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Abstract

The need to numerically simulate stochastic processes arises in many
fields. Frequently this is done by discretizing the process into small time
steps and applying pseudo-random sequences t0 gimulate the randomness.
This paper address the question of how to use quasi-Monte Carlo methods
to improve this simulation. Special techniques must be applied to avoid
the problem of high dimensionality which arises when a large number of
time steps are required. Two such techniques, the generalized Brown-
jan bridge and particle reordering, are described here. These methods
are applied to a problem from finance, the valuation of a 30 year bond
with monthly coupon payments assuming a mean reverting stochastic in-
terest rate. When expressed as an integral, this problem is nominally
360 dimensional. The analysis of the integrand presented here explains
the effectiveness of the quasi-random sequences on this high dimensional
problem and suggests methods of variance reduction which can be used
in conjunction with the quasi-random sequences.

1 Introduction

In many applications ranging from finance to flnid dynamics it is necessary
to evaluate the expectation of a function of a random path generated by a
stochastic process. For a continuous time process this expectation may often be



expressed as a Feynman-Kac type integral over Brownian motion. For numerical
simulation, the continnous process is often modeled as a discreet process such
that the expectation reduces to a standard integral weighted by the distribution
function associated with each step of the discrete process. The time discretiza-
tion often has physical relevance to the problem, as in the example presented
below in which the time step of one month corresponds to monthly cash flows.

An important question is how to effectively numerically evaluate the inte-
grals which arise in stochastic simulations. Because the time discretization often
requires using a large number of small steps, the resulting expected value inte-
grals are often very high dimensional (see [20, 1, 17, 21} for examples of such
integrals in finance). This high dimensionality is generally dealt with by us-
ing Monte Carlo simulation, whereby N “random” paths associated with the
stochastic process are generated from a psendo-random number sequence and
the desired integral is approximated by the average of the integrand evalnated
along all the paths. The standard Monte Carlo method can be quite stow,
however, because its convergence rate is only O(N —1/2),

We consider here improvements to this method by generating the “random”
paths with deterministic, quasi-random sequences. The resulting paths are in
fact not random, but have superior distribution properties in the space of all
paths associated with the given process, and thus lead to lower integration error.
Such quasi-Monte Carlo methods can be much faster with errors approaching
size O(N 1) in optimal cases. This dramatic improvement in convergence rate
has the potential for significant gains both in computational time and in range
of application of Monte Carlo methods.

The effectiveness of quasi-Monte Carlo methods does have some important
limitations. First, quasi-Monte Carlo methods are valid for integration prob-
lems, but may not be directly applicable to simulations, due to the correlations
between the points of a quasi-random sequence. This problem can be overcome
in many cases by writing the desired result of a simulation as an integral, as
was mentioned above. However, as the resulting integral is often of very high
dimension (e.g. dimension 360 for the example below), this leads to a second
limitation: the improved accuracy of quasi-Monte Carlo methods is generally
lost for problems of high dimension or problems in which the integrand is not
smooth. This loss of effectiveness has been documented for a series of test prob-
lems in [12, 13, 14]. Several researchers in computational finance have recently
reported great success with quasi-Monte Carlo computation of problems of very
high dimension [1, 17, 21]. One purpose of this paper is to introduce techniques
which effectively recast such nominally high dimensional problems into more
moderate dimensional forms. These techniques allow for the range of applica-
tion of quasi-Monte Carlo methods to be significantly extended, in particular
when combined with other variance reduction methods.

The paper is organized as follows. First a brief review of quasi-random se-
quences in presented in Section 2. This is followed by the description of a general
technique, the generalized Brownian bridge, for generating quasi-random paths




for standard Brownian motion in Section 3. An alternate approach for gener-
ating paths involving only a one dimensional sequence is described in Section
4. An example involving a 30 year coupon bond is presented and analyzed in
Section 5, while Section 6 gives the numerical results for the various techniques.
This is followed by conclusions.

2 Review of Quasi-Random Sequences

Quasi-Monte Carlo methods are based on the idea that random Monte Carlo
techniques can often be improved by replacing the underlying source of ran-
dom numbers with a more uniformly distributed deterministic sequence. Quasi-
Monte Carlo methods often include standard approaches of variance reduc-
tion, although such techniques do not necessarily directly translate. Other
approaches, such as described in Sections 3 and 4, are unique to guasi-Monte
Carlo and have no effect when used with random sequences. The fundamen-
tal feature underlying all quasi-Monte Carlo methods, however, is the use of
a quasi-random sequence. Therefore we now present a brief review of certain
properties of such sequences.

Quasi-random sequences are often referred to as low discrepancy sequences.
This term refers a measure of the uniformity of a sequence, the diserepancy,
which is defined as follows. Consider a set of N points in the d dimensional unit
cube {z;}. The discrepancy of this set is

Dy = sup |2 EE

u ~ m{E)| . (2.1)

Here F is a sub-rectangle of the unit cube, m(E) is the volume of F, and the sup
is taken over all such sub-rectangles. This definition is based on the idea that
for any given rectangle, the percentage of points from a uniformly distributed
set which lie in the rectangle should be close to the volume of the rectangle.
Thug the more uniformly distributed, the smaller the discrepancy of a set.

A uniformly distributed infinite sequence of points in the d dimensional unit
cube can them be defined [8] as a sequence for which

limsup Dy — 0. (2.2)

Now

Here the discrepancy is take to be the discrepancy (2.1) of the first N terms of
the sequence. There are many sequences which have this property. For example,
a uniform random sequence satisfies (2.2) almost surely. In fact, by the law of
iterated logarithms, we have that for a random sequence the expected value of
the discrepancy satisfies

loglog N

VN

B(Dy) £ (2.3)



A quasi-random, or low discrepancy, sequence is one which satisfies the condition
that p
log" N
Dn < Cy gN : (2.4)

For a given function f(z) defined on the unit cube and a set of V integration
nodes {x;}, the simple Monte Carlo integration error ¢ is defined as

£ =

1 N
f f@yds - 3 £ - (2.5)
i=1

For functions of bounded variation, the Koksma-Hwalka inequality [16] states
that
e<V(f) Dn, (2.6)

where V{f) is the variation of the function and Dy is the discrepancy of the set.
This may be contrasted with the mean square error for random Monte Carlo

0.2

B =%,

(2.7

where o2 is the variance of the integrand, defined as

o2 = f Fo) dz — ( / (@) d:v)2 . (2.8)

Inequalities (2.3) and (2.4) then suggest that low discrepancy sequences will
lead to smaller integration error, at least for large enough N.

