UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Lecture Notes on
Multilevel Methods for Elliptic Problems on
Unstructured Grids

Tony F. Chan
Susie Go
Ludmil Zikatanov

March 1997
CAM Report 97-11

Department of Mathematics
University of Califernia, Los Angeles
Los Angeles, CA, 90024-1555

Lecture Notes on
Multilevel Methods for Elliptic Problems on

Unstructured Grids |

Tony F. Chan* Susie Go* Ludmil Zikatanov*
March 18, 1997

Abstract

An overview of multilevel methods on unstructured grids for elliptic problems will
be given. The advantages which make such grids suitable for practical imple-
mentations are flexible approximation of the boundaries of complicated physical
domains and the ability to adapt the mesh to resolve fine-scaled structures in the
solution. Multilevel methods, which include multigrid methods and overlapping
and non-overlapping domain decomposition methods, depend on proper splittings
of appropriate finite element spaces: either by dividing the original problem into
subproblems defined on smaller subdomains, or by generating a hierarchy of coarse
spaces. The standard splittings used in structured grid case cannot be directly ex-
tended for unstructured grids because they require a hierarchical grid structure,
which is not readily available in unstructured grids.

We will discuss some of the issues which arise when applying multilevel meth-
ods on unstructured grids, such as how the coarse spaces and transfer operators are
defined, and how different types of boundary conditions are treated. An obvious
way to generate a coarse mesh is to re-grid the physical domain several times. In
these lecture notes, we will propose and discuss different and possibly better alter-
natives: node nested coarse spaces, agglomerated coarse spaces and algebraically
generated coarse spaces.

tPrepared for the lecture course “28-th Computational Fluid Dynamics”, 3-7 March, 1997, von
Karman Institute for Fluid Dynamics, Belgium.

*Depariment of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095-1555,
USA. F-mail: chan®math.ucla.edu, sgo@math.ucla.edu, lzikatan@math.ucla.edu. ONR under
contract ONR-N00014-92-3-1890, and the Army Research Office under contract DAAL-03-91-C-0047
(Univ. of Tenn subcontract ORA4466.04 Amendment 1 and 2). The first two authors acknowledge
support from RIACS under contract number NAS 2-13721 for visits to RIACS/NASA Ames. The third
author is supported by Grant ONR-N00014-92-J-1890 and NSF Grant Int-95-06184.

Contents

1 TIntroduction 3
1.1 Elliptic problems 3
L2 Unstructured grids Lo 5
1.3 Preconditioned iterative methods 5
1.4 Multilevel methods 11

.41 Multigrid methods, L L 11
1.4.2 Domain decomposition methods 13
1.5 Approaches for designing multilevel methods on unstructured grids . . . 21

2 Introduction to convergence theory 22
2.1 Subspace correction framework: matrix formulation 23
2.2 Application to two-level overlapping domain decomposition methods . . . 26

22,1 Theintwitiveidea o 26
2.2.2 Proof of the condition number bound 29
223 Someextensions. 30
2.3 Convergence of multigrid methods 30

3 Node-nested coarse spaces 32
3.1 Maximal independent set (MIS) coarsening 32
3.2 Coarse-to-fine interpolations, 32
3.3 Interpolations on non-matching boundaries 34

3.3.1 Asimpleexample L 38
3.4 Stability and approximation of the non-nested interpolation 40
3.5 Numericalresults 41
3.6 Concluding remarks L 44

4 Agglomerated coarse spaces 47
4.1 Agglomerated multigrid methods on unstructured grids 47
4.2 Coarse points and construction of macroelements 47
4.3 Coarse space basis functions. 52
4.4 Numericalexamples. L 55
4.5 Extensions L 57

4.5.1 Anisotropic problems 59
4.6 Concluding remarks L 60

5 An algebraic nonoverlapping domain decomposition method for convection-
diffusion problems 60
5.1 A model convection-diffusion problem, 61
5.2 Nonoverlapping domain decomposition via Schur complement 64
5.3 Preconditioner I: Inexact Subdomain Solve 66
5.4 Preconditioner II: Drop Tolerance Approximation 69
3.5 Preconditioner III: Wireframe Approximation 69
5.6 Preconditioner IV: Supersparse Matrix Approximation 71

57 Concluding Remarks o 73

1 Introduction

In these lecture notes, multilevel methods applied to problems on general unstructured
grids will be discussed. The advantages which make the such grids interesting for the
practical implementations are flexible approximation of the geometry and ability to adapt
the mesh. We will describe various approaches for dealing with the solution of discrete
equations arising from unstructured grids. Our interest will be in the performance of
multilevel methods, including multigrid and domain decomposition methods.

