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APPROXIMATION OF A MARTENSITIC LAMINATE WITH
VARYING VOLUME FRACTIONS

BO LI AND MITCHELL LUSKIN

ApsTRACT. We consider multi-well energy minimization problems model-
ing martensitic crystals that can undergo either an orthorhombic to mon-
oclinic or a cubic to tetragonal transformation. We give results for the
approximation of a laminate with varying volume fractions. We construct
energy minimizing sequences of deformations which satisfy the correspond-
ing boundary condition, and we establish a series of error bounds in terms of
the elastic energy for the approximation of the limiting macroscopic defor-
mation and the simply laminated microstructure. Finally, we give results
for the corresponding finite element approximation of the laminate with
varying volume fractions.

1. INTRODUCTION

Martensitic crystals such as metals and alloys are characterized by their
capability of undergoing diffusionless, structural, and reversible phase trans-
formations. The austenitic phase is most stable above the transformation tem-
perature, and the martensitic phase is most stable below the transformation
temperature. With a fixed orthonormal basis for R?, these martensitic lattice
structures are represented by several symmetry-related matrices, Uy, -+, Un,
for N > 1, called martensitic variants. They represent the linear transforma-
tions that can transform the austenitic lattice into the martensitic latiices.

In nonlinear elasticity, martensitic crystals are described by deformations
which are mappings from a reference configuration to R® Usnally, the undis-
torted austemitic state at the transformation temperature is chosen to be the
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reference configuration of the crystal. We model the martensitic crystal by
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a rotationally invariant energy density, so the martensitic phase is charac-
terized by a deformation with deformation gradient taking values in the set
SO(3)U; U -+ U SO3)Uy where SO(3) is the set of all 3 x 3 real orthogo-
nal matrices with determinant equal to one. Although the effect of surface
energy makes a homogeneous deformation most stable, for certain boundary
constraints or loading conditions the elastic energy of a martensitic crystal be-
low the transformation temperature can be lowered as much as possible only
by the fine-scale mixing of coherent martensitic variants. A common example
of such a microstructure is a simple laminate in which the deformation gradi-
ent oscillates in parallel layers of fine-scale between two compatible stress-free
homogeneous states [4, 5].

Based on the hypothesis that the crystal structure is determined by the
principle of energy minimization, the recently developed geometrically non-
linear theory of thermoelasticity describes the martensitic microstructure as
the limiting configuration of energy minimizing sequences of deformations, see
[2, 3, 10, 14, 15, 18, 20, 23] and the references therein. A central object in this
theory is the elastic energy density of the crystal. Below the transformation
temperature, such an energy density is minimized on multiple energy wells
SO(3)U1,- -+ ,S0(3)Uy. The elastic energy functional is therefore non-convex
and cannot attain its infimum for certain boundary conditions. Nevertheless,
as stable configurations, martensitic microstructures can be described by en-
ergy minimizing sequences via the notion of Young measure which gives the
volume fraction for the mixing of the deformation gradients of the energy min-
imizing microstructure and defines the macroscopic thermodynamic variables
of the crystal [2, 3, 19, 32, 33].

We now focus on martensitic crystals that can undergo either an orthorhom-
bic to monoclinic or a cubic to tetragonal transformation (3, 23], A martensitic
crystal which can undergo an orthorhombic to monoclinic transformation has
two symmetry-related martensitic variants (N = 2), and hence the elastic en-
ergy density has two wells. The more commonly observed cubic to tetragonal
transformation has three symmetry-related martensitic variants (N = 3), so
the elastic energy density has three wells. For both transformations, Ball and
James have shown for boundary data which are consistent with a first-order
laminate with constant volume fractions that the unique energy minimizing
microstructure is the first-order laminate [3].

In this paper, we present an approximation theory for first-order laminates
with possibly varying volume fractions of these martensitic crystals. We estab-
lish a series of error bounds in terms of the elastic energy of deformations for
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the L? approximation of the directional derivative of the limiting macroscopic
deformation in any direction tangential to the parallel layers of the laminate,
for the L? approximation of the limiting macroscopic deformation, for the weak
L? approximation of the imiting macroscopic deformation gradient, for the ap-
proximation of volume fractions of the participating martensitic variants, and
for the approximation of nonlinear integrals of deformation gradients.

We also give corresponding error estimates for conforming finite element ap-
proximations of the laminate with varying volume fractions. For simplicity of
exposition, we restrict our analysis to continuous, piecewise linear tetrahedral
finite elements, but our analysis can be directly extended to higher order finite
elements. We construct quasi-optimal finite element deformations, and we give
corresponding error estimates for quasi-optimal finite element deformations.

The main framework of our analysis was given in [24] for the numerical
analysis of simple laminates with constant volume fractions for a two-well
problem which applies to the orthorhombic o monoclinic transformation. The
generalization to the cubic to tetragonal problem was made possible by a
reduction to a two-well problem based on the crystallography of the cubic
to tetragonal transformation [3]. For constant volume fractions, an analysis
for both of conforming and nonconforming finite element approximations was
given in {22] and [21], respectively.

A theory of numerical analysis for the microstructure in non-convex vari-
ational problems was developed in [12, 13], and extended in [7, 8, 9, 17, 25]
Analyses of the approximation of relaxed variational problems have been given
in 6, 16, 26, 27, 28, 30, 31]. We refer to the recent article [23] for a survey of
models, computation, and numerical analysis for martensitic microstructure.