A substantial body of work has been devoted to developing low discrep-
ancy sequences, much of which is described in Niederreiter’s monograph [16].
Numerous other papers have focused on the applications of quasi-Monte Carlo
methods [6, 5, 8, 12, 23, 18, 20}. In the present paper, we work with the Sobol’
sequence [22, 24]. This is a sequence for which each individual dimension is a
permutation (at every 2% points, k = 1,2,...) of the Van der Corput sequence
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This is a very uniform one dimensional sequence, so that the one dimensional
projections of the Sobol sequence are also quite uniform. The choice of permu-
tations is crucial to ensure that higher dimensional projections, as well as the
entire d dimensional sequence, are also uniformly distributed. As the dimension
grows large, it becomes increasingly difficult to guarantee that all projections
are well distributed, at least for relatively small N. This difficulty is reflected
in the discrepancy bound (2.4)



3 The Generalized Brownian Bridge

We now consider a class of methods for generating random walks associated
with stochastic processes of the form

de = (a{t) + b(t)z)dt + o{t)dz, (3.1)

where dz is the derivative of standard Brownian motion and a,b and ¢ are
integrable in time. These methods may lead to substamtial error reduction
when combined with quasi-random sequences. The presentation here deals with
standard Brownian motion with no drift and constant variance. The extension
to include the drift term of a mean reverting process is addressed in Section 5.

Since Brownian motion is a Markov process, it is most natural to generate
a discrete time Brownian motion random walk &1 = b{tn41) at time th =
t, + At as a random jump from its value z, = b(t,) throngh the formula

Tn41 = Tp +OVAL 2 (3.2)

in which z is sampled from N(0,1). More generally, any future point xn, (m >
n) may be generated by

Ty = Tn + 0/ (M —n)AE 2. (3.3)

Any point of the walk in the middle can then be generated from knowledge of
the past, T, and the future ,, according to the Brownian bridge formula [7]

o = (1 = 7)&n + ¥Em + o/(1 — 7)(m —n)At 2 (3.4)
where n < k < m and
_k—m
T

‘We remark that this formula is valid only for generating one step k between
steps n and m, as any subsequently generated steps must be correlated with
zi. Equation (3.4) may continue to be used, however, by simply replacing one
of the endpoints with the most recently generated point xy. Note that variance
of the random part of the Brownian bridge formula (3.4) for generating x; is
reduced by a factor 1/(1 —+y) compared with the variance for generating z with
formula (3.3).

The standard method of generating a random walk =3, is based on the up-
dating formula (3.2). The initial value is zg = 0. Each subsequent value Zp.pg
is generated from the previous value zy using formula {3.2) with independent
normal variables zg.

Another method, which we refer to as the Brownian bridge discretization can
be based on (3.4). Suppose we wish to determine the path xo,21,...,2p, and




for convenience assume that I is a power of 2. The initial value is zg = 0. The
next value generated is zp = 0 DAt z;. Then the value at the mid point zp/s
is determined from the Brownian bridge formula (3.4) with v = 1/2. Subse-
quent values are found at the successive mid-points; i.e. Tp/1,23p/4,TD/8y -
sweeping along the breadth of the domain at each level of refinement.

Although the total variance associated with each z in this representation is
the same as in the standard discretization, the variance associated with the z is
no longer constant. It has been redistributed so that much more of the variance
is contained in the first fow steps of the Brownian bridge discretization, while
the later steps have significantly smaller variance due to the factor of 2 reduction
in the variance arising in formula (3.4). This reduces the effective dimension
of the random walk simulation, which increases the accuracy of guasi-Monte
Carlo. Moskowitz and Caflisch [15] applied this method to the evaluation of
Feynman-Kac integrals and showed the error to be substantially reduced when
the number of time steps, which is equal to the dimension of the corresponding
integral, is large.

The Brownian bridge approach allows for a great deal of generalization.
Another possibility involves a rearrangement of the breadth-first discretization
described above in a depth-first fashion, such that the zx are generated in the
following order:

Lo, ¥p, EpJ2, TH/4s EDgy » T1,83D/4y T3Df8y -+ E3, - T(D-1)
In fact, formula (3.4) provides the means for generating the steps of the random
walk in any order desired. Moreover, the number of terms in the walk D,
representing the dimension of the problem, need not be a power of two.

To formalize these extensions, we introduce now the generalized Brouwmian
bridge discretization. The path of the random walk may be expressed as a vector
r= (:!,‘1,. . ,:I:D)T,

as may the independent random numbers
z2={z1,..,2p)" -

The standard method of generating the random walk sets z1 == 2, T2 = 21+ 22,
etc. This may be written in matrix notations as

t=0Az (3.5)
where the matrix 4 is defined as
1 0 0 0 0
11 0 0 0
1110 ...0
A= . . (3.6)
1 111 1



The Brownian bridge discretization described above can also be seen as a linear
combination of the z, so that there exist & matrix B such that + = o B z. We
define now the generalized Brownian bridge discretization to be any matrix B
such that the paths oB z correspond to the same stochastic process as the paths
oA z. Because a Gaussian process is completely specified by its covariance, if
the paths B z and cAz have the same covariance, they will necessarily be
sampled from the same process. The covariance of the paths x4 and zp are
given by

E(za2%) =0 AAT (3.7
E{zpzl) =o*BBT (3.8)

Thus the matrix B will correspond to a generalized Brownian bridge discretiza-

tion if and only if _
BBT = 44T, (3.9)

1t is important to remember that random Monte Carlo methods will not be
affected by how the random walk path is generated. From the integration point
of view, this follows from the fact that for any function f(z), under the change
of variables z' = B~1 Az, we have that

E(f(x)) = B(f(Az)) = BE(f(BZ")) (3.10)

for any B satisfying (3.9). In particular, the variance of a given function of the
path, which is expressed as an integral, is independent of the path generating
matrix, so the random Monte Carlo error is also not affected.