The beauty of multilevel methods is that the convergence speed can often be proven
- to be independent of the problem size and they can be naturally parallelized. This makes
them the most powerful and useful tool for a wide variety of applications. Unfortunately,
these methods require a hierarchical grid structure, which is not readily available in
unstructured grids. In our context, we use them not used as solvers on their own, but
rather as preconditioners for Krylov subspace iterative methods.

Various approaches for dealing with these issues and their effect on the convergence
properties of these methods will be covered. These notes are organized as follows: Sec-
tion 1 begins with an introduction to Krylov subspace methods and muitilevel methods,
followed by some two-level theory in Section 2. Specific examples of how to deal with
node-nested multilevel methods are covered in Section 3. Section 4 concerns agglomer-
ated multigrid methods. The material contained in Section 5 deals with nonoverlapping
domain decomposition methods.

Many of the topics described in these lecture notes represent previous and continuing
joint work with Barry Smith and Jun Zou [1, 2, 3, 4], (Section 3), with Jinchao Xu [5]
(Section 4) and with Timothy Barth and Wei-Pai Tang [6] (Section 5).

1.1 Elliptic problems

Elliptic problems are one of most extensively investigated problems in applied mathe-
matics. Their relation to many physical models is well known and the theoretical and
numerical results obtained in this area are very useful in practice. As a first approxima-
tion to more complicated physical and mathematical models (such as those in computa-
tional fluid dynamics), elliptic problems are sometimes the only ones for which rigorous
theoretical results are known. The design of numerical methods for such model problems
can often be adapted and applied to more complicated situations. Elliptic problems are
also important in their own right, for example in computational fluid dynamics in the
solution of the pressure equation, implicit time integration schemes, etc.

In this section, we will briefly review the properties of the model problems we consider.
Our goal is to design effective solvers for the resulting systems of linear equations, and
we will not pay much attention to the discretization techniques. Detailed discussions of
the finite element element discretizations that we use can be found in {7, 8, 9, 10].

Let Q C RY be a polygonal (polyhedral) domain, d = 2,3. We consider the following
differential problem:

Lu=V - (afz)Vu)=F(z) =zeQ,

=0 el
%“-—o v FD (1.1)
an— T &by,

The following formulation is known as the variational (or Galerkin) formulation of
(1.1): Find v € Hj(Q; 'p) such that

alu,v) = F(v) for all v € H}(;Tp), (1.2)

where

amwzém@wmmameLmem (1.3)

Here H}(;'p) denotes the Sobolev space which contains functions which vanish
on I'p with square integrable first derivatives. It is well-known that (1.2) is uniquely
solvable if a(z) is a strictly positive scalar function and F is square integrable.

One of the basic tools for solving such problems is the finite element method. Dis-
cretizations based on this method are popular because they are very robust and can
easily deal with different types of boundary conditions and complicated geometries in
two or three spatial dimensions. Much of what we say in these lecture notes also applies
to finite difference discretizations,

We will use the simplest finite element discretization of the elliptic problem (1.2).
First, cover with simplicial finite elements (triangles in IR* and tetrahedra in IR?).
Then the discrete problem could be formulated as follows:

Find uy € V}, such that

a(un,vp) = F(vp) for all vy, € V4, (1.4)

where V}, is the finite dimensional subspace of H}(€;T'p) consisting of continuous func-
tions linear on each of the simplexes forming the partition.

The values of the discrete solution on the grid nodes are then determined by solving
the resulting system of linear equations:

Au = f, (1.5)

where A is a symmetric and positive definite matrix, f is the right hand side and the
nodal values of the discrete solution uj will be obtained in u after solving the system (1.5).
The matrix A = {a;}7;; and the right hand side f = {f;}}.; are obtained through
equation (1.4) , using the standard nodal basis finite element functions. These functions
are determined as linear over each simplex element and for every ¢ the corresponding
basis function satisfies the relation w;(z;) = §;;, where z; are the coordinates of the i-th
grid node. Using this basis we get the following expressions for the elements of 4 and
Iooay = alwi,¢;), fi = fle;). To obtain an accurate enough approximate solution of
(1.2), one often has to solve huge discrete problems, which are badly conditioned, with
condition number growing like O(h™?), where A is the characteristic mesh size. Our goal
in the next sections will be to construct robust and effective methods for solving the
discrete equations (1.5) and investigate their properties.