In Section 2, we describe the multi-well energy minimization problems. In
Section 3, we construct energy minimizing sequences of deformations which
satisfy the corresponding nonhomogeneous boundary condition. In Section 4
and Section 5, we establish a series of error bounds in terms of the elastic
energy of deformations for the approximation of the limiting macroscopic de-
formation and the approximation of the microstructure. Finally, in Section
6, we give error estimates for the approximation by the quasi-optimal finite
element deformations.

2. ENErRGY MINIMIZATION PROBLEMS

We first briefly review some basic definitions and properties of orthorhombic
to monoclinic and cubic to tetragonal martensitic transformations. For more
details, we refer to [2, 3, 23].
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An orthorhombic to monochinic transformation for a martensitic crystal is

d,.-l-n..m"“n,:l Ter g v b .-.:t:.-. trowmt ot o
CLETTIIINCa OY 1vs Hialvehnsitic varians

U1 et (I-|— €1 & BQ)D, Uz = (I —ney ® 82)D,
where I is the identity transformation from R? to R 7 > 0 is a material

parameter, {ey, €s, €3} is an orthonormal basis for R? and D is a symmetric,
positive definite, linear transformation from R® to R3, given by

D =dje; @ e1 + daeg @ eg + daez @ ea

for some dy,ds,ds > 0. A cubic to tetragonal transformation for a martensitic
crystal is determined by its martensitic variants
Uy =ml+{n—mle @ e, Uy =mI+ (52— m)es® ez,
Us=ml+{n—m)es @ ea,
where 71 > 0 and nz > 0 are material parameters such that 7 # 72, and
{e1, €2, €3} is again an orthonormal basis for R3.
For convenience, we define the set of indices K = {1,2} for the orthorhombic

to monoclinic transformation and K = {1,2,3} for the cubic to tetragonal
transformation. We also denote

U =SOB);, 1€ K, and U =U{U;:i¢c K}
It is easy to see that

detF = dldgdg > 0, VF & Z/[, (21)
for the orthorhombic to monoclinic transformation, and that
det F' = 2y, > 0, VFel, (2.2)

for the cubic to tetragonal transformation.

We now denote by R**® the set of all 3 x 3 real matrices. We call two
matrices rank-one connected if their difference is a rank-one matrix. The
classical Hadamard compatibility condition states that, given a plane with
unit normal n and two distinct constant matrices Fy, Fy € R3*3, there exists a
continuous deformation y : R® — R3 such that Vy takes the value Fy on one
side of the plane and Fy on the other side if and only if Fy and Fj are rank-one
connected as

Flm_ﬁ‘():a@n (23)

for some non-zero vector @ € R® The following lemma which is proved in
[2, 8, 23] classifies all possible simple laminates formed by pairs of variants up
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to multiplication of rotations for the martensitic crystals in discussion, and

cr e P I A T L

S5€TVES as a key u__y'Sta.HOgI'a,yluua, U&S81S 10T Our aualjSlS.

Lemma 2.1. (1) For each i € K, there is no rank-one connection between U;
and itself, that is, any two matrices R U; and RoU; with Ry, Ry € SO(3) and
Ry # Ry are not rank-one connected.

(2) For any 1,5 € K,i # j, there are exactly two rank-one connections
between U; and U;, that is, there are exactly two different Q@ € SO(3) such that

QU,;WUJ'IGL@’R

for some a,n € R3|n| = 1, respectively. In this case, we also have for any
A€ (0,1) that

AQU; + (1 — NU; ¢ U.
Movreover, we have that
n € {tey, tex}

for the orthorhombic to monoclinic transformation, and that

1 1
n € {4—'75(61' + ej)viﬁ(ei - 61)}
for the cubic to tetragonal transformation.

For a given martensitic crystal, we denote by §} the reference configuration
which is taken to be the homogeneous austenitic state at the transformation
temperature. We assume that 8 C R? is a bounded domain with a Lipschitz
continuous boundary. We also denote the elastic energy density of the crystal
at a fixed temperature below the transformation temperature by the continu-
ous function ¢ : R**® — R. The elastic energy of a deformation y : & — R?is
given by

E(y) = ] #(Vy(z)) ds, (2.4)

where Vy : 8 — R?*3 is the deformation gradient. We define the set of
deformations of finite energy by

W = {y e C(LRY) : /Q $(Vy(z))dz < oo} . (2.5)

To model the orthorhombic to monoclinic and the cubic to tetragonal marten-
sitic transformations, we assume that the energy density ¢ is minimized on the
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energy wells U; = SO(3)U;, i € K. Thus, we may assume after adding a con-

stant to the energy density that

$(F) =20, VFeR™, (2.6)

HFy=0 fandonlyif Feld=U{lU i€ K}. (2.7)

We shall also assume that the energy density ¢ grows quadratically away from
the energy wells, that is,

B(F) 2 K| F = (PP, VFeR™, (2.8)

where & > 0 is a constant and 7 : R33 — If is a Borel measurable projection
defined by

|F'— «(F)|| = min || F' — G|, VE ¢ R33,
Geld

and where

1
3 2
1] = (Z Fi) ,  VF=(F;) e R™
£,7=1

The projection 7(#') exists for any #' € R3*3, since U is compact, although the
projection may not be unique. It is unique, however, if ||F — 7(F)|| is small
enough [23].

