also discuss a quadratically convergent version of Algorithm 2.1 in §2.2.

2.1 The Bisection Method over a Straight Line

Let g{r.) = min, g(r). What is missing in Algorithm 2.1 is a scheme to numerically verify whether
§ > g(n.) for a given § > 0. We discuss such a scheme below. Versions of it were developed in
Byers [11] and Gao and Neumann [18], and was based on earlier work of Byers [10].

We assume that § > g(r.). Since g(7) is a continuous function with

TBI«{I}oo g(r 4+ 1) =00 and TEIEDO g(r+ 1) =00,

it follows that there exist at least two solutions® to the equation g{r) = §. By the definition of

singular values, this implies that there exist non-zero vectors Z and z such that

(A= (hot+e®r)1 B)(;):éz and (A*‘(XOB“*;E_MT)I)H (z)

These equations can be rewritten as

—61 A-{do+e?r)1 B .
A= (Ro+ 7)1 —81 0 z | =0. (2.2)
B* 0 —61 y

To simplify (2.2), we QR-factorize

B Q @ R

(%)=& &)%)
2 :(Q;l le)(z)

( n ) QTz Q;;a ) )

These relations and equation (2.2) imply that B*z = 0. Since § > 0, R must be non-singular. It
follows that z; = 0. Hence equation (2.2) is reduced to

(A—(/\g+eigr)f BQaz — Q12 )(33 ):0

—&I (A* — (XU + e‘iar)) Q12 "

and define

which can be further rewritten as
A=  BQa ~ Q1 z \_ . e’ 0 @ (2.4)
—61  (A* = Xol) Quz w ) 0 e Qq v '
Since @13 is part of the Q factor in the QR factorization (2.3), it follows that

Q1B —6Q3, =0 and Q1,Qu2+ @500 =1,

'If & = g{rs), then equation g{z) = § has a double root at v = 4.
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which imply
Qr, (621 + BB*) Oy = 821 .

Hence (1, is non-singular and the pencil in (2.4) is regular. It is now easy to show that condition
§ > g(r.) holds if and only if the matrix pencil in (2.4) has a real eigenvalue 7.

To verify whether § > g(r,) in Algorithm 2.1, we compute the eigenvalues of the pencil in (2.4).
If this pencil has real eigenvalues, then § > g(7.); otherwise, § < g(7.). Since Algorithm 2.1
guarantees that 26 > g(7,) from the previous bisection step, the value of § after Algorithm 2.1 exits
from the while loop must satisfy

g(;'*) <8 <gln). (2.5)

We note that equation (2.2) was not reduced in {11], making it more time comsuming to verify
whether § > g(7). It was reduced to a regular eigenvalue problem by solving for y in [18], but the
reduction appears to be less numerically reliable than our reduction to (2.4).

2.2 A Quadratically Convergent Variation

Boyd and Balakrishnan [8] note that in the context of computing the L.,-norm of a transfer matrix,
the function to be minimized is in general approximately gquadratic near the maximam, and they
used this fact to design a quadratically convergent variation of a bisection method for computing
the L,-norm.

Their idea applies equally well in minimizing (2.1). If § — g(7.) is small enough and if 71 and 7
are two roots of g(r) = § closest to 7, then arguments similar to those of {8] show that (ry + 75)/2
is in general a much better approximation to 7,. We summarize this algorithm below.

Algorithm 2.2 Quadratically Convergent Variation of Algorithm 2.1
Set & := g(0).
while 6 > g(7)
Choose two real eigenvalues 7 and 15 of the pencil (2.4).

§ := min {5,g (Tl j Tz)}/2.

endwhile

With arguments similar to those of [8], it is easy to show that if m and 7, are chosen correctly, then

g (P52 - atm) =0 (- 9)P) (2:6)

This estimate holds even if g(7) is not approximately quadratic near 7,. We caution that strictly
speaking Algorithm 2.2 is not even asymptotically quadratically convergent, since it terminates
as soon as it has found a & that satisfies (2.5). Nevertheless, relation (2.6) does indicate rapid
convergence of Algorithm 2.2 when g(7) is tiny.



