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ABSTRACT A high resolution, second-order central dif-
ference method for incompressible f lows is presented. The
method is based on a recent second-order extension of the
classic Lax–Friedrichs scheme introduced for hyperbolic con-
servation laws (Nessyahu H. & Tadmor E. (1990) J. Comp.
Physics. 87, 408-463; Jiang G.-S. & Tadmor E. (1996) UCLA
CAM Report 96-36, SIAM J. Sci. Comput., in press) and
augmented by a new discrete Hodge projection. The projection
is exact, yet the discrete Laplacian operator retains a compact
stencil. The scheme is fast, easy to implement, and readily
generalizable. Its performance was tested on the standard
periodic double shear-layer problem; no spurious vorticity
patterns appear when the f low is underresolved. A short
discussion of numerical boundary conditions is also given,
along with a numerical example.

The accurate computation of flow problems is of major
importance in many fields of science and engineering. Many of
the modern high resolution methods used for such computa-
tions use the Godunov approach, in which the time evolution
of a piecewise polynomial approximation of the flow field is
sought. Typically, this piecewise polynomial approximate so-
lution is reconstructed from its cell averages. In this context,
we distinguish between two main classes of methods: upwind
and central methods.
Upwind schemes evaluate cell averages at the center of the

piecewise polynomial elements, which in turn requires the
evaluation of fluxes along the cell interfaces. Consequently,
upwind schemes must take into account the characteristic
speeds along such interfaces. Special attention is required at
those interfaces in which there is a combination of forward-
and backward-going waves, when it is necessary to decompose
the ‘‘Riemann fan’’ and determine the separate contribution of
each component by tracing ‘‘the direction of the wind.’’ It is the
need to trace characteristic fans (using exact or approximate
Riemann solvers) that greatly complicates the upwind algo-
rithms, making them difficult to implement and to generalize
to more complex systems (e.g., to viscoelastic f luids). The
original first order accurate Godunov scheme (1) is the
forerunner for all other upwind Godunov-type schemes. A
variety of second and higher order sequels to the Godunov
upwind scheme was constructed, analyzed, and implemented
with great success during the 1970s and 1980s, starting with van
Leer’s monotonic upstream scheme for conservation laws (2)
(followed by ref. 3–6; see refs. 7–9 and the references therein).
For incompressible flows, the upwind Godunov approach was
combined with Chorin’s projection technique (10) by Bell,

Colella, and Glaz (11), E and Shu (12), and others (consult ref.
13 and the references therein).
In this work, we used the central differences framework. In

contrast to upwind schemes, central schemes evaluate stag-
gered cell averages at the breakpoints between the piecewise
polynomial elements. Thus, averages are integrated over the
entire Riemann fan so that the corresponding fluxes are now
evaluated at the smooth centers of the cells. Consequently,
costly Riemann-solvers required in the upwind framework can
be now replaced by straightforward quadrature rules. The first
order Lax–Friedrichs (LxF) scheme (14) is the canonical
example of such central difference schemes. Like Godunov’s
scheme, the central LxF scheme is based on a piecewise
constant approximate solution. Its Riemann-solver-free rec-
ipe, however, is considerably simpler. Unfortunately, the LxF
scheme introduces excessive numerical viscosity, resulting in
relatively poor resolution.
Nessyahu and Tadmor (15) introduced a second order

sequel to the central LxF scheme in one spatial dimension.
Like its second order, upwind MUSCL analogue, the
Nessyahu–Tadmor scheme is based on a piecewise–linear
polynomial approximation, which yields a considerable im-
provement in resolution; at the same time, the central aver-
aging results in a simple Riemann-solver-free recipe. The
Nessyahu–Tadmor scheme recently was extended to higher
orders (16) and several spatial dimensions (17). Numerical
experiments reported above and in related work (18–20) show
that the central schemes offer a considerably simpler alterna-
tive to the upwind schemes while retaining a comparable
resolution.
The central schemes mentioned above were introduced