To study a simple laminate, we let Fo, Fy € U be rank-one connected as in
(2.3). By Lemma 2.1, we may assume without loss of generality that Fy € i
and Fp € Uy, and we may also assume that

=&

for the orthorhombic to monoclinic transformation and that

1
n=—=(e; + ¢e3)

V2

for the cubic to tetragonal transformation. The following theorem shows that
any deformation with a gradient that is a mixture of the two matrices Fy
and F; must be a simple laminate. We note that it follows from (2.3) that if

= £°°(R?) is a volume fraction so that 0 < 3\(:8) < 1, for almost all € R3,
then

(1 o :\(:c)) Fo + M) Fy = Fy + jx(m)a ®@n=F;+ (1 - 5\(:19)) a®@mn (2.9)

for almost all z € R®.
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Lemma 2.2. Let A € L°(R?) and y € WH™(R%R?). We have that
Vy(z) = Fo+ Az)a @ n, for almost all z € R?, (2.10)
if and only if
Az) = Mz - n), for almost all z € R, (2.11)
for some A € L®(R), and

y(2) = Foz + [/ ,\(s)ds] a + Yo, for almost all x € R?, (2.12)
0

for some constant yg € R®.

Proof. It follows from (2.10) that for almost all @ €
(Vy{z) — Fo)w =10 ifw-n=20.

Therefore, except on a subset of R of measure zero, y(z) — Fox depends only
on z - n. Consequently, A only depends on z - n since

& 1

)= pp
by (2.10). Thus, (2.11) is proved. Setting

“(a) = 3(e) ~ Fuc |

we get by (2.10) and (2.11) that
Vz(z) = Vy(z) — Fo — Mz -n)a®@n =0, for almost all z € R®,
proving (2.12). Conversely, we can obtain (2.10) from (2.11) and (2.12) by a

direct calculation. O

(Vy(z) — Fo)n-a, for almost all z € R?,

}\(s)ds] a, r € R?,

0

In this paper, we consider the minimization of the elastic energy (2.4) with
respect to deformations which are constrained on the boundary to take the
value given by a deformation with a gradient that is a mixture of the two
matrices Fy and Fi. By the above theorem, the most general such deformation
(up to translation by a constant yo € R®) is given by

yr(z) = Foz + U:ﬂ )\(s)ds] a, z€R’ (2.13)

where the volume fraction A € L*® (R) satisfies

0<A(s) €1, for almost all s € R.
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We thus define the set of admissible deformations to be
Wf:{yewézymy)\onaﬂ}.

Our multi-well energy minimization problem is to minimize the elastic en-
ergy (2.4) among all deformations y € W{. For a constant volume fraction
A, the Ball-James result [2, 3] states that there exist no energy minimizers
for such an energy minimization problem, and that any energy minimizing se-
quences will converge to a unique microstructure which is the simple laminate

composed of the gradient Fy with the volume fraction 1 — A and the gradient
1y with the volume fraction .

3. CONSTRUCTION OF ENERGY MINIMIZING SEQUENCES

We now construct in two steps a family of deformations 4., € W;\b 7 € (0,7],

for any fixed ¥ > 0, satisfying

lim (&) = 0.

y—0
First, we construct uy € WH(R% R, v € (0,70}, which are simple laminates
of scale v such that Vu,{z) = Fy or F; for almost all z € R® Second,
we construct &, € Wf , 7 € (0,7], by modifying w., by interpolation on the
boundary. A key objectiveis to construct a sequence of characteristic functions
converging weakly for any finite interval of R* to the volume fraction function

A.
Step 1. Construction of u, € WH(R%R?), v € (0,70]. Set
i ‘ . s 1 .
I =] —1)y,iy] and A= > Lo As)ds, VielZ.
Define the piecewise constant function A, : R -+ R by
M) =2 ifseID ez,
where the effect of a set of measure zero has been neglected. Define the
characteristic function ., : R — R by

(5) 1 if(im1)7<3§(im1+}\f(f))'yforsomei€Z,
X(8) = .
! 0 if (z’—l—{—)\.(;))'y<sSifyforsomeiEZ,

Since 0 < A(s), Ay(8), x4(8) <1 for almost all s € R, we have for any finite
interval I C R that

< 2. (3.1)

} [t =2 as
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Define now

uy(z) = Foz + {/"“""“ Xﬁ,(s)ds] a, Yz € R
0

Obviously, u, € WH(R3 R?). Moreover, we have by (2.3)

Vuy(z) = Fy+ x4(z-n)a@n € {Fo, I}, for almost all z € R®.  (3.2)
In view of (2.13) and (3.1), we also have

luy(z) — yal(z)| < 2|aly, vz e R (3.3)
Step 2. Construction of @, € W’f, ¥ € (0,70]. Set
Q, = {z € Q: dist(z,90) > vy}

for some constant v > 0 which will be specified later. Define ¢, : I — R by

(1 if z € Q2,,
Pa(z) = { (vy)~tdist(z, I8 iteell-0Q,

It is easy to see that ., € Wh*(f2) and

0 <oy (z) <1, Vo e Q,
() =1, Yz € (.,
o (z) = 0, Wz € B9, (3-4)

|V (z)] < (vy)™,  for almost all z € Q.
Now we define 4., :  — R for v € (0,0] by

