UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Incompressible Navier-Stokes Flow About
Multiple Moving Bodies
(Ph.D. Thesis)

Archi C, Li

December 1996
CAM Report 96-53

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555

Incompressible Navier-Stokes Flow About
Multiple Moving Bodies

Archie C. Id

January 20, 1997

Contents

1 Introduction:

2 Cut-Out Grids:

2.1 Imtroduction:
2.2 Numerical lssues: e
2.2.1 Identification of irregular and boundary points:, .
2.2.2 Identification of interior and exterior points:
2.2.3 Interpolation at irregular points:
2.2.4 Software design:
2.3 Poisson’s Equation: L.,
2.31 The discrete Poisson problemon a COG:

2.3.2 Saolving the Poisson problem, a “direct” method:

2.3.3 Solving the Poisson problem, an iterative method:
3 Navier-Stokes How:
3.1 Statement of the problem:
3.2 The projection step: L
3.3 Thealgorithm:
3.4 Spatial discretization: L.
3.5 A moving boundary issue:o L L.
3.6 Astabilityissue: e
3.7 Computationalresults:
3.7.1 A moving cylinder in afixedbox:
3.72 A convergence study:. L
3.7.3 Flow past a staggered array of cylinders:
3.74 Stir-up of an infinite cup of coffee:
4 Integral Equations:
4.1 Overview: e
4.2 Integral equation theory for the Dirichlet problem:
4.2.1 Statement of the problem:
4.2.2 Preliminaries:o oo

4.2.3 Simply connected domains: 48

424 Multiply connected domains: oL, L., 47

4.3 NumericalIssues: o oo 50
4.3.1 Discretization of integral equations: 51
4.3.2 Solution of discrete equations: b2
4.3.3 Evaluation of integral representation:, 52

4.4 Choosing Dirichlet constants subject to flux constraints: 59
441 Statement of the problem: 60
4.4.2 Anexsting approach: 60
4.4.3 Anintegral approach: 61
444 Summary: L 62

A A Data-Structure-Neutral Iterative Solver Class: 64

Abstract

A computational algorithm iz created to solve incompressible fluid flow past
multiple moving bodies. The fluid equations are sclved with a projection method
that is formally second-order accurate in space and fourth order in time. We
present a fast method based on integral equations to solve the elliptic problems
associated with the projection step. The complicated geometry is dealt with
via a cut-out grid formulation and is implemented through an object-oriented
design. The cut-out grids can be rapidly generated (an important feature when
working with time-dependent geometry), they improve the small cell stability
restriction, and they allow both moving and stationary bodies to be modeled
with the same algorithm. The object-oriented approach taken has resulted in a
set of computational tools (classes) that enable flows involving complex moving
geometries to be simulated quickly, and 1t is anticipated that they will allow
others to easily implement and modify algorithms for problems characterized
by complicated domains, Flows involving multiple moving bodies are modeled,
and computational results are presented.

Chapter 1

Introduction:

This research addresses the solution of incompressible Navier-Stokes flow about
multiple moving bodies. A primary motivation for this work is a need for fluid
flow solvers that can be used to develop fluid flow control procedures. The de-
velopment of these procedures requires a solver that is computationally efficient
(the design process requires many simulations to be run for extended periods of
time) and capable of representing flow about moving objects in a computational
domain with non-trivial geometry. In the problems we consider, the objects are
given a prescribed motion. This is an appropriate type of simulation for fluid
flow confrol in which the actuators are objects moved in response to a control
signal. Extensions to the approach could include problems where the object
motion is coupled to the fluid forces exerted upon it, such as fluid-structure
interaction problems.

Our flow solver consists of a projection method [10], based on a method
of lines approach, where finite differences are used o approximate the spatial
derivatives and convert the partial differential equation into a system of ordinary
differential equations. The ODls are solved using fourth-order Runge-Kutta,
and the incompressibility constraint is enforced by applying a projection opera~
tor. The projection operator extracts the incompressible component of a given
vector field by making use of the stream function. We apply the projection using
the stream function instead of the pressure for two reasons. First, the stream
function approach leads us to an equation that is easier to solve. Specifically,
the stream function based projection results in a Poisson problem with Dirichlet
data while the pressure formulation leads to a Neumann problem. The Dirich-
let problem can be solved uniquely but the Neumann problem does not have a
unique solution, and it takes additional effort to deal with this non-uniqueness
(In particular, the Neumann problem leads to a singular linear system, and one
must deal with a non-empty nullspace when solving this system). The second
reason involves the boundary data for these two Poisson problems. In the stream
function approach, boundary conditions can be explicitly determined from the

known velocity boundary conditions; however, no explicit pressure boundary
conditions are apecified for the Navier-Stokes equations [16]. The resulting pro-
jection method is formally second-order accurate in space and fourth-order in
time.

For simple rectangular geometry, this method can be made computation-
ally efficient by using Cartesian grids, centered differences, and a standard fast
Poisson solver. However, if a general, multiply connected, time-dependent do-
main is considered, then the situation becomes more complicated and different
approaches must be developed to deal with the additional computational and
theoretical issues.

One issue that arises when we allow more complicated geometry is that
it becomes more difficult to discretize the domain. Some type of grid must be
created in order to apply our finite differences, but the nature of our simulations
limits the possible grid strategies. For example, since the domain can vary with
time, we may need a different grid at every time step. This restricts the use
of certain body-fitted and unstructured grids, because the construction of new
grids of this type at every time step can become computationally expensive,

A cut-out grid (COG) formulation [39, 2, 7, 40, 38, 26, 12, 5] is adopted to
address this issue (for additional references, an extensive list is given In [2]), A
COG consists of a flagged Cartesian grid and a representation of the boundary of
the domain. In our particular implementation, function values are specified on
the boundary of the domain and at grid points that lie away from the boundary,
while values at grid points near the boundary are defined through interpolation
from these known values. This type of grid can be rapidly initialized at each
time step, plus at grid points that enter the computational domain, values are
naturally defined through this interpolation procedure, Thus COGs are useful
in the discretization of complicated time-dependent domains.

Cartesian COGs have been widely used in compressible flow problems [7,
40, 26, 12, 5], with some simulations involving moving geometry. There have
been far fewer COG approaches developed for incompressible flows, with ex-
ceptions being [2], where the incompressible Euler equations are solved, and
[36] where incompressible Navier-Stokes flow is considered. Howevez, in both of
these works, only stationary geometry is considered. For our moving boundary
applications, the computational demands require a simple and efficient solver,
and our particular approach possesses some advantageous differences when com-
pared to other COG formulations. For example, in [2, 36] the fluid equations
are discretized using adapted high order Godunov methods. Qur approach is
sorewhat simpler, because at most points straight centered differences are ap-
plied, Furthermore, in contrast to [2], no special redistribution techniques are
needed to avoid small cell stability problems.

One could also develop solvers using overlapping grids [6, 9, 19, 31, 37, 35],
where both compressible and incompressible flows have been modeled. Our
COGs are in fact related to overlapping grids, but the COGs are simpler because
no local grids have to be generated. Additionally, the simplicity of our procedure

makes 1t easy to construct our COGs from CAD data. On the other hand,
the COG formulation we use does not currently allow extra refinement near
the boundaries, and may be best suited for problems whose solutions require
refinement, throughout the domain {such as separated flow problems).

The complex geometry also causes complications in the projection step. En-
forcing the incompressibility constraint requires the solution of Poisson’s equa-
tion, and this elliptic problem requires a large amount of computational effort.
For rectangular domains, a fast Poisson solver can be used to solve Poisson
equation efficiently, but something else must be considered for the complex ge-
ometry which we will allow. Therefore, we develop a Poisson solver for complex
domains by combining an iterative method with a preconditioner based on an
integral equation formulation, a standard fast Poisson solver, and a relaxation
step. This preconditioner results in an iterative method whose convergence is
independent of the mesh width, and this performance is comparable to multi-
grid algorithms (although it has not been determined which method will be
ultimately faster}. The use of integral equations in a direct Poisson solver has
been cousidered in [35, 24, 25]; however, this may be the first look at using
mtegral equations in an iterative procedure.

The multiply connectedness of the domain also affects the other component
of the projection step, namely determining the appropriate boundary conditions
for the aforementioned Poisson problem, For our stream function based projec-
tion, the no-flow condition only determines the boundary values of the stream
function up to a constant per boundary component. On a sitaply connected do-
main there is only one constant to choose and it can be arbitrarily set, but for
multiply connected domains the stream function constants must be chosen to
produce the correct local circulations (which are specified by the no-slip bound-
ary conditions). In a previous work [35] these constants were chosen at a cost of
solving one elliptic equation per boundary component, but this results in a large
amount of computation when dealing with time-dependent, highly multiply con-
nected domains. In this thesis, we show how an integral equation formulation
can be used to simmultaneously determine all of the boundary constants with a
single elliptic solve, thus maintaining efficiency when the boundary possesses a
large number of components.

This research required many different techniques to be brought together to
form one sueccessful procedure. To facilitate the combination and alteration of
diverse methods, an object-oriented design was employed in the development
of the software. One feature of object-oriented design is encapsulation, where
the information and functions needed to accomplish a specific goal are grouped
together with a simple interface., This is very useful when a large complicated
program can be constructed from several smaller parts. This is normally consid-
ered to be a standard objective of good programming style, but it is facilitated
by the use of an object-oriented language like C++4. A second atiribute is
that of derivation and inheritance, where a fundamental base class is created
and subsequent adaptations of that type are built on top of the base class. In

our implementation, all geometric entities are derived from a base class that
provides a common interface for information about the geometry. This allows
complex domains to be easily represented, and our fluid solvers are indepen-
dent of the particular test geometfries used in the simulations. For example,
the current solver can have its geometry specified from a CAD package without
requiring any new program modifications. It is anticipated that these software
tools will allow others to easily implement algorithms for problems characterized
by complicated geometry.

In summary, a numerical algorithim is presented for solving fluid flow about
multiple moving bodies. A cut-out grid formulation is introduced to allow rapid
regridding of the time-dependent domain, and integral equations techniques are
used to efficiently solve the elliptic problems that arise. In order to ease the
implementation of these different technigues, an object-oriented approach to
software design was taken which resulted in the creation of computational tools
for solving problems in complex domains.

In Chapter 2 we deal with issues relating to COGs. The first section in-
troduces what a COG is and how to represent a function on a COG. The next
section covers the key numerical steps involved in creating a COG representation
of a function. The third section explains how to formulate Poisson’s equation
on a COG and how to solve that Poisson problem rapidly by incorporating an
iterative method, integral equations, a fast Poisson solver, and relaxation tech-
nigues. In addition we discuss how the COG class library can be useful for
problems besides those involving incompressible fluid flow,

Chapter 3 involves the solution of the incompressible Navier-Stokes equa-
tions. The detalls of a stream function based projection method is presented,
and we show how integral equations can be used to efficiently apply the pro-
jection step in mulbiply connected domains. The discretization of the spatial
derivatives is accomplished by incorporating COGs, and the stability benefits
of the resulting formulation is explained. Finally, computational results are
presented for stationary and f{ime-dependent domains.

In Chapter 4 we include the integral equation material that is used in the
previous Chapters. In the first section we review the relevant theory, cite needed
results, and derive integral formulations of the Laplace problem in multiply con-
nected domains. The second section addresses the numerical issues invelved in
the computational solution and evaluation of integral equations, and we discuss
the fast techniques that are available to us. In the final section we develop the
integral equation formulation that allows us to efficiently determine the stream
function’s boundary values in a multiply connected domain (these values are
needed in our projection step).

Chapter 2

Cut-Out Grids:

When modeling a problem with complex geometry, a major computational issue
is how to represent the domain. There are several possible choices available to
us including body-fitted grids, unstructured grids, Cartesian grids, and cut-out
grids (COGs). The nature of the problem will generally favor some gridding
strategies over others, and one must consider how well the grid resolves the
geometry, what cost is involved in generating the grid, and how easy and efficient
it is 1o discretize the problem on that grid. For the fluid simulations addressed
in this work, a cut-out formulation is employed which can be rapidly generated
{even for complex domains), it easy to apply finite differences on, and whose
regular structure permits the use of certain fast solvers. In this chapter, we first
introduce what a COG iz and discuss how to represent a function on a COG.
Next, some key numerical issues assoclated with cut-out grids are examined, and
in the final section we give a cut-out grid formulation of Poisson’s equation and
present ways to solve this problem efficiently. An early exploration of this fype
of grid was presented in [39], and we will adopt the terminology and notation
that appears in that reference.

2.1 Introduction:

A COG is a discrete representation of a domain. Tt can be set up rapidly, even
for complicated domains, and this makes it useful for problems characterized
by complicated, time-dependent geometry. Consider the domain exterior to a
small circle and bounded by a unit square {see Fig. 2.1). A Cartesian grid
that contains the domain is created, and the grid points are flagged as either
being exterior to the domain, interior to the domain, or on the boundary of
the domain. Interior and exterior points are further classified as being regular
or irregular points. A regular point is one whose nearest neighbors all lie on

Figure 2.1: A sample domain.

the same side of the boundary, while at an irregular point some of the nearest
neighbors lie on the opposite side of the boundary (or on the boundary itself).
Thus, if a point is interior to the domain and all of its nearest neighbors are
also interior, then that point is a regular point. If a point is interior to the
domain but some of its nearest neighbors are exterior (or boundary) points,
then that point is irregular. Boundary grid points must know where they lie on
the boundary (with respect to the parameterization being used), and frregular
points need to know where their five poiﬁt stencils intersect the boundary. (For
an example of a five point stencil see Figs. 4.7 and 4.8) This information is
sufficient to define a COG for a given domain {see Fig. 2.2).

To represent a function on the COG, one specifies the function values at each
regular interior point plus the values on the boundary of the domain. The values
at boundary grid points are specified by the given boundary data, and irregular
interior points have values defined by interpolation between the known values at
the regular interior points and the known boundary values. This combination
of geometry, grid, and data information will be referred to as a cut-out grid
function.

2.2 Numerical issues:

Figure 2.2: A coarse COG: regular points are marked by circles, irregular points
by crosses, and boundary points by squares.