As demonstrated in [15, 2], the combination of quasi-random sequences and
the Brownian bridge discrectization can lead to significant error reduction. One
can imagine that if the last step of the walk is more uniformly distributed,
then the set of paths so generated is necessarily more uniformly chosen from the
space of all possible paths, leading to smaller integration errors. More generally,
properties of the integrand may be used to construct paths that more uniformly
sample the space which has the greatest influence on the integrand. This idea
is explored more in Section 5.

The first Brownian bridge discretization described above is an example of an
important sub-class of the generalized discretizations, namely those that concern
generating the steps of the walk sequentially according to a specified permuta-
tion I = (71,...,mp)T of the first D integers. The unique Brownian bridge
matrix By corresponding to this permutation may be generated as follows. Let
P be the permutation matrix defined by = P (1,...,D)T. Then

By = PRy (3.11)

where Ry is the unique lower triangular matrix obtained from the Cholesky

decomposition
RunRf=PTAATP (3.12)



where again A is given by (3.6). It is easily checked that By satisfies (3.9).

The Brownian bridge formula (3.4) shows that each term of a permutation
defined discretization may be express as a linear combination of exactly two
previously determined steps of the path. Thus the path x may be generated
recursively in O(D) steps. On the other hand, the matrix Ry will in general
be a dense lower triangular matrix, so that generating ¥ = ¢Bnz will be an
O(D?) operation. This may lead to a significant increase in the computation
time necessary to generate the paths z. We prove now in this matrix formulation
that the vector  may in fact be generated recursively in O(D} operations, and
thereby indicate how to generate the necessary coefficients.

We observe first that the relationship x = o Bz may be rewritten with the
help of (3.11) as

R (PTz)=0x. (3.13)

We may easily obtain z from PTz in O(D) steps, and the following lemma
shows that system (3.13) may also be solved in O(D) operations.

Lemma 3.1 Let the matriz A be defined by (3.6), P be a permutation matriz,
and R be the unigue lower triangular matriz satisfying the Cholesky decornpo-
sition in (3.18). Then R™! is o lower trianguler matriz with at most three
non-zero entries in each row.

Proof: That B~ exists and is lower triangular follows from A being invert-
ible and the fact that the inverse of a triangular matrix is triangular, Inverting
Equation (3.12) leads to the relationship

Mp ML =5p (3.14)

where ME = R™1, so that Mp is upper triangular, and

Sp=Pr(AATY1P. (3.15)
It is easily computed that
2 -1
-1 2 -1
-1 2 -1
(AAT) = S . (3.16)
-l 2 =1
-1 1

Therefore S§p is a symmetric matrix for which each row and column has at
most three non-zero entries, and that one of these three occurs at the diagonal
element.



We now decompose Mp in terms of the (D — 1)} x (I — 1) upper triangular
matrix Mp_1, the D — 1 vector Vp_; and the scalar element mp as

_{ Mpy Vpa
MDW( e ) (3.17)

As Mp is invertible, mp is necessarily non-zero. We also decompose Sp in
terms of the (D — 1) x (D — 1) symmetric matrix Tp_;, the D — 1 vector Wp_
and the scalar element sp as

_f Tp1 Wb
Sp = ( Wi ) . (3.18)

The matrix Tp_; shares the same property of Sp that no row or column contains
more than three non-zero elements and that one of the three occurs at the
diagonal element. '

Equation (3.14) can then be written

MpaME_ +Vp V5, mpVpor \ _{ To-1 Wb (3.19)
mpVi_, mh “\ Wi, sp o

Thus m} = sp, and therefore sp # 0. Because the last column of Sp contains
no more than three non-zero entries, the vector W1 necessarily contains no
more than two non-zero entries. Hence, Vp_; must also contain no more than
two non-zero entries, which occur, say, in rows k; and ks. Define now the matrix

8p_1=Tp-1— Vo1 Vi_;. (3.20)

The rank one matrix contains at most four non-zero entries, two of which occur
on the diagonal. The other two occur in rows ki and ky. As Tp_; already
had non-zero diagonal entries, the diagonal elements of the rank one matrix will
not change the count of zeros. The off-diagonal of the rank one matrix may
introduce one additional non-zero term to each row k; and k.. However, as
there were at most three non-zero elements in rows k; and ky of Sp, and one
of these appeared in the last column, this leaves at most two non-zero elements
for each row k; and ko of Tp_;. Therefore Sp..1 is a symmetric matrix with at
most three non-zero elements in each row and column, one of which occurs in
the diagonal position.

This argument shows that the last column of Mp, composed of the vector
Vp_1 and mp, contains at most three non-zero elements. The same argument
may now be repeated on the equation

Mp_1 M5 _, =8p-a (3.21)

to show that the second to last column of Mp (i.e., the last column of Mp_1)
contains at most three non-zero elements. This process may be repeated until



the matrix M; is reached, as which point the statement of at most three non-zero
elements follows by definition.

This proves that each column of Mp has at most three non-zero elements,
and therefore the same is true of each row of R™'.

The proof suggests an efficient algorithm for generating the recursion coef- .
ficients stored in R~! given the permutation vector JI. The non-zero entries
of R~ may be stored in a I x 3 array, while the indices of the non-zero off-
diagonal elements may be stored in a D x 2 array. Once generated, these arrays
are easily applied to solve the systems

Rty=ez , ax=Py. (3.22)

A permutation based Brownian bridge discretization has the interpretation
that the individual steps of the random walk z are generated is a gpecific order.
BEquation (3.9) allows, however, for a more general interpretation. Using the
fact that B satisfies (3.9) if and only if B = A ) for some orthogonal matrix ¢,
we see that generating the random walk as ¢B z is equivalent to applying A to
an orthogonal transformation of z. Such a transformation may lead to a diago-
nalization of the integrand, concentrating much of the variance of the problem
into a few principle directions, and thereby reducing the effective dimension.
This is discussed further in the Section 5. There is a computational price to be
paid for this approach in that, for a general orthogonal matrix @, it will not be
possible to generate the corresponding random walk o B z by recursion, but will
require an O(D?) procedure.