3 Minimization Methods over the Complex Plane

Now we discuss methods to minimize the function in (1.4) over the entire complex plane. Let

(2 1)
\U-J.j

— Fin — i v
=J \u*:ﬁ*) = min f(a, B} .
o,

g

£~ AN ~ fTA (a0 @ANT DN P, | af A
J %, ) G4 WO TP, o ol fgla,

One such method is Algorithm 1.1 discussed in §1. As in Algorithm 2.1, we need to develop a
scheme to verify whether § > p(A, B) in order to complete Algorithm 1.1. To do so, we first prove
a fundamental theorem in §3.1; we then provide such a scheme in §3.2; and finally we develop a
generally quadratically convergent version of Algorithm 1.1 in §3.3.

3.1 A Fundamental Theorem

Qur scheme to verify whether § > p(A, B) is based on Theorem 3.1 below.

Theorem 3.1 Assume that 6§ > p(A, B). Then there are at least two pairs of real numbers o and

A such that
‘ oA~ (a+B),B) =6 and o([A—(a+n+p)L,B)=4, (3.2)

where 0 < 1 < 2(é — p(A, B)); and o{(F) denotes a singular value of G.

Proof: From standard perturbation theory we have
(o — ) + (8~ Bu)il — p(A, B) < flo,B) < [(@— o) + (8 — Bu)il +p(A,B) . (3.3)

Hence f(a, 3) goes to infinity if |a + fi| does. It is well-known that f(«a, 8) is a continuous function
of o and 3. Consequently the fact that § > p(A, B) immediately implies that there exists a pair of

numbers (aj, $1) such that? f(ay, 1) = 6.

From the definition of singular values, ¢ and 3 satisfy
(A= (a+pi)],Bl) =5
if and only if they satisfy the algebraic equation
det (A (a+ Bi)I) - (4" = (@ = Bi) 1)+ B B* = §%1) = 0.

It follows from f(ay,B:1) = § that this algebraic equation has at least one solution; and it follows
from (3.3) that all its solutions are finite. Consequently, these solutions form a finite number of
closed (continuous) algebraic curves on the a-f§ plane.

Now we claim that the point (., 3.) must be in the interior of one of these closed curves. In
fact, if this is not the case, then there exists a continuous curve A{7) = (A1(7), A2(7)) on the a-f
plane that does not intersect with any of these algebraic curves but “connects” {a., f,) and infinity:

A0)= (@, 8) and Jim X(r)|= oo

2This fact has been shown in Byers [11] and Gao and Neumann [18].



In other words,
F(M(0), A2(0)) = p(A, B) and  Tim f(Aa(r), A7) = 00

It follows from the continuity argument that there exists a 7 such that f(Ai(71), Ae(m1)) = 8. But
this contradicts the assumption that the curve A(7) does not intersect with any of the algebraic
curves. Consequently, the point (., Gi) must be in the interior of one of these closed curves. Among
all closed curves that have (a, ) in their interior, let G denote the one that covers the smallest

area.

It follows from the same continuity argument that there exist two points
P1=(ox—m,Bs) and Py = (on+ 72,0)
on G with 7 > 0 and 72 > 0. In other words,
o ([A = (e = 0, Bed) 1, BY) = o (|4 — (e + 1, B) [, BY) = 8, (3.4)

For simplicity, we assume that P; and P; are chosen so that 7; and 7; are the smallest positive
numbers,

Since the point {a., f,) is in the interior of G and also lies strictly inside the line segment between
P1 and Py, it follows that any point that lies strictly inside this line segment is in the interior of
carve G. Combining (3.4) with relation (3.3), we get

77125—;0(14,»3) and 77225_)0(*433)' (35)

Now we shift all the points on G horizontally by the same amount —» to get a closed curve
G = {(a —n,5)l(a, B)is a point on G.}

Since Py is a point on G, Py = (et + 12 — 1, B+) is a point on G. Assume that 7 < 2(6 —~ p(4, B)).
Then relation (3 5) implies that P, is a point that lies strictly inside the line segment between P;
and P3. Hence ’Pg is in the interior of curve G, Let P3 = (o, f3) be the leftmost point on G. Then
’P3 = (a3 — 1, ) is the leftmost point on G. Since 7 > 0, we have that Py is in the exterior of G.

