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Abstract

In this work we propose a new set of partial differential equations
(PDEs) which can be seen as a generalization of the classical eikonal and
transport equations, to allow for solutions with multiple phases. The tra-
ditional geometrical optics pair of equations suffer from the fact that the
class of physically relevant solutions is limited. In particular, it does not
include solutions with multiple phases, corresponding to crossing waves.
Our objective has been to generalize these equations to accommodate so-
lutions containing more than one phase. The new equations are based
on the same high frequency approximation of the scalar wave equation as
the eikonal and the transport equations. However, they also incorporate a
finite superposition principle. The maximum allowed number of intersect-
ing waves In the solution can be chosen arbitrarily, but a higher number
means that a larger system of PDEs must be solved. The PDFEs form
a hyperbolic system of conservation laws with source terms. Although
the equations are only weakly hyperbolic, and thus not well-posed in the
strong sense, several examples show the viability of solving the equations
pumerically. The technique we use to capture multi-valued solutions is
based on a closure assumption for a system of equations representing the
moments.

1 Introduction

In the direct calculation of wave propagation, the computational effort is larger
at higher frequencies. With constant accuracy the work grows algebraically with
frequency. For sufficiently high frequencies or short wavelengths it is unrealistic
to compute the wave field directly. Fortunately, this is often the regime for
which high-frequency asymptotic approximations are quite accurate.
Generically, phase and amplitade vary on a much slower scale than the
dependent variables in the original wave equations and are thus in principle
casier to compute. The geometrical optics type asympiotic expansions are used



in many applications, for example in electromagnetic, elastic and acoustic wave
propagation.

Traditionally, ray tracing has been the computational method of choice.
Recently, however, the geometrical optics approximations are also being solved
by partial differential equation {PDE) techniques. This is e.g. done in [5] and
within the framework of seismology in [9], [11]} and [12). The PDEs give only
one unique phase at each point in space. In this paper we shall derive equations
which allow for multiple phases or crossing rays. The equations are based on the
closure assumption of a finite number of crossing rays for the kinetic formulation
of geometrical optics.

1.1 High-Frequency Asymptotics

When high-frequency waves are treated, the computations can be simplified by
considering the asymptotic behavior of the solution as the frequency tends to
infinity. There are two strongly related ways to formulate this approximation:
the PDEs of geometrical optics and ray tracing. Typical wave phenomena, such
as diffraction and interference, are lost in the leading terms of the high-frequency
approximation,

Classical geometrical optics is based on the scalar wave equation,

Uyt + CV2'U. = 0. (1)

Here ¢ = c(x) is the local wave velocity of the medium. We also define the index
of refraction as 5 = co/c with the reference velocity ¢y (e.g. the speed of light
in vacuum). Geometrical optics considers the case when the solution to (1) can
be written as a series expansion of the form:

u= ews®t) i wy (2, ) (iw) 7", (2)
k=D

Entering this expression into (1) and summing terms of the same order in w, to
zero, we obtain separate equations for the unknown variables in (2). The phase
function ¢ will satisfy the etkonal equation,

¢: +c|Vg| =0, (3)
and the amplitude coefficients w;, solve the transporf equations,

Vé-Vuy V- ¢y

(wo)r + c ] Vgl we = 0, (4)
* Vo Vuwpp | *Vi—du AV — (wi)e
s+ gy 2aqvel Ut e 0 O

For large w only the first term in the expansion (2) is significant, and the problem
is reduced to computing the phase ¢ and the first amplitude term wy. Note



that once ¢ is known, the transport equations are linear equations with variable
coefficients. Solving (3) and (4} can be done by finite difference methods.

The problem with the geometrical optics approach is that the class of solu-
tions which justify an expansion of the type (2}, is limited. In particular, it does
not include solutions with multiple phases, corresponding to crossing waves. In
fact, even in the case of a single phase solution, the series does not necessarily
converge, for instance when the geometric boundaries create diffraction effects.
‘We shall concentrate on the multiple phase problem and assume the geometrical
optics approximations of {3) and (4).

The eikonal equation is a nonlinear PDE which requires extra conditions
to have a unique solution. This solution is known as the viscosity sofution [3].
Of course, it does not have to agree with the correct physical solution in all
cases. At points where the correct solution should have a multi-valued phase,
the viscosity solution picks out the phase corresponding to the first arriving
wave,

The eikonal equation’s inability to capture multi-phase solutions is related to
its nonlinear character. In the case of the linear wave equation, that it approx-
imates, a linear combination of solutions is also a solution. For the nonlinear
eikonal equation, this superposition principle does not hold. An example is
shown in Figure 1.

Solving the eikonal equation numerically as a PDE instead of using ray
tracing has recently been used in seismology. This technique is demonstrated
in [9], [11] and [12]. For these applications it is of direct interest to determine
the first arrival.

A second phase, corresponding to crossing rays was calculated in [5] using
two separate eikonal equations. Boundary conditions for the second phase was
given at the discontinuity of the first phase or at a geometric reflecting boundary.
This boundary could be difficult to determine.

Another way to treat high-frequency waves computationally is through ray
tracing, which is based on a kinetic formulation. The waves are postulated to
be particles (photons) whose trajectories are rays. The ray vector, p, is defined
as the index of refraction multiplied by the unit vector, 8, in the direction of
the ray, i.e. p = 8. For simplicity we will henceforth let ¢y = 1, so that the
velocity vector » = ¢8 = e’p. A transport equation for particles in the space
(z,p,t) can then be derived. Denoting the density of particles by f(=z,p,t) the
evolution of f is deseribed by the Vlasov type equation

Je+v -V f+cVen -V, f=0. (6)

Tracing the particle trajectories of (6) corresponds to ray tracing and also to the
method of characteristics for (3) and (6). Since (6) is linear the superposition
principle is valid.

Because of the large number of independent variables (six in 3D} it is very
hard numerically o solve the full equation (6). If the equation is solved using
ray tracing it is difficult to cover the full domain with rays, {11]. There will
often be shadow zones where the field cannot be resclved. If is also hard to
determine the derivative of ¢, which is needed when computing the amplitude.
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Interacting Waves

oS N

Figure 1: Level curves of ¢ in the solution of the eikonal equation {3) for two
interacting waves. Note how the superposition principle does not hold. Instead,
the first arriving wave takes precedence over the second at each point.

1.2 Moment Formulation

In this paper we propose a middle way between geometrical optics and the
kinetic model. It is a high-frequency approximation through which the whole
field can be solved. Moreover, the superposition principle holds up to a point;
the maxirnum allowed number of intersecting waves can be chosen arbitrarily,
but a higher number means that a larger system of PDEs must be solved.
The technique we use to capture multi-valued solutions is based on a closure
assumption for a system of equations representing the moments (see [1]).