4 Reordering

For many problems associated with a stochastic process, there is a natural
underlying time discretization. For example, for the bond described in the next
section, monthly coupon payments suggest that monthly time steps are the
most convenient to work with (leading to a 360 dimensional integral). However,
this division and the corresponding dimension of the expected value integral are
somewhat arbitrary. For example, daily time steps could be taken (representing
the daily fluctuations of interest rates), which would lead to an integral of with
dimension close to 11000. There would be little noticeable difference in the
value of these integrals as long as the discretization error for the stochastic
process is small. It is often the case that the acceptable error of the Monte
Carlo computation is much larger than the time discretization error. While
a minimum of 360 random variables are required to simulate the bond cash
flows, it may be more correct to consider this as a one dimensional problem
(corresponding to the use of a one interest rate model) which evolves in time.
With this in mind, we now describe an alternate approach to generating
random walk paths. We consider a collection of N “simulation particles” z;.

10



"The position of particle § {j = 1,...,N) at time step n + 1 is determined by
sampling from the distribution generated by the stochastic process with initial
data z}}. The approach is described here for standard Brownian motion, but is
easily adapted to all stochastic processes, making it a more general approach
than the Brownian bridge discretization. The particle posifions at time n + 1
may be expressed as

:r:g-”""l) = :cgn} + oVAtz (4.1)

where z; is sampled from a N(0,1} distribution. The ensemble of particles
evolves in time according to (4.1).

If the z; at each time step are sampled randomly, then this procedure is
equivalent to the simple Monte Carlo generation of the random walk. Likewise,
if z; at time step d is taken from the d* dimension of a D dimensional quasi-
random sequence, then the procedure is identical to the simple guasi-Monte
Carlo generation of the random walk.

In light of the fact that the problem is “spatially” one dimensional, it is
possible to use the same one dimensional guasi-random sequence to generate
each time step. Because the terms of the sequence are not independent, however,
it is necessary to take special measures to insure that correlations across time
steps are controlled and to make optimal nse of the greater uniformity associated
with one dimensional quasi-random sequences. These goals are achieved through
the additional step of reordering the particles at each time step. This approach
was developed by Lecot [9, 10, 11] for use in the simulation of kinetic equations,
and has been applied to the periodic one dimensional heat equation, for which
convergence close to O(1/N) was proved [12}.

This method proceeds as follows for a one dimensional stochastic process.
The particles are assigned positions according to the initial distribution function
at time 0 such that

<y <. <. (4.2)

The particles may all start from the same initial value (as in the bond example
of the next section), or these initials values may be generated using a uniform
cell centered discretization of (0, 1) with N points. The positions of the particles
after the first time step are generated according to Equation {(4.1) whereby the N
numbers z; correspond to the first N terms of a one dimensional quasi-random
sequence (the Van der Corput sequence is a natural choice). The results is that
the particles positions are no longer ordered according to (4.2). The final step
is to reorder the particles by sorting and relabeling them, such that the particle
labeled with index 1 is always furthest to the left, and the particle labeled with
index N is always furthest to the right. The next time step is then carried out
by assigning the next N terms of the quasi-random sequence in order to the
particles },...,z}. It is easily seen that for a random sequence, this method
will have no effect and will lead to the same results as the standard Moate Carlo
random walk.

11



The reordering procedure has two effects. First it breaks correlations asso-
ciated with the low discrepancy sequence. If no relabeling were done, the first
particle would be assigned the terms (1, N + 1,2N +1,...) from the sequence.
If the Van der Corput sequence is used and NV is even, this particle would al-
ways received a z; > 0 (assuming a direct mapping of (0,1) to (—oco,00) is
used obtain normally distributed numbers) to generate it’s next position, with
the result that the path for the first particle would always be increasing. The
other particles would have similar problems. Reordering effectively decounples
the generating value a particle receives from its position in the sequence. For
this reason, it is also advisable to avoid using N equal to a power of two (as-
suming a base 2 quasi-random sequence is nsed) to further minimize structural
correlations of the sequence.

The second effect helps explain the advantage this procedure offers. If the
distribution function at time step n is well represented by the N particie posi-
tions, then in general there will be many particles in intervals which are relatively
small compared with changes in the distribution function. Thus those particles
in a given interval are essentially alike. Reordering groups these particles to-
gether and ensures that these like particles receive a contiguous subsequence of
the quasi-random sequence, which itself is uniformly distributed. The effect is
to obtain a more uniform sampling from the distribution function at time step
n + 1 than would have been obtained from a random process.

There are several limitations to this quasi-Monte Carlo method. First, it
does not immediately generalize to higher dimensional stochastic process be-
cause there is no absolute ordering of two or more variables. Partial orderings
are feasible in two or three dimensions, but become less effective as dimension
increases. A decomposition of the stochastic process into principal components
could however be used to identify two or three “directions” to which this proce-
dure could be applied, while the other components are simnlated with a random
sequence.

A second requirement for the success of this method is that there be enough
particles to adequately represent the distribution function in the sense described
above. If the particles become separated so that their paths do not cross, then
the reordering will have no effect. For Brownian motion this will eventually
happen, but on time scales such that the diffusion is small in relation to the
number of particles, this is not a problem. Processes with mean reversion help
contain this effect.

Finally, based on the computational results present in Section 6, this method
appears to only exhibit superior convergence properties compared with ran-
dom Monte Carlo for functions which are predominantly the sum of univariate
fanctions. A detailed discussion of the decomposition of functions into lower
dimensional components and effective dimensionality for quasi-Monte Carlo in-
tegration can be found in [2, 19]. For example, consider x = (z1,...,2p) as a
path sampled from a standard discrete Brownian motion process with a fixed

12



starting point xp. The function

D D
f@y=> @i-z) = Z 2, (4.3)

i=1

where the z; are the independent increments, will exhibit low integration error
and convergence close to O{1/N) when reordering is used. However, the in-
troduction of cross terms (e.g., f(x) = zp) results in much larger error and a
significant reduction in the convergence rate.