primarily for hyperbolic systems of conservation laws, such as
those governing compressible flows. These encouraging results
motivated the use of central differences in related problems,
notably for incompressible flows. The two-dimensional Euler
equation in its vorticity formulation was addressed along these
lines in Levy and Tadmor (21). It is the goal of this paper to
introduce a second-order central difference scheme for in-
compressible flows based on velocity variables. The use of the
velocity formulation (1) yields a more versatile algorithm. The
advantage of our proposed central scheme in its velocity
formulation is 2-fold: Generalization to the three-dimensional
case is straightforward, and the treatment of boundary con-
ditions associated with general geometries becomes simpler.
The result is a simple, fast, high resolution method, whose
accuracy is comparable to that of an upwind scheme. In
addition, numerical experiments show the new scheme to be
immune to some of the well known deleterious consequences
of underresolution.

THE SECOND-ORDER CENTRAL SCHEME
We considered a two-dimensional incompressible flow field, u
5 (u, v), so that ¹zu 5 0. The equations of motion for a
Newtonian fluid in conservation form are
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ut 5 @2u2 1 nux 2 p#x 1 @2uv 1 nuy#y

; ƒu~u, v, ux, . . . !x 1 gu~u, v, ux, . . . !y

[1]

vt 5 @2uv 1 nvx#x 1 @2v2 1 nvy 2 p#y

; ƒv~u, v, ux, . . . !x 1 gv~u, v, ux, . . . !y

where p is the pressure, n is the kinematic viscosity, and
subscripts denote partial derivatives. The functions ƒu,v(z) and
gu,v(z) are components of the fluxes of the conserved quantities
u and v.
We now turn to the derivation of our central scheme. The

computational grid consists of rectangular cells of sizes Dx and
Dy; at time level tn 5 nDt, these cells, Ci, j, are centered at (xi
5 iDx, yj 5 jDy). Starting with the corresponding cell averages,
un 5 (ui, jn , vi, jn ), we first reconstructed a piecewise linear
polynomial approximation that recovers the point values of the
velocity field un(x, y) 5 (un(x, y), vn(x, y)). For second-order
accuracy, the piecewise–linear reconstructed velocities take
the form,

un~x, y! 5 ui, j
n 1

u9i, j
Dx

~x 2 xi! 1
u )i, j

Dy
~y 2 yj!, x, y [ Ci, j. [2]

Here and below, u9i, jyDx and u)i, jyDy are discrete slopes in the
x and y directions, which are reconstructed from the given cell
averages. To guarantee second-order accuracy, these slopes
should approximate the corresponding x and y derivatives of
the underlying solution. To avoid spurious oscillations, the
recipe for construction of such slopes requires certain nonlin-
ear limiters—a variety of such recipes was studied extensively
during the 1980s (see refs. 2, 22, and 23 and the references
therein). In the numerical examples reported below, however,
we found that the evaluation of the slopes u9, u), using simple
centered differences without limiters sufficed.
The second stage was to evolve the piecewise–linear ap-

proximant to the next time level tn11. The resulting solution,
ũn11(x, y) 5 (ũn11(x, y), ṽn11(x, y)), is projected back into the
space of piecewise constant polynomials. We denote this
piecewise constant solution by ũ. It is a nonzero divergence
field, and it is therefore considered a provisional field (this
requires a third and final stage of the evolution step, in which
we compute its zero divergence projection, un11). Specifically,
we realized ũn11(x, y) by its staggered cell averages ũi11y2, j11y2

n11

:5 §*Ci11y2, j11y2 ũn11(x, y)dxdy. (Throughout this paper, we
use §*V :5 1yuVu *V to denote normalized integrals, scaled by
their length, area, volume, etc.). The central differencing
feature of our scheme is linked to staggered cells, Ci11y2, j11y2
centered around (xi11y2, yj11y2). To evaluate these staggered
averages, we integrate Eq. 1 over the control box Ci11y2, j11y2
3 [tn, tn11]. Consider now the difference between the cell
averages at the top and at the bottom of this box; in view of the
conservation form of Eq. 1, this difference is balanced solely
by the flux across the box’s interfaces (see Fig. 1),