2.2.1 Identification of irregular and boundary points:

In forming a COG, an algorithm must be chosen to correctly flag the grid
points. The identification of irregular, regular, and boundary points can be
done efficiently by searching in a boundary-to-grid fashion. First, all grid points
are initially flagged as regular points, and then the boundary is divided into
intervals whose arclength is less than the minimum mesh width of the Cartesian
grid. Each boundary interval is visited, and all grid points that lie near the
interval are checked to see if they lie on the interval or if their five point stencils
intersect that interval. Due to the structure of the Cartesian grid, the nearby
points can be identified without having to search the grid (for instance, dividing
the horizontal distance from a boundary point to the left edge of the grid by
the mesh width produces the horizontal spatial index of a nearby grid point).
Furthermore, since we only consider one boundary interval at a time, we can
test if a point is an irregular or boundary point of the given interval within
a constant number of operations. The specific computations will depend on
what type of contour it is and how it is represented, but the local nature of
the test will limit its expense. Thus by using this boundary-to-grid procedure,
the cost of identifying irregular and boundary grid points increases inversely
with the size of the smallest mesh width, and for a two dimensional grid with
n unknowns the cost only increases like O(n3).

2.2.2 1Identification of interior and exterior points:

Another concern in creating a COG is identifying whether the grid points lie
interior or exterior to the domain. For some contours a simple test exists to
determine if a given point is interior or exterior. (For example, a point is
interior to a circle if the distance from the point to the center of the circle is less
than the radius). In these cases we can just visit each grid point and apply this
simple test. For general geometries it 18 more difficult to efficiently identify the
grid points, and something else must be tried. Two approaches to this problem
will be presented, the first involving integral equations (a similar procedure can
be found in [38]).

Consider the case for a bounded domain §2 whose boundary consists of one
bounding contour 8Qpr41 and M inner contours 99 - - - 982py. Define I{x) as a
double layer potential with unit charge density.

9
n(y)

here i = my4a on the inner contours, and 1 = fynpaq ont Qa1 (this notation
is defined in Section 4.2). By applying Green’s theorem, we can determine the
value of I for different peints in the plane (In the following, Q€ refers to the
complerment of the domain).

(5 log | # ~y) ds(w) (21)

I(z) = j RO

1 , ® €81
Iz) =< 3 , z€09
0 , ® & Q°

Therefore, we can determine if & grid point lies in the domain, out of the do-
main, or on the boundary by evaluating the double layer potential. (Note: the
density is specified, not solved for, so the only cost lies in the evaluation.) A
direct numerical evaluation of the potential on the grid points would require an
unacceptable amount of computation; however, by using the method of local
correction described in Section 4.3.3 we can do this evaluation rapidly (asymp-
totically, it is O(nlog(n))). Therefore if we are comfortable with using fast
integral techniques, this double layer potential approach is a computationally
viable option.

A different approach does not rely on integral equations but it is related to
the local correction paradigm. The first step is to correctly flag all irregular
points as either interior or exterior. There are many ways this can be done, for
example the double layer potential (Eq. 2.1) could be evaluated at all irregu-
lar points (either through direct computation or by using the FMM). Another
possibility uses the orientation of the boundaries: In a procedure similar to the
one used to identify irregular and boundary points, the boundary is divided

into small intervals. The inner contours are traversed in a clockwise orientation
and the bounding contour in a counter-clockwise fashion. For each boundary
interval, nearby irregular grid points are quickly located by exploiting the struc-
ture of the Cartesian grid. Bach irregular point can be identified as interior or
exterior by forming the cross product of the position vectors of the endpoints of
the boundary interval with respect to the irregular point. I this cross product
is positive the irregular point is interior to the domain, and if negative then it
is an exterior point. (see Fig. 2.3)

80—~

oy

/ axb>0

Q

=}

Figure 2.3: Using an oriented boundary interval to determine in/out.

Once all the irregular points have been flagged as interior or exterior, the
regular grid points are traversed in a left to right, bottom to top manner. As
each grid point is visited, it is flagged as interior if its left neighbor is interior,
and exterior if its left neighbor is exterior. For a regular point on the left
edge of the grid (which has no left neighbor), a default state of exterior will
be used when the domain is bounded, and for unbounded domains the default
state will be be interior. Since two adjacent (non-boundary) points cannot have
different states unless the boundary lies between them, and since the irregular
points have already been correctly flagged, this sequential traversal will identify
the interior/exterior status of all regular points. For a Cartesian grid with n
grid points, the irregular points can be checked in O(n%) operations. Then the
regular points can be flagged in O(n) operations, so the overall procedure is
O(n).

We recognize that there are many algorithms that can identify grid points
as interior or exterior to a given domain, and none of them are optimal for
all situations. We have presented three strategies that can each be attractive
in certain settings. If the boundary consists of simple shapes such ag circles
and rectangles, then a direct query can be made at each point on the grid. If
an arbitrary domain is allowed, and if the user is familiar with fast integral
techniques, then the double layer potential approach may be preferable (the
integral approach has the added advantage that it readily extends to three
dimensions). Finally if one has an arbitrary domain where it is easy to correctly
flag the irregular points (for example using the cross product procedure we

present} then a sequential traversal can be used to identify all other grid points.
Each procedure has its own merits and each can be a valid approach to this
simple but interesting problem in computational geometry.

2.2.3 Interpolation at irregular points:

Another issue is how to obtain function values at irregular interior points when
the function is known on the boundary and at the regular interior points. To
solve the Poisson equation on a COG, we only need a second-order interpolant
in order to maintain a second-order method [39]. However, when modeling the
Navier-Stokes equations, higher order interpolation is needed, and we apply a
fourth-order Lagrange interpolating polynomial. For example if an irregular
interior point, ®; ;, has three regular interior points, ®;_3;, ®;_2 4, and ®;_1 ;,
on its left and has the boundary at a distance, dp , on its right(see Fig. 2.4),
then the value at a;; will be determined by the following formula (h denotes
the horizontal mesh with).

_ dy 3dr
u(m’n.ﬂ) - u(m5—3;3)3h+dR - u(w‘-"—zx.f)zh_l_ dr + (22)
3dy 6h3
i) g R BRI B)b+ R
50 /
R
X3 Xizg Xijij Xig R

Figure 2.4: Fourth-order collinear interpolation at an irregular point.

If the geometry does not allow horizontal interpolation, then vertical inter-
polation will be tried. However, in some cases there will not be enough known
values nearby to allow collinear interpolation in either direction. To mitigate
this, we allow the interpolation to proceed in sweeps. After the given inter-
polation has been used to fill in all accessible irregular points, the process is
repeated. Now that more of the points have values, additional irregular points
can be filled in. An arbitrary number of sweeps can be prescribed, but in prac-
tice a two step process is used. There are some cases which defy this fix as well,

10

such as when a point is located near the tip of a sharp corner. In these cases
a lower order interpolant is used, although more complicated approaches could
be used to maintain high order accuracy.

2.2.4 Software design:

The preceding numerical algorithms and additional numerical concerns have
been implemented and embedded in a hierarchical COG class structure. Classes
have been created to represent the boundary geometry, the underlying Cartesian
grids, and the data flags used to classify each Cartesian point. Simple interfaces
exist for each COG component, and the operators and functions that each com-
ponent needs is included in that particular class. The resulting class structure
is & self contained, flexible tool for the representation of complex geometry, and
it allows a user to incorporate COGs without having to know the details of the
implementation. This software is used to implement the Navier-Stokes simula-
tions involving relative motion of bodies in a flow field, yet it is not exclusively
tied to the fluid solver. Potential applications involve bubble simulations and
heart modeling where the the COG representation could be combined with an
integral equation or level set algorithm.

2.3 Poisson’s Equation:

In the fluid simulations we will consider, several Poisson equations must be
solved at each fime step on different domains. The solution of these elliptic
equations accounts for a large portion of the computational effort involved in
the overall numerical algorithm, so it is crucial that we be able to solve Pois-
son’s equation efficiently on complex domains. To do this, we apply a COG
discretization to approximate the Poisson problem by a discrete system of equa-
tions. Next, we consider how to solve this discrete system efficiently. We begin
by describing a solver that combines integral equations, a fast Poisson solver,
and relaxation techniques. This solver produces an approximate sclufion to
Poisson’s equation which also approximately satisfies the discrete equations.
We then use this “direct” solver to precondition an iterative method. This
preconditioned iterative method is used fo efficiently sclve the discrete Poisson
equations, and its convergence rate is independent of the grid’s mesh width.
Computational results are given for both the “direct” and iterative methods.

11

2.3.1 The discrete Poisson problem on a COG:

Consider the bounded domain that lies inside a unit box and ocutside a small
circle within the box (Fig. 2.1). The following is a statement of Poisson’s
equation with Dirichlet data for this domain.

Au(a) = fz), @@ (29)
lin’;}u(m) = g(z,), ® €00
zen”

In a COG formulation, we can satisfy the boundary conditions by creating a
COG function 4 and prescribing the Dirichlet data as its boundary values. To
determine the regular interior values of &, we apply a finite difference approxi-
mation of the Laplacian operator to obtain a set of discrete equations that the
regular interior values must satisfy. In our simulations, the standard five point
discrete Laplacian is used.

(Bi41,4) + B(Bim1,5) + B{®i 45— {@q 4 — 4a{wq 4
Ahﬁ(mi,j)z ("+1,J)+ (e 11.'1)+ (f:zsﬂ 1)+ (1-13"{‘1) (113) (2.4)
There will be one discrete equation for each unknown regular interior point, so
no additional equations or constraints are needed.

Apti(ws ;) = f(wi;), ®i;is aregular interior point. (2.5)
wWe,) = glwo), m €00

We note that values at irregular points are needed in order to compute the
discrete Laplacian at regular points nearest to the boundary. These values are
defined (as discussed in Section 2.1} through interpolation between the values
at the regular interior points and those on the boundary. Thus the discrete
eguations involve both the forcing and the boundary values.

If the interpolation accuracy is second-order or higher, then solving the dis-
crete equations produces a second-order accurate solution to the Poisson prob-
lem. A convergence proef is given in [39], and we also check this result numer-
ically. We select a test solution, u(z) = z1 + %y“, and use it to generate the
forcing and boundary values on our test geometry (a circle of radius 1/4 cen-
tered within a unit square). The discrete equations (2.5) are solved iteratively
up to a relative residual error of 107° and standard pointwise and maximum
norm error analysis reveals second-order convergence. (see Table 2.1).

We now consider how to solve the discrete equations efficiently. In the next
section we examine a method which combines integral equations and a fast Pois-
son solver to produce a solution which approximately solves both the analytic
and discrete Poisson equations. In Section 2.3.3, we then use this solver as a
preconditioner for an iterative method. This preconditioner increases the ef-
ficlency of the iterative method by greatly reducing the number of iterations
required,

12

Table 2.1: Convergence study of COG formulation of Poisson’s equation

Grid | [J# — ulloc | Order || [#(.15,.75) — u(.15,.75)| | Order
20x20 | 0.00205 0.00026

40x40 | 0.00031 2.7 5.5e-05 2.2
80x80 | 7.1e-0b 2.1 1.1e-05 2.3

2.3.2 Solving the Poisson problem, a “direct” method:

In Chapter 4 we discuss how to use a modified double layer potential to solve
Laplace’s equation with Dirichlet data. In order to use these methods on Pois-
son’s equation, we apply a fast Poisson solver to satisfy the inhomogeneous
forcing terms. In Equation 2.5, the discrete forcing terms f(x; ;) are known
only at the regular interior points of the Cartesian grid. If we fill in the values
at the remaining grid points with zeroes we can call a fast Poisson solver to
rapidly provide a solution to the Poisson problem on the simple rectangular
domain represented by the Cartesian grid. (In the following equation, an “edge
point” refers to the grid points that make up the edge of the Cartesian grid.)

A (i) = FT(way) (2.6)
where,
FPS/.. \ _ HET N ®; ; is a regular interior point.
f (@:5) = { 0, @3 ; is any other non-edge point. 27
uF P (2;5) = g(mi;), @i; is an edge point of the Cartesian grid.

Note: For geometries where the edge points, ®;;, of the Cartesian grid do
not lie on the boundary of the domain, the values there will be set to zero
(uFP8(x;,;) = 0). This solution satisfies the discrete equations at the regular
interior points; however, generally it will not satisfy the boundary conditions.
Therefore, a correction term is sought by solving Laplace’s equation with ap-
propriate boundary conditions.

Au'P(x) = 0, =¢0Q (2.8)
éir% wBz) = glz,) —uFF5%w,), 2, €00
wen”

This problem can be sclved and evaluated at the regular interior points by using
the integral equation approach of Chapter 4, and an approximate solution to the
Poisson problem can be formed by combining the fast Poisson solver solution
with the boundary correction terms. That is, if

i(wsg) = w5 (i) + o E(may), (2.9)

13

then

Apti(sz) = f(®i;)+ O(R*), =i, is a regular interior point. (2.10)
i(ze) = glz,), =, €0Q.

This method was used to solve Poisson’s equation in a previous work [35], and a
similar approach was taken in {25]. It should be mentioned that since w!'¥¥ ()
is only known at the grid peints, its boundary values are obtained through
interpolation. Since the discrete forcing terms (in Eq. 2.6) are discontinuous
near the boundary we expect a decrease in the smoothness of u¥F9 (&) across
the boundary. Therefore it may be harder to interpolate onto the boundary. To
remedy this, we can modify how we extend the forcing terms on the exterior
and irregular grid points. Instead of filling them with zeroes, we can apply a
few relaxation sweeps. That is, we fill in the values at those points with the
average of their nearest neighbors. If a point Gauss-Seidel (GS) procedure is
used we obtain a simple formula for updating the values.

+1
FEES (w45

_ jrPsmi (m'__i,j)“}_fFPs“{mMi,j}ijFPSn-t_l (@50 s 4 TS (@4, 541) (2.11)

@; ; is an irregular or exterior point. (2.12)

This pointwise averaging is equivalent to solving the heat equation for a short
time, and it will prevent a discontinuity in the forcing terms. A different way
of dealing with this problem was taken in [25] which uses the procedure given
by Mayo in [24]. There, the discrete forcing terms are modified (by solving for
and incorporating certain jump information) only at the irregular points, and
a special interpolation formula is used which takes the loss of smoothness into
account. In our problem, the forcing is not prescribed outside of our domain;
therefore, we are free to extend it as we see fit. This smooth extension cannot
be applied to the range of problems that Mayo’s procedure can {such as true
interface problems where the forcing is supposed to be discontinuous), but for
our applications it is effective and simpler.