4

1.2 Unstructured grids

With the vast improvements in computational resources today, the motivating reasons
for using structured grids over unstructured grids become less obvious. Cartesian or
mapped Cartesian grids are popular because they are directional, so efficient methods
can be used, such as the alternating direction implicit methods (ADI) and fast Fourier
transforms (FFT). This structure, however, imposes limitations on the types of domains
which can be considered. In addition, local refinement cannot be easily done without
affecting large portions of the grid, so the ability to adapt the grids for resolving steep
gradients in the solution is a source of difficulty.

One of the alternative approaches for dealing with complicated geometries is the
composite grid method as proposed by Brown, Chesshire, Henshaw and Kreiss {11] and
‘Chesshire and Henshaw [12]. Different alternatives will also be discussed and proposed
during this course by other speakers.

Unstructured grids provide the flexibility needed to adapt to rapidly changing or dy-
namie solutions as well as complex geometries. These grids have irregular connectivity
and so do not have to adhere to the strict structure of Cartesian-based grids, see fig-
ure 1.1. Computations on unstractured grids require more complicated data structures
and possibly modifications in some solvers, e.g. multilevel methods. Such modifications
in multilevel methods will be further discussed in these lecture notes.

NVAY, a
BEREREOGIS
RS

o~ =l R NLRTS
ROV e e S i

]

Figure 1.1: A structured grid (left) and unstructured grid (right).

1.3 Preconditioned iterative methods

As we mentioned in the introduction, multilevel methods will be uged in our framework
as preconditioners in Krylov subspace iterative methods. This section is a briel intro-
duction to preconditioned iterative methods. We will discuss the basic properties of the
most popular Krylov subspace iterative methods: the Conjugate Gradient {CG) and the
(eneralized Minimum Residual (GMRES) method. We will be interested particularly
in their preconditioned versions and the presentation here will closely follow Saad i13].
We emphasize that the summary here does not pretend to be complete; details can be
found in {13} and references therein.

We will use the lower case letters u, v, w, ... to denote vectors, capital letters A, B, ...
for matrices, and (-,) will denote the Euclidian scalar product in IR". Let A € IR™" be
a given square matrix and v € IR" be a vector. Denote by ||-1|, the Euclidean norm in R",
ie. |foll* = (v,v). The spectral radius of A, p(A), is defined by p(A) = max;cicn | Al
where A;’s are the eigenvalues of A. The matrix norm corresponding to ||v|] is given by
Al = \/p(AAT) = \/p(ATA). Another quantity which will be often used in the analysis
of iterative methods is the condition number of A defined by x(A) = [|A|||A™Y|. Also, if
A is symmetric positive definite, the A-norm (energy norm) is defined by ||v||% = (4v,v).
For symmetric positive definite (SPD) matrices, the above definition of the condition
number of A is equivalent to

_ MaXigicn Aj

k(A) (1.6)

mmlsisﬂ)\1‘

Let us now split A in the following way:
A=M—-N,

where M =~ A is a non-singular matrix. In accordance with this splitting, we obtain the
following linear fized-point iteration:

uF = MTINGE 4 MU = uF o MUY — Au). (L.7)

The matrix M is called the preconditioning matriz. The matrix G = I — M1 4 is often
called the iteration matriz or iterator.

The well-known result related to the convergence of the above procedure is stated in
the following basic theorem:

Theorem 1.1 The iterative procedure (1.7) converges for any initial guess u® if and
only if p(1 — M714) < 1.

A serious drawback of basic iterative methods (e.g. Richardson, Jacobi, GauB-Seidel)
is the fact that the number of iterations needed is often huge for ill-conditioned A. We
summarize the results concerning these methods in the next theorem (see [14]). For this,
we split A in the usual way: A = D — L — U, where D is the diagonal of A, and —L and
—U are the strictly lower and upper triangular parts of A, respectively.

For the definitions of M, we have:

wl Richardson,
D! Jacobi,
4} wDh™ Damped Jacobi,
M7= (p-p) Gauf-Seidel, (1.8)
w(D —wl)™? SOR,
w(2—w)(D —wY'D(D—wL)™" SSOR.