The starting point for this approach is the transport equation (6). Instead
of solving the full equation in phase space, we observe that when f is of a simple
form in p, we can transform (6) to a finite system of moment equations in the
reduced space (z,1), analogously to the classical approach of the hydrodynamic
limit from a kinetic formulation. In particular we are interested in cases where,
for given « and ¢, the density function f is non-zerc only for a finite number
of p. This corresponds to a finite number of rays in different directions at each
point.,

This paper is organized as follows: In Section 2 the moment equations are
derived from the kinetic model for high-frequency waves. They are equivalent



to the equations of geometrical optics. We also explore some theoretical is-
sues and find that the resulting hyperbolic equations are not well-posed in the
strong sense, Existence of solutions of unbounded variation is indicated. More-
over, we give a proof that the derived system of equations is essentially closed.
We also present the solution of the Riemann problem. Next, in Section 3, we
describe the numerical approximations we have used to solve these equations.
The standard Lax-Friedrich methed gives satisfactory results. More elaborate,
and less viscous, methods like the Godunov method and the second order TVD
Nessyahu-Tadmor scheme, together with dimensional splitting, suffer from prob-
lems locally and converge poorly in L., although they are converging well in Ly,
A genuinely two-dimensional version of the Nessyahu-Tadmor scheme gives the
best result. For the multiple phase system a few additional numerical problems
are added, related to the fact that a non-linear system of equations needs to be
solved at each point in each time-step. Solving these equations requires some
care. When N = 2 it can be done analytically. Otherwise, the Lax-Friedrich
method works well also in the multiple phase case. We present computational
results for homogeneous and inhomogeneous problems in Section 4.

2 Derivation of the Moment Equations

In this section we will derive the system of PDEs that follows from the kinetic
model and the assumption that a maximum of N rays pass through any given
point in space. The analysis is carried out in two-dimensional space.

The derivation of the moment equations is based on the transport equation
(6). This equation comes from the Hamiltonian system

dz dp
E{ - VpH(:",P)» a—t' - _Vm‘H(m$p)l (7)

where the corresponding density function f(=,p,t) solves
Se+ Vo (JVH) =V, - (fV,H) = 0. (8)

The equation (6) follows from (8) when

-3

The form of H, somewhat unusual in the geometrical optics context, was chosen
to ensure that the ¢ variable corresponds to actual, unscaled, time.

2.1 The Moment Equations
We start by defining the moments my;. With p = {p1, p2), let

my; = fm prisap. (10)



Next, we multiply (6) by p'ﬂu:’2 and integrate over IR? with respect to p. Using
the definition {10} we get the moment equation,

(WPmiz)e + (Mig1,)z + (M 1)y = iMmemioy; + Jymymi -1, (11)

where we have used the fact that f has compact support in p. Since this equation
1s valid for all 4, > 0, we have an infinite system of moment equations. For
uniformity in notation we have defined m; _; = m.y; =0, Vi.

The system (11} is not closed. If truncated at finite 7 and j, there are more
unknown than equations. To close (11) we use the assumption that for fixed
values of @ and ¢, the particle density f is non-zero at a maximum of N points,
and only when |p| = (2). Thus f can be written

N

f@.pt) =g 6(lpl - n,argp — 6). (12)
k=1

The new variables that we have introduced here are gi = gi(,t), which cor-
responds to the strength (particle density) of ray k, and 8y = 8 (=, t) which is
the direction of the same ray. Inserting (12} into (10) yields

N
mij = ¥ _ 1T gy cos O sin b, (13)
kem]

which is the expression for the moments that we will use.

A system describing N phases, needs 2N equations, corresponding to the
N ray sirengths g, and their directions 6. It is not immediately clear which
equations to select among the candidates in (11). Given the equations for a set
of 2N moments, it must be possible to write the remaining moments of these
equations in terms of the leading ones. This is not always true. For instance,
with the choice of mgy and myg, for N = 1, the quadrant of the angle # cannot
be recovered, and therefore in general not the sign of the moments,

We choose here the equations for the moments mag_10 and mg sx—1 with
k=1,...,N, This system can be essentially closed for all N (see Section 2.3).
After scaling the moments, ni*tJ7n;; = my;, those equations take the following
form (5 is assumed to be smooth):

(n*fhag—1,00t + (Mak o)z + (DF2k—1,1)y

= (2k — 1)(NotMok—2,0 — NatTiak,0 — MyMar—1,1), (14)
(00 ak—1)e + (901 26—1)= + (07R0,08)y

= (2k — 1)(ny"Mo,2k~2 — N1 261 — NyTho2x). (15)

Tao simplify notation, we will henceforth write m;; for /n;;. We introduce new
variables,

w = (uy, Uz, U3, Ua . .. , YaN—1, UzN)"
= (91 Cos 91,91 Sil’iel,g‘g Ccos 92,g2 sin 92, ey N COS 9N,gNSiﬂ HN)T. (]6.)



The wu variables have a physical interpretation; the vector {(ugx_1, tt2x) shows
the direction and strength of ray k. Fhese variables permit us to write the
equations as a system of nonlinear conservation laws with source terms,

Fo(n*u)e + Fi(nu)s + Fa(qu)y = K(u, 1z, 1y), (17)

where the functions Fi. and K are rather complicated nonlinear functions, which
depend on the particular choice of moments above. For other choices they would
be different. Equivalently, with

7 = (110, o1, Mag, M3, - -« , TN 1,0, Mo,2N—1)" 5 (18)
we could write
(7). + Fro Fyt(min)s + Fy o Fy ' (min)y = K(Fg' (), ns,m,).  (19)

Since the angles f; remain unaffected when u is scaled by a constant, all Fy,
and K are homogeneous, Fi(au) = aFy(u), K(ou,n.,my) = «K(u,1:,17y)
forall o e R,

To find a concise expression for the fTunctions Fj and K, we need a few
definitions. Let I be the 2 x 2 identity matrix, and

I I - I

p D? D¢ ... Di

_ fcosf 0 _ pi e . D?
Dy = ( 0 sinﬁ‘k)’ A= N S Tl (20)

DfN_:! DgN—‘Z . D‘?VN_g
Moreover,
D dia.g(D;,Dz,.. ' ,DN), (21)
C = diag{cosfl,cosbsl,... ,cosOnI), (22)
S = diag(sin@ I sinbsl,... sinfnT), (23)
T = diag{l,31,...,(2N - 1)), (24}
R diag(ne, My, .-+ M ). (25)
LR A~

2N elements

Noting that R and A commute, RA = AR, we get

Fy(u) = Au, Fi{u) = ACu, Fy(u) = ASu, (26)

K(u,n5,my) = TA(RD™! — ,C — nyS)u. (27)
1t should be observed that the source term, K, always vanishes for constant 7.
In the most simple case, N = 1, the function Fg is the identity and

2
ui —az EN e IV

2102 uitul w2 uZ
Fo={ Vel py= [ VB K= | MRS ) (29)
- N S
7

2 FATRY ]
uytu; uytug \uitu

In Section 3.2 the functions are given explicifly also for the case N = 2.

