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Abstract. Turbulence is a mixture of hierarchical structures (eddies) of different
sizes, different amplitudes and different degree of coherence. The size distributes
continuously from the integral scale £ to dissipation scale n. At each scale £
(fo < € < n), the most intermittent structures have the highest amplitude with
the highest degree of coherence. Structures of lower amplitudes are related to the
most intermittent structures according to a symmetry relation which defines the hi-
crarchy. This is the Hierarchical Structure model (She & Leveque, 1994, Phys. Rev,
Lett., 73, 211} which links fluctuation structures of various sizes and amplitude all
together.

Moments of the velocity increments across distance £ vary in power law with
£ in the inertial range. The whole set of scaling exponents {p of the p-th order
moments carry a rich set of statistical information about the fully developed tur-
bulent field. It is now widely recognized that {p vary nonmlinearly with p, which
is often described as the multi-scaling or anomalous scaling problem. The Hierar-
chical Structure model describes ¢, in teams of parameters which characterize the
most intermittent structures. In isotropic turbulence, they are conjectured to be
filaments, and the resulting expression for ¢, reads p/9 +2(1 — (2/3)7/%).

The Hierarchical Structure model can be derived by a random cascade model
of the log-Poisson type. A more elegant derivation calls for an invariance principle
and the plausible assumptions that eddies have no characteristic size other than £o
and no characteristic amplitude other than that of the most intermittent structures.
The experimental validation of the model and its implications are discussed in great
detail. It is concluded thai the description of turbulence in terms of hierarchical
structures is physically sound and promising.

1 Turbulence: An Old Problem

Turbulence is a subject of long history. Over the past century, a huge amount
of experimental and theoretical investigation has been devoted to its study,
yet general consensus have not been reached upon as what is the solution of
turbulence. It is perhaps naive to try to look for the solution of turbulence, it
is nevertheless possible to identify a few basic features which the community
generally agree that turbulence possesses. First, turbulence {velocity, tem-
perature, tec.) is a highly irregular vector field with excitations spreading
continuously over many scales both in space and time. The wide range of
excited scales in both space and time imply the existence of a tremendous
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amount of disorders and complexity, or, in theoretical teams, of a huge num-
ber of degrees of freedom. Second, strong nonlinear interaction is primarily
responsible for spreading excitations over many scales. Consequently, turbu-
lent fluctuations, however random they may be, contains certain structures
of various degree of coherence. Experimentalists and computing scientists
have carried out measurements of various physical quantities, struggling to
define this mixed correlation. Theoreticiens have developed many mathemat-
ical tools (singular perturbatioon, renormalized perturbation, etc.), fighting
for describing such a mixture of orders and disorders. Although the success
has been limited, the impact of a breakthrough will undoutedly go beyond the
area of fluid mechanics; it will increase our analytical ability to characterize
the complexity generated by nonlinear processes in general.

1.1 Statistical Description of Turbulence

In the development of the theory of turbulence, several major trends may be
noticed. Early in 20th century, turbulence was characterized by the second
order correlation functions whose Fourier transform is related to the energy
spectrum. It is a natural tool to use to describe a random field which was
strongly inspired by the development of the statistical mechanics and of the
theory of random functions. Indeed, it gives the first approximation to a near
Gaussian stochastic field which carries minimal internal correlation, as tur-
bulence appears to be (see further discussions later). Work in this direction
has led to the paradigm now described as the statistical description of turbu-
lence. While many pioneers have contributed to the development of the ideas
and tools, the 1941 work of Kolmogorov (1941) has made a particular impact.
The reason seems to be that Kolmogorov (1941) made a specific prediction
about the energy spectrum of turbulence at very large Reynolds number,
which, whether right or wrong, has make one more seriously consider some
ideas such as the local cascade and the dimensional argument. These ideas
have since been instrumental in the study of the dynamics of turbulence in
many areas, specially in geophysical context.

Starting in late fifties, there have been important developments in the an-
alytical description of turbulence stimulated by the progress in the quantum
field theory. The pioneer work of Kraichnan (1959) and many others aimed
at rationalize the statistical description of turbulence with field-theoretical
analysis of stochastic fields constrained by the dynamics of the Navier-Stokes
equation (for more discussions, see Proccacia & L’vov in this volume). Diffi-
culties appeared immediately because an infinite series resummation is nec-
essary. Closure assumption must be introduced to regulate this resummation
of divergent series, and it is now realized that except for a few model prob-
lems, the regulated problems could be arbitrarily different from the original
problem. There is no known regulatory procedure (including the renormaliza-
tion group analysis) which is free of uncontrolled deviation from the original
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problem. There is one common feature among most, if not all, formal regu-
latory {closure) procedures, that is, the statistics of the velocity fluctuations
are close to Gaussian uniformly at all scales. In other words, the descrip-
tion of turbulence by closure theories seem to assume minimal structures in
turbulence, or in Kraichnan’s words (1959), with maximurm stochasticity.
Recently, there arises new attempts of non-perturbative closure theory
for the statistics of a passive scalar advected by a white-noise velocity field
(Kraichnan 1994). See also discussions of L’vov and Proceacia in this volume.

1.2 Structural Description of Turbulence

It has long been the goal of experimental fluid dynamics community to char-
acterize turbulence in terms of certain basic fluid structures distributed ran-
domly in space and time. There, one seeks the “atoms” that are the fun-
damental constituents of turbulence. In seventies and eighties, hopes arise
because of the discovery of the so-called “coherent structures” which were
thought to control the fundamental processes of turbulence. While the stud-
ies have led to detailed knowledge about certain complicated fluid mechani-
cal processes, it is also realized that there are a big variety of the “coherent
structures” which are geometrically too complicated to describe by available
mathematical tools, and which are too varied to be regarded basic. Neverthe-
less, there is a general consensus that at the location of very strong vorticity
or of very low pressure, the filamentary structures appear. Both laboratory
experiments and numerical simulations have confirmed the existence of the
so-called vortex filaments (Douady ef ol 1991, Siggia 1981, She el al. 1990,
Vincent & Meneguzzi 1991, etc.). The degree of coherence in these regions
are relatively greater, compared to other regions of lower vorticity ampli-
tude where structures appear to have much more complex forms. It is fair to
say from various observations that turbulence does not contain one kind of
“hasic” structures, but rather a series of complicated structures.