ũi11y2, j11y2~tn11! 5 §*Ci11y2, j11y2u~x, y, tn!dxdy

1 Dt$Dx
1§* t5tn

tn11

§* y[Jj11y2 fu~xi, y, t!dydt%

1 Dt$Dy
1§* t5tn

tn11

§* x[Ii11y2gu~x, yj, t!dxdt% .

[3]

A similar averaging applies for ṽi11y2, j11y2
n11 . Here and below,

Dx1wi 5 (wi11,. 2 wi,.)yDx and mx1wi,. 5 1y2(wi11,. 1 wi,.)
denote, respectively, forward differences and forward averages
in the x direction. The meaning of the related operators such

as Dy1, Dx2, my6, . . . is self-evident; in particular, ¹h2 5 Dx1Dx2
1 Dy1Dy2 is the standard 5-point Laplacian.
We now turn to the (approximate) evaluation of the terms

on the right-hand side of Eq. 3. The staggered cell average at
the bottom on the box, §*Ci11y2, j11y2 u(x, y, t

n)dxdy, involves
contributions from the four intersecting cells, Ci, j, Ci11, j,
Ci11, j11, and Ci, j11 indicated in Fig. 1. A straightforward
computation yields

§*Ci11y2, j11y2u~x, y, tn!dxdy 5 mx
1my

1ui, j
n

2
Dx
8
Dx

1my
1u9i, j 2

Dy
8
Dy

1mx
1ui, j) . [4]

It remains to integrate the fluxes ƒu, gu, . . . across the inter-
faces of the control box. For second-order accuracy, the double
integrals on the right of Eq. 3 are approximated by suitable
averages of their corner values. Thus, for example, a combi-
nation of the second-order trapezoidal and mid-point quadra-
ture rules yields the following approximation for the flux
associated with ƒu 5 2u2 1 nux 2 px,

Dx
1§* t5tn

tn11

§* y[Jj11y2ƒu~xi, y, t!dydt

, Dx
1F2my

1~ui, j
n11y2!2 1

n

2Smy
1
u9i, j
Dx

1 Dx
2ũi11y2, j11y2
n11 DG . [5]

Similar approximations are used for the remaining fluxes
associated with ƒv, gu, gv. Few remarks are in order, clarifying
the motivation for this type of central discretization:

Y Two of the four relevant fluxes appearing in Eq. 1, ƒu and
gv, involve the pressure gradient (px, py), which could be
viewed as a Lagrange multiplier enforcing the zero diver-
gence constraint, ¹zu 5 0. Our approximation of these two
fluxes, e.g., Eq. 5, ignores the pressure gradient at this stage.
Here, we follow the projection method (10, 11), which
separates the time evolution from the incompressibility
constraint by first evolving the flow field without taking
pressure into account. The contribution of the pressure will
be integrated at the last stage by enforcing zero divergence
fluxes.

Y Temporal integration of the viscosity terms nux, . . . is
accomplished by second-order averaging at tn and tn11. This
quadrature leads to the implicit Crank–Nicholson discreti-
zation, which is favored because of its preferable stability
properties.

Y The temporal integration of the convective part of the flux,
however (represented by the quadratic terms like u2,
uv, . . . ), is accomplished by the midpoint rule evaluated at
tn11y2. This requires the intermediate values ui, jn11y2 and

FIG. 1. The staggered grid.
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vi, jn11y2. It is here that we take advantage of the central
framework; because the cell centers ( xi, yj) are bounded
away from the discontinuous breakpoints, we may use
Taylor expansion to compute thesemidvalues. Thus, the first
ingredient of our scheme consists of the following.