For appropriate stochastic processes, particle reordering may be combined
with a permutation based Brownian bridge discretization. The effectiveness of
this combination depends on how well the Brownian bridge discretization, when
viewed as a change of variables, diagonalizes the integrand into the sum of uni-
variate functions of the underlying independent normal variates. In the example
above, the function f(z) = zp can be easily mapped to a single univariate func-
tion by using a permmutation with 71 = D. When such a Brownian bridge is
used, the question arises as to what is the appropriate quantity to reorder. The
answer is given by expressing the dt* path position of the ith particle as

¥ =a%z + Y. (4.4)

i =

Here z; is the normal variate used to determine :r;;-*, and a? is a constant. The
quantity b¢ depends only on the portion of the path of particle i which has
already been determined because the matrix R~* defined in Section 3 is lower
triangular. The correct application of the reordering method here is to reorder
tge quasi-random normal samples (z1,...,zx5) according to the ordering of the
bt' .

5 Application to a Mean Reverting Process

5.1 Bond Valuation for a Stochastic Interest Rate

We now investigate the effectiveness of the quasi-Monte Carlo techniques out-
lined here by applying them to a problem from finance involving a mean revert-
ing stochastic process. The problem is to find the fair price of a 30 year bond
with a face value of $100. which pays a monthly coupon of 1% (i.e., §1). This
question is closely related to pricing more complicated financial instruments
such as mortgage backed securities to which gquasi-Monte Carlo methods have
also been applied 20, 1, 17, 21]. The simpler bond has been chosen here to help
clarify the exposition.

13



For our purposes, all months will be considered of equal length, so that the
30 year bond has 360 payments of $1 which are equally spaced in time. There
is an additional payment of the face value of the bond, $100, which occurs at
month 360. The present value PV of the bond is simply the sum of all future
cash flows discounted back to the present to account for interest accrual:

360

PV =3 pZ. (5.1)
k=1

Here py and Zj are the payment and discount factor at month k, respectively.
For the bond, p; = 1 for 1 < k < 359 and psgp = 101. Z; is the price of a
$1 zero-coupon bond which expires at month k; in other words, Zy is the value
today of $1 paid at month k. This is directly related to the annualized k-month
continrously compound interest rate R by the formula

Zy, = exp(— Ry Th) T, = k/12. {5.2)

The question thus becomes how to model and compute the discount factors.
In previous studies of quasi-Monte Carlo methods, interest rates have gen-
erally been modeled as following geometric Brownian motion. This has the
advantage of ensuring that the rates never go negative, but it does not capture
the fact that interest rates tend to vary over a limited range and never drift
off to large values. For the current work we choose the Vasicek model for the
short term rate 7 to illustrate the flexibility of the techniques proposed, as well
as because this model has an exact analytic solution for the discount factors
which aids in assessing the computational error of the various methods under
consideration. The Vasicek model [25] is a mean reverting process with constant
reversion speed a, reversion level b and volatility ¢ (standard deviation):

dr = a{b—r)dt + odz {0} =rp. (5.3)

Here dz is the derivative of standard Brownian motion.
According to the arbitrage pricing theory [4], the disconnt factor at time ¢
must be given by

2)=F (exp(m /a “os) ds)) (5.4)

where the integral is taken along a given path, and the expectation E(:) is taken
over all paths generated by the stochastic process (5.3). Because the variable
r(t) has a Gaussian distribution, and because the sum of Gaussian variables is
also Gaussian, it is possible to evaluate Equation 5.4 analytically. The result is
14, 25]

Z(t) = A(t) exp(~roB(t))

B(t) = (1 — exp{—at))/a {(5.5)

Aty = exp(b(B(t) —t) — c?(aB*(t) + 2B(t) — 2t)/ (4a?®)).
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A Monte Carlo evalnation of the present value of the bond price would involve
simulating interest rate paths according to the process (5.3). For a given path
realization #(t), the discount factor for that path could be computed at any time
t by evaluating

1
2(t) = exp(— fn #(s)ds). (5.6)

The bond price conditioned on that realization could then be computed from
Equation 5.1. The true bond price is then the expectation of the present value,
which is approximated in Monte Carlo by

1 N
PV~ & Y PV (5.7)

i=1

when N interest paths with present values PV; have been simulated.

In order to evaluate the integral 5.6 it is necessary to discretize time. (For a
general stochastic process, integration of the stochastic differential equation to
obtain a path #(¢) will also require a time discretization approximation. How-
ever, for the Vasicek model, as well as for geometric Brownian motion, this may
be done analytically.) The natural discretization is to choose time steps equal
to one month, so that the discount factor at month k is related to the sum of
interest rates at the previous months.

As the purpose of the current work is to study the effectiveness of vari-
ous Monte Carlo techniques, we wish to separate the Monte Carlo error from
the time discretization error. We will therefore take as the exact solution not
Equations 5.6, but that of the time discretized version of Equation 5.4:

M-1
Zy(ty=E (exp(—At Z r(ti))) (5.8)

i=0

where At = t/M and t; = iAt. As long as max(a,b,0/v/a) At << 1, the
approximation will be valid. The exact evaluation of this expectation is given
by

Zalt) = An(t) exp(—royB(t))
B(t) = (1 —exp(—at))/e
M—1
Au(t) = exp(b(ByB(t) —t + At) — oy(1 + ) ( >a- ﬁi)gN) /(4a®))
=0
8= exp(—ait) (5.9)
_ alt
Y= 1-3

Tt can be seen that in the limit as M — oo (At — 0), Zy(t) — Z(1).
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For the purpose of pricing the bond, we set ¢ = 30 years and At = 1/12
years, so that number of steps of the random walk is D = 360. The standard
approach to generating a random path corresponding to the process (5.3) is
given by the recursion

Tni1 = b+ (rn — )8 + 52, (5.10)

where r,, is the interest rate at time nAt, 8 is given above (5.10), 7 is defined

as
)
T=0 1 Qa,ﬂ , (5.11)

and z, is an N(0,1) variate. Note that ¥ = O{v/At) as At — 0. In matrix
notation, the entire path + = (r1,...,7p) may be expressed as

r=7Az +T. {5.12)
Here z is a vector of independent N(0,1) variates and
Tn = b+ (ro — B)" (5.13)
with 7o being the rate at time zero. The lower triangular matrix A is defined as
Ay = p i>j (5.14)
Ay =0 1< f

Note that this reduces to standard Brownian motion when the mean reversion
speed a is zero {so that 8 = 1).