Note that the attempt to describe turbulence as a superposition of some
basic structures (patterns) has an important shortcoming. Since the fully de-
veloped turbulence is strongly nonlinear at all scales, except at scales smaller
than the viscous dissipation cutofl, the existence of any basic structure de-
mands extraordinary condition such that the structure is held against strong
disturbance from the mutual interaction with others. We know one example,
the Burgers’ shock structure which exists because of the infinite compressibil-
ity which make the dynamics local and stable. The three-dimensional incom-
pressible Navier-Stokes equations describe however just an oppoite situation
of very nonlocal and unstable dynamics, where there is no evidence that any
entity holds itself stably. Rather, an quasi-equilibrium holds in a statistical
sense with active dynamics of the structures at all scales: stretching, deforma-
tion, folding, reconnection, etc. The consequence is that turbulent structures



4 Zhen-Su She

of many kinds co-exist dynamically. Turbulence is unlikely to be a family of
one animal, but likely to be a zoo!

2 Scaling of Turbulence: Quantitative Studies

There is little disagreement that turbulence involves a great deal of complex-
ity and it is generally agreed that its properties are only stable and measur-
able in a statistical context. The problem we are facing is what is the reliable
statistical information, before we start to consider how the information to be
used effectively in practical modeling. The study of turbulence in the past
has placed overwhelming emphlasis on the later issue which is understand-
ably driven from a practical standpoint. In late eighties and nineties, there
arise a new trend in the studies of turbulence with the participation of ex-
perimental physicists. The “new” Experiments are carefully controlled, the
measurements are better calibrated, and more importantly the studies were
more physically motivated (e.g. Tong el al. 1988, Benzi ef al. 1994, Noullez
el al. 1996, Tabeling et al. 1996; see also Sreenivason & Antonia 1996). These
studies have led to many accurate measurements, and have provided inter-
esting reliable quantitative outputs. One of the measured quantities of great
interest is the scaling exponent.

2.1 Physical Significances of Scaling

The scaling behavior is one of the most intriguing aspects of fully developed
turbulence. It refers to the observation that in high Reynolds number flows,
moments of the velocity difference across a distance £ (the so-called velocity
structure function) varies in power law as £, or moments of the energy dissi-
pation varies with the Reynolds number (/) (in leading order} in power law.
The scaling exponents characterize how fast the moments decrease as £—0,
or increase as R, — oo. If the exponents are known, then it is possible to
predict the moments of the velocity fluctuations at any (smaller) scale based
on large scale data, or the moments of the dissipation fluctuations at any
(larger) Reynolds number based on moderate Reynolds nmumber data. This is
one aspect of the practical interests.

The theoretical interests are more intriguing. Compared to other statis-
tical quantities such as moments themselves or the probability distribution
functions (PDF), the scaling exponents only address the relative changes with
¢ or with Ry, which can be more universal. Kolmogorov (1941} in fact conjec-
tured that the scaling exponents are universal, independent of the statistics
of large-scale fluctuations, the mechanism of the viscous damping and the
flow environment, when the Reynolds number is sufficiently large. There ex-
ist a number of experimental measurements in homogeneous open turbulent
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flows, i.e. “free” turbulence far from the boundaries {Anselmet el al. 1984,
Benzi et al. 1994a), which show evidence of the existence of such univer-
sal scaling laws. More interestingly, the experimentally measured values also
agree quantitatively with those measured in computer-simulated isotropic
Navier-Stokes turbulence with a simplistic boundary conditions, i.e. periodic
boundary conditions.

Clearly, a set of dynamical information is contained in the values of the
scaling exponents. The study of the scaling laws attracts a great deal of atten-
tion in physics in the study of eritical phenomena. Here, turbulent medium
shows a few degree more complicated than the equilibrium statistical me-
chanical systems of phase transition. Theoretically speaking, turbulence is a
nonequilibrium medium with cascade of the energy flux from large to small
scales. Observationally, this difference is reflected by a nonlinear dependence
of the scaling exponents on the order of the velocity structure functions, the
so-called multi-scaling. In particular, the measured scaling exponents deviate
from the Kolmogorov 1941 (K41) theory which predicts a linear dependence.
Note that the K41 model, until recently, has been the only predictive model of
scaling laws with no adjustable parameter. This anomalous scaling problem
has attracted much attention, because it is believed that the rich informa-
tion contained in the entire serie of exponents provide important hint about
the self-organization of turbulent structures, Furthermore, only the accurate
quantitative results can provide the necessary ground for testing various the-
oretical descriptions.

2.2 Extended Self-Similarity

One of the important developments in the ineasurement of scaling exponents
is a work of Benzi et al. (1993) about the Extended Self-Similarity (&SS)
property of turbulence. It is discovered by Benzi et al. that the velocity
structure function of any order p (reasonably accurate with a sufficient sample
size) depends on the structure function of order q (usually chosen to be 3) in
a much better power law. In particular, when the structure functions deviate
from the power-law behavior as the scale is approaching to the viscous cutoff,
the relative power law behavior of p-th moment versus g-th moment holds
still remarkably well until at scales very close to the Kolmogorov dissipation
cutoff. A number of studies were reported after the initial discovery (see
more references in Benzi et al. 1996b), and indicated that the ESS property
works with varied efficiency in different physical environments, but holds
real well in far-field homogeneous flow. These further studies confirm the
existence of the ESS phenomenon, and provide important informafion to a
better understanding of the physical origin of ESS. Since the third order
structure function is expected to be linearly proportional to the length scale
in the inertial range, the relative scaling exponent of the p-th order structure
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function with respect to the third order is taken to be a new method of
measuring ¢, which show improved reliability.

In mathematical team, the ESS property indicates that as the viscous
range is approached, the velocity structure functions of different orders show
the same characteristic deviations from a power law behavior in such a way
that their relative functional dependence is preserved. More physically speak-
ing, there is one characteristic quantity which controls the deviation of the
whole set of the velocity structure function from the inertial range scaling
behavior, The word “extended” indicates possibly the existence of other
self-similarity property of turbulence which persists even when this quan-
tity shows its non-power law dependence on the length scale. We will offer
more discussions below which support this conclusion.