Theorem 1.2 If A is symmetric positive definite then

o the Richardson method converges iff 0 < w < 2/p(A),

e the Jacobi method converges iff 2D — A is symmetric and positive definite,
o the Damped Jacobi method converges iff 0 < w < 2/p(D™1A),
e the Gauf-Seidel method always converges,

o the SOR and SSOR methods converge iff 0 <w < 2.

If A is SPD, it is more convenient to use a symmetric M. If the initially chosen M is

not symmetric, a natural way to symmetrize it is by performing two successive iterations,
one with M and the other with M7:

uk+1/2 — uk + M—l(f . Auk)
uF = P2 T (- ARV, (1.9)

The symmetrized iterative scheme also can be written in the form:

uFtl = b — ML (AuF — f), (1.10)

sYmIn

where M35, = M"T+ M1 —M-TAM™'. SSOR is in fact the symmetrization of SOR.

The rate of convergence for these simple relaxation schemes depends on the condi-
tion number of A. For finite element and finite difference equations such as (1.5), the
asymptotic convergence rate for Ganf-Seidel method is of order 1 — O(h?), which makes
the method impractical for small mesh sizes h.

These basic methods can be accelerated by Krylov subspace methods, e.g. the pre-
conditioned conjugate gradient (PCG) when A is SPD and the preconditioned GMRES
(PGMRES) for general non-symmetric A. We will describe briefly several important
examples of these Krylov subspace methods.

Very often it is benefitial to precondition (1.5} before applying any iterative method:

M YAu=M"f. (1.11)

When A and M are both SPD, it is more convenient to work with the symmetrized
version of (1.11):

fiﬂ:mf, where AEM_%AM“%,
&= M3y and f=M"%f.

The choice of M is very important because it can improve the convergence rate. A
good preconditioner M for A should have the following properties:

(1.12)

e The action of M ~1v for a given vector v should be less expensive to compute, than
Ay,

A

e The condition number x(A) should be as close to 1 as possible, preferably uniformly
bounded above (with respect to the mesh size h).

e If Ais SPD then M should be SPD.

The Krylov subspace of dimension k, K (A, r"), is the subspace that is spanned by
vectors v Ar0 .. A%r® Let us now set 1 = f—Au®. The CG method is a minimization
algorithm which minimizes the energy norm (A-norm) of the error in the space u° + K.
The PCG method is essentially the same minimization procedure, but the minimization
now 1is done using the preconditioned Krylov space:

Ki(A, o) = span{r®, A, ... AF149},

defined through A from the symmetrized version (1.12).

Preconditioned C'F

Set r% = f — Au®, and solve Mz° = »;
Set p” = 2%, 1 = 0;
While No-Convergence Do;

t=14 1;

a; = (r',2') [(AP, p");

wt = pts

P = i g, Al

Solve M z**t1 = pitl

B, = (L, 2 (),

Pt = 2 g
endWhile

A Bl e

[Y

Taking M = I, one obtains the usual CG method. Among the basic relaxation
methods listed in (1.8), only Jacobi and SSOR method can be used as preconditioners
- for CG when A is SPD.

The convergence of the PCG method depends on the condition number of the matrix
A. Tf the condition number x(A) is uniformly bounded with respect to n, then the
iteration (1.7) has a uniform damping factor independent of n. More precisely, the

following result holds:

Theorem 1.3 Let A and M be SPD matrices and ||v][a = (Av,v). Let u be the solution
of the system (1.5). Then for the k-th iterate u* the following inequality holds

- k
|m—uwAsz(Ji@l%)tm—uwm (1.13)

Next we describe the preconditioned GMRES algorithm, which can be used for solving
systems with non-symmetric matrices. There are many variants of GMRES; we include
here the so-called right preconditioned GMRES with restart.

Right Preconditioned GMRES(m)
Solve r® = f — Au®, and set o' = r?/||r%|], s = ||r°}[e1;
Fori=1,2,...,mdo

Compute w = AM 1o
For k=1,2,...1
by = (w,vF);
Ww— w— h;u-'uk;
end¥For
hipre = |lwlf;
v = i /||wfl;
endlor
Set Vi, = [v1,...,v™] and Hy, = {hi;},
where j =1,...,m;i=1,...,7+1;
Solve the least-squares problem:
" = min [Huy — s
13. Set u™ =u® + MV, y™
14. 1If convergence then

e
k= A e A

H
o

15. Stop
16. else

17. u® = u™
18. go to 1.
19. endlf

In the above algorithm, care must be taken in making the choice of the restart
parameter m. In some cases, however, the convergence is independent of this choice, as
it is stated in the following theorem:

Theorem 1.4 If (AM~1 + M~TAT)/2 is positive definite then the preconditioned GM-
RES converges for any number m > 1.