i
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2.2 A Comparison with Geometrical Optics

To see how the moment equations (17} are equivalent formulations of the equa-
tions of geometrical optics, we present the following derivation for smooth solu-
tions,

Fa ot FAUREE I LIS, R S 5 DU NP
4 UC dUUILIUILAL UCIEIIILEDLIN

diag(611,021,... ,0n1), (29)
(gl)yhg%g?:"' JgN)gN)T) (30)

2N elements

will help us write a separated form of {17), We insert (26, 27) in (17) and note
that w = Dg. Since each element of the matrices only depend on one variable
{one of the §s), we can let the prime sign denote elementwise differentiation
of a matrix. Using the identities (AD) = TAD’ and R = (5. D + n,D')C +
{nyD — 15 D')S, the equations (17) can be written as

AD(n2§t + (ch)w “+ (ﬂSg)y)
+ (AD) (n°©: + (15)= — (1C)y)g = 0. (31)

Noting that C, § and © are diagenal and that they all, together with &, have
their elements ordered pairwise, a solution is given by solving the N separated
systems

2 .
72(0k)e + (nsinby)z — (peosbr)y, = 0, o1 N

i = Pt . 32
nz(gk)t + (T!.‘]k cos gk)a: + (T]gk sin gk)y =, ( )

On the other hand, after some algebraic manipulations of (3} and (4) we get
¢ $ ¢z —
7 gravctan () + & () = & (1) = ©
28,2 8 2_¢s il 2_dy (33)
If we identify the variables of (32) as

— (qsk)a:

2
g = w cosfy =
0,k Ev¢k],

they will solve (32) and hence (17). As expected the vector (usk—1,uak)7 points
in the direction of the gradient of ¢;. The length of the vector corresponds to
the first amplitude coefficient squared.

— (¢k)y
[V’

sin fy =1,...,N, (34)

2.3 Closure of the Moment Equations

In this section we will show some conditions under which the system (17} is
closed. The choice of moment equations is a deciding factor, and the result of
the analysis serves to motivate our particular choice.



We start by observing that the system is closed if and only if the flux func-
tions
FioF;Yom) and  FaoFy () (35)

are well defined for all solutions, i, to (19) at all times. Here, 0 is the vector
of moments whose corresponding equations we have chosen, not necessarily the
same as in (18). It is not clear that these rather strict requirements can be
satisfied for any choice of moment equations (which determines the functions
Fi). For the choice we made in Section 2.1, that is the moments in {18}, we can,
however, prove that the system is closed as long as no two rays meet head-on,

or more precisely, it is closed for all ¢ such that
Oy, t) # 0¢(,t) + m, Va,k, £ (36)

To show this, we will firsi prove a lemma. In what follows, we will need the
definition of the function o, :

z
2’_3

o, : T C, on(z) = : , for z € C, (37)
Lan=1)(~1)
Lemma 1, Let zx, k= 1,..., M be complex numbers such that |z] = 1 Define

the corresponding vectors zi = on(z) with M < 2N and oy as in (87). Then
zi € CN are linearly independent over R if and only if

22 # 2l k#£ (38)

Proof. The necessity is obvious, since if 2z} = 27 for some k, £, then z; = +z,.
To show that (38) is a sufficient condition, let (38) hold and take M = 2N.
Suppose that z; are lnearly dependent. Then we can find oy such that

aN
Zakzk =0, ar € R, (39)
k=1

where not all oy are zero. By forming the real matrix

l | |
%(Zl) SR(ZZ) e %(ZQN)
A= } E } ,  AgRINx2N (40)

9(21) 3(22) S‘r(ng)

I | |

we have the equivalent formulation

Ao =0, a=(ay,...,cn)7, {41}



and we see that since a # 0, the matrix A must be singular. Then so is AT and
we can find a vector 8 = (f1,...,Ban)T # 0 such that AT = 0. Now, since
lzx| = 1, we have that Zx = 1/2, and

s Y 1 £ 1 A
Hzr) = glow(a) +on{)) o p

"*3

Hence, AT 3 == 0 can be written

2Zﬂ(ﬂ“ ) E ) oy (21 = ) =0, (49)

k

for k=1,...,2N. Since z; # 0 we can multiply (43) by zZN 1 and by defining
the polynomlal

N N
_1 t+N-t  N-ty L e41 LyN-1 _ Nt
Pg(z) = "Z;Zﬁz(z +2 )+ﬂ§(—1) Bern(z =277, (44)
we have that (41) implies
Pﬁ(z,f):(), k=1,...,2N (45)

for some 3. But since the degree of Pﬁ is at most 2N — | it cannot have 2

distinct zeros, regardless of the choice of 8. Therefore, there must exist k, £ such
that 27 = z?, a contradiction. Hence, z, are linearly independent over R when
M = 2N and (38) holds.

Finally, if M < 2N and (38) holds, we can always find 2N — M additional
zx such that (38) still holds. A subset of a set of linearly independent vectors
are also linearly independent, from which the lemma follows. O

We now introduce complex versions of our variables
mio + imo1
. mag + iMo3
2y = cos B + isin &y, m=— , ) {46)

maN—1,0 + iMo a1

s0 that
Frzp = tag_1 + tuag. (47)
Furthermore, let
31
i | | 92
Z=|on(zn) on{zn) ... on(zn)], g=1 .| (48)
] l | :
gn
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In general we have

k-1
(COSQ + (—1)k+1isin H)kal — Z wkrk_t(cosz(k_t)_l 8+ isinZ(k——l)—l 9)) (49)
£=0

where wy, is the (2¢ — 1)*" coefficient of the (2k — 1)™ degree Chebyshev poly-
nomial. Setting wgy = 0 for £ > k we can form a lower triangular matrix
W = {wye}. This matrix is non-singular since wgy = 4*~! > 0. Thereby, the

two equations
Fy(u) =m & Zg =Wm, (50)

are equivalent if the variables are identified as in (47). We are now ready to
prove the following theorem.