An even more interesting development is some later work by the same
group (Benzi ef al. 1996a-b) which have reported the experimental evidence
of a Generalized ESS property (GESS) satisfied by flows with a variety of
physical conditions where the ESS property is not satisfied. Instead of study-
ing the velocity structure functions which are moments, they propose to study
the normalized structute functions with respect to a certain order which are
generally referred to as the hyper-flatness factors. In the same way, they sug-
gest to evaluate the relative functional dependence of those hyper-flatness
(HF) factors. The result is that the HF factors are in a beautiful power-law
with each other through the w hole range of length scale explored {from the
intergral scale down to very small scale) and for a variety of different flow
conditions such as with or without a shear, near a boundary layer, having
relatively small Reynolds number, where the ESS property is known to not
work.

The interest of these work is two-fold, First, it leads to a beiter way
to estimate the scaling exponent. The measured scaling exponents do not
have the same meaning, strictly speaking, as the original ones proposed by
Kolmogorov, the so-called inertial range. But Benzi et al. (1994, 1995) have
shown that when the Reynolds number is large enough to show a section of
the inertial range in the traditional sense, the exponents estimated by ESS
or GESS at smaller Reynolds number are consistent with the estimate of the
true inertial range exponents. Therefore, the ESS or GESS provides us a more
accurate way for measuring the inertial range exponents. Second, it points out
a more fundamental scaling property of turbulence. This will become clear
only if we provide some real physical understanding of the phenomenon. This
is the central topic of our discussion below.

3 Models of Anamolous Scalings

During the past thirty years, many theoretical approaches have been sug-
gested to address the anomalous scaling behavior of turbulence. Many scaling
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models start with a very specific ansatz for the PDF of the coarse-grained
energy dissipation at the inertial-range scales, The most famous one is the
log-normal model (Kolmogorov 1962). These models violate, in one way or
another, certain exact inequality (Novikov 1071} for the scalings of high order
moments, and therefore, can be considered at best as some approximations
but not an overall good prescription of the inertial-range statistics. A more
widely accepted approach is built upon the notion of multifractality of tur-
bulence (Mandelbrot 1974, Parisi & Frisch 1985, Meneveau & Sreenivasan
1987). Statistically, it describes the inertial-range cascade as a (discrete) ran-
dom multiplicative (RM) process; the probability distribution of the corre-
sponding RM coefficient W, P(W), fully determines the inertial-range scaling
exponents p. Since P(W) can be described in terms of arbitrarily many pa-
rameters, the resulting scaling formula may exhibits ¢ prieri any concave non-
linear dependence on the order p (Parisi & Frisch 1985). The problem arising
in this approach is therefore the arbitrariness of the model; in other words,
the physical, or fluid mechanical meaning of the RM process appears very
obscure. Counsequently, the parameters in the ansatz P(W) remain purely
adjustable parameters.

There have long been approaches which attempted to understand the
scaling from a more physical or mathematical basis, e.g., the work of Ten-
nekes (1968), Lundgren (1982), Chorin (1991, 1992), Gilbert (1993), Pullin
& Saffman (1993), Saffman and Pullin (1994), among others. Fluid struc-
tures which are loeal solution of the Navier-Stokes equations are randomly
superposed in some way for computing the statistical correlations. There have
been many predictions of the energy spectrum, but the scalings of high order
correlations are difficult to calculate technieally. Moreover, we believe that
any local solution cannot encompass the whole complexity of the turbulence
statistics, because the strong nonlinearity contradicts the fundamental linear
superposition principle. It is likely that long-range correlations of a whole
set of local solutions play a deminant role in determining the global state of
turbulence,

4 Hierarchical Structure Model of Turbulence

Tn what follows, we will describe a relatively new approach (She & Leveque,
1994) which has shown features of both the structural approach and the ran-
dom cascade approach. Based on an assumption of a symmetry, the model
predicts the scaling exponents in terms of the properties of the most intermit-
tent structures. The later correspond to observable fluid mechanical features
of considerable coherence embedded in a disordered turbulent medium. This
model, called Hierarchical Structural Model, acknowledges the overwhelming
complexity of fully developed turbulence (except the most excited, intermit-
tent structures}, but point out a novel simplicity which is the symmetry across
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length scale and across the amplitude of fluctuations, It was shown (Dubrulle
1994, She & Waymire 1995) that the symmetry is exactly realized by a RM
process of a log-Poisson type (and thus also called log-Poisson model).

4.1 Physical Picture

A cartoon picture of turbulence from the viewpoint of the Hierarchical Struec-
ture model (She & Leveque 1994) can be described as follows, When tur-
bulence are excited in a three-dimensional domain at the so-called integral
scale, the nonlinear interaction spreads the fluctuations to small scales. The
dynamical turnover time decreases with scale, so do the root-mean-square
(rms) velocity fluctuations. However, with respect to the rms velocity flue-
tuations, there develop increasingly rare and large amplitude events as the
cascade proceeds. Higher are the amplitude of the fluctuations, more coherent
are they in spatial configurations, and more phase correlated across length
scales. At the statistically steady state, the fluctuations at large and small
scales and at large and small amplitudes form a unified hierarchy described
by a certain symmetry.

The probability density function (PDF) of velocity fluctuations at the
integral scale reflects the motions directly excited by an external mecha-
nism, and thus is not universal. However, the PDFs at smaller scales can
be described by a transformation defined by the symmetry which will be a
convolution with the integral-scale PDF. It is believed that the transforma-
tion (and the symmetry) is intrinsic to the nonlinear dynamics, and can be
determined by universal physical principles.