Computational results:

A nurnerical study of the accuracy was done for the given test geometry wheve
(as before) the exact solution u(z) = #* + Jy* was used to initialize the forcing
and boundary values. We placed 640 boundary points on each boundary compo-
nent, evaluated the integral corrections using direct summation, and generated
approximate Poisson solutions on grids of varying refinement. In Table 2.2, no
smoothing steps are taken, and the forcing terms are simply extended with ze-
roes. In Table 2.3, four Gauss-Seidel sweeps were used to smoothly extend the
discrete forcing terms. We see that the convergence rate is roughly second-order

14

i both cases, but extending the data with four Gauss-Seidel smoothing steps
produced solutions which are approximately three times more accurate than
solutions using the non smoothed data.

Table 2.2; Convergence study of FPS + integral equations, no smoothing.

Grid | |1t — ul|oe | Order ||]a(.15,.75) — u(.15,.75)| | Order
20x20 0.0313 0.0071

40x40 0.0092 1.8 (.0020 1.8
80x80 0.0024 2.0 0.0005 1.9

Table 2.3: Convergence study of FPS + integral equations, four GS smoothings.

Grid | [[i = uljes | Order || Ta(.15,.75) — u(.15, .75)| | Order
50x20 | 0.0134 0.00261

40x40 | 0.0031 | 2.0 0.00065 9.0
80x80 | 0.0017 | 0.9 0.00015 21

Asymptotically, the efficiency of the preceding Poigson solver is limited by the
fast Poisson solver, whereas the fast integral techniques can be asymptotically
optimal. In practice, however, the time required to solve the integral equation
can be considerably more than the time used by the fast Poisson solver. Because
of this, we would like fo reduce the number of boundary points used in the
integral equation discretization. This will increase the speed of the resulting
Poisson solver, but if too few boundary points are used, then the accuracy of
the solution will suffer. So by decreasing the number of boundary points used,
we obtain a fast approximate solver, and although it may not be accurate enough
to use as a solver it makes an excellent preconditioner for an iferative method.
This iterative procedure will now be presented.

2.3.3 Solving the Poisson problem, an iterative method:

As we demonstrated in section 2.3.1, we can obtain a second-order accurate
solution to Poisson’s equation by solving the discrete COG Poisson equations.
These equations (2.5) can be written in matrix form,

Ad=1 (2.13)

where i represents the values at the regular interior points, A represents the
effect of filling in values at irregular nterior points and then applying the dis-
crete Laplacian at all regular interior points, and & represents both the discrete
forcing at the regular points and the given boundary data. In solving the matrix
equation, an iterative method is often preferable to a direct method because 4
is sparse, it can be very large, and it can vary with time. Due {o the interpola-
tion step, A is not symmetric so the nonsymmetric iterative method FGMRES
[33] is used. It is well known that for Poisson’s equation, the condition number
of A increases as the number of grid points Increases, so as we refine the mesh
the iterative method will require more iterations to achieve the same level of
accuracy. This makes FGMRES costly for fine meshes, and this s usually reme-
died by preconditioning the matrix equation. A preconditioner is often thought
of as a matrix that is applied to the original linear system in order to transform
it into a better conditioned system. Omne can also think of a preconditioner
as an approximate inverse to the matrix A, or functionally as an approximate
solver for the underlying partial differential equation. Therefore, we take the
Poisson solver that we have introduced (in Section 2.3.2), reduce the number
of boundary points used, and apply the resulting fast approximate solver as a
preconditioner for FGMRES.

To facilitate this functional approach to solving the matrix equation, a data-
structure-neutral implementation is used [18, 17, 4], where instead of passing
in vectors and matrices, the user supplies pointers to data structures and func-
tions that perform such basic operations as addition, scalar multiplication, and
applying the matrix {and preconditioner). This approach is useful because it
allows us to avoid explicitly forming the matrix and preconditioner, and it al-
lows us to represent and store our unknowns in any form that is convenient. A
brief description of this solver is given in Appendix A.

When the preconditioner is called, the forcing terms it receives are the resid-
ual errors of the iterative method, 7;. These residuals can be highly oscillatory
{see Fig. 2.5), and there may be difficulties when interpolating the fast Poisson
solution onto the boundary (Eqgs. 2.6-2.8), even if we fill in the irregular and ex-
terior values smmoothly. To address this issue, we incorporate a relaxation scheme
as part of the preconditioning step. A common feature of relaxation schemes is
that they result in approximate solutions with smooth errors, even after only
a few iterations. Therefore, we apply our approximate Poisson solver to the
smooth error equation resulting from the relaxation step, and then combine the
two terms to form the preconditioned residual.

In summary, we generate a preconditioned restdual, ¥, which approximately
satisfies a Poisson problem where the forcing consists of the residual data, and
zero boundary data is prescribed. That is, we seek an approximate solution to
the following equations:

Apf(zij) = r(w®i;), ®i;1s aregular inferior point. (2.14)
Fle,) = 0, ®, €00

16

Figure 2.5: An unsmoothed residual error of FGMRES.

First, a few iterations of a Gauss-Seidel relaxation scheme are applied.

’Uo(w,;)j) =0
(@) =0; =, €08, (Vn)
?)ﬂ+1(mi,j) (2.15)
= ”"+1(‘1’-‘—1,j)+v"(fﬂi+1,j)+v“+:(wi.j~1)+ﬂ"(wi.j+1)—hzf{m-‘d); n=0,12,...

After the relaxation step, the approximate Poisson solver of Section 2.3.2 is
called to approximately solve the smooth error equation.

Ahe(m,-,j) ~ r(mgij)—Ahv”"'z(mi,j) (216)
e(w,) = 0, =, €00

Finally, the iterative term is combined with its correction term to form the
preconditioned residual.

Ap(v™ (@ig) +e(miy)) = (i), is a regular interior point. (2.17)
v (@) + efw,) 0, =, €00
=7 = "Mt (2.18)

17

Computational results:

We revisit our test problem where the geometry consists of a circle of radius
1/4 centered within a unit square, and the exact solution is u(z) = 2* + Ly*.
The preconditioned iterative solver , FGMRES [33], is used to solve the dis-
crete egquations, and we monitor the number of iterations needed to reduce the

relative residual error to a given tolerance (Mfé‘—ﬂ < 10719 for varying lev-

els of mesh refinement. We use FGMRES over plain GMRES [34], because we
are using an effective but moderately complicated preconditioner. (FGMRES
only requires half as many preconditioner calls as GMRES, and we can afford
the extra storage costs incurred since the total number of iterations is small.)
We first apply FGMRES without any precondtioning, and then with a simple
preconditioner consisting of four Gauss-Seidel sweeps. Next, we precondition
the system by using our combined integral equation and fast Poisson solver ap-
proach, both with and without the added relaxation steps. In the last two cases,
the integral correction is evaluated on the grid using direct summation where
320 boundary points are used to discretize each boundary components. Results
are listed in Table 2.4. We see that the number of iterations needed to achieve

Table 2.4: Iteration count for different preconditioners.

Preconditioner
Grid || none | G54 | FPS+IE | GS44-FPS+IE
20x20 bt 18 7 5
40x40 127 34 8 6
80x80 264 68 8 6

the tolerance increases with the number of unknowns when no preconditioning
or Gauss-Seidel preconditioning is used. In contrast, if the fast Poisson solver
with infegral correction is used to precondition the system, then the convergence
of the iterative solver is independent of the number of unknowns used. Further-
more, the addition of a few relaxation steps reduces the number of iterations
needed by two, which seems worthwhile considering the relative cheapness of
applying Gauss-Seidel.

‘We now consider how the effectiveness of the preconditioner depends on the
accuracy of the integral equation solver. We fix the Cartesian grid to §0x80
panels, and we apply our preconditioners with varying numbers of boundary
points. We see that our integral equation preconditioner continues to reduce
the number of iterations needed even when the boundary is not fully resolved,
and that the relaxation steps allow even fewer boundary points to be used. With
the added relaxation steps, our preconditioner is just as effective when 40 points
per object are used as when 320 points per object are used. Therefore, we can

18

greatly speed up our preconditioner (by reducing the number of boundary points
used) without compromising the convergence behavior of the iterative method.
Results are given on Table 2.5,

Table 2.5: Iteration count for different houndary discretization levels.

4 of Preconditioner
Boundary pts || FPS+IE | GS44+-FPS+HIE
30 33 9
40 27 6
80 10 6
160 9 6
320 8 6

This preconditioner is preferable to ones based on incomplete factorization
because the latter do not result in mesh width independent convergent schemes,
Furthermore, in our applications the linear system can change with each time
step; therefore, we cannot spread out the cost of doing the incomplete factor-
ization over several Poisson solves. More natural competitors are the multigrid
based preconditioners for they also result in refinement independent conver-
gence, and it remains to be seen which preconditioner results in a faster method
for the simulations considered in this thesis.

19

Chapter 3

Navier-Stokes flow:

In this chapter we are interested in solving the incompressible Navier-Stokes
equations which we use to model two dimensional fluid flow. The numerical
algorithm used is a projection method j10] that is based on a method of lines
approach. The spatial derivatives are approximated by finite differences on a
staggered COG representation of the domain. This converts the partial differen-
tial operator into a system of ordinary differential equations, and a fourth-order
Runge-Kutta scheme is used to solve the ODEs in time. At each Runge-Kutta
stage, we apply a projection step to ensure that the fluid remains incompress-
ible. We base the projection step on a stream function formulation which leads
to a uniguely solvable Dirichlet problem whose boundary values are determined
by the given conditions on the velocity. (In contrast, a pressure based pro-
jection leads to a non-unique Neumann problem, and the pressure boundary
conditions are not explicitly prescribed.) The use of COGs allows a rapid grid-
ding of the time-dependent geometry, and an additional benefit is the avoidance
of an arbitrarily small stability restriction. Other sources of difficulties He in
the projection step where computationally intensive elliptic equations must be
solved in order to enforce the incompressibility constraint. Integral equations
can be very useful in this projection step, and a method is developed which
is efficient even in highly multiply connected domains. The overall method is
formally second-order accurate in space and fourth-order in time.

3.1 Statement of the problem:

Consider the incompressible Navier-Stokes equations in a time-dependent do-
main Q(f).

@+ (@ V)
v -

vAT -~ Vp (3.1)
0 (3.2)

5]
il

20

Here, @ represents the fluid velocity field, » is the kinematic coefficient of viscos-
ity, and p is the pressure. The first system of equations reflects the conservation
of momentum, while the second represents the incompressibility constraint aris-
ing from the conservation of mass for a fluid with constant density. Due to
the presence of viscosity, both no-glip and no-flow boundary conditions must be
prescribed, and the initial condition must be a divergence free field that satisfies
the boundary conditions.

iz, ty = gla,t), =z Q) (3.3)

Uz, t=0) = t(x), zeQt=0) (3.4)

We discretize the time derivative, and for expository purposes the forward

Euler approximation will be used. In practice (see Section 3.3), we use a fourth-

order Runge-Kutta time approximation which can be viewed as a collection of
Euler-like steps.

ﬁn—{-l —gn

T + (@ V® = vAgt - vphtt (3.5)

vttt o= 0 (3.6)

The current velocity field %" is known, and a rearrangement of terms reveals
that the momentum equation produces the velocity field at the next time step
plus a gradient (conservative) field.

7 = 4"+ A —(E" V)" + vAT) (3.7)
@t = § - Arvptt? (3.8)
vt = 0 (3.9}

The vector field ¥ is a prediction of the velocity field at the next time step which
is formed by applying the convection-diffusion equation to the current velocity
field. This intermediate field generally will not satisfy the incompressibility con-
straint, and the role of the pressure is to extract the divergence free component
of the intermediate velocity field #. This step has been viewed as a projection
onto a divergence free subspace [10, 11]. In the method we consider, the pres-
sure will not be explicitly formed, and instead a stream function approach will
be used to extract #"+! from ¢. We will create an operator P that extracts the
advanced velocity field from the intermediate field (Note that this operator will
not be a true orthogonal prejection when inhomogeneous boundary conditions
are considered). If,

@t = §— Attt (3.10)
where,
vt (z) = 0, ettt (3.11)
#t(x) = (=), = o™

2

then,

P, T arthy = v (3.12)

We observe that the projection is applied on the advanced domain, Q™+1, which
may not coincide with the current domain, Q®. Intuitively this is reasonable
since the intermediate field is a prediction of the velocity at the advanced time,
hence it should be defined on the advanced domain. Practically, we need some
mechanism for transferring values from the current domain to an advanced
domain, and as we will see in Section 3.5 the use of staggered COGs allows this
transfer to be accomplished quite naturally.

3.2 The projection step:

In trying to apply the projection, an important observation is that an incom-
pressible fluid can be represented as the curl of a stream function, (For the
following statements, we consider the domain to be bounded with M interior
contours and one bounding contour. The unbounded case involves slight modi-
fications.) If

v.ati@) = 0, @ et (3.13)
and
f g o= 0, k=1,...,M+1 (3.14)
anrt
then there exists,
&
W(x) = TRA (3.15)
where
T = Ux <0,0,%>. {3.16)

Here, x, represents an arbitrary point in the domain, and this means that the
streamn function is only determined up to an additive constant. The above
result can be verified by using Green’s theorem and then differentiating, and
it shows that if the stream function is known, then we can obtain the desired
divergence free velocity field #*1! by applying the curl. The question now
becomes how to determine the stream function, and we begin by taking the curl
of the intermediate velocity field. If,

7 = @t Arvpr (3.17)

22

then,
F o= Vx<0,0,T>+A1Vp"T (3.18)
and
Vxd = —AT40. (3.19)

If we define the vorticity, & =< 0,0,w >=V x # = V x @7, then we see that
the stream function satisfies a Poisson equation.

AU(z) = —w(z), =€ Q" (3.20)

In order to solve this problem, we need to determine a boundary condition
for . We can directly verify that there is a simple relationship between the
components of the velocity and the derivatives of the stream function.