Theorem 1. Let F) be the funclions in (17), corresponding fo the moment
vector v defined in (18). Let Fo|D; be the restriction of Fy to the domain

Dy ={ue®R¥™ |z + 2. #0, Yk, £}, (51)
with 2, defined as in ({6). For m € Fo(Dy) the flux functions
Fio(FolDy)~'(h),  Fao(FolDy)~ (i) (52)
are well defined.
Proof. Let w,4 € Dy be two solutions to (50}, so that
Fo(u) = i = Folit), m € Fy{Dy). (53)

We need to show that Fy(u) = F1{it) and Fy(u) = Fs(&). Using the corre-
sponding z, Z and g-variables in (46} and (48), (53} is equivalent to

Zg =273, (54)

by (50). With z; = on(z) and Zx = en(Z), (54) implies that

M M
ngZk = z.ﬁki’k- {55)
k=1 k=1

Here M and M denote the number of nonzero g and g in the respective
solutions. Now, let J and J be the number of distinct z; and 3 in the solutions.
Without loss of generality we order the variables such that 22, = ... = z¢;, -1,
with 1 = & < ... < £;41 = M ++ 1, and similar for the second solution. With
this notation we get

I ftiva=1 Jo -1
S|z =31 D @z (56)
=1 \ k=¢; J=t O\ k=i

)

11



The sets of numbers {2¢,}].; and {z, "_1 both satisfy (38) and the correspond-

ing vectors are thus linearly mdependent by Lemma 1. But since J + J < 2N,
again by Lernma 1, there must exist j and k such that Za = z~ . Since g, §x > 0,

in fact we must have that z;; = z; . By induction it follows that J = J and,
possibly after some reordering,

£i41-1 J+1—1

G=24, z;=%, Z gk = Z gk, V3. (67)

Thus, the solutions are identical up to permutations and to the individual gy
values. However, this ambiguity is resolved when we apply F'; or F'3 to the
solution. For Fy we have from (26) that Fy{u) = Fo(Cu). Using (50), sub-
stituting gg for g cos 0k, we get via (54), (56) and (57) that Fi(u) = F\(u}

! J -1 41—l
Z( Z gkcosak) zy = Z( Z Tk cos@k) Zg; (58)

i=1 k=¢£; i=1

This holds indeed, since
cos 5k = cos éej = cos By, = cos by, for &; < k < £j4:. (59)
That Fg(1u) = Fy(@) follows in the same way, O

Remark. With a different choice of iz, Theorem 1 does not necessarily hold.
For instance, with N = 2 and

7 = (m10, Mot, Mao, Moz, (60)

there are in general two unrelated solutions to (50), which F'; does not map to
the same point. This is exemplified by

1 1 1
1 . -1 - 0
u={  [La=|, = Fo(u) = Fo(@t) = v_lf.2= (61)
-1 1 1+ ﬁ
but
1 1
Z Vi
B =Fiw)#Fi@) = /7. (62)
i f
2 3

'The function Fgo F;! is ill defined in the same way.

12



2.4 Analysis of the Conservation Laws

For simplicity we will mainly deal with the single phase, N = 1, one-dimensional
case where the medium is vacuum, 5 = const = 1. With the u variables defined
in (16) as conserved quantities, the system can be written on the standard form
of a conservation law,

2z

e+ fu)e =0,  flu)= [ Vb ) (63)

ui+ug

The Jacobian of £ with respect to u has the following form:

i{mG(cosf) —sinB)G_l’ Gx(cosﬂ —sin&)‘ (64)

Su ¢ cos sin@® cosé

Thus, the linearized problem has a double real eigenvalue, cos #, and an incom-
plete set of eigenvectors; the system (63) is only weakly hyperbolic. In general
this means that (63) is not well-posed in the strongly hyperbolic sense. The sys-
tem is likely to be much more sensitive than regular hyperbolic systems. The
solution of the linearized problem with frozen coefficients loses one derivative.
The L, norm of the solution at time ¢ > #; can be estimated in terms of the
Hi norm of the initial data at time { = #5. The sensitivity of the equations is
reflected in difficulties in finding stable numerical methods to solve them (see
Section 3).

‘The existence of solutions to (63) is also an open question. It appears that
solutions cannot be expected to be of bounded variation. In fact, analytic
and numerical evidence suggest that (63) can have measure solutions, i.e. of
delta function type (cf. Figure 7). An extended solution concept is needed to
accommodate measure solutions. This problem was addressed in {2] and [4],
where also existence of such solutions for certain conservation laws was proved.
Entropy conditions and uniqueness of solutions to {63} are even more uncertain.

The appearance of a delta function is closely linked to when the physically
correct solution passes outside the class of solutions that the system (17} de-
scribe. If initial data dictates a physical solution with N phases for t > T, the
system (17) with M < N phases will have a measure solution for £ > 7. In the
case of (63), a delta function will appear in the solution when multiple phases
are present.

The statements above are supported by our numerical simulations. We will
consider a one-dimensional example. In vacuum, % = 1, the separated system
{32) can be rewritten as:

(6x): -+ (5infr): = 0,

k=1 ... . 65
(ge): +cosOk(gr)e = —gr(cosbi)s, e (65)

The equation for ; is known to develop shocks in finite time. The angle f
will be constant along characteristics, which are straight lines corresponding to
rays. The shock develops where characteristics cross, i.e. where two wave fields

13



meet. The equation for gy is an ordinary transport equation with a source term
involving the derivative of cos . Along characteristics, which are the same for
both equations, the source term is zero, except at a shock where it becomes &
delta function. The resulting solution for gy is a delta function where the phase

s
“oh i ld”? hava snlit intn fwa naw nhaoae
SOCUIGT 11aVe 8Pl Inle LWE 8w pnases.

It is interesting again to compare the moment equations with the eikonal
and transport equations, (3} and {4), The latter also form a weakly hyperbolic
systemn with the same eigenvalue as (63). As was mentioned before, the viscosity
solution picks out the phase corresponding to first arrival where the physically
correct phase is multi-valued. When wave fields meet, there will therefore in
general be a jump In ¢. Because of the term V24 in the source term of (4),
the first amplitude coefficient wp has a measure at these points. Hence, the two
different formulations are similar also in this respect.

For the two-dimensional case, another function, g, is added to (63),

wet flue +g(u)y =0,  glu)= [ Vi) (66)

Vultud
Taking a linear combination of the Jacobians for f and g we get

a i)
J(0,a1,a3) := 016—1{ +a2591;

cosfl —sin# sinf cos _
ZG{‘”( 0 cosf))+“2( 0 sina)]G R

with the same rotation G as in (64). Regardless of the choice of (a1, az), we
still only have one eigenvalue and an incomplete set of eigenvectors,

In the general case with N phases, homogeneous medium, the governing
equations (17) reads

Fo('u)t +F1('u.),, +F2('u.)y =0. (68)
Denoting the Jacobians of Fy, with Ji, the following relationship can be derived:
arJy Fasdy = Jo - diag(J(Eil, oy, ag), cey J(@N, ay, &2)). (69)

This shows that the eigenvalues of the general system are simply the union of
the eigenvalues of N systems of the type (66). It also shows that there will not
be more than N eigenvectors, for the 2N x 2N system. Hence, we have shown
that the general system (17) is weakly hyperbolic.