In other words, we have found a point ’Pg that is on G and in the interior of § , and another
point Pz on G that is in the exterior of G. Since G and G are continuous closed curves, we conclude
that these two curves intersect.

Let (a4, 34) be any intersecting point. It follows that both (e, Bs) and (o4 + 9, B4) must be
points on G. Hence oy and fy4 are a solution to (3.2). Therefore equations (3.2) have at least one

solution.

In the following argument we assume that («y, f4) is the only intersecting point of G and G. Let
31 denote the set of points on G that are either on G or in the interior of G and let (1 denote the
corresponding set of points on G. If Gy is not a closed curve itself, then Gy must be an open curve
with one end point on G and the other in the interior of G. It follows that g1, and hence Gy, must
have positive arclength. Hence the portion of ¢ without Gy is a closed curve, But this contradicts
the way G is constructed. This contradiction implies that Ql, and hence Gy, must be closed curves
themselves, Let gz denote the set of points on G that are either on G or in the exterior of G and



let Gy denote the corresponding set of points on G. A similar argument shows that G must be a
closed curve as well,

By construction, §1 and 62, and hence Gy and G3, do not share any common region with positive
area. Hence (ay,«) can only be in the interior of one of these closed curves, this implies that G
is not a closed curve that has (a*,ﬁ*) in its interior and covers the smallest area, a contradiction
to the way § was constructed. This contradiction is the result of the assumption that G and G
intersect only once. Hence G and G must intersect at least twice, so equations (3.2) must have at
least two real solutions. By a continuity argument, equations (3. 2) have two, possibly identical, real

solutions, even if n = 2 (6 — p(A, B)). &

3.2 A New Verifying Scheme

Let § > 0 and 5 > 0. In the following we consider how to numerically verify whether equations (3.2)
have a real solution. By the definition of singular values, equations (3.2) imply that there exist

non-zero vectors ( Z ), z, ( ; ), and Z such that

; A* w (a— pi) I
[A—(a+ )1 B](‘;) = §z, ( (* ) )zzg(z)
; 2 _ s —(a+n—pi)I %
[A—(a+n+ 61 B](ﬁ) = 6%, ( *77 ) _5(@‘)-

These equations can be rewritten as

-6 A—-of B 6 I 0 z
A*—al ~61 =fi] =1 0 0 x (3.6)
B* 0 —5I 0 0 0 Yy
and
—6I A-(a+mI B Z 0 I 0 Z
—(a+mq)] ~61 g |=p6| -1 00 z (3.7)
B* 0 —61' i 0 00 i

In the QR factorization (2.3), define

1) Qn @n z and 3’;1 _[ @h @n )
51 Q2 @3 Y U Q12 @3
These relations and equations (3.6) and (3.7) imply that B*z» = 0 and R*7 = 0. Since R is
non-singular, it follows that z; = 0 and % = 0. Hence equations (3.6) and (3.7) are reduced to

A—al BQ22~6Q12 T 'y I 0 T
( —&1 (A*—“I)le)(yl)_ﬁ (0 “le)(%) (388)

and
( A—(a+mI  BQa— Q12 ) (

w2y W

(3.9)

—61 (A* — (a+ 7)) Q12 1

Y osy
S
}
o)
T
o ey

|
O o
=
b2
N
e
2w
S



As shown in §2.1, @2 is always non-singular for § > 0. Hence the matrix on the right hand sides of
both (3.8) and (3.9) is non-singular. In order for the two pencils defined in (3.8) and (3.9) to share
a common pure imaginary eigenvalue 5%, the following matrix equation for X € R?**?"