80;’ — o+l -
0% —_ 4l -
5y =T (3.22)

From this we see that the no-flow condition determines the boundary values of
the stream function up to a constant per contour,

T ov -
U(e) = Wt [5= @@ €00} (3.23)
Ty B‘T
€T
= W+ [74 (3.24)
Ly

If the domain is simply connected, then there is only one constant and it can
be set to zero since the stream function iz only determined up to an additive
constant. However, in & multiply connected domain these constants must be
chosen to satisfy the local circulations (which are specified by the no-slip con-
ditions). That is, we set ¥pry 3 = 0 and then choose the remaining M constants
to satisfy the M constraints:

ou
/ _amm/ P k=1, M.
aartt Of ot

This will specify the stream function up to an additive constant, and hence will
produce the divergence free velocity field that satisfies the needed boundary
conditions. A two step process is used to choose these constants, where we first
meagure the effects of setting the constants to zero. Solve,

AT z) = —w(=), =t (3.25)
4

V() = [@i ene ot (3.26)
k

23

Computationally this is a challenging problem to solve both because of the com-
pHeated geometry and the large amount of computation that elliptic problems
typically require. To address this problem we developed a rapid Poisson solver
(see Section 2.3), where we discretize the problem on a COG and solve the
resulting discrete equations using an iterative method with an integral-based
preconditioner. The resulting stream function solution produces an incompress-
ible velocity field that satisfies the no-flow boundary condition, but it may not
yield the correct local circulations. (In general, |, ot -"2‘%1 # pant 7).
Therefore, a correction term is sought to produce the desired circulation behav-
ior: Obtain W' and {¥;} so that,

AUYz) = 0, = et
T(x) = ¥, =edQf* (3.27)

1 b
/ or f g}““-%—f 6—, k.
aaprtt In anpt! papt dn

This problem has been solved previously [35] at the cost of one elliptic prob-
lem for each boundary component, but this approach becomes overly expensive
when there are many boundary components. To overcome this difficulty, we
developed an integral formulation (see Section 4.4) where the correction term
is obtained with a single elliptic solve regardless of the number of boundary
components. This formulation allows us to maintain cornputational efficiency
even when simulating flows with a large number of bodies in the flow field. By
combining ¥° and ¥! we obtain a stream function that satisfies the no-flow
boundary condition and produces the correct local circulations and vorticity: If

v o= 94wl (3.28)
then,

A¥(z) = —w(e), zeQ*t!

v

S-®) = @t = eomt (3.29)
f QLII_ - / §n+1_1¢, vk
anrt dn anpt

=7l = Vx<0,0,¥>. (3.30)

To recap the projection step, we are given the intermediate velocity field 7,
which is defined on the domain Q"+, We calculate the vorticity w, and use
it (plus the velocity boundary conditions) to obtain the stream function of the
divergence free, advanced velocity field {Eqs. 3.25-3.28). Finally, applying the
curl to the stream function recovers the velocity field, 11'”“*"1. We denote this
three stage procedure by the symbol, P, where @™t = P(#, grtt, Qnt1).

24

3.3 The algorithm:

In the preceding algorithm, we used forward Euler to approximate the time
derivative. This simple choice makes it easier to explain how the method works;
however, it can lead to restrictive time steps depending on the relative magni-
tude of the convective and diffusive terms. This restriction stems from the size
and shape of the absolute stability region of forward Euler, and larger time steps
can be taken if a fourth-order Runge-Kutta [21] scheme is used to approximate
the time derivative. The Runge-Kutta scheme can be viewed as a collection of
FEuler-like steps, therefore, the full algorithm consists of multiple applications of
the algorithm we have already considered. To describe the full algorithm more
concisely, we introduce some notation to represent the convection-diffusion in-
crement.

F(@) = A(—(E - V)i + vAD) (3.31)

Given the velocity at the current time @, we obtain the velocity at an advanced
time by applying fourth-order Runge-Kutta time stepping and enforcing the
incompressibility constraint at each stage.

o= F(i")

By = FB@ + 5, 574,00

By = FP R0 (3.32)
Fy = F(Pa"+ Fs, 7ttt

B = P4 (R B+ Bt B, omt

This is the algorithm we will use in the fluid simulations we consider, but in order
to implement it we must decide how to compute the needed spatial derivatives.

3.4 Spatial discretization:

In order to approximate the spatial derivatives in the Navier-Stokes solver we
have devised, finite differences are applied on a COG discretization of the do-
main. The majority of our approximations consist of standard, centered dif-
ferences, like those given in [30]. These difference approximations are used to
advance the convection-diffusion equation, form the advanced vorticity, solve
Poisson’s equation, and to recover the advanced velocity by applying the curl
to the stream function. One teason to use COGs is that they can be formed
very quickly, and this is important for problems with time-dependent geometry.
COGs also make it easy to transfer information between different time steps,

25

and at grid points that enter the domain (as we advance in time) we have val-
ues defined though interpolation. Finally, a third benefit 1s that we avoid the
small cell stability problem that one might expect from a method that employs
Cartesian grids.

(Given the domain, £, at the current time, we form a staggered mesh con-
sisting of three offset COGs. Omne grid is used to mark the points where the
stream function and vorticity are known, and the other two grids represent the
x and y components of the fluid velocity. As described in Section 2.3 values
are given on the boundary and at all regular interior grid points, while the val-
ues at irregular points are defined through interpolation. If we represent the
stream Tunction by ¥, the vorticity by w, and the two velocity components as
i =< u, v, >, then the staggered grid can be depicted as in Fig. 3.1

u(x i,j+1/2)

[./ 1 /V(Xi+1/2,j)

Y(x i)
and

O(X;;)

Figure 3.1: The staggered COG for the fluid variables.

"To advance the ftuid velocity, we use the time discretized convection-diffusion
equation (Eq. 3.7) where a finite difference approximation is applied to the
convection and diffusion terms.

(i V)u(wijrrze) & (@ jeay2)Diu(eijrage) + o(@sg172) Diu(ig41/2)

(T - V)u(®it1/2,5) w(@ita/2,5) DRv(®ivayag) +v(@ip1y05) DRv(@iviyag)
Au(®; j41/2) Apu(®; jp1/2) (3.33)
Av(®iv1y2,4) & Apv(®irigag)

81

We advance the velocity at all grid points in the domain, and the finite dif-
ferences (D, DY, and Aj) use a stencil appropriate to the type (regular or
irregular) of grid point it is acting on. For example consider differencing the y

26

component of velocity at the grid point ®;4,/2 ;. We denote zr,xg,zp, and
@y as the nearest points (to the left, right, down, and up) where values of v are
known (either at a grid point or a boundary point), and we denote dg, dg, dp,
and dy as the corresponding stencil arm lengths (see Fig. 3.2). With this

Xi+1/2,j X5

_‘/

i
\N

[~ d

|9 EdR =80
T 1

o —|—o ¥
//i \
X5

Figure 3.2: Differencing at a Y velocity point.

notation, the following finite differences are used:

U(mn)—vd(:i+1/z,j)dL + “(mi-;-uzéi)—”(mn)dﬂ

Dyv(wipia;) = R
”(mU)_":i(Umi+3/2,j)dD + ”(mi—;-l/zéi))“v(mn)d

D¥v(w; o=
hv(m +1/2:J) dD +dU

O{BR)~v(Biyiy2,5) HBipaye,i)-v{®r)
dn dy,

+{dr + dgr)
v(Bu)-v(Figrye,;) ¥ Eigayae;)-v(To)

dir dp
+
+(dp +dy)

Apv(®ijp1a) =

(3.34)

Since these approximations are applied at all grid points in the domain, it would
appear that they might lead to stability problems. However, in our projection
step, we never use information that is generated by stencil arms that are smaller
than half a mesh width (a fourth a mesh width in the moving boundary case),
therefore we never encounter any arbitrarily small stencil stability problems.

This is explained further in Section 3.8,

27

The convective terms couple the two components of velocity (which are de-
fined on separate, offset grids), and in order to obtain a value for u(w®;q1/2;),
we fit a bilinear interpolant through the known values at the appropriate grid
and boundary points. If we use the notation shown in Fig. 3.3 , we can write
down an equation for this interpolation.

Xy

.\.: X

N

X
D Xi+1/2,j

Figare 3.3: Interpolation of X velocity values at a Y velocity grid point.

u(mL) _ u(mg)dp + U(ZED)dU

3.36
dp +du (3.35)
w(egrldr +ulxr)d
u(wi+1/2»j) = (R)di-}-di L) 2
(3.36)

We note that for peints away from the boundary, the given approximate deriva-
tives reduce to the standard centered finite differences, and the bilinear in-
terpolation becomes equivalent to averaging the four nearest values ({30] pps.
146-147). The formulas for the x component of velocity are completely analo-
gous,

Once the convection and diffusion terms have been used to advance the
velocity field to an intermediate state, ¥ =< vy, ve,0 >, the projection step
is applied. As described in Eqs. 3.17- 3.19 the first step is to compute the
vorticity by talking the curl of the intermediate velocity. We apply the curl by
using centered finite differences,

w(mi;) = (Vx#)zij)

28

(Vxd)(zij) = (Vxn¥)®i;)

Diva(s ;) — Dyvi(mi ;) (3.37)
Divg(w,-)j) — vZ(mi-l—l/Z,j) ;vQ(m‘i—l/‘Z,j)
Diy(aey) = “@uityz) = v1{ij-1/2)

When we enforce the incompressibility constraint, the vorticity becomes an inho-
mogeneous forcing term for Poisson’s equation defined on a COG discretization
of the domain at the advanced time. The spatial derivatives in the Poisson
problem are approximated using the standard five point discrete Laplacian, as
discussed in Section 2.3. Representing Poisson’s equation on a COG has several
consequences: First, the vorticity is only needed at regular points, and as we
will explain in Section 3.5 this lets us model moving boundaries. Second, we
can apply the fast techniques developed in Section 2.3 to solve the resulting
discrete equations, and finally we avoid the small cell stability problem that a
plain Cartesian grid method would encounter. This stability improvement may
seem surprising, so we will analyze it in more detail in Section 3.6.

After the incompressibility constraint has been applied, the projected veloc-
ity field is recovered by taking the curl of the stream function. The curl is only
applied at regular points, so once again the partial derivatives are approximated
with simple, centered differences.

"t = Ux @
~ <DV, —-DEV,0> (3.38)
Tfw; ; —P{x; ;
o) = Vo) = W)
¥ €xr; -0 &z
”n+1($£+1/2,j) (+1;.?)h (:.7)

This determines the velocity at the regular points, and since the velocity is
represented on a COG, the values at the irregular points are filled in with a
third-order interpolant. At this stage, the advanced velocity is known at all
grid points, and the next time step can be taken.

3.5 A moving boundary issue:

At first glance, moving boundaries appear to cause difficulties in our Navier-
Stokes solver. In our algorithm (Eq. 3.32) we form the intermediate velocity field
on the current domain,)*, while the projection is applied to this velocity on
the advanced domain, Q"*1/2 or Q*+1, For time-dependent geometry these two
demains will not coincide, so it seerns that there will be a problem in transferring

29

information from one domain to the other. However, if we choose time steps
go that the boundary does not move too far in any one step, then it turns
out that our algorithm can handle moving boundaries without modifications,
This feature is a result of the use of staggered COGs: First, recall that the
intermediate velocity is calculated for both regular and irregular points of 27,
However, in the projection step (due to the use of COGs) we only need the
vorticity at the regular points of Q"+ (which by definition are at least a full
mesh width away from 8Q"+1). We obtain these vorticity values by taking
the curl of the intermediate velocity, and (due to use of staggered grids) each
vorticity value is formed from intermediate velocity values that lie only one half
a mesh width from the regular vorticity point (Eq. 3.37). Therefore, we only
need intermediate velocity values at points at least one half a mesh width away
from AQ™ | and if the boundary moves less that half a mesh width, then these
intermediate values must be regular or irvegular points of Q" (hence are known,
see Fig. 3.4). Thus moving boundaries can be modeled with exactly the same

X i+1/2,j SQD
needed velocity grid point
(known at time o and n+1)

X..
Lj
regular vorticity grid point
(at time n+1)

Figure 3.4: Transfer of information between the non-overlapping domains re-
sulting from a moving boundary.

algorithm as long as reasonable time steps are chosen. In the next section we

will see that stability concerns impose a more severe time step restriction on
our algorithm than the non-overlapping domains do.

30

3.6 A stability issue:

In forming the intermediate field, we computed the finite differences at rregular
grid points using non-standard stencils (Eq. 3.34), where some stencil arms were
shorter than the mesh width of the Cartesian grid. Generally these non-standard
stencils imply that at the irregular points, information cannot travel as far in
one time gtep as at the regular points. This adversely affects the stability of
the method, and forces us to use a smaller time step (this is referred to as the
small cell stability limit). Even worse, since the boundary can lie anywhere on
the Cartesian grid there is no limit to how short a stencil arm could be, and
for some domains an arbitrarily small time step would be needed. In our COG
formulation, since the vorticity is only computed at the regular points we never
need to use information that was obtained from a very small stencil arm. For
example, consider the time-independent domain shown in Fig. 3.5 where the
vorticity at the regular point x;; is computed using the y component of the

X i+1/2,
needed velocity
(grid point)

L,j
(reguiar vorticity)
grid point

Figure 3.5: Avoidance of arbitrarily small stencil arms (Static boundary: Part
1, note that dg > 1/2 a mesh width).

velocity field at the irregular point ®;;.1/9 ;. Let the left, right, down, and up
stencil arms at @;1, /5 ; have lengths denoted by dr, dg, dp, du, where dp is less
that a full mesh width long but greater than half a mesh width. If we changed
the geometry so that dr was less than half a mesh width (see Fig. 3.6) then
we see that ®; ; would no longer be a regular point of the vorticity, and so we
would not use the intermediate velocity component generated with this small

31

X1
needed velacity
(arid poiat)

L
X 1§
(reguiar vorlicily)
grid point

L]
(irrepuiar vorticity
prid point

Figure 3.6: Avoidance of arbitrarily small stencil arms (Static boundary: Part
2, note that dp > 1/2 a mesh width).

stencil arm. When moving geometry is considered, we see a similar behavior if
we choose the time step so that the boundary moves less than one-fourth a mesh
width per time step. In this case we will never use information that is generated
with a stencil arm shorter than one-fourth a mesh width (see Fig 3.7).

In summary, using a staggered COG representation will prevent the use
of arbitrarily small cells for any given domain (including cases with moving
geometry), and therefore avoid the arbitrarily small time step restriction that
would otherwise occur.