2.5 The Riemann Problem

We study the one-dimensional Riemann problem for (63),

u oz <0,

70
u, x>0, ( )

uy + flu)s =0, Mamz{
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Uy 8,

H

Figure 2: Hugionot loci for left and right state, and solution to the Riemann
problem for the first type of discontinuity, plotted in phase space,

At a discontinuity the conservation form gives the Rankine-Hugionot jump con-
dition,

Flur) — Flur) = slur —uy), (71

where s represents the propagation speed of the discontinuity. Since f{u) =
cos fu, this simplifies to

—

cos fjuy — cos Oprty, = s(agy — ). (72)

For a given state, u;, we can construct the Huglonot locus consisting of all states
to which we can connect with a jump. In our case the Hugionot locus of state
uy is simply au;, a € R, hence, in phase space, a straight line shooting out from
the origin at angle f;. The speed of propagation is s = cos ;. It follows that two
non-zero states wu; and u, can only be connected with a discontinuity, should
they be parallel, u; || %,. Otherwise there must be an intermediate state, w,,,
in between, What this state will be is dictated by the Lax entropy condition,
saying that the left discontinuity must move slower than the right one. There
will be two types of discontinuities. If cosf} < cos#8,, we can use the origin
of the phase space as the intermediate state, hence u,, = 0. The Hugionot
loci and the solution for this type of discontinuity is illustrated in Figure 2, If
cos §; > cos 0., on the other hand, we do not have a solution in a classical sense.
Formally, however, a weak solution to the conservation law with this initial data
is given by setting w,, = t@,d(z — st). The conservation form gives a slightly
modified jump condition for this case,

cos u; — cos . u, = cos ém(ug o p) + U, {(73)

with the propagation speed s = cos 0. This situation corresponds to twe
meeting wave fields.

It is easily verified from (64). that w itself is an eigenvector of the Jacobian
of f. Therefore, the Hugionot locus will coincide with the integral curves of
the system’s characteristic fields. Since the (double) eigenvalue of (64), cosd,
is constant along the curves, the fields are linearly degenerate. From this we
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(a) Contact discontinuity (b) Overcompressive shock
Figure 3: The two different types of discontinuities.

conclude that the first type of discontinuity is a linear, contact discontinuity;
characteristics run parallel to the discontinuity. The linear degeneracy also
excludes the possibility of rarefaction wave solutions.

The second type of discontinuity will always have two characteristics inci-
dent to the discontinuity at each side, because of the double eigenvalue. These
discontinuities are thus of overcompressive shock type. The two different dis-
continuities, plotted in (z,1)-space, are shown in Figure 3.

3 Numerical Approximations

This section includes some results on the numerical treatment of (17). As was
discussed in the previous section, the system (17) is very sensitive, and this
creates problems for the numerical methods. The sensitivity derives from the
fact that the system is only weakly hyperbolic.

For the numerical methods we will use the following notation. Space and
time is discretized uniformly with step sizes Az, Ay and Af. The grid function
U?; approximates the analytic solution,

U’ m ul(iAz, jAy, nAt), (74)

where u are the variables introduced in (16). Similarly, for the index of refrac-
tion,

i = U(iA-’C,J'Ay), 6407?!'31' = nx(iAW'Ay), aynf:f = ny(iAm,jAy)i )
75

3.1 Single Phase

The point of departure for our numerical approximations is the basic first order
accurate Laz-Friedrichs finite difference method. For the one phase system in
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an inhomogeneous medium, it takes the form

2
n.. n
UG = U+ Uk + UL+ Ul ) (76)
4
et L e
~oag F1lWitig) — Fillis;))
.Y

with Fy, Fs and K as defined in (28). Even if the Lax-Friedrichs method is only
of first order, it works quite well and remains stable despite the sensitivity of the
equations. Most of our results are produced using this method. The purpose of
the numerical experiments is just to show the feasibility of the moment closure
technique and for this purpose a first order method is sufficient, The reason for
the Lax-Friedrich scheme’s stability is that it introduces a substantial amount
of viscosity, which implies that discontinuities in the solution are smeared out.

Less smearing of shocks is obtained with the Godunov method (see e.g.
[7]), another first order method which adds a smaller measure of viscosity than
Lax-Friedrichs. It is based on the exact solution of local Riemann problems.
The two-dimensional Godunov method is constructed by applying an ordinary
splitting approach,

Even though the Godunov method applied to the single phase system con-
verges in L; (see Table 1) there are large L, errors also for smooth problems
{see Table 2 and Figure 5).

The reason for the method’s behavior in Figure 5 can be found in the analysis
of the Riemann problem in Section 2.5. Along the line y = 1 the Riemann
problem in the y-direction corresponds to the situation in Figure 3a. Since
there is no rarefaction wave solution, there will be no flux in the y direction,
and the method reduces to the one-dimensional Godunov method in the -
direction along this line. Hence, along y = 1 there will be pure transport, and
no damping. A similar distortion occurs when the source is not located exactly
in the middle of a grid cell,

A second order accurate scheme introduces less artificial viscosity and can
therefore be expected to be more sensitive. To avoid oscillations at discontinu-
ities, so called TVD methods are desirable [7]. These nonlinear methods use
limiters to ensure that new artificial extrema are not introduced in the solution.
At an extrema, TVD methods are at most first order accurate.

We have implemented the Nessyahu-Tadmor method, [8]. It is a second
order TVD method based on the Lax-Friedrichs structure. No Riemann problem
needs to be solved, and the solution never has to be split up into characteristic
fields, since the limiter is applied componentwise for systems. To compute the
numerical derivatives in the scheme we use a variant of the minmod limiter,

1
) = MM (6(u; — uj-1), gt —uim1), OA(uj41 — w)), (1)
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T Lax-Friedrichs Godunov Nessyahu-Tadmor
unsplitted splitted splitted unsplitted sphitted

N error order | error order | error order | error order | error order
10 | 7.78e-3 3.60e-2 1.13e-2 7.98e-3 1.02e-2

0.85 0.56 0.80 1.47 1.23
20 | 4.33e-3 2.44e-2 6.50e-3 2.89¢-3 4.35e-3

0.92 0.72 0.69 1.74 1.20
40 2.29e-3 1.48e-2 4.04e-3 8.66e-4 1.89e-3

0.96 0.82 0.78 1.88 1.03
80 | 1.18e-3 8.39¢-3 2.35¢-3 2.35e-4 9.24e-4

(.98 0.89 0.85 1.89 0.76
160 | 5.99e-4 4.53¢-3 1.30e-3 6.32e-5 5.45e-4

Table 1: L; norm of the errors at time { = 0.85 for test case A (see Section 4),
using the single phase equations. Here Az = Ay = 1/N and CFL=0.65.

Lo Lax-Friedrichs Godunov Nessyahu-Tadmor
unsplitted splitted splitted unsplitted splitted

N error order | error order | error order | error order | error order
10 | 9.49e-2 1.78e-1 3.04e-1 6.64e-2 8.99e-2

1.26 0.85 0.06 1.26 (.91
20 | 3.97e-2 9.87e-2 2.91e-1 2.76e-2 4.78e-2

1.21 0.55 0.02 171 1.07
40 1.71e-2 6.73e-2 2.87e-1 8.46e-3 2.28e-2

1.15 0.73 0.02 1.70 0.80
80 | 7.71e-3 4.06e-2 2.83e-1 2.61e-3 1.31e-2

1.09 0.85 0.01 1.57 6.91
160 | 3.63e-3 2.26e-2 2.82e-1 8.75e-4 6.98e-3

Table 2: Ly, norm of the errors at time ¢ = 0.85 for test case A (see Section 4),
using the single phase equations, Here Az = Ay = 1/N and CFL=0.65.
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where
ming ug i ug > 0,VEk,
MM(u1, us,...) = { maxg ux  if up <0,Vk, (78)

0 otherwise.