The generalized Brownian bridge ideas developed in Section 3 remain the
same. The goal is to find a suitable matrix B with

BBT = A4Y (5.15)
snch that the paths generated by
r=gBz+7F. {5.16)

have better distribution properties when z is a quasi-random vector of N(0,1)
samples. As with standard Brownian motion, permutations of the order in
which the points on the path are generated leads to an interesting subset of
the possible B’s. The proof in Section 3 that a permutation based Brownian
bridge may be generated in O(D) operations carries over exactly to the mean
reverting process because the matrix (AT A)~! with A given by (5.15) is also tri-
diagonal. Here the diagonal elements are all equal to 1+ /32, while the non-zero
off-diagonal elements are all —3.

The Brownian bridge selected for pricing the bond was based on the per-
mutation (360, 180, 90,270,45, 135,225,315, 15, 30,60, 75, .. .). This has the de-
sirable properties that the early points are well spread through the whole of
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the sequence, and that the time scale between subsequent points decreases as
more points are added. For a financial instrument such as a bond for which the
payments are distributed throughout its life, this kind of general permutation
works well. There are numerous other similar orderings that conld be chosen.
Results, however, are likely to be insensitive to reasonable variations.

For the simulation we chose the annualized parameters a = .32, b = .07,
o = .01 and initial interest rate ro = .12. This corresponds to a long term
annual interest rate of 7% and a long term annual volatility of 1.25%. With the
At given above, & = 0.0028. Based on Equations 5.1,5.8 and 5.10, the present
value of the hond is 143.2973925856, which corresponds to an annual yield of
y = 8.14%. The variance in this value is computed as 80.3, while the antithetic
variance (described below) is 0.415. The Macaulay duration [3] of this bond,
defined as (s kprZy)/ PV where Z} = (1 +y/ 12)~* is the discount factor
corresponding to the yield, is 128 months, or 10.7 years. This is the average time
to maturity weighted by the present values of the cash flows, and it functions
as a measure of the bond price’s sensitivity to changes in the yield.

5.2 Analysis of the Integrand

When random walk processes are used to value functions which smoothly de-
pend on the path, a useful approach for understanding the effectiveness of quasi-
Monte Carlo, as well as for providing control variates and indications for select-
ing a generalized Brownian bridge, is to compute a Taylor series expansion. It is
natural (particnlarly for mean reverting processes) to expand the integrand as
a function of independent normal increments about the expected mean, which
corresponds to the point z = (0,0, ...,0). As long as the variance of the process
is not too large, the Gaussian weights in the expectation integral will cause a
sharp drop off in the weighting of paths away from the mean, so that the Taylor
expansion is likely to be a good approximation.

The choice of the integrand to be expanded depends of how the random
walk is generated. As the default, we take the function va(z) = PV(z) which
corresponds to the standard random walk generated by {5.12), with A given by
(5.15). Denoting the gradient term evaluated at zero by

Vol = (%,---,%) (5.17)
621 6ZD z=(a,“"9)
and the Hessian matrix evaluated at zero by
vy
oYY, = — 24 , 5.18
(Hay 82: 024 | .q0,....0) (518)
we have that
1

va(z) = v4(0) + (VoY) 2 + EzTHgM (5.19)
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Integrating (5.19) against the Gaussian measures from which the z; are sampled
gives

E(va(z)) = va(0) + —;—AvA(O) +O@EY). (5.20)

Here Ava(0) is the Laplacian of v4 evaluated at zero. All of the z; are scaled by
7, so that every derivative of v4(z) introduces a factor of 3. Thus the Laplacian
is of size 72, and the remainder term is O(*). Note that the terms with odd
powers of z integrate to zero by symmetry. Direct evaluation shows that for the
choice of constants given above,

va(0) = 142,758  Awa(0) = 1.07546. (5.21)

Evaluating (5.20) to second order gives an approximation with a relative error
of less than 2¢-5. The constant term alone acconnts for all but 0.4% of the value
of the integral. We use this information to interpret the effectiveness of various
Monte Carlo and quasi-Monte Carlo technigues.

These results suggest that a method which accurately evaluates the linear
and quadratic terms of the Taylor expansion will produce small relative error.
We consider now how to deal with these terms.

The linear term integrates to zero. This may be computed with no error by
using antithetic random (or guasi-random) variables. This requires that when
a point 2 is sampled from the distribution and used to evaluate v(z), the point
—z ig also taken. This is equivalent to replacing the integrand by

v (z) = i(fli?‘-fiﬁ (5.22)

As mentioned above, the variance of the present value of the bond has been
computed in the Monte Carlo calculation to be 80.3. A similar estimate can be
obtained from the Taylor expansion as ||[Vv4(0)]|*> = 78.8. The variance of the
antithetic integrand v*(z) may also be estimated with a Monte Carlo calculation
as 0.415, which is roughly 200 times smaller. Thus for random Monte Carlo, the
use of antithetic variables leads to a reduction of error by a factor of around 14.
There is of course the additional computational time associated with evaluating
both v(z) and v{—2) to consider; however, for the bond valuation integrand, the
increase is less than 25%.

Tt is natural to ask how a quasi-random sequence will perform in evaluating
the linear term. The integral of this term is approximated by

E(VvY - 2) =V 5 (5.23)
A

where the elements of the vector £ are the one dimensional averages of the
sample points

N
o = % 329, (5.24)
=]
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If antithetic variables are used (so that the sample size is 2N), then £ = 0. I
a quasi-random sequence is used without antithetic variables, the dimensions
decouple according to (5.23) such that the errors are the sum of the one dimen-
sional errors of (5.24). These errors will in general be O(1/N}, with the constant
roughly like |]Vo%||. For small values of N, the error from the linear term will
tend to dominate the other errors and convergence close to O(1/N) may ap-
pear. For the current problem, however, the cross over from the dominant linear
term error to the dominant higher order term error occurs fairly soon. H, for
example, the second order terms come in as random errors with the antithetic
variance degcribing the error size, these errors would begin to dominate around
N = 200. Particle reordering is appropriate for such linear functions, as they
are the snm of univariate functions. However, the relatively large contribution
of the second order terms may limit the effectiveness.

We now consider the quadratic term of the Taylor expansion. It is clear that
the use of antithetic variables will not lead to any error reduction for this term.
1t is possible to imagine constructing a set of antithetic points in D dimensions
reflecting symmetries across all coordinate axes. In this way, the cross terms of
the quadratic could be eliminated; however, the diagonal terms would remain.
Moreover, this would require evaluating the function at 27 points, as opposed
to just two (z and —2z).