3.7 Computational results:

3.7.1 A moving cylinder in a fixed box:

In our first example, we consider an infinite rectangunlar tube containing an infi-
nite cylinder. The tube is filled with a fluid with kinematic viscosity coefficient
0.0025. The cross section is represented by a unit square (with (0,0} and (1,1)
being the minimum and maximum coordinates), containing a circle of radius
0.09. At time t=0, the cylinder is centered at (0.25,0.5), and the fluid is at rest.

The cylinder moves horizontally with a velocity ﬂk—%—_—lﬁl, which causes the
cylinder to accelerate for one second and then decelerate by the same amount,
bringing the cylinder to a rest at the point (0.75,0.5). In Fig 3.8 and 3.9, we
observe the results of the simulation when computed on a 40x40 grid with 40
points placed on each boundary component. A uniform time step of 0.009 was

32

X 4142,

needed velocity SQB
(grid point) /
A0 n+i
LN A0
T] [frl\
R e

/ ‘l;de |
I\
X,
LJ
(regular vorticity grid point)
at time n+l

Figure 3.7: Avoidance of arbitrarily small stencil arms (Moving boundary, note
that dp > 1/4 a mesh width).

used, which satisfies the stability restriction throughout the simulation. The
stream function and vorticity are shown up to t=2.0 in increments of 0.b sec-
onds. Since the cylinder is contained within the tube, the boundary of the
domain undergoes relative motion, and therefore this flow cannot be modeled
using a static boundary in a moving reference frame. We observe that as the
cylinder moves, the viscous effects generate vorticity at the boundary, and a
small wake is formed.

As a check of the long term convergence behavior, we consider the moving
cylinder problem for multiple grid refinements. We prescribe the same cylinder
velocity and the same initial conditions as before, but in order o allow the coarse
grid to resolve the flow, we increase the kinematic viscosity to 0.01. We run our
simulation up to time 1.0 on a 20x20, 40x40, and 80x80 grid, with a uniform
time step of 0.000225. The resulting stream functions are shown in Fig. 3.10,
and the vorticities are shown in Fig. 3.11. We see that the solution on the 20x20
grid is noticeably different from the 40x40 solution, however the 40x40 solution
nearly matches the 80x80 result. This shows that the solutions are converging
as the refinement increases. The stream function seems to be fully converged
on the 40x40 grid, while the vorticity still seems to be changing slightly as we
go from the 40x40 to the 80x80 grid. This behavior is not surprising since the
stream function is an integrated quantity (with respect to the velocity), while
the vorticity is a differentiated one.

33

Stream Function

LBEHLELEE NLUE 220 U T 0 O O I

SIS IR NI EFE RSN NN R N

Stream Function

QLI L L

T T T T T
[ST N S A A O |

PO I I N B I I I I O

s .
IR NI AT NN AN

Stream Function

LIRS YL L L B N O O
= ¥ @,

TG 0 00 0 O 0 S 0 0 S O 0 VO N VO W 2 T I O A

%lxlllIilll!ll!lllilllllllllillill

Stream Function

LHRLINE L I LU L L L L B
L Gy,

) J

LABLISE N A0 20 0 20 A AP A 20 M A 0t I 0 1 0 |

tlliIIII!lllllllll!lllilll|ll|!Ill’lflbttl_

Figure 3.8: Stream function of a moving cylinder in a fixed box.

34

Vorticity

L2 I T N 2T B

‘_S‘I EI 7L B 12 00 0 1t 2

04

bdedibebolado kbl ko b e e d e bbb bl bl A L L b AL

ERERAEAERESNERNRSAR RSN NN NS NN NN RN N

Vorticity

LE I e e a d

lilllllElli"‘lrllillll}llrlliIFII!IEIIIHII
wt

TR0 N TRV S YO0 S - NO 0 S0 WO0 1OV W VIO O 0 I

llllIIliIlI;lillillllil!llil!ll!llll!il}

Vorticity

T T T T T T TR T T T T TR T T T T T T TR T T Y

TTFTTT

NN NS N ENEEN

P T T T T

ll]l!!l!ll\lll\lllll

LRI O B B

IS NN SNl ENEN NN R]

Vorticity

(S50 T U L | B

I R 1N O B O A

LI AL L 0 M A A A 0

4

g

lElllIJll;ill

—_———
(m—v .y
NN NN A RN

Figure 3.9: Vorticity of a moving cylinder 1n a fixed box.

35

Stream Function

T 1T T T T T 7 T T T T 7 T 7 T T7T77

I Lomoi Lo

et
/ \
/”" Py

Stream Function

NSRRI

T F T T TTT T T T T Ty T T T FT T 7T

T

%lillll!lillllll!lll!lliI

T T Ty

Stream Function

AN llljtlllllllljltllgm

piasayeg Higes

SRTRISTIRTSRIRE ERRARARAR NRUTERARIERANNENARRARRARN AR AR ARANR NERARRIRAALAN]

KX

Figure 3.10: Stream function(at t= 1.0), calculated using three grid refinements:

20x20, 40x40, and 80x80.

36

Vorticity

£ T T ¥ T T El T T T T ¥ T T T E ¥
,er\
e Hg—tF

ey
TS T S TR S T S T |

T T T T T T
TN SR T R SN SO S S |

Vorticity Vorticity
ilﬂl[lﬂ;ﬂlliilll IIHIIIIIIWIIHNIHH “'“““””““L’L& "

TIT Y I T T v I T F T TV T T TY T T/ Y YV T T T TeT
- lon Hiw

]

Gy ea ey
EECTTTTFTITIF T TETTTT

L At L I)
g 3

oy

o
Hon (L ﬁ i
1.+ 0 3 8 f0p)3 £ 2003 F3FE0ob)fERDPONiEoPMLOA)ENEN

. Y

: : /5 L

B . N j%m:

" 3 c § E
E L«%:'s L-ME :3‘ Ly

7 = E

=] : ;

ué E

T T T T T T

%

Figure 3.11: Vorticity(at t= 1.0), calculated using three grid refinements: 20x20,
40x40, and 80x80.

37

3.7.2 A convergence study:

In a quantitative check of the convergence of the method, we ran the moving
cylinder simulation on multiple grid refinements (20x20, 40x40, and 80x80),
and measured the L2 norm of the relative error (of the stream function, velocity,
and vorticity) between successive grids. We used a kinematic vorticity of 0.01,
and advanced the solution up to $=0.09 using a uniform time step of 0.000%.
Results are summarized in Table. 3.1. (Note: staggered velocity grid points do
not coincide when the grids are refined. Therefore we averaged the values of the
two bordering points to compare values on different grids)

Table 3.1: Convergence study of fluid solver: t=0.09

€5,z ll2 | [1Es s llz | Order
Stream fue | 0.000351 | 3.69e-05 3.3
X velocity | 0.002385 | 0.000596 | 2.0
Y velocity | 0.002627 | 0.000526 | 2.5
vorticity | 0.121288 | 0.039931 1.6

3.7.3 Flow past a staggered array of cylinders:

As a demonstration of the solver’s ability to model flow about multiple bodies,
we consider a flow past an array of cylinders. Eight cylinders of radius .08
are placed within the unit box. The box is filled with fluid with a kinematic
viscosity coefficient of 0.01, and the fluid is initially at rest. The top and bottom
walls of the box are treated as impermeable, fixed boundaries, while a horizontal
cross flow is induced by prescribing a fluid velocity at the left and right walls,
At both sides, the x component of fluid velocity linearly increases from zero to
one in the span of one second. The computation is performed on a 40x40 grid
with 30 points placed on each boundary component (eight cylinders and the
bounding box). A time step of 0.0037 was used o advance the solution, and
Fig. 3.12 shows the stream function after 1/4 a second has passed. This test
problem can be considered an idealization of a cooling simulation for a nuclear
reactor {where coolant is flowing about an array of control rods), and could be
a starting point for modeling cross flow induced vibration.

3.7.4 Stir-up of an infinite cup of coffee:

The next example involves a flow problem where both the moving object and
the bounding contour are non rectangular. Consider a coffee cup consisting

38

of an infinite cylinder. We place an infinite straw inside the fluid (kinematic
viscosity of 0.01) filled cup, and stir the coffee with a circular motion. The cup
is centered at the origin with a radius of 3.81 cm, and a straw of radins 0.31
cm revolves about the center of the cup at a radius of 2.51 cm. Initially, the
coffee is at rest and the straw is centered at (2.51,0). The straw is moved in
a counter-clockwise orbit with an angular velocity that linearly increases from
rest to two revolutions per second. 40 points are used to sample each of the two
boundary components, and the computational domain is embedded in a 80x60
square grid (whose sides are 5.0 cm long). The time step is picked adaptively
to satisfy the stability constraint, and ranges from a step of 0.043 when =0 to
a step of 0.0085 when the time approaches 1 second. The stream function for
the fluid is plotied in increments of 0.25 seconds, the results are shown in Fig.
3.13. Since the stream function is only defined at interior points of the grid, we
atternpted to fill in the remaining points smoothly to help the contour plotter.
This resulted in artificial streamlines in the exterior region of our images which
are not actually present in our solution.

39

Stream Function

LN LN LA e I A O A A e

NI IR |

L

EII\IIIIIIIII
=
J.
o,

EISIIIIIIIIII

E\EIIII!]

0Z0p

00—
T w0 — oTo0

1 T Y N T Y A 0 0 20 o

Figure 3.12: Flow past a staggered array of eylinders.

40

Stream Function Stream Function
AT Ty T TV T T T v TETT T T T T TTITTETTET LARRAAREARRRARRY A= HI T T R I Ty iy Ty ey T T e T e e vy rery

Streamn Function
SRR R NN R R AR AR R RN AR AR AR AR AR VAR AR R R RN

AR RIRANIRE: AN TSR E NN ES RN RN IR IRRERNNT N AN ER RN Yy

Figure 3.13: Stream function of a coffee cup being stirred.

41

Chapter 4

Integral Equations:

As we have seen in Chapters 2 and 3, we are interested in infegral equations
because they can help us deal with complicated geometry. In our fluid solver
we apply a projection step that makes use of the stream function. This choice
leads us to a uniquely solvable Poisson problem with Dirichlet data determined
by the given velocity boundary conditions. In a simple domain it is easy to
determine the stream function’s boundary values and to solve the resulting
Dirichlet problem; however, things become more complicated when more general
domains are allowed.

For example, in a simply connected domain, the boundary values of the
stream function can be obtained simply by integrating the velocity’s no-flow
condition (Eq. 3.24). However, in multiply connected domaing the no-flow
boundary condition only determines the Dirichlet data up to a constant per
boundary component, and these constants must be chosen to produce the correct
Iocal fluid circulations. In Chapter 3, we showed that this problem can be be
reduced to choosing boundary data constants for Laplace’s equation subject to
constraints on the flux (Eq. 3.27, and in this chapter we show how integral
equations can be used to solve this problem efficiently. This problem differs
from the typical Laplace problem (where the Dirichlet data is prescribed), and
solving it leads to integral equations that are subtly different than the standard
integral formulations.

Likewise when solving a Poisson problem in a rectangular domain we can
make use of standard fast Poisson solvers, but for our general, multiply con-
nected domains these solvers cannot be directly applied. In the previcus chapter
(Section 2.3), we created a Poisson solver for complicated domains that com-
bines integral equations with other approaches, and in this chapter (Section 4.2)
we review the standard integral techniques that this solver uses.

42

4.1 Overview:

We begin by representing the solution as a modification of a double layer po-
tential, and this transforms the PDE into a second kind integral equation. Nu-
merically this approach is attractive because 1t only requires the discretization
of the boundary, whereas the entire domain would have to be gridded if a finite
difference or finite element method was used. This property makes it easier to
solve problems with complex domains, plus it reduces the number of unknowns
that must be solved for. The resulting discrete equations reduce to a dense lin-
ear system, bub this system is well-conditioned and fast techniques [32, 8] exist
that enable the system to be solved iteratively in an asymptotically optimal
time. Furthermore, fast techniques also exist, {8, 23, 22, 25, 3] for the evalua-
tion of the integral solution at a collection of points. A second feature of the
integral equation approach is that useful additional information is automatically
obtained in the solution process: specifically the total flux of the solution about
each boundary contour can be obtained with no additional calculations. In a
fluids context (when solving for the stream function), these fluxes correspond
1o the circulation about the immersed bodies in the domain. So, integral equa-~
tions can be an effective way of dealing with problems characterized by complex
geometry, especially for incompressible flow about multiple bodies.

A great deal of work has been done on the application of integral equations
to Laplace’s equation with prescribed boundary data. Theory for simply con-
nected domains can be found in many sources (such as [13, 20, 28, 27]). Multiply
connected domains are considered in [13, 28, 27), and a lucid recent presenta-
tion of the key points (along with a numerical approach that we adopt) appears
n [14}, Although the requisite material is covered in the above references; a
summary of needed results is presented for completeness. First we consider
the case of a simply connected bounded domain. Then we examine the mul-
tiply connected unbounded case, followed by the multiply connected bounded
domain. {Note that only two dimensional domains are presented. The three
dimensional situation is discussed in some of the above references and is highly
analogous to the two dimensional case.} Issues regarding the numerical solution
and evaluation are discussed. In the final section, an integral formulation of a
different Laplace problem is considered where boundary constants are chosen to
satisfy flux constraints. This section plays a key role in efficiently applying the
projection step in our flind solver,

4.2 Integral equation theory for the Dirichlet prob-
lem:

43

4.2.1 Statement of the problem:

Let © be a bounded domain in the plane with a C? boundary consisting of one
bounding contour #2ar41 and M inner contours 9Qy « - - Qs (652 = Uk;;l 58,
see Fig. 4.1). Note that corners can be allowed (see [20] for some theory
and adaptive computations) but we restrict this discussion to smooth contours.
Given continuous boundary data g (in [27] only integrability is assumed}), solve
the following equation:

Au(ey = 0, z€ Q (4.1)
zél_r‘%}ou(w) = g(m,), m, € I
BEDN

in the unbounded case, {2 is the unbounded domain that lies exterior to M
contours 8%y - - - Iy (682 = in:1 O, see Fig. 4.2), and we seek a solution to

Aufe) = 0, € Q (4.2)
a%ljr{;ﬂu(m) = g(m,), @, € OQ
Ten
u(e) = O(1), (& — oo). (4.3)

>
0O 141

Figure 4.1: A bounded domain.