We let @ = 2 in our test cases. This gives better results than the classical
choice § = 1. Derivatives are computed componentwise, without using the
exact Jacobians,

A two-dimensional Nessyahu-Tadmor scheme was obtained using the one-
dimensional method together with dimensional splitting, Strang splitting, [10],
was used to preserve second order accuracy. The result is however not perfectly
satisfactory. The convergence rate for the splitted Nessyahu-Tadmor scheme
turns out to be somewhat slower than Lax-Friedrichs in Ly and only marginally
higher in L; (see Table 1 and Table 2). A likely cause of this is the dimensional
splitting. As a comparison, we also include results for a splitted version of the
Lax-Friedrichs scheme, which are clearly inferior to the results for the unsplitted
scheme. The failure of the Godunov scheme could also be attributed to the
dimensional splitting. See [6] for a further discussion.

In contrast, when we use a genuinely two-dimensional version of the Nessyahu-
Tadmor scheme, [6], we get a considerable improvement of the results. Almost
full second order accuracy is achieved (again, see Table 1 and Table 2).

3.2 Multiple Phases

In the multiple phase case, we have mainly considered the case of two phases,
N = 2. Tt is more difficult to get reliable calculations when solving (17) with
multiple phases, than in the case of a single phase. A few new problems are
added to the numerical methods. In each time step a nonlinear system of equa-
tions must be solved. The Jacobian of this system can be singular. It may even
happen that it does not have a solution. Being careful when solving the system,
however, it seems possible to compute solutions for most configurations. Where
not otherwise stated, we assume below that the choice of moments are those in
(18).

We have only used the Lax-Friedrichs method to solve the the multiple phase
systems, With an inhomogencous media, it can be written as

i
mFo(ULY) = 'J (Fo(UP 1))+ FolUPyy ;) + FolUT;_1) + Fo(U%;41))
n AL
- 2:35 (Fi( i+1 J) I(U?—l,j))
0 s At
’J (F2 IJ+1) Fg(U id— 1))

+AtK(U;j,3xﬂfj,ayT}ij)- (79)
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For N = 2 the functions are

2
M3

( Uy 4 s \ \/u’-i-u, + \/u’+u4
M2 + ug
— B, \/ “+u= \/u§+u.,

T + T
Byl Uty

{uz_{_u?}a/z + (uz'i-u’}"f?

( %m 4 —Uatg nzugwnyuxua+nzu3~nyuau4
itud  /u 2+“3 \ﬂ17+u, \/uz+t.|.4

n
L] - ]
2+’“2 + a+“4}
;fi%?'* wltal

’?uu —frUitz ngu3 foiiatiq
Fq= \/“34‘“2 \/"3""“4 , K= \/1.42+u2 \/u3+u4
uiu, + u3u4 netiud-nuuius | nului-nyuiug
(u’+u")”“ (u2+u’)3f"” (w3 tu?)’? + (u’+u2)3f"
nyutulonouiul pytiaut— o tan]
\( 2+u2)3/2 + (u3+u2)3/2 y(uziug)gf;z + y( 32-{-11 )3/2

(80)
We see from (79) that for each iteration, at each point, it is necessary to solve
a nonlinear system of equations of the type

Fo(UKY) =i (81)

17
Actually, solving (81) is the first part of the evaluation of the flux functions
Fyo Fal and F'3 o F3'. The second part of the composition is computed in
the subsequent time step.

There are a number of problems associated with this evaluation., First,
solving (81) can be difficult. In the general case an iterative solver must be
used, which is expensive and requires good initial values. For the N = 2 case it
can, however, be done analytically, see Appendix A.L

Second, (81) may not have a solution, Although, for the exact solution of the
PDE (81) should always be satisfied, truncation errors in the numerical scheme
may have perturbed the solution so that 'rh,'; ¢ Fo(D;). Thus, the conditions
in Theorem 1 are not satisfied. In this case we use the least squares solution of
(81).

Third, in general, the Jacobian of Fy is singular at some points in the
computational domain. For N = 2, the Jacobian

1 0 1 0
0 1 0 1
Jo= 2 4 : 3 2 4 : 3 )
3cos® #;—2cos® 8, —-2sin #1cos” & 3cos® fa—2cos” By —2sin B cos” B4
~2cosfy8in®f;  3sin®d;—-2sint g, —%cosfipsin®f;  3sin?@;—2sin? #2
(82)
is singular when
cosf) = +cosdy and sinf = +sinby, (83)

or, equivalently, 2 = z%, using the variables defined in (46). (Note that Jo
only depends on the angles 8k, not on gx.) For iterative methods that use the
Jacobian, this is a problem. Furthermore, to ensure the Lipschitz continuity of
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the numerical flux function F; o Fy l(ﬁt:-;—), there should be a constant M such
that

By = ||JoArJy Y| < M ae., Ay = diag(J(61,1,0),..., (8N, 1’0())311
8
where we also used (69). A similar inequality should hold for Fy o Fg'. Since
Jo can be singular it is not clear that the condition in (84) holds. For N == 2
(84) holds in any closed subset of Dy, that is essentially whenever 23 + 22 # 0,
see Theorem 2 in Appendix B.

For the N = 2 case we have also used an alternative choice of moments,
namely those in (60). As was seen in the remark after Theorem 1, the flux
functions are in general two-valued for this choice. For simple problems this
ambiguity can be resolved by for instance choosing the value that maximizes
the smoothness of the solution in some sense. Also for this choice (81} can be
solved analytically, see Appendix A.2. The expression in (84) is unbounded
when either

costh = cosfy or gin fy = sinfl,, (85)

but not both. This permits us to solve problems where z¥ = 2%, including the

case 73 + zz = 0 (which cannot be solved with the choice used above). On the
other hand, two new singular branches are introduced, which depend on the
choice of coordinate system. Solutions cannot be computed on these branches.
Another feature of the system (81) should also be noted. It has always at
least N'! solutions, since F'y is invariant under the action of Sy, the group of
permutations of N elements, on the vectors (ng_l,UQk)T. For instance, when
N=2,
Fk(u1|u25u3|u4) = Fk(U3,U4,u1,U2), k :01172‘ (86)

The phases are thus interchangeable, which from a physical standpoint is guite
natural. Numerically, it has the effect that we cannot be certain which of the
N'! roots our method finds, Therefore, the numerically calculated variables u
can be very discontinuous over the domain, even though the moments, which
we get by applying the Fy to the variables, are smooth.