Predictor step.

ui, j
n11y2 5 ui, j

n 2
Dt
2 F2ui, jn u9i, j

Dx
1 ui, j

n vi, j)

Dy
1 vi, j

n ui, j)

Dy

1 Gxpi, j
n 2 n¹h

2ui, jG
vi, j
n11y2 5 vi, j

n 2
Dt
2 Fvi, jn u9i, j

Dx
1 ui, j

n vi, j)

Dx
1 2vi, j

n ui, j)

Dy

1 Gypi, j
n 2 n¹h

2ui, jG [6]

Note that the predictor step is nothing but a forward Euler
scheme; conservation form is not essential for the spatial
discretization at this stage.
Equipped with the midvalues of ui, jn11y2 :5 (ui, jn11y2, vi, jn11y2),

we can now compute the approximate fluxes in Eq. 5; these
together with Eq. 4 yield the staggered averages at tn11, which
we summarize in the following section.
Corrector step.

S1 2
nDt
2

¹h
2D ũi11y2, j11y2n11 5 mx

1my
1ui, j
n 2

Dx
8
Dx

1my
1u9i, j

2
Dy
8
Dy

1mx
1ui, j) 2 DtDx

1my
1Fui, jn11y2ui, j

n11y2 2
nu9i, j
2DxG

2 DtDy
1mx

1Fvi, jn11y2ui, j
n11y2 2

nui, j)

2Dy G .
[7]

The corrector step, Eq. 7 evaluates a nondivergence-free
provisional field, ũn11. At the third and final stage of the
computation, we have to evaluate the zero divergence projec-
tion of this provisional field. This zero divergence constraint in
turns determines the pressure gradient. We note that satisfying
an appropriate, discrete zero divergence constraint is intrin-
sically related to the finite speed of propagation of the velocity
field u, and consequently, it is essential for the stability of the
scheme. Indeed, the zero divergence constraint enables us to
rewrite the scheme (Eq. 7) in an appropriate convective form,
which in turns yields a maximum upper bound. Such a program
was carried out by Levy and Tadmor (21); in their study, a
maximum principle was derived based on a convective refor-
mulation of the vorticity equation. Granted the finite speed of
propagation of the velocity field u, one may revisit the pre-
dictor step with the usual Courant–Friedrichs–Levy time step
limitation max {DtyDxuuu, DtyDyuvu}# 1y2. We note in passing
that hyperbolicity is not necessary for the stability of the
central NT scheme (15, 17); finite speed of propagation will
suffice.
We now turn to the computation of the incompressible

projection. We decomposed the provisional field ũn11 into the
sum of a divergence-free flow field, un11 :5 (un11, vn11), and
a gradient field of a scalar grid function, fi, j (11),

ũi11y2, j11y2
n11 5 ui11y2, j11y2

n11 1 DtDx
1my

1fi, j,

ṽi11y2, j11y2
n11 5 vi11y2, j11y2

n11 1 DtDy
1mx

1fi, j,

where the new field ui11y2, j11y2
n11 5 (ui11y2, j11y2

n11 , vi11y2, j11y2
n11 )

has to satisfy the zero divergence condition,

Dx
2my

2ui11y2, j11y2
n11 1 Dy

2mx
2vi11y2, j11y2
n11 5 0. [8]

This dictates the scalar potential fi, j, which is calculated by
solving the corresponding Poisson problem. Thus, we end up
with the following step.
Projection step. Compute the potential fi, j solving the Pois-

son equation

@Dx
1Dx

2my
1my

2 1 Dy
1Dy

2mx
1mx

2#fi, j 5
1
Dt

@Dx
2my

2ũi11y2, j11y2
n11

1 Dy
2mx

2ṽi11y2, j11y2
n11 # . [9]