4.2 The Model

In searching to define this transformation, She & Leveque (1994) proposed to
study a hierarchy defined through the ratio of the successive moments: ¢;”’ =
(ei""l)/(e’;) (p=0,1,...), where € is the coarse-grained energy dissipation at
an inertial-range scale £. This hierarchy passes from the mean field described
by cs_o) and the most intermittent structures described by egoo) < oo (the
upper bound for the field ¢ in a finite space-time manifold). While p can be
any real number, restricting to the set of integers make the presentation casy
to follow. Since the pth order ratio can have a nontrivial scaling: cgp ) o A
turbulence will generally behave as a multiscaling field. It is interesting to
note that ef._p) represents a sequence of dissipation events with increasing
amplitudes when the underlying PDF of ¢; exhibited a log-concave tail which
is quite true from experimental observations. Therefore, A,’s describe scaling
properties of structures of various amplitude in the physical space.
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When Ag = Ao, the scaling exponents of all members of the whole hier-
archy is identical. The scaling field is said to be a monoscaling field which
is statistically equivalent to a fractional Brownian motion. In this case, the
scaling exponents 7,, defined by (c§) ~ £7#, depend linearly on p. The K41
can be recovered as a special case (A, = Ap = 0). Otherwise, it leads to the
B-model (Frisch, Nelkin & Sulem 1978). When Ao # Ao, we have generically
a multifractal field. Intuitively, there should be a relation among A,’s, since
the whole hierarchy is the result of a unique dynamics (the Navier-Stokes dy-
namics) in which low-order and high-order moments are consistently related.
She and Leveque (1994) further proposed that there exists a symmetry, that
is,

B (oo)(1-8)
Pt PN A = B2 + (1= Ao, (41)

where 8 is a constant independent of p. Under (4.1), the scaling property for
isotropic turbulence is uniquely determined by Ao, since Ag = 0. Therefore,
this theory determines the scaling laws of turbulence in terms of the char-
acteristics of the most intermittent structure. Assuming that they are 1-D
filamentary structures which lie in a boundary between two large eddies (of
size £5) with a thickness of the order of the Kolmogorov length scale 7, one
obtains Ay, = —2/3, and predicts (She & Leveque 1994) the whole set of the
scaling exponents (, for the pth order velocity structure function:

s~ G=tore(1-Gre). (42)

The formula (4.2) contains no adjustable parameter.

4.3 Comparison

During the last three years, both experimental and numerical studies have
been conducted to test the model. Ruiz Chavarria ef al. (1995a-b) have made
the measurements in laboratory flows and have calculated quantities to test
specifically the assumption (4.1}, the assumption about the symmetry or the
hierarchy. They claims thai “... the hierarchy of the energy dissipation mo-
ment, recently proposed by She & Leveque for fully developed turbulence is
in agreement with experimental data ...”. Their method of calculation even
leads to a direct determination of the parameter 2 which is in agreement with
the proposed one { = 2/3) for the isotropic turbulence, Furthermore, the
measurements of the scaling exponents ¢, in various flows carried out in sev-
eral laboratories, e.g., in turbulent wakes (Benzi et ol 1994, 1995, 1996a-b),
in grid turbulence (Herweijer & van de Water 1994), and in wind tunnel tur-
bulence (Anselmet el al. 1984), and in jet turbulence (Noullez et el 1997) are
all consistent with (4.2) with remarkable accuracy. Finally, direct numerical
simulations of the isotropic Navier-Stokes turbulence also accurately support
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(4.2) (Cao et al. 1996). Some of these comparisons are reported below in
Table 1.

"Phere have been skepticisms abont the meaning of the comparison. In this
regard, we like to make the following remarks. First, the scaling exponents of
the longitudinal velocity structure functions in a far-field of fully developed
turbulent open flow have been measured in several flow environments, and
the results are generally consistent (see Table 1). In other words, these exper-
imental values are robust and stable. Recently, Belin, Tabeling & Willaime
(1996) have reported the measurement of the scaling exponents in a closed
flow system, which show values somewhat below the above reported ones ¢,
The measurements in the Taylor-Couette flow (another closed flow system)
by Swinney’s group at Texas also seem to show the same trend. The reason
for this discrepancy is not yet clear. One possibility is that there is a system-
atic deviation of the scaling exponents between open and closed systern, due
to the interaction with the wall-ejected structures and strong rotation (both
system develop strong swirls).

Order p ,S” gﬁz) C£3) 54) 55) SL Model ¢
1 - 10.37 - ~ 10.362+0.003 0.364
2 (0.71{0.70{0.70 £ 0.01) 0.70 | 0.695 & 0.003 0.696
4 1.3311.2811.284+0.03/1.26]1.279+0.004 1.279
5 |1.65|1.54}1.50:+0.05 1.50| 1.536-+ 0.01 1.538
6 1.8 |1.78] 1.76+0.1 | 1.71 | 1.772 £ 0.015 1778
7 |2.12[2.00} 2.04£02 {1.90(1.9894+0.021 2.001
8 122212231 22403 [2.08|2.1884+0.027 2.211
9 i e - 2.19 - 2.407
10 - 12.59 - 2.30 - 2.593

Table 1. Scaling exponents {, of the pth order velocity structure functions mea-
sured in a wind tunnel turbulence(’) (Anselmet et al., 1984), in a wake turbulencet?)
(Benzi et al., 1994), in a jet turbulence™ (transverse velocity structure function)
{Noullez et al. , 1996}, in a low temperature helium experiment(*) (Belin ef al.
1996}, and in an isotropic Navier-Stokes turbulence simulationt® {Cao, Chen &
She, 1996). The SL model reads ¢, = p/9 + 2(1 — (2/3)"*).

Secondly, the Extended Self-Similarity property in turbulence (Benzi et



1 Hierarchical Structures and Scalings in Turbulence 11

al. 1993; Stolovitzky & Sreenivason 1993; Benzi el al. 1994; Briscolini el al.
1994) has greatly enhanced the accuracy of the measurement. Although the
mechanism is not yet clear, the fact that it is a useful property in measur-
ing scalings which leads no detectable distortion of the measured value is
widely accepted. So the reported values in Table 1 are quite reliable. The
good agreement can hardly attributed to pure coincidence.

Thirdly, it is fair to regard the comparison as a consistency check which
is clearly positive. The fact that there exists other cascade ansatz which
produce, with multiple adjustable parameters, a fit of the same quality does
not invalid the present description. The advantage of the present mode} is its
simplicity, the physical eonnection to flow structures, and its predictability of
non-universal features of scalings as we will discuss later. 1t is also applicable
to a variety of other turbulent systems with cascade dynamics. In short, it is
worthy of further study.