/A-*—O!I BQ22—6Q12 \v [I 0 \*
\ ~81 (A*—aI)Qw}A \0 —lej

I A-(at+m)l BQ2 — 6Q12 "
(U -G )X( —&I (A* — (a+ ) Q12 ) =0 (3.10)

must have a non-zero solution. Partition X = X Xiz , this matrix equation becomes
Xn Xo
Hu=0 and Au=2aBu, {3.11)

vec (X11)

. [0 0 —Qrz®I 0 - _ _ | vee(Xz) |,

with B = ( 0 0 0 I® le ) 3 B= BQ22 5@12 N U = VeC(X12) H
vec(Xo1)

A = 61 Qm@fv’ QuoA-((A-mMe2)®I 0 )

-1 B* @ Q12 0 (A-9)® Q12— 18 (A*Q12) /'

"y IRA-—(A—qgD@I 0 ~B*®I I®B
0 (A=1Q12)® Q12— Q12 ® (A*Q12) 6Q12®T —61® Q12 |

In these equations, ® is the Kronecker product and vee((7) is a vector formed by stacking the
column vectors of GG,

To reduce (3.11) to a standard generalized eigenvalue problem, let

_ 11 Q12
H=(R 0)(921 ng) (3.12)

be the RQ factorization of #, where Q;; € C2* X2 and define

w ) Q11 Q2 "
v Qo a2 )

Then the first equation in (3.11) reduces to Rw = 0. By setting w = 0, the second equation in (3.11)

becomes
Ay = aByv, (3.13)

_ h ' _f —G12® 1 0 .
.A}—.A( ,52) and Bl—-—( 0 I®Q12)Q22.

Equation (3.13) is now a 2n2-by-2n? generalized eigenvalue problem. Hence we have reduced the
problem of finding a non-zero solution to (3.10) to the generalized eigenvalue problem (3.13).

where

To summarize, we have shown that in order for (3.2) to have at least one real solution {a, 3),
both matrix pencils in (3.8) and (3.9) must share a common pure imaginary eigenvalue 3i. This

9



requires that the matrix equation {3.10) must have a non-zero solution, which, in turn, is equivalent
to requiring that the generalized eigenvalue problem (3.13) have a real eigenvalue a.

In order to verify whether § > p(A, B) in any bisection step of Algorithm 1.1, we set n = ¢
in (3.2) and check whether the generalized eigenvalue problem (3.13) has any real eigenvalues a.
If it does, we then check for each real o whether the two matrix pencils in (3.8) and (3.9) share a
common pure imaginary eigenvalue §i. If they do for at least one &, then we have found a pair of
o and § such that :
o([A~(a,i)I,B])=46 and hence &> p(A,B).

On the other hand, if (3.13) does not have a real eigenvalue, or if the matrix pencils in (3.8) and (3.9)
do not share a common pure imaginary eigenvalue for any real eigenvalue of (3.13), then we conclude
by Theorem 3.1 that

§=n>2(6—p(A,B)).
On the other hand, Algorithm 1.1 guarantees that 26 > p(A, B) from the previous bisection step.
Thus the value of § after Algorithm 1.1 exits from the while loop must satisfy

f-(—‘%’i) <8§<2p(A,B). (3.14)