Uylz) = hy(@)uy(2) + (1 — dy(2))ya(z), Vo el
It is eagy to verify that

Vily(z) = [uy(2) — ya(2)] @ Vipy(2) + 1y () Vuy(2)

+ (1 — () Vya(z), for almost all = € Q. (3.5)
By (3.2) - (3.5), we have for all v € (0, ] that
Vi (z)|| £ C for almost all z € 2, (3.6)
where C is a constant independent of ~, and that
Vi, {z) € {Fo, F1}, for almost all z € (2,,. (3.7)

Therefore 4., € Wf for any v € {0,] by the continuity of the energy density
¢. Moreover, since meas(f2 — () = O(y), as v — 0, we have by (3.6}, (3.7),
and (2.7) that

E(ty) =0(y), asy-—0.
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By the rank-one connection (2.3), we have that
detFy = det(Fy + a @ n) = (det Fp)(1 + F3la - n).
This together with the fact that (see (2.1) and (2.2))
detfy = detFy > 0
implies that
Fila-n=0,
Consequently, for any £ € R, we have
det(Fy +fa ®n) = (det Fp)(1 4 ¢Fyta - n) = det Fp.
It now follows from the equations (2.9) and (3.2} that
Py (2)Vu(z) + (1 — Py(2))Vys(z) = Fo + €(z)a @ n, for almost allz € Q,
where
{(z) = y(z)xy(z - n) + (1 — oy (z)) Az - n), z € .

Thus,

det [ihy(2) Vuy(z) + (1 — ¢4(2)) Vya(z)]

= detFy = det Fy > 0, for almost all z € 1.

Choosing v > 0 large enough, we can therefore conclude from (3.3) - (3.5)
that |

detVi,(z) > constant > 0, for almost all z € Q, Vy € (0,7]. (3.8}

We summarize our results in the following theorem.

Theorem 3.1. There exist a family of deformations 4., € T/V/{b, v € (0, 7], for
any fized 4o > 0, such that (3.8) holds and such that

lim &(t,) = 0.
4—0

4. APPROXIMATION OF THE LIMITING MACROSCOPIC DEFORMATION

Our first lemma below is a direct consequence of the growth rate of the
energy density around the energy wells (2.8).

Lemma 4.1, We have
/ IVy(e) — = (Vy(e))l” de < x'E(y),  Vye W?
Q
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Notice that by the above lemma we have that W?¢ C Wh2(Q, R3).
In what foliows we shall denote by C a generic positive constant which will
be independent of all y € W

Lemina 4.2, There exisls a constant C > 0 such that
[ I(V4(e)) - V@l ul do < @), Vye WS,
Q

for all w € R? satisfying w-n =0 and |w| = 1.

Proof. We first consider the orthorhombic to monoclinic transformation. In
this case, we have

n(F) € SO(3)Fp U SO(3)F1, VE e R¥
Fix w € R® with w-n =0 and |w| = 1. By (2.3) and (2.9), we have that
Vyiz)w = Fpw = Fyw, for almost all z € 0, (4.1)
leading to
|7 (Fw] = |Vya(z)wl, VF ¢ R®*® for almost all z € Q. (4.2)

Fix y € W?. Since y(z) = ya(x), Yz € 8, we have by the divergence theorem
that

jf;Vy(a:) dm:fﬂVyA(w) di. (4.3)

It follows from (4.1) — (4.3), the Cauchy-Schwarz inequality, and Lemma 4.1
that

[ 1r(¥u() - I (@)l do
=2 fﬂ Vys(z)w « [Vya(z) — n(Vy(z))]w dz

= 2Fw - /ﬂ [Vy(z) — 7(Vy(z))|wdz

< 2lRui(mens ) | [ 19y(0) = n(Vy)IF do

< O&(y)h. (4.4)

o
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Now let us consider the cubic to tetragonal transformation. Recall that in
this case the normal n is given as n = (e; + €2} /'\/5. Set
= )
—=l€1 — €9 — €3}.
V3

wy = —=(e; — ey + €3) and We =

V3

It is eagy to check that

wy-n=wy -n=70, lwil = |we| = 1,
and
on2 4+ n2 . X
Uw;| = —”13 T =123, j=1,2

We can thus conclude by (4.1) that (4.2), hence (4.4), also holds true for
w = wy and w = wsq, respectively. We have in fact proved the desired inequality
in this case ag well, since {w;,ws} is a basis for the two-dimensional subspace
{weR?: w.n=0} O

The following theorem gives an error bound for the L? approximation of
the directional derivative of the limiting macroscopic deformation ¥, in any
direction tangential to parallel layers of the laminate. It is a direct consequence
of the triangle inequality and the above two lemmas. It will play a key role in
establishing other error bounds.

Theorem 4.1. There exists a constant ' > 0 such that
1
[195@) - TNl o < 0 [t +e0)], e ws,
for all w € R® satisfying w-n =0 and |w| = 1.

We now give an error bound for the L% approximation of the limiting macro-
scopic deformation y, by the admissible deformations y € Wf .