4.4 Application to the GOY Shell-Model

While recognizing that a deductive theory of turbulence from the Navier-
Stokes turbulence is highly desired, it is also important to examine carefully
other systemns exhibiting some essential features of the Navier-Stokes turbu-
lent dynamics. These features include, from the present phenomenological
understanding, the existence of an inertial range of scales of cascade (driven

- by the inertial force or the nonlinear convective term}. The study of the other
systems will allow one to identify the essential ingredients in the NS system
such as the conservation laws, etc., which governs the cascade dynamics,
More importantly, it will stimulate the development of a general theoretical
framework for nonequilibrium systems presenting critical and scale invari-
ance properties. This has been the essential motivation behind the study of
a dynamical-systemn model of turbulence, namely the GOY shell model (see
also, Kadanoff et al. 1995).

The GOY shell-model is a finite-dimensional dynamical system, which
was introduced by Gledzer (1973} with an important extension made by
Yamada and Ohkitani (1987, 1989) later introducing phase dynamics with
complex variables. The dynamics are governed by the following set of ordinary
differential equations:

d 2 * * * * ® *

7R vE s = fo + (ant) 18 pp + batn iy g +enty_qun o). (4.3)
Here, {un}o,,..n—1 is a set of complex variables which model the Fourier
space excitations in shells of wavenurbers k, = koA™ < k < knsq, fu is
a driving force usually acting on some small wavenumber shells, e.g. f, =
fabpn 2+ fabn 3. The term vk2u, models the viscosity damping with the kine-
matic viscosity v.
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At very small v, the dynamics are essentia,lly inviscid at small wavenumber
shells where the nonlinear coupling {r.h.s. of {4.3)) make a chain linking the
fluctuations at different wavenumber shells. At those shells (small n), the

moments of the velocity fluctuations, (Ju,|P), vary with the wavenumber in
power law, by ¢~ ¢ A number of studies have shown that the GOY shell
model show very similar scaling laws as the 3-D Navier-Stokes equations (see
e.g. Kadanoff et al. 1995 for more references). Leveque & She (1997) have
made a careful study of the scaling exponents in the GOY shell model by
a set of long numerical integrations of (4.3). The large sample size of the
statistical fluctuation data has enable a detailed study of the convergence of
the moments and the exponents. The scaling exponents (, so measured are
compared to the predictions of the Hierarchical Structure model as well as
other cascade models (log-Normal, log-Stable, p-model, etc.). The conclusion
is evident that the functional dependence of {, are hetter represented by the
Hierarchical Structure model (Leveque & She 1997). In Table 2, we report
the comparison of (.

4.5 Other Predictions and Confirmation

The interesting feature of (4.2) is that the parameters determining the set
of exponents ¢, depends only on the properties of the most intermittent
structures. These most intermittent structures at the length scale £ are the-
oretically defined, for e.g. the coarse-grained energy dissipation, by the limit
hmp_.oo eg ") In practice, this limit depends on the sample size of the data
which is collected to describe the (spatio-temporal) ensemble of turbulence?.

In the GOY shell model, we have collected enough sample so that for a cerfain
(oo

range of scales, the limit has converged. In many other cases, ¢; ) depends on

the sample size. However, its scaling exponent A, (eg ) Ao =) may depend
more weakly on the sample size. Even when this dependence exists, it may
be important to discover how it controlls the dependence of the measured
scaling exponents for high order moments, e.g., {; for large p.

(»:

! When the time-ensemble is considered, the limit Lm0 ;7 is amount to calcn-

late -
STt wa

P;m f B(1)dt

which is well-defined for any finite large T. The sample size dependence will be
reflected by the T-dependence.
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Order p | ¢p/Cs (GOY) | 0.125p + 1.49(1 — 0.58/3) (SL)
1 |0.375+0.005 0.372
2 {0705 0.003 0.703
3 1.000 1.000
4 ]1.268+ 0.006 1.268
5 |1.512:0.014 1.513
6 |1.73840.026 1.737
7 |1.946 4 0.040 1.946
8 |2.141+0.058 2.140
9 |2.323+0.078 2.323
10 | 2.50£0.10 2.50
11 | 2.66+0.13 2.66
12 | 2.82+0.15 2.82
13 | 297x0.18 2.97
14 | 3.12x021 3.12
15 | 3.264025 3.27
16 | 3.40+0.28 3.41
17 | 3544032 3.55
18 | 3.67+£0.36 3.68
19 | 3.80+£0.40 3.82
20 | 3.9440.44 3.95

Table 2. Scaling exponents ¢, of the pth order velocity structure functions mea-
sured in the GOY shell model (Leveque & She, Phys. Hew, B, in press, 1997)
compared with the Hierarchical Structure model of She and Leveque (SL). The
parameters in the Hierarchical Structure model for the GOY shell-model is slightly
different from those suggested for the Navier-Stokes turbulence. Those parameters
are directly measurable from the data set.

It ig difficult to draw a specifie line between the reliable {,’s and those (,’s
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which have not yet fully converged. Instead of making arbitrary determina-
tion, we suggest to use the approximate information of the most intermittent
structures (A, or 7) to characterize the whole set of measured scaling expo-
nents. The basis for this proposal lies in the fact that the symmetry linking
the most intermittent structures and less intermittent ones are more funda-
mental to turbulence, as we explain now.

The general formula for {; reads

G = 1w+ Coll ~ A7), (4.4)

where v is similar to the smallest Hlder exponent of the velocity field when
the scale varies in the inertial range, and Cp is the co-dimension of the set of
spatial points for which this exponent is realized.

The two parameters v and Cy are measurable in any finite sample of data?,
and then characterize the most intermittent structures detected within a finite
spatial-temporal domain (where the ensermble is defined). The interesting fact
is that there exist quantities which do not depend on v and Cp. For instance,
it is easy to verify that

GV P (=87 —p(1-p7)
plpg;pq) = G ol P A= =gl =T

These quantities p(p,q;p’,¢’) described the relative scaling exponents be-
tween the normalized moments (p, p’) and (q,¢’). The fact that p(p, ¢; 7', ¢')
depend only on # which characterizes the symmetry in the hierarchy suggests
a method to verify the correctness of the hierarchy without a massive data
set. If the symmetry is indeed more fundamental, then we may also observe
a strong universality property of p(p, ¢; p',¢’) compared to (.