3.3 A Generally Quadratically Convergent Variation

Algorithm 1.1 converges linearly. Following Boyd and Balakrishnan [8] (see §2.2), we develop
a generally quadratically convergent version of Algorithm 1.1 in this section. In the following
development, we assume that f{w,f) is analytic in both « and § in a small neighborhood of
(a4, Bx) s0 that f(a, 3) permits the following expansions

fa+np) = fef)+nefat,)+06) (3.15)
flo,8) = flow,f)+y(a—a) +2v(a—a)(B-Fu)+ (8 - B
+0 ((lo - eul + 18 - 8D)°) (3.16)

where 7, v, and £ are the relevent second-order partial derivatives at (., S.). We further assume

that the matrix T’ = Z is positive definite. These expansions with a positive definite I’

v
£
imply that (e, f.) is at least a local minimum.
Now assume that o and 3 are such that f(a +9,8) = f(a,8). It follows from (3.15) that
d n A
'8—af(a+ E,ﬂ)‘FO(?? )““‘ 0.
Expanding the partial derivative at (o, f.) to get
y(atd-a)+rB-p)=0(F+@-al+(B-4)) (3.17)

where we have used the fact that 6% flaw, Bi) = 0.

10



Let = § — f(cu, Bi) = 6 — p(A, B); and let (a1, /1) and (a3, B2) be the two solutions to (3.2)
that are near (@, B.) (see Theorem 3.1). It follows that «; and f; satisfy both (3.17) and (3.16)
for i = 1 and 2. Now let (1; and (z; denote the error terms in (3.17) and (3.16) for (a, 5;).
Consequently,

7(ai+g—a*)+v(ﬂi—ﬁ*) = i

v — ) + (e — ) (Bi— B+ EBi— ) = ptCo
Tt follows from the first equation that
v i
(s ) = 1 - 2 (6.- 8+ (1’ . (3.18)

Plugging this into the second equation and simplifying:

w—ynt/4
(Bi — B) _gm—y—
Y

+C313

where

Coi + 201 (g + %(ﬁi ) - ﬁ — 21, (B; — Bs) %

(i = = 0 ((7+ les — x| +18: = A1) -

v?
v

On the other hand, since T' is assumed to be positive definite, equation (3.16) implies that
lo; — auf? + |Bi — Bs]* = O(p). Furthermore, the choice of 7 = § in Algorithm 1.1 ensures that
7= O(p) (see §3.2). Hence,

(/31' - 16*) =

The result can be rewritten as®

(B - B) = l%”/“wm) and (B ~ ) = I%“”’me).

Combining these equations,

ﬁ1+ﬁ2

B = + O{p) .

3These relations hold as long as v /4 < p. Tt is likely that under certain conditions, Theorem 3.1 holds for much
larger values of 7 as well.
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Plugging this relation into (3.18) and combining the equations for i = 1, 2, we obtain
oy + a
= JJ’;J +O0(p) .

Y 1 S
elLiEe

]

o +
oy = T2y g = PP
2 2
It follows that
Oy = Qpew O(P") and  Si = fnew + O(Ju') ’

and that
f(anew, ﬁuew) - f(a*aﬂ*) =0 (lanew - a*!2 + Iﬁnew - ﬂ*|2) = (O (”))2 . (3'19)

We note that this relation is very similar to (2.6). Now we modify Algorithm 1.1 to get

Algorithm 3.1 Quadratically Convergent Variation of Algorithm 2.1
Set & := g(0).
while § > p(A, B)
Choose two real solutions (a4, 51) and (aq, f2) of (3.2).

6:=min{6,f(a1+gz+n,ﬂ1;ﬂ2>}/2.

endwhile

otax+n Pt b
2 b

tions and chose the pair with smallest f value. We note that in both Algorithms 1.1 and 3.1, we

can compute a better initial guess § by using Algorithm 2.2 with some values of Ay and #, such as

A=0and # =0

In our implementation, we computed f ) among adjacent pairs of real solu-

Algorithm 3.1 was derived under the assumptions at the beginning of §3.3, which need not
hold for all linear control systems of the form (1.1). Hence estimate (3.19) may not hold for
some linear control systems. However, it is clear that Algorithm 3.1 converges at least linearly to
arrive at an estimate § that satisfies (3.14). Similar to Algorithm 2.2, Algorithm 3.1 is not strictly
speaking quadratically convergent since it terminates as soon as it has found a § that satisfies (3.14).
Nevertheless, Algorithm 3.1 does converge much more rapidly than Algorithm 1.1 when p(A, B) is
tiny. We discuss this point further in §4.