An alternative approach to diagonalizing the guadratic term, and thereby
decoupling the dimensions to produce a set of one dimensional integrals, is
offered by the Brownian bridge discretization of the random walk. Let Qa4
be the orthogonal matrix which diagonalizes the Hessian matrix H4 such that
the elements of the resulting diagonal matrix appearing in order of decreasing
absolute value. We have that

Da=QLHaQa. (5.25)
A generalized Brownian bridge discretization matrix B may be defined by
B=AQx (5.26)
such that
v(Bz) =wva(0)+ (Vo) Qaz+ 3(Qaz)TH Qaz +...
=vA(0) + (QEVYY) -2+ 32T Daz + ... (5.27)

When the random walk is generated with Bz, the effect is to diagonalize the
guadratic term. The largest eigenvalue is around 0.893; however, they drop
oft rapidly, with the 14** being less that 0.0001. Only the first 24 are greater
than 0.00001. Thus the effective dimension of the problem is reduced, and the
decoupling of dimensions allows for the superior performance of quasi-random
sequences on one dimensional problems to be exploited. Again we remark that
no advantage arises if this technique is applied in conjunction with random
sequences as this decoupling does not alter the total variance of the integrand.
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There is a substantial additional computational cost of generating paths with
Bz when B is a full matrix such that no recursive generation is possible. It may
be more effective to choose a permutation based Brownian bridge discretization
matrix for which the associated change of variables @ = A~ B leads to a signif-
icant (although not complete) diagonalization of the Hessian. Experimentation
with various permutations indicates that almost any choice for such a B will be
superior in this regard to using the standard random walk generating matrix A.

For the price of the matrix vector multiple which, as just described, could
diagonalize the quadratic term, this term may in fact be eliminated by using
the Taylor series as a control variate. A control variate is a function ¢(z) which
approximates v(z) such that E(¢(z)) is known exactly. The expectation of v(z)
is computed according to

E(v(2)) = E(v(z) — (z)) + E(¢(2)). (5.28)

If ¢(z) is close to v(z), then the variance of the function v(z) — ¢(z) will be
small, leading to a more accurate evaluation of E{v(z)) through (5.28). A
good choice for ¢(z) combines the constant and quadratic terms of the Taylor
expansion of v(z) (5.19) (assuming antithetic variates will be used to eliminate
the odd terms). It is most natural to choose the expansion which corresponds
to the Brownian bridge discretization used to generate the paths, and thus it is
more convenient to consider the approximation as a function of the path z (the
deviation from the mean path) so that

P(z) =v4 + %a:T (AT H A ). (5.29)

The function (5.29) will be correct for all x = 7Bz such that B satisfies {5.15);
thus the Brownian bridge may be used in conjunction with this control variate.
Although the matrix in (5.29) is strongly tridiagonal, it is necessary to retain
the off diagonal terms to ensure that E(¢(z)) is close to the true solution. A
disadvantage of this choice for ¢ is therefore that the evaluate of the quadratic
term requires ©(D?) operations.. However, the advantage is that errors should
scale like 74.

6 Computational Results

‘We now describe the accuracy of various integration methods for computing
the present value of the bond. The results are presented as a function of N,
the number of paths, and as a function of the approximate computational time
required for the methods. For each case, we present the root-mean-square of
the error over 25 independent computations. Moreover, the computations for
different values of N are all independent. For the Sobol’ sequence calculations,
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independence means that non-overlapping subsequences were used. Here the
error is computed with respect to the exact solution,

The present value of the bond was computed with ten methods. The first
was straight forward Monte Carlo using a random sequence (MC). Next, this
calculation was repeated using a 360 dimensional Sobol’ sequence (QMC) (gen-
erated with part of the code FINDER obtained from Columbia University).
Both of these computations were then performed using antithetic variates (MC-
anti and QMC-anti). The Sobol’ sequence was then used with the Brownian
bridge discretization and antithetic variates to generate the interest rate paths
(QMC-BB-anti), Next the one-dimensional Van der Corput sequence was used
in the reordering method (REQ), and then used with antithetic variates (REO-
anti). Reordering was also used with the Brownian bridge representation and
antithetic variates (REQ-BB-anti). Finally, the Taylor series control variate ap-
proach was used first with random samples (MC-Tay), and then with the Sobol’
sequence combined with the Brownian bridge (QMC-BB-Tay).

For all but the reordering calculation, the number of sample paths ranged
from N = 256 to N = 131072, with N being chosen as powers of two. For the
reordering calcnlation, in order to avoid possible correlations within the base two
sequence, N was chosen for the first two calculations as powers of three, ranging
from N = 243 to N = 59049. For the REQ-BB-anti calculation, primes close to
powers of two were used. In all cases, the rms error of the 25 runs was computed
at each N, and a line was fit to the log-log data to estimate the convergence
rate. This assumes that over this range of N, the error may be modeled as
eN~2. For random Monte Carlo, the constant c is the standard deviation, and
a = .5. Table 1 summarizes the results. For each method, the estimated size of
the error at N = 10000 (based on the linear fit), the convergence rate «, and
the approximate computation time for one run with this NV are given. All the
computation times grow linear with N except for the reordering calculations,
which grow as N log N due to the sort. The results are plotted in Figures 1 and
2. Figure 1 shows a log-log plot (base 10) of the relative error as a function of
N. Figure 2 shows the same data, but now plotted as a function of time, based
on the estimates of computation time per sample.