44

Figure 4.2: An unbounded domain.

4.2.2 Preliminaries:

Any contour 9, considered individually, divides the plane into a bounded
and unbounded region. {see Fig. 4.3) On the contour we can define two normal
directions at each point: mp44 which points into the bounded region, and 7untda
which points into the unbounded part. Likewise at any boundary point, there
is a choice of unit tangents available, and we denocte them as the unit tangent
pointing in the direction of clockwise traversal Teioer, and the tangent pointing
towards counter-clockwise traversal Toounterciock. (see Fig. 4.4) Finally, relative
to 82, a point in the plane is denoted as wpgq if it lies in the bounded region
contained within 0, @, if it lies on 98, and @unagq if it lies in the unbounded
region.
A double layer potential is defined by placing dipole sources on the bound-
ary:
= 0 1 1 d 44
@) = [) gz o |~y) ds(w) (4.4)

Here, 1 could be either normal. Note that a double layer potential satisfies
Laplace’s equation away from the boundary (we may differentiate under the
integral sign when away from the boundary), so it is reasonable to seek a solution
to the Dirichlet problem in the form of a double layer potential. To be able
to satisfy the boundary conditions, we ask what the double layer does as we

45

Figure 4.3: Regions relative to a contour.

approach the contour from the bounded and unbounded domains. If n = 44,
we see the following limiting behavior (see Fig. 4.5):

lim w(weqa) = ——(ﬁ(-’ﬂo)-i-f Py (21 og | #, —y [1.5)

Lpaa—Lq

Bn(y)
1
540 + [4055 log |20 -y D (46)

lim U wunbdd)
Tynpga—+Lo (

If = Tunbdd (Flg 4.6),

lin, woae) = 34(eo) + [4055 log | 20 =y (A7)

Lpaa—
lim w(ounsaa) = —50ee) + [)2 (L log | @0~y 18)
Tounva i, ounbdd) = T @Be) T f PG) g B e T Y

4.2.3 Simply connected domains:

First consider the bounded case where the boundary consists of a single contour.
Represent the solution to Eq. 4.1 as a double layer potential (with # = funsdd).

46

Figure 4.4: Normals and tangents relative to a contour.

As mentioned, this representation satisfies the PDE, and from Eq. 4.7, satisfying
the given boundary data is equivalent to solving an integral equation.

3 g 1
59+ [6o okl o~y dsy) = o@s) (49)

This equation is uniguely solvable [13], and once the density ¢ is known,
then Eq. 4.4 will be the solution to the Dirichlet problem.

4.2.4 Multiply connected domains:

Next, consider the unbounded domain exterior to a single contour. If we again
attempt to represent the solution as a plain double layer potential, then we find
that the resulting integral equation does not have a unique solution (we can add
any constant to the charge density and still satisfy the integral equation). This
can make 1% more difficult to solve the integral equation, but this difficulty can
be avoided by modifying the kernel of the double layer. Therefore, we choose
to represent the solution to the unbounded Dirichlet problem as a modified
double layer potential [20].

e} 1
wo)= [)1+ 5 log | = = v D] de(w) (4.10)

47

Figure 4.5: Limits approaching the contour using the bdd normal.

Note that the modified double layer potential still satisfies Laplace’s equation
away from the boundary, and when we attempt to satisfy the boundary condition
(set 7 = Bunbaq, and use Eq. 4.8), we arrive at the following integral equation:

1 i} 1
~ 50+ [Hw + s log | m =y Pds(w) = g(e) (41)

This modified equation can again be solved uniquely [201.

If we now look at the unbounded domain exterior to M contours (where
M>1), and we seek a solution as in Eq. 4.10, then enforcing the boundary con-
dition leads to an integral equation with a M-1 dimensional nullspace (spanned
by M-1 constants on the M contours). This does not mean that the integral
equation is unsolvable (by Fredholm’s theorem there are an infinite number of
solutions if g is orthogonal to the nullspace of the adjeint equation), but instead
of worrying about the nullspaces we choose to follow the procedure desecribed
by Mikhlin [27] {and later used in {14]) and modify the representation of the so-
Iution. Mikhlin showed that the following integral equation is uniquely solvable
(here % = TJunpdd, and go can be any continuous boundary data):

- %qﬁ(wo) + [oq S+ R0, y) + zrgy (o log | o — v)] ds(y) (4.12)
= 9'2(330)

48

Figure 4.6: Limits approaching the contour using the unbdd normal.

R(woyy)

0 else

Armed with this result, we seek a solution with the following form,

g .1
wa)= [HWl+ gs(olog o -y)

_{ 1 if @y y€dQy, k=1,... M —1

M

k=1

ds(y) + ZA’“ log | @ — 2z {4.13)

where zp is an interior point of the kth object. This representation satisfies
Laplace’s equation, and to specify the M constants { Az} we add M constraints.

d(y)ds(y) =

[il97%
M
DA
k==l

0,

EF=1

PRI

(M —1)

Enforcing the boundary conditions leads to the equation,

- 50(@e) -+ o S+ 52l (o log | w0 —] ds(y)

= g(@o) — Yobey Arlog | o — 2 |

fank ¢(y) ds(y) =0,
Eg{—_z Ap =0

49

E=1,...,(M~1)

(4.14)

(4.15)

(4.16)

(4.17)
(4.18)

Note that the final constraint (Eq. 4.15) ensures that the solution satisfies the
condition at infinity (Eq. 4.3), and the M-1 constraints (Eq. 4.14) make the
resulting integral equation equivalent to the uniquely solvable problem (where
go(m,) = g(®,) — Zﬂil Aplog | &, — 2z |). Therefore our choice of representa-
tion converts the Dirichlet problem into an integral equation that we can solve
uniquely.

We follow a similar procedure when dealing with bounded multiply con-
nected domains. Assume that there is one bounding contour and M inner con-
tours (where M>0), and seek a solution in the following form (here 7 = Hunsad
on the bounding contour and 1 = 7344 on the inner contours):

= 0 11 d MAI 4.19
ww) = [#5510 2~) st) + 3 Axlog | 2 =1 | (419

We add M constraints to specify the M log coefficients:

o(y)ds(y) =0, k=1,.... M (4.20)
o5,

Applying the boundary conditions leads to a uniquely solvable integral equation
[27].

20t foa 80ty (2 log | 20—y) ds(y) (421)

= 9‘(:!30) - Zg{:l Ay log | Bo— Zp | (4.22)
Joa, #@)ds(y) =0, k=1,.., M

Now that we have derived an integral formulation of Laplace’s equation for both
bounded and unbounded multiply connected domains, we must consider how to
solve the resulting integral equations. In the next section a numerical method
is considered and efficiency issues are explored.

4.3 Numerical Issues:

The integral equations we have derived can be solved analytically only for a few
special cases. If general geometries and data are considered, some numerical
procedure must generally be used. There are a variety of numerical approaches
available to ug, including the Nystrom, collocation, and (GGalerkin methods. We
will compute approximate solutions by applying a Nystrém [29] method, which
18 an efficient method for the two dimensional domains we will consider. This
method will now be presented, along with a discusston on how one can make it
fast.

50

4,3.1 Discretization of integral equations:

First, a numerical quadrature method is used to replace the integrals with a
finite sum. We currently use the trapezoid rule because of its simplicity and
because it is spectrally accurate when the contours and charge densities are
smooth (as can be seen from the Euler-MacLaurin formula [1]). If we sample
ni boundary points on the kth contour ({&f}, i =1,...,ng), the discretized
integral can be written as a simple sum.

o S5 (y)(er

NZQ&(k)a ("")(qu gimo——mf’ th

log | @, ~ v |} ds(y) (4.23)

Here h; represents the average arclength of the two boundary intervals that have
®¥ as an endpoint.

Next, we enforce the integral equation at each of the sample boundary points
and apply the quadrature rule. Note that when the integration point coincides
with the evaluation point (@, = x¥), the kernel appears to be undefined; how-

ever, a closer examination reveals a well defined limit.

1 1
(ﬂ log | @~z |} = Zf;m(:n,,) (4.24)

lim ———
o w,0n(x
Eedy T]()
Here x(x,) is the curvature of the contour at @,.
These approximations reduce the integral equation (and constraints) to a
finite dimensional matrix equation which can be solved for the log coefficients
and the charge densities at the sampled boundary points.

ir+p L ¢ 7
g entr enty — 7,
(Deon Leon) fi‘ - 0 (425)
where
(‘1’1) A g(m%)
Pz, Am gz,

D nir Tepresents the discrete contribution of the double layer potentials, Lepyr
the effects of the log terms, Dcopn holds the discrete density constraints, Leon
has the constraints on the log terms (a zero matrix for the case of a bounded
domain}, and I is the identity matrix.

51

4.3.2 Solution of discrete equations:

In this thesis, the linear system is solved using Gaussian elimination. We use this
direct matrix solver for simplicity of development, but since its cost increases as
the cube of the number of unknowns, we expect that it would become computa-
tionally expensive when the number of unknowns is large. On the other hand,
although the matrix is dense it is well conditioned, and the condition number
does not increase as we refine. This feature makes iterative solvers attractive
when the number of unknowns is large because the cost of a matrix vector mul-
tiplication only grows as the square of the number of unknowns. Better still, if
we forego an exact matrix multiply and use an intelligent approximation based
on a hierarchical partitioning of space, we obtain an O(n) procedure known as
the fast muliipole method or FMM [32, 15, 8]. The complexity of the FMM
algorithm is optimal, but the asymptotic constant can be large {depending on
the level of accuracy specified), and a FMM enhanced iterative method will be
faster than a direct solver when the number of unknowns is roughly a few hun-
dred. Optimally our matrix solver would simply check the number of unknowns
and then select the direct or iterative solver as appropriate.

4.3.3 Evaluation of integral representation:

After we solve for the unknowns, another numerical issue is how 1o evaluate the
solution at a set of points. The simplest approach is to apply the quadrature
method and compute the resulting finite sum. There are two possible drawhacks
to this procedure: First, if the solution must be evaluated at many points, then
this process incurs a significant computational cost, Second, the discretized
integral yields a poor approximation if the evaluation point lies near the bound-
ary. This poor resolution is not surprising since the derivatives of the integrand
increase as the evaluation point nears the boundary, hence the quadrature er-
rors (for a fixed discretization level) increase as well. However, this particular
failing does not bother us because we only use the evaluated integral solution
in a preconditioner (see Section 2.3), and so we do not require great accuracy
throughout the domain. If one is interested in other applications, the loss of
resolution can be avoided by using adaptive integration or by using a method
of local corrections [22] which we will presently discuss.

One way of accelerating the evaluation process is to apply the previously
mentioned FMM. The FMM can be used to evaluate our integral representation
at a collection of points in an asymptotically optimal way; however, because of
the large asymptotic constant involved, it turns out to be faster to use a fast
Poisson solver in a method of local corrections.

52

The method of loeal corrections:

The method of local corrections is a general procedure for approximately eval-
uating a function, u, on a given grid £}, and particular instances have ap-
peared in [22, 28, 24, 3, 38]. The method requires three conditions to be sat-
isfied: First, there must be an invertible discrete operator Lj, where our func-
tion’s response to that operator is approximately known for most grid points
(f(@i;) =~ Ln(u){z; ;) 1s known at most @; ; € {;). Second, there must be some
way of calculating the function’s response at the few remaining grid points. Fi-
- nally, a rapid method must exist for inverting the discrete operator (ﬁg1 can
be applied rapidly).

If these three condifions are met, the method of local corrections proceeds
by first specifying the known responses for most of the grid points, filling in
(or correcting) the responses at the few (local) remaining points, and finally
calling the rapid inverse operator to obtain the function values on the grid
(u a2 L;71(f)). The details of the method depend on the particular function
being evaluated and on the grid we are given. For example, if we want to
evaluate a very costly function on an equally spaced grid where most of the
function’s Fourier frequencies are known, and if the remaining frequencies can
be determined, then a FT'T can be used to evaluate the function rapidly on all
grid points. Or, if we need to evaluate a complicated function on an unstructured
grid, and if we know that the function satisfies a certain elliptic equation, then
we can apply a multigrid scheme to determine the function values on the grid.

For our particular problem, we need ic evaluate an integral representation
(such as Eq. 4.19} at all the points of a Cartesian grid. We know that the
analytic Laplacian of our solution is zero in our domain, so it seems reason-
able that the discrete Laplacian should be approximately zero. If the standard
five point discrete Laplacian is used, then zero is a second-order accurate ap-
proximation to the discrete Laplacian. (Zero is a fourth-order approximation if
the nine point discrete Laplacian is used.) Furthermore, we note that we can
rapidly invert the discrete Laplacian on a Cartesian grid by using a standard
fast Poisson solver. Asymptotically, these solvers require O{nlog(n)) operations
to solve for n unknowns, however their asymptotic constants are very small and
in prachice they are extremely fast. Therefore, we should be able to apply the
method of local corrections to rapidly evaluate our solution. The one remaining
issue i3 that the discrete Laplacian values are not known at all of the Cartesian
grid points. OQur integral representation is harmonic in the domain but it is
not harmonic through the boundary, and we cannot assume that the discrete
Laplacian is zero when some of the stencil points lie on opposite sides of the
houndary. We will refer to these points as irregular grid points (as in Section
2.1), while points whose standard five point stencils lie completely on one side
of the boundary will be known as regular points (Note: the standard five point
stencil of a given grid point is the portion of the mesh that connects that point
to its nearest neighbors as illustrated in Figs. 4.7 and 4.8). In order to im-

53

/1 \
/ rég 1lar
point

[~ 50

Figure 4.7: A standard five point stencil at a regular point.

/
,/
AN
/ gl

[~—150

Figure 4.8: A standard five point stencil at an irregular point.

plement our fast evaluation procedure, we must consider how to form the local
corrections to the discrete Laplacian at these additional points.