3.4 Further Considerations

Sometimes it may be more important to find the uncontrollable modes of (1.1) for a given tolerance
¢. In this case, we solve equations (3.2) with § = p = £. If there are no solutions to (3.2), then the
system (1.1} is controllable; otherwise, each solution to (3.2) corresponds to an uncontrollable mode.
Conversely, it is easy to see from the proof of Theorem 3.1 that any uncontrollable mode will result
in at least two solutions to (3.2). Hence the set of all solutions to (3.2) provide approximations
to the uncontrollable modes of (3.2). The formulas for apew and fBpew provide more accurate
approximations to these modes.

12



If p(A, B) is very small, then § = ¢ will also become very small during the execution of Algo-
rithms 1.1 and 3.1. In fact, for small enough 5, the two different points a 4 fi and o 4 5+ G5 will
look identical. Hence the solutions to (3.2) are potentially ill-conditioned. See §4 for more details.

Like many other algorithms in engineering computations, such as those for semi-definite pro-
gramming [1, 25, 29], both Algorithms 1.1 and 3.1 are expensive for large problems, since both the
reduction to and the solution of the pencil (3.13) require O(n%) floating point operations. However,
the eigenvalue problem (3.11) is highly sparse as a 4n? X 4n? problem. It is likely that sparse matrix
computation technologies, such as the implicitly restarted Arnoldi iteration [22, 23, 28], can be used
to compute the real eigenvalues of (3.13) quickly. The effectiveness of this approach is currently
under thorough investigation.

4 Numerical Experiments

We have done some elementary numerical experiments with Algorithms 1.1 and 3.1. In this section
we report some of the results obtained from these experiments. The experiments were done in
matlab in double precision.

Matrices in Examples 2 through 5 were taken from Gao and Neumann [18]. These are systems
with small p(A, B). Global optimization methods (Byers {11], Gao and Neumann [18], and He [19])
sometimes require prohibitively expensive computation time to correctly estimate p(A, B) in these
cases. On the other hand, both Algorithms 1.1 and 3.1 worked well on them, with Algorithm 3.1
converging much faster than Algorithm 1.1 as expected.

Example 1. In this example we took A € R®*® and B € R® to be random matrices. This is a
matrix pair with fairly large p(A, B). Both Algorithms 1.1 and 3.1 took 2 iterations to terminate.
This example illustrates that for linear systems (1.1) that are far away from the set of uncontrollable
systems, both Algorithms 1.1 and 3.1 take very few iterations.

Fxample 2. In this example we took

and B =

<
e B e B
= B
=D O
D b

-2

This pair is uncontrollable since the smallest singular value of [A — (1d:2¢)I B] is zero. Algo-
rithms 1.1 and 3.1 took 42 and 5 iterations, respectively, to find p(A4, B) < 107*°.

Example 3. In this example we took

—0.32616458 —0.09430266 0.05207847 —.08481401 0.05829280
0.01158922  —.39787419 —.14901699 —.01394125 -.10626942

A= 0.05623810 —.03153954 ~.50160557 —.05748511 -—.00552321
0.07474298 01205259  —.00249719 —.26871590 .23107147
07829650 —.19442017 —.05631780 .17761876 —.45847313

and B = (-.13705019, —.18309206, —.13735654, .80258791,.53355446)T. Algorithm 1.1 took 20
iterations to return § = 4.49639424 x 10~7. For § = 8.99278848 x 10~", it returned six distinct
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solutions to (3.2): (@, 8) = (—6.5094391 x 10!, £5.02193288 X 10~7) and
(~2.60379928 x 1077, £5.20865745 X 10—7) : (—5.20755942 x 1077, £9.06572930 x 10~7) .