Theorem 4.2. There exists a constant C > 6 such that
[ W@ -n@l de<C e +ew)],  wewt.
s

Proof. Let z € C*(§; R%) and w € R® with |w| = 1. We can easily verify the
following identity

/9 |2(2)|? dz

~ [ E@Pw-a)w-n)is - [ (Vi@ ) (0-2)ds
M

Q
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/ 12(2) 2w - 2)(w - )dS — 2/ Valahw - 2(z)) (w- 2)dz (45)

to get the Pomcare inequality [24, 34]

/|z 12dm<6’[/ (s 2d5+/|vz e d:c], (4.6)

where C = C{(Q) is a positive constant independent of z. This inequality is
also true for any z € W? by the density of C1(Q; R®) in W*®. Setting z = y—y)
forany y € Wf , we thus obtain the desired result by Theorem 4.1 with w € R®
so chosen that w n =0 and |w| = 1. O

The above theorem implies that the infimum of the energy £(y) is not at-
tained on Wf , the space of admissible deformations.

Corollary 4.1. We have
inf E(y) = 0. (4.7)

yew?
However, there ezists no y € WY such that E(y) = 0 if
meas{z € 0:0 < ANz -n) <1} > 0. (4.8)

Proof. The result (4.7) is a direct consequence of Theorem 3.1. Now, if we

had some y € W ;s such that £(y) = 0, then, in view of Theorem 4.2, we would
have y = y,.
It follows from (4.8) that there is an integer p > 3 such that the set

1 1
wy, =< €N:~<Azn Sl——}
= {eenis i m 1o

has positive measure. On the other hand, the set

1 1
Ap:{(I—AD)FO+')\DF1€R3X3:_S)\0§1__}
P P

is compact in R®*3, and is disjoint with &/ by Lemma 2.1. Consequently, the
continuous energy density ¢ reaches its minimum m(A,) > 0 on the set A,
Therefore,

=E(y) = E(yr) 2 f H(Vya(z)) dz > m{A,)measw, > 0,

which is a contradiction. O
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Now we establish an error bound for the weak L? approximation of the

limiting macroscopic deformation gradient Vy,. It follows from such an error
- . - . [e’s) .

bound that for any energy minimizing sequence {yr}iey the co‘rresponc‘hng

sequence of gradients {Vyi},., converges weakly to the deformation gradient

Wy,\.

Theorem 4.3. For any Lipschitz domain w C Q, there exists o constant C' =
C(w) > 0 such that

| 0@ - In@) de < C [t +EwH], vyews.

Proof. 1t follows from the divergence theorem and the Cauchy-Schwarz in-
equality that for any y € Wf

/ [Vy(z) — Vya(z)] dz

[9(2) - 92(2)] ®vdsH

28}
; y(z) — yalz)|dS
< (mea326w)% ( ; |y(aj) - y,\(m)|2 dS) g ’ (4.9)

where v 1s the unit exterior normal to dw and measy0w is the surface area of
Ow. By the trace theorem [1] we have

| Ju(e) = (=) a5
<c[ e = (@Pds + [ [Viae) = Vel de|

w

<o / o) = (@) + [ 1) @IV o) = oa(o)] 1]

< o] [ W) - nie)ds
+ ( fg fy(m)—w(w)lf’-dwf ( /ﬂ llw(m)—vm(x)nmw) ] (4.10)
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We also have by the triangle inequality and Lemma 4.1 that

(L1936 - v dm)%

: (/Q IVy(z) = W(Vy(w))H?dm)% + (/Q 7 (Vy(a)) — VyA(m)nzdm)%

<C e +1]. (4.11)
Hence, it follows by using Theorem 4.2 and (4.11) in (4.10) that

[ @)~ n@fas < ¢ 20t + )]
which, together with (4.9), leads to the desired inequality. O

5. APPROXIMATION OF THE SIMPLE LAMINATE

We define the projection operator w5 : R3%® = 14, Uil by

_ - : i 3%3
P —ma(F)| = min [F—-Gll, VFeR™.

For the orthorhombic to monochnic transformation, we have w9 = o, We
also define the operators © : R3*® - SO(8) and II : R®*® — {Fy, i} by the
relation

ra(F) = O(FII(F), VFe R, (5.1)

The following lemma reduces the three-well problem for the cubic to tetrago-
nal transformation to a two-well problem. Its proof indicates.that the measure
of the set of points at which the deformation gradient for an energy minimizing
sequence is neatr Us converges to zero.

Lemma 5.1. For the cubic to tetragonal transformation, there ezxists a con-
stant ¢ > 0 such that

[ 193} = ma(Vy@)I do < O [t +£0)], vy e W,
o
Proof. We have by a simple calculation that

F;glf( [F — Vya(z)] esl = |52 — ml, for almost all z € .
Denoting

Q3={zxcQ:x(Vy(z)) € Us}
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for a fixed y € W. f , we thus have by Lemma 4.2 that

meas g = / dz
sy

<lng —m|™? A lr(Vy(z)) — Vya(e)] es|” dz

< CE(y)3, (5.2)

since es - n = 0. Consequently, we have by Lemma 4.1 that
[ 195(@) = (Vo) ds
<2 [ 193(e) = x(Vu@)IF do +2 [ [=(Tula)) = ma(Vy(a)) do
<2 [ [94(0) = r(Vu()| do + B2t + 7})mees

< CEW) + &y )]
completing the proof. O
We now give an error bound for the projection operator IT : R**3 — {Fy, ;i }.