4 Numerical Results

In this section we show results from eight different test cases. We have consid-
ered both homogeneous and inhomogeneous media. Sources are located outside
the computational domain. The test cases for homogeneous problems are

A) the rectangle 0 <z <1 and 0 < y < 2; one source located at coordinates
(0.2, 1); smooth point source with exact solution g = max(0,f — »)*/r,

B) the rectangle 0 < # < 1 and 0 < y < I; two sources located at coordinates
(—0.2, —0.2) and (1.2, 1.2); smooth point sources with exact solution g, =
max{0,t — re)?/ri, k= 1,2,
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C) the same rectangle as in B but with two sources localed at coordinates
(-0.3, 0.65) and (1.3, 0.35); discontinuous point sources with exact solu-
tion g = H{t —rx)/re, K =1,2.

D) the same rectangle as in B but with three sources located at coordinates
(—0.4, 0.8), (0.2, 1.4) and (—0.15, 1.15); discontinuous point sources with
exact solution g = H({t —ri)/re, k=1,2,3.

The variable v = ri (&, y) is the distance to source k. In the homogenecus case
we use the value of the exact solution as a Dirichlet boundary condition on all
boundaries. A CFL number of 0.65 was used for all computations.

General results for test case A is shown in Figure 4, where the Lax-Friedrich
method was used to solve the N = 1 system (76). The difficulties with using the
Godunov and the splitted Nessyahu-Tadmor methods for the same problem are
highlighted in Figure 5 and Figure 6 respectively. Convergence for the different
methods are summarized in Table 1 and Table 2.

For test case B we only used the Lax-Friedrich method. In Figure 7 the single
phase system was solved, even though the physically correct solution contains
two phases, A measure solution is suggested. In Figure 8 we used the N = 2
system (78, 80) for the same problem and it captures both phases.

Also for test case C and D all solutions were computed using the Lax-
Friedrich method. We present the results for the N = 2 system on case C
in Figure 9 and the results for the N = 3 system on case D in Figure 10.

Test cases B and C both contain waves meeting head-on, For the N = 2
system the choice of moments in (60) was therefore used. In all other cases,
including those below, the moments in {18) were used.

The inhomogeneous test cases are

E) the same rectangle as in B; a plane wave entering obliquely from the left,
at an angle of 45 degrees to the line 2 = 0, index of refraction modeling a
smooth interface,

1 1
nle,y) = 1.5+ - arctan(40(z — 5)) (87)

F) the rectangle 0 < # < 2 and 0 < y < 2; a plane wave entering from the
left, orthogonal to the line » = 0, index of refraction modeling a smooth

concave lens,
1 D> 1,
’7(33,.7/) - {3_(:23 : D 5 }., (88)

with
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G) the rectangle 0 < z < 1.5 and 0 < y < 2; a plane wave entering from the
left, orthogonal to the line # = 0, index of refraction modeling a smooth
wedge,

Bz, y) = 1.5+ %arctan(%(m - 0.2 — |y —1])). (90)

H) the same rectangle as in F'; a plane wave entering from the left, orthogonal
to the line z = 0, index of refraction modeling a smooth convex lens,

R R AR C- o RGO

4
3—cos{nd)

Test cases F and H were taken from [5]. In the inhomogeneous case we use a
Dirichlet boundary condition on the left boundary, £ = 0. On the remaining
boundaries we use simple extrapolation, U, 41 ; = Uyj, ete. All computations
use the Lax-Friedrich method with CFL=0.65.

For test cases E and F we have only solved the N = 1 system, which gives
the correct physical solution. Results are in Figure 11 and Figure 12.

Test cases G and H were solved with both the one and the two phase system.
Figure 13 and Figure 14 show the results for these cases. One phase is not
sufficient to describe the physically correct solution, so a measure solution is
indicated in Figure 13a and Figure 14a.
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(a) Contour plot of the ray strength g (left) and the vector
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(b) Ray strength g.

Figure 4: Soluiion at time ¢ = 0.85 of the single phase system for test case A,
using Lax-Friedrich with 40 x 80 points.
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Figure 6: Solution at time ¢ = 0.85 of the single phase system for test case A,
using the splitted Nessyahu-Tadmor method with 40 x 80 points. Left figure is
a contour plot of the ray sirength g. Right figure shows g in a vertical cut at
z =02,
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Figure 7: Solution at time t = 3.0 of the single phase system for test case B,
using the Lax-Friedrich method with 80 x 80 points. Figure shows ray strength

g.
glegl

10+

b

Figure 8: Solution at timet = 3.0 of the two phase system for test case B, nsing
the Lax-Friedrich method with 80 x 80 points. Figure shows the combined ray
strengths g1 + g2 = maqo.
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Figure 9: Solution of the two phase system for test case C, using the Lax-
Friedrich method with 80 x 80 points.
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(a) Ray strength g. (b) Vector field u = (u;, up} with contour
lines of the index of refraction 1 overlayed.

Figure 12: Solution at time ¢ = 3.0 of the single phase system for test case I,
using Lax-Friedrich with 80 x 80 points,
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¢ g2

(a) Ray strength g with N = 1. {b) Combined ray strengths g1 +g2 = mao
with N = 2,

{ul,u2) & (u3,ud)

(c} Vector fields (%1, u2), (u3,u4) and contour lines of the index of refraction # superim-
posed, with N = 2.

Figure 13: Sclution at time ¢ = 5.0 of the one and two phase systems for test
case (3, using Lax-Friedrich with 80 x 80 points.
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Figure 14: Solution at time ¢ = 3.5 of the one and two phase systems for test
case H, using Lax-Friedrich with 80 x 80 points.
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A Inverting Fy

We will here show how to solve the system of equations (81) analytically, when

N = 2, for two different choices of moments. We use the ansatz

1 H .

Uy = Emm + %(amm co8 ¢ — gy sin ¢}, Uz = Mg — U1,
1 1 ,

uz = 3oy o+ ﬁ(am{n cos ¢ + emyg sin ¢}, g = Mgy — Uz,

with the variables a, b and ¢ defined as
a=gi+gs b=ymi+md, L=0+

so that 1 1
g1 = E(a+bcosq§), gzzb—(a—bcosqfa).

A.1 The ms; case

(92)

(93)

(94)

For the choice of moments in {18), the nonlinear systemn of equations (81) reads

up+uz = myp,
ug +uqg = Mo,
_“:;_ﬁ + _,,ﬁ.‘:‘,g__ = m
uitul ustuf - 30
3
g Y —
ultul + m = T3

We observe that

mag = mygcos® a— Reos{f + 3a)(1 + cos B),
mos = o sin® o+ Rsin(8 + 3a)(1 + cos ).