On the other hand, Algorithm 3.1 took 4 iterations to return § = 3.81345287 x 10~", For § =
7.62690574 x 1077, it returned one distinct solution (o, 8) = (~5.207554634 x 1071, 0).

Example 4. In this example we took

—.22907968 0.08886286 ~—.18085425 —.03469234 —.32819211

11868229 —.43816868 —.27812914 -~.04200964 —.07784618

A=} —.02507663 .30736050 —.24819024 21852948 —.06260819
16055050 —.00818190 —.19591208 .08940924  .22683641
—.19138555 .13088864 —.22839105 -—.23175762 .12274100

and B = {—.73491186, —.35694241,.04637973, .52703303, .22930713)T. Algorithm 1.1 took 7 iter-
ations to return § = 3.64238211 x 10™°. For &§ = 7.28476422 x 1075, it returned four distinct
solutions

(a,8) = (—9.48126863 x 1072, 43.91642858 x 1072) , (—9.47712590 x 1072, +4.63687903 x 107?) .

On the other hand, Algorithm 3.1 took 3 iterations to return § = 3.40238900 x 10>, For § =
6.80477800 x 1075, it returned two distinct solutions (o, 8) = (—9.67874713,£4.031215939 x 1072).

Example 5. In this example we took

—.27422658 —.21968089 —.21065336 —.22134064 0.19235875
-.07210867 .18848014 —.29068998 .28936270  0.10007703
A=1] —.03547166 .17931676  .14590007  .0055657%  .38838791
00029995  .147556893 —.25420697 —.12193382 -.14071387
—.07780546 —.29477373 .01366200  .32749991  -.0131683

and B = (.81475593, —.30523653, —.34286610, —.05815542, 34937688)" . Algorithm 1.1 took 4 iter-
ations to return § = 1.60740324 x 10~7. For § = 3.21480648 x 1077, it returned 14 distinct solutions
to (3.2). On the other hand, Algorithm 3.1 took 2 iterations to return § = 1.08714072 X 1077, And
for 6 = 2.17428144 x 10™7, it returned one distinct solution (e, 8) = (8.37424478 x 1073, 0).

Example 6. In this example we took the matrix pair (A, B) from Example 2, and set
A=QAQT and B:=QB,

where () is a random orthogonal mairix. This new matrix pair is still uncontrollable, But Algo-
rithm 1.1 took 28 iterations to return 6 = 4.06303199 x 10~%, while Algorithm 3.1 took 6 iterations
to return 6 = 2.33160388 x 1071%, This example illustrates that both algorithms can have numerical
difficulties in correctly estimating p(A, B} if it is very tiny.

5 Conclusions and Extensions

In this paper, we have presented the first algorithms that require a cost polynomial in the matrix
size to correctly estimate the controllability distance p(A, B) for a given linear control system. And
we have demonstrated their effectiveness and reliability through some numerical experiments.
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The biggest open question is how to further reduce the cost. At the core of these algorithms
is the computation of all real eigenvalues of a sparse 4n? x 4n? eigenvalue problem. Currently, we
find these eigenvalues by treating the eigenvalue problem as a dense one, resulting in algorithms
that are too expensive for large problems. In the future, we plan to exploit the possibility of finding

b ] . . . . N
these real sigenvalues via sparsc matrix computation technologies, such as the implicitly restarted

Arnoldi iteration [22, 23, 28], to significantly reduce the computation cost;

Another open question is to better understand the effects of finite precision arithmetic on the
estimated distance p(A, B). As we observed in §4, if p(A, B)is very tiny, then the distance estimated
by the new algorithms in finite precision could be much larger than the exact distance.

Finally, the perturbation [AA, AB]in (1.3} can be complex even if both A and B are real. It is
known (Byers [11]) that the norm-wise smallest real perturbation can be much larger than p(A4, B).
Whether our new algorithms shed new light on the computation of the norm-wise smallest real
perturbation remains to be seen.
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