Theorem 5.1. There exists a constant C > 0 such that
[ 195(e) = BVa()I do < € (0% +£6)]

Proof, For any w € R? such that w-n = 0, we have
[I(Fyw = Fow = Fiw = Vya(z)w, VI e R%*3, for almost all z € Q.
Thus, it follows from (5.1) that
O(F) — 1] Fow = [0 (F) ~ TP = [ma (F) — Vya(@)] w
= [r12 (F) = n(F)]w + [7(F) — Vya(z)] v,
YF € R¥3, for almost all z € Q2.

Vyve’.

We can then apply the triangle inequality to the above identity with £ =
Vy(z) for any y € Wf and z € ), and estimate the two terms by (5.2) and
Lemma 4.2 to obtain

/Q 11© (Vy(z)) — I Fow|” dz
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<2 ] m12(Vu()) — 7 (Vy(2))] wf* do

+2/'; (Vy(2)) = Vya()| w]? de

< CE(y):. (5.3)

Choose wy € R and w, € R? so that wy -n = w,-n = 0 and that wy,w, are
linearly independent. Set m = Fpowy X Fpwy. Since

Qm = QFyw; X QFow,, vYQ € S0(3),
we have for all F € R3*® that
[O(F) — IIm = {O(F) Fawy x O (F) Fawy} — {Fow; X Fowa}
= {[O(F) — 1] Fow; x O (F) Fow,} — {Fowy x [I — @ (F)] Fow,} .
This, together with (5.3), leads to

/ﬂ 10 (Vy(2)) — Imf* do < CE)E. (5.4)
Now {Fyw, Fows, m} is a basis for R®, so we have from (5.3) and (5.4) that
/Q 1@ (Vy(2)) — T de < CE)E. (5.5)

We complete the proof by applying the triangle inequality to the identity
F - T(F) = [F = ma(F)] + [r12(F) — IL(F)]
= [F — ma(F) + [O(F) - [JII(F),  VFeRY,

with F' = Vy(z) for z € Q, and by estimating the two corresponding terms by
Lemma 5.1 and (5.5). ]

For any subset w C §2, p > 0, and y € Wf, we define the sets
woly) = {z € w: I(Vy(z)) = Fo and [|Fo — Vy(z)|i < p},
wy(y) = {z € w: I(Vy(z)) = I and |1 — Vy(z)|| < p}

and the mean value of A on w by

Ao = ! / Mz -n)dz.

measw J,,

The following theorem gives an estimate for the approximation of volume
fractions. It states that for any energy minimizing sequence {y;} in W¢ and
for almost all z € §, the volume fraction that Vyg(z) is near Fy converges
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to 1 — A(z - n) and the volume fraction that Vyi(z) is near F; converges to
Alz - n).

Theorem 5.2. For any Lipschitz domain w C ) and any p > 0 there exists
a positive constant C such that

meas (w — {w2(y) Uwl()}) < C [£(1)} + )] (5.6)
and
Z———————“’Lﬁ:‘” ~ (1= %)+ mm—“ﬂf)y) ~Lj<clemtrew)] 6

foranyy € Wf

Proof. Fix y € W;"S . We have by the definition of w) = wi(y) and w, = w)(y)
that

meas (w — {w) Uw})

S L O RO
[meas (w — {w Uwl})] : 5 3
< : [ - uer ]

Consequently, we have

smeas (o = 2 Uwt]) < 5 | [ IIL(T0(0) ~ T .

which together with Theorem 5.1 implies (5.6).
We have by (2.9) that

[mea,s wg — (1 — A, )meas w] Fy+ [meas wi — j\wmea,s w] )
- [ m(vye) - Vs do - [ o M 6

By the triangle inequality, the Cauchy-Schwarz inequality, Theorem 5.1, and
Theorem 4.3, we have that

[ (@) - Vun(e)] ds

< +

] T (Vy(z)) — Vy(z)] da

/ [Vy(z) — Vya(z)] de
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< (omensind | LT (Tt — Dottt gl | L 19t — Tt o
S m ) Ungl (Vy{e)) — Vi)l a:J T y(z) — Vya{z)] [
< C [E(y)t + ()} (5.9)
We also have by (5.6) that
] I (Vy(z)) de|| < Cmeas {w— {w) Uw,})
w—{whtwl}
<C e +)]. (510)
Finally, the inequality (5.7) follows from (5.8)—(5.10) and the linear inde-
pendence of Fy and . O

We now denote by ¥ the Scbolev space of all functions f € L* (£ x R3*)
such that

2
115 = [ [essup 192, I do+ 160l na <0, G0
where

Gy(z) = flz, Fy) — f(z, Fo), z e Q.

Functions in the space V represent thermodynamic variables of the underlying
crystal.