A direct method for determining local corrections:

A simple way of determining the discrete forcing terms for irregular points is to
evaluate the solution at grid points near the boundary and then to compute the
discrete Laplacian using these values. The evaluations can be done using a direct
summation of a quadrature rule (Eq. 4.23) [23] or by applying the FMM][25],
and this approach achieves a speed up because we evaluate the solution at fewer
points. There are two issues that should be considered when using this approach.
First, since the forcing terms come from a numerical evaluation of the solution,
the accuracy of the method of local corrections is limited to the accuracy of this
initial evaluation algorithm. Therefore, near the boundary we can still see the
same loss of accuracy that occurs when we do a direct evaluation at all grid
points. In our application (Section 2.3), we only use our evaluated solution as
a preconditioner, so this possible loss of accuracy does not bother us (however,
if one needs full accuracy throughout the domain then one should be more

54

careful}. Another issue is that if we replace our double layer potential with an
approximate sum, then we cannot assurne that the discrete Laplacian values are
close to zero at all regular grid points, Analytically, the Laplacian of both the
double layer and the approximate sum are zero, but the discrete Laplacian only
approximates the analytic Laplacian up to an error term that depends on the
derivatives. For example, when we use the standard five point discrete Laplacian
and assume a uniform grid mesh width, i, we see the following behavior:
h2
Apu = Au-— Tz—(umm, + Uyyyy) (4.27)
h2

0- E(umwwaz + Uyyyy)

The double layer potential has bounded fourth derivatives, so its discrete Lapla-
cian will be near zero at all regular grid points. On the other hand, the fourth
derivatives of the discrete sum behave like %&?ﬂ, where d is the distance between
the boundary and evaluation point and hrg is the boundary interval length used
to discretize the integral (assume for now that the boundary has been discretized
into intervals of equal arclength). Therefore, the discrete Laplacian of the dirvect
sum is larger at points near the boundary, and we cannot always assume that
it is zero.

For example, consider the annular domain with inner radius of 0.12, outer
radius of 0.34, and center at (0.5,0.5). We use the integral equation techniques
of Section 4.2 to solve a Laplace problem on the domain, where boundary values
are defined by the function 2 — y? (the boundary is discretized using 40 points
per contour). We embed the domain in a Cartesian grid (Fig. 4.9), and evaluate
the integral solution on grid points in the domain {using both direct surnmation
and the method of local corrections). I we use a direct summation to caleulate
the discrete forcing terms, and if we only calculate foreing terms for grid points
that lie a fixed number (three) of mesh widths from the boundary, then we see
a degradation of our rapidly evaluated solution as we refine the Cartesian mesh.
Specifically, if we denote the solution obtained using direct summation by u,
and the rapidly obtained solution by u", then the difference between the two
solutions increases as we evaluate them on finer grids (see Table. 4.1).

In our implementation of this approach, we compensate for this effect by
calculating discrete forcing terms for additional points up to a distance d from
the boundary, where d = h+hyp. Computing forcing values ocut to this distance
ensures that the resulting method of local corrections produces solution values
that remain close to the directly calculated values for any level of grid refinement
{see Table 4.2). For the problems in this thesis, this distance is computation-
ally reasonable because we generally use enough boundary points to produce
a fairly resolved integral solution, and so ﬁﬁﬂ- is usually less than 4. However,
asymptotically, the number of correction terms needed for this fixed distance
is of the same order as the total number of Cartesian gridpoints! Therefore
(although it is not necessary for our particular problem), one can choose a less

55

Figure 4.9: Test geometry embedded in a Cartesian grid.

restrictive distance criterion to decrease the computational cost when h < hrg.
For instance, if d o h2/5, then we observe a roughly constant difference between
the directly evaluated and rapidly evaluated solution, as shown in Table 4.3.
In the multiply connected case, we also have log sources to evaluate (see
Eq. 4.13), and we similarly determine their contributions to the discrete forcing
terms by evaluating the log terms at grid points near the source locations {we
shift the source location slightly if it happens to lie directly on a grid point),
and then calculating the discrete Laplacian of these values (this was previously
done in [3]). Again we can choose to calculate the forcing terms out to a simple
fixed distance, or a more involved distance that varies with the mesh width.

Table 4.1: Results of using direct computation to form local corrections at points
a fixed number of mesh widths from the boundary.

Grid | [|u® — v [loo | |u*(.5,.25) ~ uT(.5,.25)]

40x40 2.6e-0b 1.5e-0b

80x80 0.00128 0.00016
160x160 (.00330 0.00077
320x320 (.01095 0.00140

56

Table 4.2: Results of using direct computation to form local corrections at points
a fixed distance from the boundary.

Grid | |l —u'je | [u®(.5,.25) — u' (.5, .25)]

80x80 0.00128 0.00016
160x160 0.00016 4.0e-05
320x320 6.2e-05 1.7e-05

Table 4.3: Results of using direct computation to form local corrections at points
a distance proportional to A%/ from the boundary.

Grid | [Ju® —u"||eo | |u%(.5,.25) — u' (.5, .25)]

80x80 0.00017 6.8e-0b
160x160 0.00016 4.0e-05
320x320 0.00036 0.00011

Tt should be noted that since we use our evaluated integral only as a pre-
conditioner (Sec. 2.3), we may not need a great deal of accuracy; therefore, the
distance d can be adjusted to provide a faster evaluation process that is still an
effective preconditioner.

Mayo’s method for determining local corrections:

Another way of determining the forcing for the irregular points was given by
Mayo[22]. To describe this alternate approach, we re-examine the five peint
discrete Laplacian of a double layer potential: If we apply Taylor’s theorem
to the discrete Laplacian, we find that it is a second-order approximation to
the analytic Laplacian (Eq. 4.27). This analysis assumes that the solution
can be expanded in a Taylor series that is valid along all the stencil arms of
the discrete Laplacian, and this assumption is valid for regular grid points.
For irregular points, the solution is represented by a different Taylor series on
each side of the boundary, and when we apply our analysis, we obtain jump
terms where the two series meet. For example, consider an irregular point =; ;
whose stencil intersects the boundary along all four of its arms. As shown
in Fig. 4.1} we denote the right, left, up, and down intersection points by
xR, 21, @y, and zp while the distances from the center of the stencil to these
intersection points are labeled dg,dr, dy, and dp. Furthermore, subscripted
brackets will be used to denote the jump values from the side containing the

57

¥
— N\/ .
T "IN
Xy
\ \
Xp *___\\
o0

Figure 4.10: Notation for an irregular point.

extremal stencil point to the side containing the center stencil point: [u](zg) =
u(eh, yr)—u(ey, yr), [ulo(wr) = u(ey, yo)—u(ef, yr), [ulo(wv) = w(zv, vf) -
w(zy, y;), and [ul(2p) = ul(zp, yp)—u(zp, y5). Using this notation, a Taylor
series analysis of the discrete Laplacian reveals the following relationship (for
convenience we assume that the grid has an equal mesh width £ in both the ¢
and y directions):

Apu = Au

[uiu{wnmh—da)[u:]u(ma)+“—“zi§[uu]a(mn)+"‘—“:ﬂ)—“gum]g(mR)

+

+[ulo(wL)—(h—dL)[uzlo(wmLﬁ‘%ﬁfiuumm)—W{umla(m) (4.28)
+ [u]o(mu)+(n—du){uylo(wu)+%[uw]o(wu)+ (o2 Jo(B0)
+iulo<wn)—(h—dn)[uyza<wo)+‘iﬂf§3[uyy1a(wnJ—ﬂ—‘%ﬂﬁiumla(wn)

+0O(h?)

From this equation we see that we can accurately approximate the discrete
Laplacian at an irregular point if we know the analytic Laplacian (zero for a
double layer potential) and the jump values of the solution and its derivatives.
As Mayo showed in her paper [22], when dealing with a double layer potential
these jump terms can be computed directly from the charge density and its
derivatives. If we denote the boundary intersection point as @, = x,(s) =
(2o(s), ¥o(s)) where s denotes some parameterization of the boundary, and we
introduce a jump notation [] to represent the jump from the exterior side to
the interior side (ie. [u(w,)] = u(wo(8) + €f(s)) — u(w,(s) — €ff(s)), where
¢ > 0,6 € 1, and # points out of the domain), then the parameterized jump

58

terms are given by the following formulas

[l = -¢

wl = -5

[uy] = - zbgy_ol_qsgg (4‘29)
] = (B8 006+ (ol + 38005) + (il — 32200))¢
- (2 + 02

[uyy] = —[tss]

By using these equations, we can approximately compute the discrete forcing
terms ab the irregular points without having to do any solufion evaluations
at all. Furthermore, since we caleulate the forcing directly from the charge
densities, the method of local corrections does not lose accuracy at points near
the boundary. As for the log terms, we cannot apply the above formulas since
these point sources do not have the the same type of jump behavior. Therefore,
their contribution to the discrete forcing teems will be determined by differencing
the local evaluations of the log values as previously described.

The Mayo procedure possesses two advantages: First, it provides an approx-
imate solution which does not lose resolution near the boundary. Second, it
can be calculated rapidly because correction terms only need to be found at
trregular points, and because these corrections only involve local information
about the charge densities. The disadvantage of the Mayo procedure is that it
is complicated and can be difficult to implement. It requires the charge density
and its derivatives to be known at arbitrary boundary points, and one must
identify all irregular points and points where the grid lines intersect the bound-
ary. This detailed information can quickly become cumbersome, but the proper
uge of computational tools can make these details more manageable. For in-
stance, the COG class library discussed in Chapter 2 encapsulates the details of
representing the boundary, grid, and data; thereby freeing the user to focus on
how to use that information without worrying about how o obtain and store
it.

4.4 Choosing Dirichlet constants subject to flux
constraints:

So far we have discussed how to formulate Laplace’s equation as an integral
equation and how to solve the resulting equation efficiently. Most of the discus-
sion has appeared in previous works since integral equations have been used to
solve Laplace’s equation for many years. In exploring the fluid simulations of
this thesis, it was found that the classical integral approach used for Laplace’s

59

equation could (with modifications) be fruitfully applied to areas in fluid dy-
namics. In particular, our Navier-Stokes solver requires the solution of a Laplace
equation which differs from the standard Dirichlet problem. In this section we
will state what this Laplace problem is and describe how we can use a modified
integral approach to efficiently solve it.

4.4.1 Statement of the problemn:

In cur Navier-Stokes solver (Chapter 3), the nature of the boundary conditions
associated with viscous flow requires us to solve the following problem: Let {2 be
a bounded domain in the plane with a C? boundary consisting of one bounding
contour Ofly41 and M inner contours <2 - - - 80y (Fig. 4.1). Given M fluxes,
l1,...,1ar, determine M Dirichlet data constants ¢q, ..., car that will produce
a solution to Laplace’s equation with the desired fluxes. In other words the
constants are chosen so that if the following equation is solved,

Au(e) = 0, z€ Q (4.30)
. _ ey e ed, E=1,..., M
A u(@) = { 0 ife, € 8Qme
xen
then
wﬁwu(m)ds(m) = I, k=1 M (4.31)
asm On(z) o A '

(Note: in our Navier-Stokes solver, the Laplace solution only has to be deter-
mined up to an additive constant. For this reason we can arbitrarily fix the
Dirichlet data constant for any one contour, and for consistency we always set
the constant for the bounding contour to zero. The unbounded situation ex-
terior to M contours is similar, where M-1 Dirichlet constants are chosen to
satisfy M-1 fluxes, and zero data is used for the Mth contour). Two methods
will be given for the solution of this problem: the first has been previously used
in [35] works, and requires the solution of M elliptic problems, while the second
is an approach which (through the use of an integral formulation) only requires
a gsingle elliptic solve.

4.4.2 An existing approach:

We introduce the notation u(x|e; .. .cpr) to represent the solution to Laplace’s
equation where ¢; is the Dirichlet data on the jth confour (and zero data is
specified on the bounding contour). Note that the linearity of the Laplace

60

operator implies that both the solution and the total fluxes about each con-
tour are linear functions of the Dirichlet data {¢;}. That is, u(w|er...cm) =

Efm_lcju(mw...l...{)) and

S 9
o2, (@) w(zley .. .opr) ds(e) = ;Cj /;mi mu(mw 1o 0) ds(e),

where the unit data is specified on the jth contour. We need to choose the
Dirichlet data to satisfy the given fluxes:

M
2
; —_— = =1,... 4.32
;ﬂ:c‘,/mk Gyl L 0ds(e) = b k=1 M (432)

If we denote Kij = fyq. ;3;%«514(:13 [0...1...0)ds{z) (again the unit data appears
on the jth contour), then we can write our problem as a matrix equation

_K1’1 -KI,M €1 [1
: : : = : (4.33)
Kpyy - Kuywu oM Inr
which can be solved to obtain the constants ¢, ...,cpr. To obtain the matrix

values {K;;}, we solve M Laplace equations with Dirichlet data and then com-
pute the flux about each contour. If finite differences or finite elements are
used, additional calculations are needed to calculate the fluxes (this approach
was used in [35]), whereas if the integral representation is used (Eq. 4.21) then
the fluxes are determined automatically ([,q, %u(m) ds(e) = 2w A;). The
main drawback of this approach is that an elliptic solve is needed to gener-
ate each matrix column in Bq. 4.33, therefore, it will involve a large amount of
computation if the boundary consists of many contours. Furthermore, when the
boundary is allowed to move, the matrix itself can change, thus this approach
requires M elliptic problems to be solved at every time step. We would like to
be able to consider flows about multiple moving bodies, so we are interested in
finding better ways of solving Eqs. 4.30-4.31.

4.4.3 An integral approach:

A more efficient method involves a modification of the integral equation ap-
proach of Section 4.2. First, the log coeflicients are chosen to ensure that the
integral representation satisfies the prescribed fluxes (A; = %1;;, k=1,...,M).
Next the data constanis ¢y,...,cpr are treated as additional unknowns that

are determined by the M solvability constraints. This results in the following

61

integral equation (where cprqq = 0) ¢

1
38@o) + foq ¢(W) gy (5 los | @0 —y) ds(y) — ¢ (4.34)
=M b log | w, — 2 | (4.35)
@, €00, F=1,...,M+1 (4.36)

foa, #W)ds(y) =0, k=1,... M

This integra! equation is similar to the ones we have previously considered {such
as Eq. 4.21), and we even have the same constraints that ensure its solvabil-
ity. The difference is that now our unknowns are the charge densities and the
Dirichlet data constants, and this difference allows us to obtain all of the data
constants simultaneously by solving a single integral equation. We solve this
equation by using the methods discussed in Section 4.3, where we first apply
a quadrature method which converts the integral equation into a single linear

system
(o 5 Dentr 2) [‘H = (Z) (4.37)
where
G 2 Sies gelog | @] — 2 |
¢ = : =1 0], F= : (4.38)
IC CM Sl e log | @l — 2 |

Here, D.pir represents the discrete contribution of the double layer potentials,
and Deop holds the discrete charge density constraints. I2 is a matrix that
incorporates the Dirichlet constants into the solution, and assuming that there
are n; points on the jth contour, its jth column {j = 1,..., M) consists of zeroes
and n; entries of —1 starting at row 14 Zi;i ng. This matrix equation can be
solved directly or iteratively (as discussed in the previous section), and will yield
the desired Dirichlet constants ¢1, ..., cpr with no additional computations.