Ruiz Chavarria ef al. (1995a-b) have carried out experimental test specif-
ically on the symmetry property of the model, and their results have fully
confirmed its correctness. Benzi el al. (1996) have reported the Generalized
Extended Self-Similarity (GESS) property from experimental results that
p(p,;3,3) have a remarkable universal behavior for turbulent flows near a
boundary layer, with and without a shear, etc. Their results are fully con-
sistent with the prediction of the Hierarchical Structure Model. We believe
that the model gives a plausible physical explanation of the ESS and GESS
property.

An important practical interest of this universality result (GESS) is to
allow us to differentiate among various turbulent systems. In practical situa-
tions, the properties (v and Cp) of the most intermittent structures vary with
the sample size, and also with space location and direction when the flows
are not homogeneous and isotropic. According to the Hierarchical Structure
Model, we can still have some reliable scaling laws among normalized mo-
ments reflecting the intrinsic symmetry. These scaling laws will allow us to

(4.5)

2 We will discuss the measurability of Cp later
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determine 4 or Cp as a function of space location or direction, and hence get
felevant physical information about the flow from the mcasurement of the

scaling exponents, Deriving the structure information from the statistical
measures is the unique advantage of the Hierarchical Structure Model.

4,6 Fluid Structures and Scalings: More Comnments

It need to be emphasized that the most intermittent structures discussed
above are, theoretically speaking, not directly the ones which are visualized
in flow experiments and in numerical simulations. Instead, they are defined
as the serie of structures at the inertial-range scales as follows. First, obtain

{

the coarse-grained dissipation field ¢, at scale £. Second, identify etm) as
the spatial locations which contribute the most to the ratio of the moments
limy—e0 (€577} /{ch). These spatial points form a set whose volume depend on
the scale £. The concept of the co-dimension d — D is an abstraction of the
fact the volume changes in £ as £29~2 where d is the dimension of the space
and I is dimension of the set,

As the coarse grained scale decreases £ — 7 to be close to or below the
dissipation cutoff scale n, we can also identify the set eﬁ;"’) as the most inter-
mittent structure at scale 5. These structures may be close to the iso-surfaces
at a high threshold of the original, non-coarse-grained field ¢. Furthermore,
their geometry may not change significantly as we further coarse-graining
the field from scale 5 to £ > 5. If these two conditions are satisfied, then the
geometry of the visualized structures give a qualitatively correct estimate of
the co-dimension of the most intermittent structures. We can hope that when
the turbulence velocity field change smoothly as £ going through 5 (e.g. no
appreciable oscillations around high peaks of the velocity fluctuations), then
these conditions are satisfied.

However, in some arbitrary mathematical problems such as the solution
of the Navier-Stokes equation with hyperviscosity, strong osciilations in the
physical field may appear at very small scales (around the dissipation cutoff
scale n) due to the non-positiveness of the hyperviscous “diffusion”. The
consequence is that the smooth transition from the inertial-range scale £
to 7 is interrupted. In this case, the relation between the characteristics of
the inertial-range most intermittent structures with the visualization of the
dissipation range quantity such as ¢ become elusive.

5 Further Theoretical Development

The Hierarchical Structure model has also been examined from a more theo-
retical standpoint, The main results are that the symmetry (4.1) can be ex-
actly realized via a simple random cascade process called log-Poisson (Dubrulle



16 Zhen-Su She

1994, She & Wayinire 1995), and it follows also from an invariance property
in the transformation of the frame of reference in a new coordinate systems,
the amplitude-scale system (Dubrulle and Graner 1996a-b, She and Leveque
1997).

5.1 Log-Poisson Cascade

It is shown by Dubrulle (1994) and independently by She & Waymire (1995)
that (4.1) can be exactly realized by a random multiplicative cascade process,
called Log-Poisson. Let the integral-scale eddies be represented by the coarse-
grained energy dissipation €z, (a random variable). Let the small-scale eddies
at any given length scale £ be generated by

€ = (E%)’Yﬁnqﬂ (51)

where n is an independent Poisson random variable with a mean A:

n

A
P(n) = c”’\~1—1—, n=01,2,.. (5.2)

It can be deduced from (5.1) that
E i3
() = (E(;)A’P;ﬂ PP(n){e,). (6.3)

Then, {4.1) follows.

According to (5.1), a large-scale eddy has a number of possibilities when
it is transformed to a smaller one. The largest amplitude is achieved at n = 0
because A < 1; other smaller amplitude events are obtained by multiplying
an integer number of # factors. The n = 0 event is of special interest: it
varies with scale as £7 and the probability of finding it is e* ~ £60. This is
the most intermittent event. When Cy > 0, or the strongly excited events
reside in a smaller (fractal) set, e* — 0 as £ — 0. This is the intermittency,
or anomalous scaling, because the whole space is occupied by less excited
events. When the multiplication of 2 factors acts as a Poisson point process,
the symmetry (4.1} is exactly realized.

5.2 Log-Poisson Cascade and Other Cascade Models

Compared to other discrete cascade models proposed earlier (e.g. Menevean
& Sreenivason 1987), the log-Poisson has the following features: First, the
cascade from £y to £ and then to £5 is identical to the cascade from £y to
£5. This can be shown as the follows. Let Wy = (£1/£p)78" and Wy =
(£2/€,)7 ™2, Then, it can be shown, by working with log W, that Wos =
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Wyt Wha = (6 /Eg)”ﬂ” where & is again a Poisson random variable, and
moreover {N) = {n1} + {ns). This proof is valid for any arbitrary £ and £,
which removes one important arbitrariness in defining the step of cascade
f1/8y or £3/€1. This arbitrariness is a major shortcoming of the previous
discrete cascade models when used for describing such a continuous scaling
process as turbulence. In this regard, the log-Poisson process is self-consistent
and the reason for its success lies in its log-infinite divisibility property (see
She & Waymire 1995).