Here,

Moy b b
tanfl’:m—m, B =01+ 8 —2a, R=§(l—§),

with a to be determined. The values of 8 and R follows from (96),

Mos — Mp1 SIN° @

tan(f +3a) = mag — Mmigcos®a’

R}14cosf)? = (mgg— mygcos®a)? + (mos — mgy sin® @)’

From R we can compute a. With # known we now use the relationship

cos{f + 2a) = cos(f + 03) = cos By cos By —sin by sindy =
4192 g192

UiUs Ul

(95)

(97)

(98)
(99)

. (100)

Multiplying (100) by gig2 and inserting (92) and (94) yields an equation of the

form
11 cos(2¢) + gz sin{2¢) = g3,

33

(101)



which can be solved exactly, The coefficients are

g = g(a®+c?)miy — mfy) - b° cos(B + 2a),
g2 = —3miomor, (102)
g3 = (b~ 2a?)cos(f + 2¢) + mi; — mi;.
A.2 'The mqy case
If we choose the moments in (60} the equations (81) will be
uy +ug = I,
Uy -i; ¥y = My,
uy “ = 103
T A (109
us —
Jaird T i o e
We get immediately that
a = mag + Mo, {104)

We have left to solve the angle ¢. To do this, we use equation three of (103),

u?  ul
"—l-l-' s = Map. (105)
h g2

Like in Appendix A.1 we multiply (105) by g1g2 and insert (92) and {94) to get
an equation of the form

r1 cos{2¢) + rpsin(2¢) = rs. (106)

This equations can be solved exactly. Here, the coefficients are

r = 2—‘;53(((.12 — 2b2)m%0 — 62m51) + %mzu,
rs = —fMieol, ‘ (107)
rg = 1(2a% — b¥)mao — gz (a®miy + Pmjy).

B Stability of F'; o Fy!

We here prove a theorem showing the stability of the numerical flux function
F1 o0 Fyl, in the sense that its Jacobian is bounded.

Theorem 2. Let K be any closed subset of Dy, defined in (51). For N = 2
there exists a constant M, only depending on K, such that the matriz funclions
Jo(u) and Ay(u), from (82) and (84) respectively, satisfy

IMoArJ5 | < M, YueK. (108)
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Proof. We first recall that both Jy and A are actually functions of only 0; and
fy. Interchangeably with #; we will use the complex z;. The relation between
these variables and u are defined in (46) and (47).

We now start by showing that Jy is singular if and only if condition (83)

holds, That it 1c sufficient condition ig obhvious since it makes column one (twn)

and three (four) of Jy equal. To see that it is also necessary, suppose there are
71 and zp such that (83) does not hold, that is z¥ # 23, and that Jo(z1, 2z2) is
singular. Then there is a vector 8 = (f1,... ,B4)T # 0 satisfying JIB =0, or
equivalently

4081 + Ba(3 + 2cos 20, — cosdth) + Ba(—2sin 20, + sindby) = 0,

485 + Ba{—2sin 20, — sin48;) + B4(3 — 2 cos 26, — cos 46y) 0, (109)

for k = 1,2. We multiply the second of these equations by the imaginary unit
and add them to get

1
4y +302+252m§*“0‘22’z =0, E=1,2, (110)
%k

where we also introduced a1 = 8; +if; and ay = B3 + ifs. Since |z;| = 1 we
can multiply (110} by z#. Thus, we have that z{ and 2% are two roots of the
polynorial

Po(z) = 2a3 + (da; + 3az)z — ag2’. (111)

We note that this implies that as # 0. Denoting the third root of P, by v we
have the identity

Q&g + (day + Sz)z — apz® = —ag(z — 22)(z — 23)(z — 7). (112)
Identification gives for the constant term
2y = wpfrgy = 2G| = enlly] = lv[ =2, (113)
and the coefficient in front of the 22 term, (|22} = 1)
w(@+4+7=0 = |g+4l=2 = H=z (114

a contradiction,
Now, we define the set K, C K as

K.={ueck 1 fz1 — z2] < €} (115)

and note that Jp is nonsingular in K \ K. by the result above, and the definition
of Dy. Hence, Jo, Jy ! and A, are continuous matrix functions of w on the
compact set K \ K. and there is thus a «* such that

sup ||JoArdst|| = [}JuAlJO“lHI = M) < oo. (116)
uweK\K, u=u*
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If K. = § we are done. Otherwise, take u € K.. Then the difference between
the corresponding angles can be estimated, |0 —~ 61] = |A8| < Coe, for some
constant Cp. Let Jo{0y,6; + Af)y = = and define

0= (st sihn) 2= (8 ao)v=() o= (0) o

Substiiuting ¥, = w1 — y, we get
J(0)y +J(AB)y, = ®s, = —8J = —(J(AF)—J(0))y; = 23— J(Af)x;. (118)
Moreover,

_( AD) AA9)

iy = (ot sann(an) (- ban)

= ~(rahseh S Roms) * (raape,)
1 T

( SA(8T) (w0 — J(AO)1) )+(J( A(M)“’i)wl). (119)

SIS (g — J(AR) 1) ABA(AL
Thus,
HJQAIJ_IH — HJ{]AlJO_lmH — su “JﬂAly;i
¢ ceke ||} cekt |||
< sup (IAES) T+ (18I AYET) e — J(AB)a ||
- 1Ed]
DI A ] (120)

1t is clear that ||A(A#)|| and [[J(A#)}] can both be bounded independently of
8, and A8, Also, ||zxli < ||2|| for k = 1,2. Therefore, there are constants C1,
Cy such that

1JoALJ5 ] < Cr(I6A6T) | + [18(JAYE) ) + Co (121)
Define §J' by
8J' = (‘722 —..7'12) where  6J = (J:u 3:12) (122)
~J21  Ju J' J21 22

so that (§J)~! = §J’/ det 6J. Since §AJ’ is an analytic function of A we can
write it as a Taylor series round Af = 0. We have

SAST = iAk(Hl)(A(?)k. (123)
k=4

This shows that also SAdJ'/(A8)! is an analytic function of Af. For Af <
Coe we can now get the estimate |JSA6J']] < C3{A8)?, with Cz a constant
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independent of #;. The uniformity in ¢; follows from the fact that AdJ’ is also
analytic as a Tunciion of 8, for all Ad. Similarly,

§(JA)T = i Br(61)(AD)*, (124)

k=4

gives ||§(JA)8J'|| < Ca(AB)*. Finally,

jag _ A0 _ jag? o
[detdJ| ~ |—1+ 2cos? Al —cos? AB] | — (A0 + O((A)H] =
(125)
We get
Su}? “JUA1JU_1” < 0105(03 4 Cq) + Oy = M. (126)
ue K,
With M = max{M;, M;) the result in the theorem follows. a
Remark. The first terms in the Taylor series (123) and (124) are
_ [ cosB(2cos 8—Fcos? 842) sin#(—2cos® §4F cos® 0-1)
Aq = (sin 8({2cos® 6—§ cas® 8—1L) cosd(Zcos® §—§ cos® 8) ) (127)

and

—10cos” 6432 cos® #—12cos® f+4casd)  sin §{1Ccos® -2 cos® § 6 cos” §

sin #(10 cos® §— 22 cos? 9+3coszﬂ—% 10 cos’ 9—%’—(:055 \9+%<c:051a [

respectively.
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