The results for QMC-anti have not been plotted because as a function of
N, the errors in this case are essentially the same as for simple QMC. This
indicates that there is no advantage in using antithetic variates with the simple
quasi-random sequence for this problem. However, the errors for the MC-anti
calculation are significantly smaller than those of QMC and QMC-anti. This
result may be interpreted in terms of the Taylor series expansion. The use
of antithetic variates will eliminate the error from the linear term, but has
no effect on the quadratic term. The fact that QMC and QMC-anti give the
same error indicates that when guasi-random sequence is used, the errors from
the quadratic term dominate the linear term (which may be converging like
O(1/N)). This is not true for the random case as there is a substantial error
reduction from MC to MC-anti. The fact that MC-anti has lower error than
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Method Convergence Rate | Relative Error | Comp. Time (sec)
N = 10000 N = 18000
MC 0.508 6.05e-4 34
QMC 0.632 1.05e-4 22
MC-anti (.518 4,42¢-5 40
QMC-anti 0.591 9.90e-5 28
QMC-BB-anti 0.779 7.33e-6 32
MC-TAY 0.508 4.44e-7 496
QMC-BB-TAY 0.650 1.38e-7 517
REO 0.530 3.04e-5 46
REO-anti 0.491 3.00e-5 61
REQ-BB-anti 0.461 4.0le-5 63

Table 1: Comparison of Monte Carlo and quasi-Monte Carlo methods used to
value a coupon bond

Bond Valuation
""'2 T T T L] T T
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3t i
MC-antl
MC
43 i
+ QMC
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&
T
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log N

Figure 1: Error vs. N (log base 10)
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Figure 2: Error vs. Computation Time (log base 10)
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QMC (with and without the antithetic variates) indicates that quasi-random
sequence introduces larger errors in computing the quadratic term than the
random sequence. The reason for this lies in the high dimensional nature of
the problem when the standard discretization of the random walk is used. The
quadratic term is the sum over all possible two dimensional projections of the 360
dimensional sequence. As has been previously demonstrated {13, 2], the Sobol’
sequence has good one dimensional projections in all dimensions; however, some
of the two (and higher) dimensional projections can suffer from clumping of
points together. The corresponding holes are eventually filled in for large enough
N, but this may occur on a scale much larger than the number of points of
practical interest. As the dimension of the sequence increases, length of these
clumping cycles may increase.

Of the reordering methods, only the simple REO is plotted. The combina-
tion of reordering with antithetic variates and the Brownian bridge discretization
did not result in any improvement. In fact, the results for REO-BB-anti were
slightly worse. This is attributable to the use of a different set of N (powers
of 3 for REQ and primes close to powers of 2 for REO-BB-anti), which illus-
trates the sensitivity of reordering to the choice of N. When powers of 2 are
used, substantially greater errors appear. For bond valuation problem, reorder-
ing shows random-like convergence 1/ VN, and gives errors which are slightly
smaller thar MC-anti. This indicates that reordering is handling the univariate
linear terms well (leading to errors smaller than the dominant quadratic term
error), and handling the quadratic term only slightly better than the random
sequence. This suggests that the two dimensional projections for the reorder-
ing process have essentially random properties, while the diagonal, univariate
quadratic terms are integrated more accurately. The dominance of the qnadratic
error explains why the use of antithetic variates does not improve the error. The
fact that the Brownian bridge discretization also does not help stems from the
dominance of the random like errors associated with the two dimensional pro-
jections. These are still important becaunse this discretization only leads to a
partial diagonlization of the quadratic term.

A major improvement over random Monte Carlo is achieved when the quasi-
random sequence is used in the Brownian bridge discretization with antithetic
variates. In terms of the Taylor series, the number of quadratic cross terms which
significantly contribute to the error has been greatly reduced by the partial
diagonlization, and those cross terms which are important occur in relatively
low dimensions. For low dimensions, the two dimensional projections of the
Sobol’ sequence are very uniformly distributed. This results in substantially
lower integration errors and faster convergence than with antithetic random
Monte Carlo.

The validity of the Taylor series analysis of this problem is borne out by the
considerable error reduction achieved when the first terms are used as a control
variate. In the random case, this leads to a variance of 0.000039, compared
with 80.3 for MC and 0.415 for MC-anti. Even greater gains are made by using
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the quasi-random sequence in the Brownian bridge discretization. Again a kind
of partial diagonalization of the fourth order term is achieved and the greater
uniformity of the early four dimensional projections is exploited.

Figure 2 displays these results in terms of the estimated computation time.
In Table 1 it can be seen that there is in fact a computational advantage to
using quasi-random sequences over random for this problem. This is due to
the time required for sequence generation. The Sobol’ sequence, which may be
generated using bit-wise operations [22], is faster to generate than the 48 bit
random generator used (drand48). The use of the Brownian bridge discretization
comes at a relatively low computational price, and in fact, QMC-BB-anti was
faster than simple MC. It should be noted that for more complicated integrands,
the importance of sequence generation time will fade and the cost of antithetic
variates may increase. A much larger computational effort was required to use
the Taylor series control variate, due to the matrix vector multiply associated
with the Hessian term. However, the results in Figure 2 still show that the
Taylor series control variate leads to the lowest error, even when time is taken
into account. This is related to the fact that for random Monte Carlo, it is
necessary to compute 100 times longer to reduce the error by a factor of 10.

7 Conclusions

In this paper two general procedures have been developed for generating discrete
sample paths associated with a stochastic process using quasi-random sequences.
The properties of these methods have been illustrated by applying them to an
example from finance, the valuation of a coupon bond with a mean reverting
stochastic interest rate.

The main conclusions are that even for nominally high dimensional inte-
gration problems arising from discrete stochastic processes, quasi-Monte Carlo
methods can be extremely effective. The best method and the degree of success
depends, of course, on the nature of the integrand.

For functions which may be decomposed into the sum of dominant univariate
functions, straightforward application of quasi-random sequences should result
in improved accuracy over random Monte Carlo. For these cases, however,
the use of the particle reordering method allows this to be done using the one
dimensional Van der Corput sequence, which avoid the need to generate very
high dimensional sequences. Moreover, particle reordering appears to avoid the
problem of poor two dimensional projections associated with high dimensional
sequences.

For functions with strong multi-variate components, the Brownian bridge
discretization of the random walk can lead to a substantial reduction in the
effective dimension of the integrand. If special knowledge of the integrand is
available, it may be possible to construct a generalized Brownian bridge repre-
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sentation tailored to the integrand which results in optimal dimension reduction.

Finally it has been shown that in some circumstances that quasi-Monte
Carlo methods may be effectively combined with standard variance reduction
techniques such as antithetic sampling and control variates. In particular for
smooth functions of a random walk, the use of a Taylor series expansion about
the expected mean path as a control variate has been shown to offer superior
results when combined with quasi-random paths generated in a Brownian bridge
discretization.
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