Theorem 5.3. There exists a constant C > O such that
| fo {F (2, Vy(e)) = [(1 = M - n)) f(z, Fo) + M - n)f(z, F1)]} dz|
smmwk@ﬁ+awﬂ,~@ew1eru (5.12)

Proof. We have the decomposition

/ﬂ {F (& Vy(@) — (1~ Mz - ) F(z, Fo) + Ma - n) f(z, )]} de
- /ﬂ f (2, Vy(2)) — £ (=11 (Vy(2)))] de

+ / (7 (1L (Vy())) ~ [(1 — Mz - m) £, o) + Az - n) f(z, )]} de
= T + T (5.13)
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The first term J; can be estimated by Theorem 5.1 as follows:

wusﬁkﬁgyWﬁmmwhwmw—nwmwmm

S

< {/g [is:];;{g Ve f(z, F II} dﬂ?} U IVy(z) - T (Vy()|* do %

<Clifily [EW) +Ew)?] . (5.14)
By (2.3) and the definition of Il : R®**® — {Fp, F1}, we have the identity

7 @ IR — (1 = Ao - m)f (@ Fo) + Ma - n) f(z, Fy)]
= o (o~ [I(F) — V()] n} Gy (),
VF € R3*3 for almost allz & Q,
leading to

%= [ {0 (Vo()
(1= Ao - m) (o, Fo) + Ale - ) f(z, Fy)]} da
~ o7 [ - 1 (T4() ~ V(@) n} Gy (e) do

- %] {a - [M(Vy(z)) — Vy(z)]n} Gs(z) do

TaE f {a-[Vy(z) - Vys(2)]n} Gy(z) de

|a|2/{a (Vy(2)) ~ Vy(z)]n} G4(z) da
‘“‘/{ — (@)} {VCs(z) - n} da,

where we used the divergence theorem and the fact that y(z) = ya\(z), Yz € 89,
for any y € Wf . We can thus conclude from the Cauchy-Schwarz inequality,

Theorem 4.2, and Theorem 5.1 that
5= ¢ { [ [IV6s() 1P+ Gsto] do} [ +£0)]
Q

< O|flly et + w)?]. (5.15)

W=
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We finally obtain the inequality (5.12) from (5.13) - (5.15). O

6. FINITE ELEMENT APPROXIMATIONS

For simplicity we assume in what follows that the reference configuration
) C R®is a polygonal domain. For a fixed positive number hg, let 7, 0 <
h < hg, be a family of tetrahedral finite element meshes of ), such that
Q) = Upe,, T, where h is the maximum diameter of any tetrahedron T' in the
mesh 7,. We shall assume as usual that any face of any tetrahedron in a mesh
1, has a disjoint interior with respect to any other tetrahedron in that mesh
and that any face of a tetrahedron is either a subset of the boundary 02 or is
the face of another tetrahedron in the mesh 7. Let A;, 0 < h < Ay, be the
corresponding family of piecewise linear, continuous finite element spaces with
respect to the mesh 7, [11, 29].

We can define the interpolation operator Z, : C(Q;R%) — A for each
h € (0,hg] which interpolates the values at the vertices of the tetrahedral
elements T of 7,. We will assume that the family 7, of finite meshes is quasi-
regular [11, 29, so that

0535uP,ca | VT ()| < C ess supyen | Vu ()] (6.1)

for all y € W1*°(2; R?), where the constant C' in (6.1) and below will always
denote a generic positive constant independent of . We also note for y €

C(£; R?) that
Try(z)|r = y(z)|r for any T € 7, such that y(z)|r € {PI(T)}B , (6.2)

for A € (0, ho), where {PY{T)}’ = PL(T") x PY{T) x PY(T) and PY(T) denotes
the space of linear polynomials defined on 7.

To approximate the boundary data y, € W, given in {2.13), we define the
finite element deformation yy, € Ay by

van = aya{z), z e,
and define the finite element space of admissible deformations
Ao = {yn € An 1 yn(z) = yan(), Yo € 69},

Since A € L®(R), we have that Vy, = Fy + Aa @ n € L=(2; R®). Thus, it
follows from well-known estimates for the interpolation error [11, 29] that

lyr — y/\h”LOO(aﬂ;Ra) <Ch ”yARWLw(an;RS) -
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In what follows we shall use the result that yy, € Axn, 0 < b < ho, satisfies
the condition
”y,\ - y)\h”L2(3Q;R3} S Ch. (63)

We begin our analysis of the finite element approximation of a laminate with
varying volume fractions with the following result on the minimization of the
elastic energy £ on the space Ay.

Theorem 6.1. There exists yp € Axp for each b € (0, ho| such that
Elyn) = min E(z) < CHVA (6.4)
zn€Axn
Proof. The existence of y;, € Ay, can be proved by the same argument as in

the proof of Theorem 6.1 in [22]. To prove the inequality in (6.4) we follow the
argument given in [23! to show that g, = Tyt € Ay, with v = R/? satisfies

E(dn) < CRY2,
O

We next give a series of estimates for the finite element approximation of
the deformation yy by deformation yp € Axp. These estimates are parallel to
those for the deformations y € Wf in previous sections.