The analysis of the GMRES convergence is more difficult and challenging than for
the GG method. The following theorem gives a bound for the residual after & iterations.

Theorem 1.5 Suppose that AM ™' is diagonalizable, i.e. there exists non-singular ma-
triz O such that AM ™' = CAC™Y, where A = diag{M,..., Az }. Define

(k) — ' A
e = pmin e PO

where Py, is the space of polynomials of degree < k. Then the residual norm after k
iterations of right preconditioned GMRES method can be bounded by:

741l < =(C)NIr), (1.14)
where 5(C) = |CHICY.

There is also a very useful variant of the above right preconditioned GMRES method
which allows the use of different preconditioners M; at each step. This variant is called
flexible GMRES. For completeness we give the algorithm below.

Right Preconditioned Flexible GM RES(m)

1. Solver® = f — Au® and set v' = r%/||r%)], s = ||r°|les;
2. Forz=1,2,...,mdo
3. Compute z = M v
4. Compute w = Az'
5. Fork=1,2,...4
6. hki = (w,vk);
7. w = w — by~
8. endFor
R Sy
10. vt = i/ ||wl);
11. endFor
12, Set Z,, = [¢%,...,2™] and H,, = {hy},

where y = 1,...,m;2=1,...,5 +1;
13. Solve the least — squares problem
v = min | H,y |
4. Set u™ =u’+ Z,,y™
15. If convergence then

16. Stop
17. else

18. u¥ =u™
19. go to 1.
20. end If

Note that the flexible variant in addition requires m vectors z; = M v to be stored in
memory (compared to the previous algorithm). If M; = M for all ¢, then the flexible
GMRES method is mathematically equivalent to GMRES(m).

In addition to CG and GMRES, there are many other Krylov subspace methods which
- can be used as alternatives, especially for non-symmetric A’s. Some popular methods
« are BICGSTAB, CGS, QMR, TFQMR, BCG and their many variants. At this point
there is no widespread agreement on the relative merits of these methods.

In the next sections, our particular interest will be focused on multilevel methods
(such as domain decomposition methods and multigrid methods) used as preconditioners
in PCG. The popularity of these methods as preconditioners is based on the fact that
they exactly fit in the applications where finite element or finite difference method is
used. In other words, the design of such preconditioners uses the properties of finite
element spaces which allows precise optimal constructions and theoretical analysis to be
done.

10

1.4 Multilevel methods

For many practical problems, the system of linear equations which arises from finite
element or finite difference discretizations might be huge — on the order of 10° to 10°
unknowns. A challenge is how to effectively solve such large systems of linear equa-
tions. Direct methods face the problem of excessive memory requirements and number
of the floating point operations needed. In this connection, iterative methods, and es-
pecially multilevel methods such as multigrid and domain decomposition methods, are
very attractive. These methods are popular because the amount of work required to
solve a problem is on the order of the number of unknowns, the convergence rates are
independent of the problem size and they can be easily parallelized.

1.4.1 Multigrid methods.

In this section, we briefly describe the multigrid methods for solving linear systems of
discrete equations. We will consider the case where these systems are obtained via finite
element discretization of an elliptic partial differential equation. Detailed discussion on
multigrid methods can be found in standard references, e.g. Briggs [L5], Bramble [16],
Hackbusch [17], and Xu [18, 14].

The idea behind multigrid methods is based on the fact that simple relaxation schemes
such as GauB-Seidel, Jacobi and Richardson possess good smoothing property: they
reduce the highly oscillatory part of the error very well in few iterations. This part of the
error lies in the subspace spanned by the eigenvectors corresponding to large eigenvalues,
i.e. the high frequencies. The global error, or the low frequencies unfortunately cannot
be corrected well by such iterative schemes and this is where multigrid helps. The low
frequencies from fine grid (say original one) are transfered to the coarse grid, where they
behave like high-frequencies, and are smoothed quickly by a simple relaxation scheme.
Recursive application of this idea leads to the multigrid method.