Then, the pressure gradient at tn11 is being updated,

Gxpi11y2, j11y2
n11 :5 Dx

1my
1fi, j, Gypi11y2, j11y2

n11 :5 Dy
1mx

1fi, j,
[10]

and finally, it is used to evaluate the divergence-free velocity
field, un11

ui11y2, j11y2
n11 5 ũi11y2, j11y2

n11 2 DtGxpi11y2, j11y2
n11 . [11]

It is noteworthy that our projection operator P is exact, i.e., P2
5 P, and it is substantially simpler in comparison with the
original Bell, Colella, and Glaz projection (11). Thus, for
example, the Poisson equation (Eq. 9) becomes a particularly
simple 5-point star stencil (for a square grid, Dx 5 Dy).
Numerical Experiments. We turn now to numerical exam-

ples that demonstrate the efficiency of our proposed central
scheme (Eqs. 6–7, 9–11). All of our computations were carried
out with the Courant–Friedrichs–Levy limitation max {Dty
Dxuuu, DtyDyuvu} 5 0.45.
The first example is a double shear layer governed by the

Navier–Stokes equations (Eq. 1), in a unit 1-periodic domain,
subject to the initial conditions

u0
r~x,y! 5 H tanh@r~y 2 1y4!

tanh@r~3y4 2 y!G y # 1y2
y . 1y2,

v0
d~x, y! 5 d sin~2px!. [12]

The parameter r determines the slope of the shear layer, and
v0d represents a small perturbation of the steady solution, (u0

r,
v00). The initial layer rolls up in time into strong vortical
structures. This problem is a canonical test problem for a
scheme’s accuracy and resolution in incompressible flows.
Brown and Minion (BM) (13) performed for this problem a
systematic comparison between a number of schemes, con-
centrating on the effect of underresolution. Their results will
serve as a reference.
Underresolution and stability. In Fig. 2, we plot vorticity

contours for the two shear layer problems discussed by BM
(13): the inviscid ‘‘thick’’ shear layer problem corresponding to
(u0

r, v0d) with r 5 30 and a viscous ‘‘thin’’ shear layer problem
(with n 5 5z1025), corresponding to (u0

r, v0d) with r 5 100. As
in BM (13), both plots in Fig. 2 are recorded at time t 5 1.2
and are subject to an initial perturbation v0d, with d 5 0.05.
The vorticity contour plot for the thick shear layer (Fig. 2a)

is comparable to the corresponding upwind results reported by
BM (13). For the thin layer, however, the results of the central
scheme are qualitatively different. When the upwind solution
of the thin shear layer problem was underresolved, BM (13)
observed the formation of spurious vortices, as additional
roll-ups develop; these additional vortices are found with both
upwind and spectral methods and eventually cause the calcu-
lation to break down. (The spurious nature of these vortices is
confirmed only as themesh is further refined and these vortices
disappear). In contrast, the effect of underresolution on our
scheme is an increased numerical viscosity that smears the
vorticity distribution. Yet the central scheme has the advan-
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tage that it does not introduce new unphysical vorticity pat-
terns. No spurious pattern was observed as the resolution was
further decreased down to a 32 3 32 grid. Thus, the stability
of our central method appears to prevent the formation of any
underresolution-induced structure although the method is less
accurate than an upwind scheme for a given grid. The issues
of accuracy, resolution, and stability as inspected in Fig. 2 may,
of course, vary with different parameterizations. We carried
out additional (unreported) numerical experiments, measur-
ing vorticity contours and enstrophy behavior with varying ns
and Ns. These experiments reconfirmed the high resolution
content of our central scheme, resolution comparable to the
upwind results; at the same time, they showed that our central
scheme was immuned to spurious oscillations because of
underresolution. We note that this demonstrates again that
accuracy and resolution may be two distinct qualities of a
scheme (24).
Efficiency. The central scheme has improved stability prop-