Theorem 6.2. We have for any w € R® such that w-n =0 and |w| =1 that
| 190(@) = Vs ds

<C [S(yh)% + E(yn) + |y — y)\h”LZ(aQ;RS) 3 Vyp € Axp. (6.5}

Proof. Fix y, € Ay, and w € R® such that w-n = 0 and |w| = 1. By the
decomposition

yn = yx = [yn — 7 (yn)] + [7(yn) — 1]

and Lemma 4.1, we need only to prove

J1r(Tinte) - Vi) of* d

S ¢ [E(yh)% + “y)\ - y)\h”LZ(QiRa):‘ . (66)

We only consider the orthorhombic to monoclinic transformation, since the
cubic to tetragonal transformation can be treated similarly (see the proofs of
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Lemma 4.2 and Theorem 4.1). Noting that ya(z) = yan(z) for z € 051, we
have by (4.1} and the divergence theorem that

I = Vure) wl* de
=28 [ [Von(e) = r(Van(e)] wds
2w - { /ﬂ (Vi (2) — Vin(a)] do + /9 (Vya(z) — 7(Vya(2))] d:c} w
=2t { [ o) (ol @ v s + [ (Vunta) = n(Vin(a))] do v

This, together with Lemma 4.1 and the Cauchy-Schwarz inequality, leads to
(6.6). []

Theorem 6.3. We have
[ 1te) =@ do < 0 e} + )

+ |:g|y/\ - y)\hHLi(ag;Ra) + ”y)\ - y.\h”i2(3ﬂ;ka}] 3 V'yh € Ay,

Proof. Fix y, € Aj,. Setting z = y;, —y» and choosing w € R? so that w-n =1
and |w| = 1, we obtain the desired inequality by (4.6) and Theorem (6.2). [

By an argument similar to the proof of Theorem 4.3, we can use the above
theorem to obtain the following result on the weak convergence estimate for
finite element deformations.

Theorem 6.4. For any Lipschitz domain w C £, there exists a positive con-
stant C > 0, independent of h, such that

[ 1V(2) = V(o)) e < C [EGm)* + o)

1
+C [||y;\ — Yahlze aqume T 193 — yAh“Lz(an;;Ra)] ) Yy € Axg.

Recall the operator II : R®® — {F;, F1} defined by (5.1). We have the
following result which is parallel to Theorem 5.1. The key estimate is (6.6).

Theorem 6.5. We have
[ 1900 - () ds
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1
S C ]:8(&”"')2 + g(yh) + “y)\ - ykhlilﬂ(aﬂiRa)} 3 Vyh & A/\h.

Recall that A, is the average of A on w. Using the same argument as in the
proof of Theorem 5.2, we can obtain the following result from Theorem 6.4
and Theorem 6.5.

Theorem 6.6. For any Lipschitz domain w C £ and any p > 0 there exists
o positive constant C = C{w, p), independent of h, such that

meas (1 — {w2(un) Uk (u)}) < O [E)E + Ewn) + Il — yaallzz onan |

and

measwy(yn)  «

(-R)|+ Y

measw

meas Wy ()
measw

i 1
<C [5(%)E + E(yn) + lyr — vanllf2oamey + N1y — yAhIIm(an-,Ra)]
for any yn € Axp.

Recall that the Sobolev space V consists of all functions f € L?(} x R**%)
that satisfy (5.11). Slightly modifying the proof of Theorem 5.3, we can obtain
the following result corresponding to Theorem 5.3 for admissible finite element
deformations.

Theorem 6.7. We have
o {F (2, Vur(@)) = [(1 = Az - ) f(2, Fo) + M - n) f(z, F1)]} del
< Cllflv [8(%)% + g(yh)% + [lya = ym”%ﬁ(an;n@iﬁ) + s — yf\hnm(an;m)]
for all y, € Ay and all f €V,

The number of local minima of the problem

inf E(yh)

ynE€Arn
grows arbitrarily large as the mesh size A — 0. Many of these local minima are
approximations on different length scales to the same optimal microstructure
[23]. Thus, it is reasonable to give error estimates for finite element deforma-
tions yn € Axp that satisfy the following quasi-optimality condition
Elyn) <o inf E(z) (6.7)
€A,

for some constant e > 1 independent of A.
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It follows directly from the previous theorems in this section and (6.3) that

we can obtain the following error estimates for a quasi-optimal finite element
deformation y;, € Ayp.

Corollary 6.1. We have
/ [Vyn(z) — Vin(z)] w]? do < Chi
Q2

for any w € R® such that w-n =1 and |w| = 1, and for any yn € Axp which
satisfies the quasi-optimality condition (6.7),

Corollary 6.2. We have
[ @ = n(@)Pds < crl
Q

for any yi, € Axy which satisfies the quasi-optimality condition (6.7).

Corollary 6.3. If w C Q) is a Lipschitz domain, then there exists a positive
constant C, independent of h, such that

/ [Vyh(m) - Vy;\(:c)] dx
for any yn € Axp which satisfies the quasi-optimality condition (6.7).
Corollary 6.4. We have

| 190(@) =iV do < o

for any yn € Ay which satisfies the quasi-optimality condition (6.7).

< Chis

Corollary 6.5. For any Lipschitz domain w C ) and any p > 0 there exists
¢ positive constant C' = C(w, p), independent of h, such that

meas (w — {wg(yh) U w},(yh)}) < Chi

and

meas w(ys) .

—(1-R)|+

measw{ys)

— 3| < Chis

measw meas w
for any yn € Axp which satisfies the quasi-optimality condition (6.7).

Corollary 6.6, We have

] [P0 ~ [0~ X m) 5o B + Ao ) o, R
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< C|flvh#

for any f €V and any yr € Ayp which satisfies the quasi-optimality condition
(6.7).
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