We will denote the space which contains the solution u by V;. We assume that coarse
grids are given and with each grid we associate a finite dimensional space (like Vy for
the fine grid). We denote these spaces by V,...,Vs_1. To unify the notation in this
section we define Ay := A. We assume that the operators Ax, £ =0,...J —1, are given
(these operators correspond to different approximations of A on the coarse grids). We
also assume that the prolongation operator B} and the smoothing operators Sy are also
given. One can consider the action of the smoother on g € V} as a fixed number of
GauR-Seidel or Jacobi iterations with right-hand side g and zero initial guess.

We view the multigrid method as a way of defining a preconditioner M;. We will
describe in matrix notation the action M7'g in the simplest case when one pre- and
post-smoothing steps are applied.

The action of M; ! is then obtained through the following steps:

ALGORITHM 1.1 (V-cycle multigrid preconditioner M:g)

11

0. Ifk=0 then Mi'g = Ajlyg
1. Pre-smoothing: Apply one transposed smoothing iteration with initial
guess 2% = 0 and right hand side g, i.e.

2t = Slqg
2. Coarse grid correction:
1. Restrict the residual: ¢° = Ri(1 — ApST)g.
2. “Solve” on the coarse grid: ¢' = M ',¢" = M| Ri{(I — ApSTg.
3. Interpolate back and correct:
3. Post-smoothing: Apply one smoothing iteration with initial guess z°
and right hand side g, i.e.
Mfk_lg = z*+ Si(g — Ak:EQ)
=[Sk + 57— SeARST + (I — S A RE M7 Ri(1 ~ A4ST)] g.
Here R is the formal adjoint of Ry with respect fo the scalar product (-, -). Note also
that the above definition is recursive, the action of Mg is defined in terms of M;g.

Let us now consider the simplest case: a two-level method (when J = 1). For the sake
of simplicity we omit the index 1 in the next equation. We have:

Mg = [§+8T - SAST + (I - SA)RTAT'R(I - AST)] g.
The iteration matrix G = I — M~ A (see Section 1.3) is given by:

I-M"'A = I-[S+S"-SAS"+ (I - SA)RTAF'R(I — AST)| A
= [~ 85A—STA+SASTA — (I - SARTA'R(A — AST A)
= (I—-854)— (I - SASTA(I - SA)RTA;' RA(I — ST 4)
= (I—SA)I~ RTAF'RAYI — ST A).
Let us now consider the more general case when vf pre-smoothing and »¥ post-
smoothing steps are applied. In this case, the recursively defined V-cycle preconditioner

. cannot be written in simple form. We will use a form in which A;? is involved but it is
. straightforward to see that the terms involving this inverse are cancelled out:

Mitg = [I—(I-SuAp)t(I — REMZ Ry A)(I — ST Ary*] A7
In this case the iteration matrix has more convenient form:
I M7 Ay = (I — Sp i) (I — REMY ReAR)(I — ST AL, (1.15)

One flexible variant of this preconditioner is called wvariable V-cycle preconditioner
(see [19], [20]), in which the number of smoothing steps is doubled on each level, i.e.
vE=vk =27"% fork=J,...,0.

12

1.4.2 Domain decomposition methods

Domain decomposition (DD) methods are divide-and-conquer methods which take a
Jarge problem defined on a physical domain, and appropriately decompose it into many
smaller problems defined on subdomains. These smaller subdomain problems can then
be solved quickly and independently of each other and their solution suitably combined,
usually via an iterative process to obtain the solution to the original problem. The
domain decomposition methods we will discuss fall into two broad categories: overlapping
DD (Schwarz methods) and nonoverlapping DD (substructuring or Schur complement
methods). Qur description here follows that in Chan-Mathew i21]; see also the recently
published book by Smith, Bjgrstad and Gropp [22].

1.4.2.1 “Classical” domain decomposition The idea of domain decomposition was
introduced in the late 1800°s by H. A. Schwarz [23] for proving existence of harmonic
functions on complicated domains. The Schwarz alternating procedure in its simplest
form solves a problem on Q by decomposing the physical domain into two subdomains
0 = Oy Uy, where Oy N, # B, see Fig. 1.2. Given an initial guess, successive iterates
are found by solving the subproblems alternately on Q; and {23, with the updated values
nsed as boundary conditions on 80 \ 8Q and 9 \ 99, respectively.

Figure 1.2: Schwarz’ original diagram of overlapping domain decomposition.