Secondly, the Log-Poisson cascade picture does not have any difficulty
which other log-infinitely divisible process such as the Log-Normal model
(Kolmogorov 1962) or the Log-stable model (Kida 1989) has, namely, the
physically unacceptable behavior of (, for large p. It is true that both the
Log-Normal model and Log-stable model, with a certain choice of the param-
eters (which by the way cannot be estimated based on physical properties of
the flow), agree with some experimental values for a moderate range of p.
‘We believe that this i1s the evidence of a good approximation of the model
over a range of p, just as the approximation of a smooth function locally
by a quadratic form. However, both models make very strong predictions
about the asymptotic behavior of (, at large p, or equivalently saying, the
behavior of the fluctuation events at very large amplitude. This behavior
requires that the velocity be unbounded in the limit of vanishing viscosity
which create a mathematical inconsistency as to work with the incompressible
Navier-Stokes equation (Frisch 1991). Strictly speaking, there is no evidence
supporting the divergence of the velocity in the limit of vanishing viscosity
for the three-dimensional Navier-Stokes equation in a periodic domain under
a deterministic forcing at low wavenumbers. And it is virtually impossible for
experiments to provide a convincing test of the assertion either.

On the other hand, the measured anomalous, or non-Kolmogorovian scal-
ings at moderately large p, in both the Navier-Stokes flows and laboratory
flows, have now quite solid evidence. It seems pointless to base the theory of
the anomalous scalings on a model whose strong prediction can “never” be
checked, without mentioning its unlikelihood from purely a stochastic pro-
cess point of view (Mandelbrot 1974). By contrast, the log-Poisson model
makes no fixed assertion about the large p behavior. It says that the large p
behavior is the property of the most intermittent structures currently in the
spatio-temporal domain in question. This behaviors could vary case by case,
giving rise to some appearant scattering of the measured scaling exponents.
On the other hand, there is a stable symmetry which is built by the log-
Poisson cascade between the scaling (if it is there} of the most intermittent
structures and of other less excited ones. This symmetry is more intrinsic
and visible, and is therefore experimentally detectable already at moderately
large p. This description enjoys the simplicity and rely on no speculative basis
in “unreachable” asymptotic.
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5.3 Application to the Navier-Stokes Turbulence

The theory of the log-Poisson cascade has an interesting applieation, that is,
find the probability density function (PDF) of small scale fluctuations from
the PDF of large scale ones. Note first that any small-scale fluctuations €, is
equal in law to the large-scale fluctuations e, multiplied by an independent
random variable W, Therefore,

logee £ logeg, + logW. (6.4)

Consequently,
P(loges) = P(logeg,) @ P{log W), (5.5)

where ® denotes a convolution.

One particular application is that at large Reynolds numbers and at very
small scales (£ — 0), ez being approaching to ¢ is fluctuating much more inter-
mittently than e,, (the averaged dissipation over a large domain). In this case,
P(loges,) behaves approximately as a é-function, compared to P{logW). In
this case, (loge¢) will mimic closely a log-Poisson form, a smooth version of
the discrete (atomic) distribution function P(logW).

Leveque and She (1996) have tested this prediction. A forced 3-D incom-
pressible Navier-Stokes equations under periodic boundary conditions are
integrated numerically using a pseudo-spectral method. With a resolution of
2563, a sample of stationary isotropic turbulence is generated with a Tay-
lor microscale Reynolds number By =~ 120. The probability density function
P(loge) are then measured and compared to a log-Poisson fit. The result is
quite satisfactory, as presented in Fig. 1.

Recently, Novikov (1994) introduced a gap argument against (5.1). In
fact, there is a big difference between the breakdown coefficient which he
used and the experimentalists measured and the random multiplicative coef-
ficients (ﬁ«)"ﬁ" used here, because the former can not be truly random and
independent of the large eddies (¢c¢,). Even a slight dependence will largely
affect the theoretical conclusion, specially for large p mornents. A more care-
ful analysis taking into account the slight statistical dependence between the
breakdown coefficient and the large eddies, the Novikov’s equality becomes
an inequality which resolves the controversy raised by him. Of course, we
can not claim the correctness of the formula (4.4) at this stage, but it seems
unlikely that the gap argument presents a serious threat.

5.4 Invariance Principle

Recently, She & Leveque (1996) proposed another derivation of the hierarchi-
cal symmetry based on an invariance principle using similar reasoning as in
the theory of special relativity, The work was stimulated by an earlier work
of Dubrulle and Graner (1996a-b). Instead of addressing the transformation
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Fig.1, The probability density function of the energy dissipation measured in a
simulation of the Navier-Stokes isotropic turbulence, compared with the PDI" ob-
tained by a fit with the log-Poisson model,

of the PDFs from the large scale to small scale as in the Log-Poisson case, we
propose to address the transformation of moments. Let ¢, denote the coarse-
grained energy dissipation where £ continuously changes from £y to 5. At each
scale £, the fluctuation of ¢, has a maximum amplitude, called egw). We make
the following fundamental assumpfions:

H1 : There is no characteristic length scale other than the integral scale £.

()

H2 : There is no characteristic fluctuation amplitude other than ¢;
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The assumption (H1) is the similarity property in scale, and (H2) is the
similarity property in amplitude. Since (H1) and (H2) are so much similar,
it is natural to set up a coordinate system m scale and amplitude so that the
two similarity properties can be fully explored. Following Dubrulle & Graner
(1996a), the new coordinate system is to make the following identification:

X()Y=logE(); T =logt. (5.6)

Here E(-) refers to as the expectation value of a random variable. In this
system, the amplitnde-scale becomes “space-time”. An arbitrary stochastic
field will result in a path {or trajectory) in this coordinate system. In partic-
ular, a scaling field such as the increment of a fractional Brownian motion of
exponent h such that E(|Az]) = E(|z(t + £) — z(t)]) ~ £* will be described
as a straight line of constant speed k.

The assumnption (H1)} implies generally that all statistical average quanti-
ties behave as a power-law in £/£; (at least in leading order). The assumption
(H2) suggests that if we introduce [Ty = ¢p/ ng)’ then there exisés no char-
acteristic amplitude between 0 and 1 at each £. It then follows that the field
I1? is a scaling field, that is, E(/I}) = £Y» . Next, we conjecture:

H3 : The field [T} (for any p) defines a so-called inertial frame of reference
with an intrinsic speed V,. In other words, V, is independent of whether the
observer is in a rest or moving frame of reference.