erties that prevent spurious vortices due to underresolution.
What is the cost of regaining this stability in comparison to the
upwind schemes? Table 1 presentsL2 errors for our calculation
of the inviscid double shear layer problem subject to initial
data (u0

r, v0d) with r 5 30. Here, uN represents the numerical
approximation computed at time t 5 1.2 using N 3 N spatial
grid points.
The convergence rate was estimated by Richardson extrap-

olation. The asymptotic convergence rate is approached only
as the resolution becomes sufficiently high so that there are
enough points to resolve the shear layer. Compared to the
results in BM, our errors are about three to four times larger.
Thus, to obtain similar errors, our scheme would roughly
require a grid twice as dense. For a given grid size, however,
our scheme results in a code up to five times faster than a
parallel upwind scheme. Therefore, it is '60% more time-
consuming for a given accuracy.
Boundary conditions. The treatment of nontrivial boundary

conditions requires special attention because the numerical

grid is translated by one-half of a grid cell at each time step
while the physical boundaries remain fixed in space. For
example, if an edge cell lies entirely inside the system after a
given time step, only half of it will lie inside the system after
the next step. In most respects, the treatment of the boundaries
fits naturally into the recipe given above; only slight changes
are required. In particular, numerical derivatives at walls have
to be evaluated by one-sided expressions. The boundary
conditions on the projection operator are more delicate. The
following treatment results in second-order convergence:
When the centers of the edge cells lie on the boundary, the
prescribed boundary values, ubc, are explicitly imposed, that is,
Gxf 5 ũ 2 ubc. In the remaining cases, it is the incompress-
ibility condition (Eq. 8) that is imposed.
As an example, we present the results for flow in a two-

dimensional channel with immobile parallel walls. Periodic
boundary conditions are assumed for the longitudinal axis. Fig.
3 shows a succession of flow profiles u(y) for a realization in
which the initial conditions are a uniform longitudinal f low. At
time t 5 0, infinite shear gradients are formed and then

FIG. 3. A viscous flow (with n 5 0.01) in a channel with immobile
walls subject to initial conditions u0(x, y) [ 1, v0(x, y) [ 0. Number
of grid points is 128 3 128. The successive solid and dashed lines
represent the flow profiles u(y) at times t 5 0, .1, .3, .5, . . . , 1.5.

FIG. 2. Contour lines of the vorticity v 5 vx 2 uy at t 5 1.2 with initial (ur, vd), d 5 0.05 using a 256 3 256 grid. (a) A thick shear layer with
r 5 30 and n 5 0. The contour levels range from236 to 36 (cf. figure 3c in ref. 13). (b) A thin shear layer with r 5 100 and n 5 5z1025. The contour
levels range from 270 to 70 (cf. figure 9b in ref. 13).

Table 1. L2 error and extrapolated convergence rates for the
double shear layer problem (Eq. 12) with r 5 30, d 5 0.05, and n
5 0 at t 5 1.2

n 5 32 n 5 64 n 5 128

iuN 2 u2NiL2 0.143 0.0627 0.0172
Rate 1.19 1.86
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gradually smoothed out by the viscous forces. Note the reso-
lution at the shear walls. In this context, it is worth repeating
that no limiters (2, 22, 23) were used.

CONCLUSIONS

We have presented a numerical scheme for incompressible
flows that offers significant improvement over available meth-
ods in terms of simplicity, adaptability, and resolution, with
only a small loss of accuracy per given amount of labor. In two
respects, the performance of our scheme is particularly note-
worthy: Low resolution and sharp gradients do not result in
spurious structures, and limiters are unnecessary. These ob-
servations are consistent with previous results using the stag-
gered central scheme in the context of hyperbolic conservation
laws (15–17), in particular the results of Levy and Tadmor (21),
regarding the robustness of the staggered central scheme; it is
not clear whether the two manifestations of robustness men-
tioned above are due to the same reason. We have observed
this robustness of staggered centered schemes in other contexts
and shall report on it in more detail elsewhere.
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