This integral approach is an attractive method for dealing with Eqgs. 4.30-
4,31 when the domain contains several contours. The main benefits are that
it only requires a single elliptic solve no matter how many contours there are,
it does not require the evaluation of the solution on a grid, and fast methods
(tike the FMM) can be applied to efficiently solve the resulting integral equation
when the number of unknowns is large.

4.4.4 Summary:

We have examined how integral equations can be used to efficiently solve two
types of Laplace problems. The first is Laplace’s equation in a multiply con-
nected domain with Dirichlet data. The second problem involves choosing

62

Dirichlet data subject to constraints on the local fluxes of the solution. Both
problems are solved in the projection step of our fluid solver, where integral
equations are used to form correction terms that convert a procedure that works
in stmple domains into a methed for complex domains. These correction terms
serve to take the presence of the boundaries into account, and therefore increase
the flexibility of methods that rely on simple geometry.

63

Appendix A

A Data-Structure-Neutral
Iterative Solver Class:

To solve the linear systems that appear in our Navier-Stokes algorithm, we used
an iterative method. Qur linear operators are represented as functions, and
are not stored in matrix form. Likewise, the quantities we solve for are given
on a flagged cut-out Cartesian grid, and are not sequentially stored in vectors.
The iterative solvers contained in software libraries typically require that the
linear system be represented by vectors and matrices, but this format is inconve-
nient for our applications. The iterative algorithms themselves are expressed in
terms of mathematical operators which do not have to be expressed in terms of
vectors and matrices, and by using a particular programming approach (which
emphasizes functions and pointers), one can implement iterative methods with-
out assuming a particular matrix-vector representation. Some library routines
now let users provide functions to apply the linear operators, instead of passing
in actual matrices. We decided to extend this approach (following the example
get in [18, 17, 4]}, and let users provide both their own operators and their
own data representations. This frees the user from having to use an unneces-
sary (and often unnatural) matrix-vector representation, and can make it easier
to use iterative methods. Additionally, not having to explicitly form vectors
and matrices can reduce both the number of computations performed and the
amount of memory used. This data-structure-neutral approach was very useful
in implementing our Navier-Stokes algorithm, and some documentation for the
software is included in this appendix.

class lterative_soln

Introduction:

64

The Iterative_soln class is a data type for the representation and solution of
linear systerns. When a class object is created, the user supplies parameters
that specify the particular linear system being considered. The parameters
corresponding to “vectors” (the right hand side and solution) are represented
by void pointers which can hold the address of any class or data structure,
while key operators which act on these generalized “vectors” (such as the matrix
application) are represented using function pointers. Once the class object has
been created, member functions can be used to operate on the linear system, and
a choice of iterative solvers can be applied (CG, PCG, GMRES, and FGMRES).

The advantage of our use of pointers is that it results in a flexible, data-
structure-neutral approach [18, 17, 4], where users are free to use their own
data representations. For example, if the linear system corresponds to solving
a discretized partial differential equation, then users can continue to work with
their grids and loops instead of having to convert them into vectors and ma-
trices. This flexibility makes it easier to solve linear systems with non-trivial
representations.

public member functions:

Iterativesoln(...)

Description:

The constructor for the class. It creates a class object that represents the
particular linear system described by the user-supplied argument list. These
arguments are as follows:

max.iter : the maximum number of iterations to be attempted.

tol : the relative residual tolerance level to be used as the stopping criterion in
the iterative solvers.

soln : a pointer to a “vector” that will be filled with the iterative solution af-
ter a solver has been called. If the initial guess flag has been set (see
init_guess.on(}), the “vector” will be used as an initial guess by the itera-
tive solver.

rhs : a pointer to a “vector” that represents the right hand side for the linear
system.

a_mult : a pointer to a function that applies the linear operator(“matrix”}.
pre_cond : a pointer to a function that applies the preconditioner.
ereate ! a pointer to a function that creates new “vectors”.

destroy : a pointer to a function that frees up(deletes) “vectors”.

65

copy : a pointer to a function that copies one “vector” to another.

inner.prod : a pointer to a function that computes the inner product of two
“vectors”.

add : a pointer to a function that finds the sum of two “vectors”.
scale : a pointer to a function that scales a “vector” by a constant.

obj : a void pointer that is associated with the linear system. This is an op-
{ional parameter that can be used when additional information needs to
be passed arcund.

void cg()

Description:

Solve the linear system represented by this Iterative_soln object using the con-
jugate gradient method. After completion, the user specified solution “vec-
tor” holds the final iterate, and both the relative residual error achieved and
the number of iterations taken are stored internally. (see get_tol(double) and
get max iter(long))

void peg()

Description:

Solve the linear system represented by this Iterative_soln object using the pre-
conditioned conjugate gradient method. After completion, the user specified
solution “vector” holds the final iterate, and both the relative residual er-
ror achieved and the number of iterations taken are stored internally. (see
get_tol{double) and get_max_iter(long))

void pmres(long restart.iter=0)

Description:

Take an int, and golve the linear system represented by this Tterative_soln object
using the GMRES algorithm. The int is used as the restart parameter. After
completion, the user specified solution “vector” holds the final iterate, and both
the relative residual error achieved and the number of iterations taken are stored
internally. (see get_tol(double) and get_max iter(long))

void fgmres(long restart_iter=0)

Description:

Take an int, and solve the linear system represented by this Iterative.soln ob-
ject using the FGMRES algorithm. The int is used as the restart parameter
This algorithm differs from regular GMRES in that it stores the preconditioned

66

residual ”vectors”. This results in more storage but half as many preconditioner
calls. After completion, the user specified solution “vector” holds the final iter-
ate, and both the relative residual error achieved and the number of iterations
taken are stored internally. (see get_tol{double} and get_max_iter(long))

void setmax_iter(long max)

Description:

Take a long as a parameter, and store it as the maximum number of iterations
that an iterative method will try before stopping.

void get max_iter(longk max)

Description:

Take along by reference, and change it to hold the current value of the maximum
iteration parameter. Before an iterative method is called, this parameter holds
the maximurm number of iterations that will be attempted. After a method is
called, this parameter holds the actual number of iterations taken.

void set_tol(double tolerance)

Description:

Take a double and store it as the relative residual tolerance level (the stopping
criterion for the iterative methods).

void get_tol(double& tolerance)

Description:

Take a double by reference and change it to hold the current value of the toler-
ance parameter. Before an iterative method is called, this parameter holds the
stopping criterion to be used. After a method is called, this parameter holds
the relative residual of the iterative solution.

void init _guess on()

Description:

Set the initial guess flag to indicate that the given solution ”vector” contains
an initial guess for the iterative solvers.

void init.guess.off()

Description:

Set the initial guess flag to indicate that the given solution ”vector” does not
contain an initial guess for the iterative solvers.

67

void set_pre_cond(veid(*p_c) (void*,void*,void*))
Description:
Take a pointer to a function and store it as the preconditioner.

void set.rhs(void* b)

Description:

Take a pointer to a "vector”, and store it as the right hand side of the linear
system.

void initialize(...)

Description:

An initialization function. 1t takes the same arguments as the main constructor,
and initializes the current object to represent the linear system described by the
argument hst.

void initialize(const Iterative_soln& B)

Description:

An initialization function. It takes an Iterative_soln object as a reference argu-
ment, and initialtizes the current object as a true copy of the argument.

Tterative soln{const Iterative_soln& B)

Description:

The copy constructor. It takes an Iterative_soln object as a reference argument,
and creates the current object as a true copy of the argument.

68

Bibliography

[1]

2]

[3]

4]

9]

[9]

[10]

M. Abramowitz and 1. A. Stegun. Hondbook of Mathematical Funciions.
Dover Publications, Inc., New York, 1965.

A. 3. Almgren, J. B. Bell, P. Colella, and T, Marthaler. A cartesian grid
projection method for the incompressible Euler equations in complex ge-
ometries. STAM J. Sci. Comput., (to appear).

C. R. Anderson. A method of local corrections for computing the velocity
field due to a distribution of vortex blobs. J. Comput. Phys., 62:111-123,
19886.

S. Balay, L. Curfman McInnes, W. Gropp, and B. Smith. PETSc 2.0 users
manual. Technical Report ANL-95/11, Argonne National Laboratory, 1995.

S. A. Bayyuk, K. G. Powell, and B. van Leer. An algorithm for the simula-~
tion of 2-D unsteady inviscid flows around arbitrarily moving and deforming
bodies of arbitrary geometry. Technical Report 93-3391, ATAA, July 1993.

J. Benek, J. Steger, and F. Dougherty. A flexible grid embedding technique
with application to the Euler equations. In Proceedings of the 6ih ATAA
Computatione! Fluid Dynamics Conference, 1983,

M. J. Berger and R. J. LeVeque. An adaptive Cartesian mesh algorithm
for the Euler equations in arbitrary geometries, Technical Report 89-1930,

ATAA, 1989,

J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole al-
gorithm for particle simulations. STAM. J. Sci. Stat. Comput., 9:669-686,
1988.

(. Chessite and W. D. Henshaw. Composite overlaping meshes for the
solutoin of partial differential equations. J. Comput. Phys., 90:1-64, 1990.

A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math.
Comyp., 22:745-T62, 1968,

69

[11] A. 4. Chorin and J. A. Marsden. A Mathematical Introduction to Fluid
Mechanies. Springer-Verlag, New York, 1990.

[12] W. J. Coirier and K. G. Powell. Solution-adaptive Cartesian cell approach
for visous and invisid flows, ATAA J., 34:938-945, 1996.

[18] G. B. Folland. Intreduciion to Partial Differential Equations. Princeton
University Press, Princeton, 1976.

[14] A. Greenbaum, L. Greengard, and G. B. McFadden. Laplace’s equation and
the Dirichlet-Neumann map in multiply connected domains. J. Compui.
Phys., 105:267-278, 1993,

[15] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.
Comput. Phys., 73:325-348, 1987.

[16] P. M. Gresho and R. L. Sani. On pressure boundary conditions for the in-
compressible Navier-Stokes equations. fni. J. Numer. Meth., Fluids, T:1111-
1145, 1987.

[17] W. Gropp and B. Smith. The design of data-structure-neutral libraries for
the iterative solution of sparse linear systems. Technical Report Preprint
MCS-P356-0393, (to appear in Scientific Programming), Argonne National
Laboratory.

[18] W. Gropp and B. Smith. Users manual for KSP: Data-structure-neutral
codes implementing Krylov space methods. Technical Report ANL-93/30,
Argonne National Laboratory, August 1993.

[19] W. D. Henshaw. A fourth-order accurate method for the incompressible
Navier-Stokes equations on overlapping grids. J. Comput. Phys., 113:12--25,
1994,

[20] R. Kress. Linear Integral Equations. Springer-Verlag, Berlin, 1989,

[21] J. D. Lambert. Computational Metheds in Ordinary Differential Equations.
John Wiley & Sons, Ltd., Chichester, 1973,

[22] A. Mayo. The fast solution of Poisson’s and the biharmonic equations on
irregular regions. STAM J. Numer. Anal, 21:285-299, 1984,

[23] A. Mayo. Fast high order accurate solution of Laplace’s equation on irreg-
ular regions, SIAM J. Sei. Stet. Comput., 6:144-156, 1985.

[24] A. Mayo. The rapid evaluation of volume integrals of potential theory on
general regions. J. Comput. Phys., 100:236-245, 1992.

{25] A. McKenney, L. Greengard, and A. Mayo. A fast Poisson solver for com-
plex geometries. J. Comput. Phys., 118:348-355, 1995.

70

[26] J. E. Melton, M. J. Berger, M. I. Aftosmis, and M. D. Wong. 3D applica-
tions of a Cartesian grid Euler method. Technical Report 95-0853, AIAA|
1995.

[27] S. G. Mikhlin. Integral Equations. Pergammon Press, London, 1957.

[28] N.I. Muskhelishvili. Singuler Integral Fquations. Dover Publications Ine,
New York, 1992,

[29] E. J. Nystrom. Uber die praktische aufidsung von integralgleichungen mit
anwendungen auf randwertaufgaben. Acta. Math., 54:185-204, 1930.

[30] R. Peyret and T. D. Taylor. Computational Methods for Fluid Flow.
Springer-Verlag, New York, 1983.

[31] 8. E. Rodgers, D. Kwak, and C. Kiris. Steady and unsteady solutions of
the incompressible Navier-Stokes equations. AIAA J., 29:603-610, 1991.

[32] V. Rokhlin. Rapid solution of integral equations of classical potential the-
ory. J. Comput, Phys., 60:187-207, 1985.

[33] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM.
J. Sei. Comput,, 14:461-469, 1993.

[34] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algo-
rithm for solving nonsymimetric linear systems. SIAM. J. Sci. Stat. Com-
put., 7:856-869, 1986.

{36} C. Shakarji. Object Oriented, Numerical metheds for Two Dimensional,
Incompressible Flows, Using Overlapping Grids. PhD thesis, University of
California, Log Angeles, 1995.

[36] E. Y. Tau. A second-order projection method for the incompressible Navier-
Stokes equations in arbitrary domains. J. Comput. Phys., 115:147-152,
1994,

[37] J. Y. Tu and L. Fuchs. Overlapping grids and multigrid methods for 3-
dimensional unsteady flow calculations in IC engines. Int. J. Numer. Meth,
Fluids, 15:693-714, 1992.

[38] S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous,
incompressible, multi-fluid flows. J. Comput. Phys., 100:25-37, 1992.

[39] D. M. Young and R. T. Gregory. A Survey of Numerical Mathematics, Vol
2. Addison-Wesley Publishing Company, Inc., Philippines, 1973.

[40] D. Zeeuw and K. G. Powell. An adaptively refined Cartesian mesh solver
for the Fuler equations. J. Comput. Phys., 104:56-68, 1993.

Tl