A specific proposal of the meaning of the moving frame of reference is
given in She & Leveque (1996). In the moving frame of speed V,, (defined
by the scaling field II f }, the space coordinate of another scaling field m}is
proposed to be measured in the following way:

XP) = log (BUI] IT})/ E(IT])) (5.7)

In other words, (5.7) suggests that the “space” coordinate measurement in
a moving frame corresponds to an average with respect to a weighted prob-
ability density function by a factor II}. As p increases, more weight is put
on the high amplitude fluctuations, With this restriction, it can be shown
(She & Leveque 1996) that the “space” and “time” coordinates will satisfy a
transformation law when the observer moves from one frame of reference to

ancther: W
X' =X-wWT, T’:(I—V—)T, (5.8)

=]

where W is the speed of the moving frame. From (5.8), we can derive a
composition law for the relative speeds:

Oy

oG

y© = v 4y - (5.9)

ptg
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However, (H2) suggests the equivalence of all inertial frames of reference,
since they simply correspond to the emphasis on different amplitudes and
there is no prefered amplitude. This justifies the second part of (H3) which

can be more explicitly stated as Vg(p) = Vg(”l) for any p and p’. Substituting
v = v into (5.9) leads to the solution for V:

Ve = V{1 = A7), (5.10)

where Vo = Cp plays the role of the “speed of light” as in the theory of
special relativity. Eq. (5.10) is identical to (4.4) in its nonlinear part.
It is interesting to see that the Hierarchical symmetry (4.1) follows from

such an elegant argument of the invariance of “speed” Vi = V") which
expresses the fact that all frame of references are equivalent.

5.5 Analogy with the Theory of Special Relativity

Technical assemblance between the discussion in the last section and the
theory of special relativity is striking. We can make a few more comments
about what we learn from this analogy.

The theory of special relativity challenged the classical picture of New-
ton which involved an absolute and homogeneous space, within which things
changed in an absolute and homogeneous time. In particular, the constancy
of the speed of light measured in all moving frames of reference imposes a
special connection between the space and time coordinate of things under
study. The Lorenz transform merely expressed this “relativity” in concrete
mathematical form and gave rise to many predictions testable in physical
environment.

The analogy between our present treatment and the theory of special rel-
ativity does not imply any change in the understanding of the Newtonian
space-time structure for the fluid mechanics. The analogy is seen in the new
“space-time” coordinate system for the convenience of describing the statis-
tical structure of turbulence, that is, how the statistical averages {moments)
change as the length scale decreases. When the length scales (“time”) and the
moments (“space”) are normalized or scaled properly (setting up the origin),
the theory of the last section indicates that turbulent stochastic field (the
kinematic of event) is such that the two variables of the length scale and the
moment amplitude are related.

It will become more clear if we contrast it with the Kolmogorov 1941
(K41) description within the same framework. In K41, there is no upper
characteristic fluctuation amplitude, so V, = {, = hp (h = 1/3). It is easy to
check that Vyyy = Vo +V,, X = (Vyyy = Vi )T = Xpyq — VpT. Therefore, we
have a system of Galilean transformation which corresponds to the prescrip-
tion that Kolmogorov (1941) gave to turbulence field. Speaking in different
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words, Kolmogorov described an absolute and homogeneous “space” of am-
plitude of fluctuations in the sense that big amplitude fluctuations cascade
to small scales in identical way as small amplitude fluctuations.

In contrast, we find important to recognize the role of the most singular
structures for the evolution of the whole statistical ensemble of Huctuations
from large to small scales (the kinematic in the new “space-time” coordinate
system). This is closely parallel to recognizing the existence of the speed
of light, which consequently make the new “space” and “time” united. The
fact that we have a different law of transformation from the Lorenz law is
due to the lack of symmetry between the positive speed and negative speed,
one specifying divergent changes and other convergent changes as the scale
decreases,

6 Universality and Non-Universality

The issue of the universality is one of the most important question for tur-
bulence (see e.g. Nelkin 1994}, When the medium becomes increasingly com-
plicated, physical quantities show richer behavior, and theories describing
the relationship between these quantities shows inevitably more complexity.
Only the discovery of certain universality would lead to the hope for some
simple and elegant theoretical description. This is the basic harmony that
the complex universe display.

The universal behavior does not invoke detailed mechanisms specific to
the dynamics, and should invite a theoretical description of general charac-
ter. For turbulence, we believe that there are some general principles due to
simply the non equilibrium and the strong nonlinearity. Because of the non
equilibrium, the energy caseades from large to small scales. Because of the
strong nonlinearity, the inertial range is formed. Furthermore, we conjecture
that strong nonlinear interaction also leads to a strong phase mixing which is
the origin of the symmetry (4.1), or of the new universal physical guantities
such as (4.5). At present, the Hierarchical Structure Model is consistent with
all existing observations. But it presents only the first step in grasping the
universal aspect. More tmportant work will be ahead to elucidate the “first”
principle behind this universality.

Next, we argue that the understanding of the universality is the only way
to address the non-universal behavior, We believe that ¢, may not be univer-
sal. Experimentally observed values show certain scattering; we think that
it is not a simple statistical convergence problem. There is more physical
meaning behind. For example, we conjecture that it may reflects the fluctu-
ation of the most intermittent structures captured by the given sample. In
any sample set, they are the largest fluctuation events and also the rarest
events. They change easily from sample to sample, from environment to en-
vironment. Because (,, even for the moderately large p, is sensitive to them,
we observe scattering. This explanation, if being correct, indicates that (,
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is not the most robust measure. The Hierarchical Structure Model suggests
to study p(p,q;p' q") instead, which describe theoretical the statistical link.
between the most intermittent structures and less intermittent structures.

The practical interest of studying p(p.¢; p', ¢') is to find a better parame-
terization for ¢, which is physical. If indeed the property of the most inter-
mittent structures determines ¢,, then the systematic variation of {, would
reveal a change of physical environment, and thus the physical origin of the
non-universality is revealed. We believe that a physical theory of the scal-
ing should explain the physical origin of the non universal behavior of ¢,
(among others). In other words, the theory should contain parameters which
can either be direct measurable or can be estimated by plausible theoretical
arguments. The Hierarchical Structure Model has offered a plausible candi-
date.
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