Many years later, limited computational resources (especially computer memory} lead
to the development of the iterative substructuring method by Kron [24] and Przemie-
njecki [25]. In examples shown in Fig. 1.3, {2 is divided into nonoverlapping subdomains
which are separated from each other by an interface, T, so that ©NQ =0, 0 = U8,
and I' = 0, N{,. After elimination of the unknowns on Q\T, the much smaller interface
problem Sur = gr is then solved. The motivation for this approach was that identical
substructures could be exploited and the interface problem, which was much smailer
than the original problem, could then be solved by direct methods since it would fit in
the limited amount of memory available in those days.

1.4.2.2 “Modern” domain decomposition The recent resurgence of interest in
domain decomposition methods is motivated by computational advantages that these
methods possess:

13

0
<

Figure 1.3: Some nonoverlapping domain decompositions. Dotted lines represent inter-
faces, I', between subdomains.

o Parallelizability: DD respects the different speeds of the memory hierarchy. Sub-
domain problems can be solved efficiently within the fast memory of individual
processors, with only rare but costlier communication across processors.

¢ Scalability: DD can lead to optimal algorithms, whose efficiency are independent
of the mesh width, &, and subdomain width, H, see Fig. 1.4.

o Adaptivity: DD methods are flexible enough to allow different models, meshes,
and solvers to be used on each subdomain.

e Geometry: DD methods can exploit fast solvers on subdomains with regular ge-
ometries.

e Software: Software for subdomain solvers can be reused on different processors.

Modern DD methods are also different from their classical counterparts in several ways:

— they don’t form the interface matrix § explicitly, as it is costly,

— they don’t solve the interface problem Srur = gr using direct methods, but
instead use preconditioned iterative methods.

4]
E

Figure 1.4: Domain decomposition with fine structures of size, h, and coarse structures
of size, H.

14

1.4.2.3 Overlapping DD We will describe domain decomposition methods in matrix
notations for solving the linear system (1.5), which arises from the Dirichlet problem
discretized by Galerkin finite elements. The main ingredients required in all DD methods
are:

¢ Restriction matrices: Let R; be the n; X n restriction matrix of 1’s
and 0’s which takes a full-length vector in IR" and maps it to a restricted
vector in IR™, where n; denotes the number of unknowns in subdomain
;. The effect on an n-vector is injection onto the subdomain, {;.

e Extension matrices: Let BT be the n x n; extension matrix, which is
defined as the transpose of the restriction matrix, R;. The effect on an
n;-vector is identity on the subdomain, {};, and zero extension outside

the subdomain, i.e. on £\ £,. (1.16)

e Subdomain matrices: Define the local stiffness matrix on £; to be
A; = R;ART, where A; € IR™*™. Because the restriction and interpola-
tion matrices consist only of O’s and 1’s, the local stiffness matrices are
simply principal submadtrices of A.

o Subdomain solvers: Let A7 symbolically denote the solver for the

restricted operator. These can be either exact or inexact solvers (see
Sec. 1.4.2).

In overlapping DD methods, a set of p overlapping subdomains are formed by taking
-~ a set of nonoverlapping subdomains {€2/}2_,, and extending them to larger subdomains,
{017, by some small distance, §, see Fig. 1.5. Let A; be the local stiffness maftrix on
Q;, R; and R;T be the corresponding restriction and extension matrices, respectively.
The resulting subproblems are then solved independently of each other.

Q

Figure 1.5: Generating a set of overlapping subdomains.

The partitioning induced by such a decomposition amounts to an overlapping block
decomposition of the system (1.5). Thus, the overlapping DD methods can be thought of
as block iterative solvers, either overlapping block Jacobi or block Gauf-Seidel, depend-
ing on whether or not the the most updated iterates are used for boundary conditions.

15

The additive Schwarz (block Jacobi) method on p subdomains is given by:
wFtile - uk+(z‘—1)/z§ + R?A{IRi(f i Auk)’ i=1,..p.

In this form, it is seen that corrections are done simultaneously on p subdomains. Rewrit-
ing this as one equation reveals the preconditioned iterative method:

uk-!-l — uk ‘l"Mg;l(f = Auk)

where the preconditioner M,, is given by:

P
M} =3 RITAT'R.

=1

Additive Schwarz preconditioner. (block Jacobi on A)

r
M =" RTAT'R. (1.17)

=13

Instead of simuitaneous corrections, the corrections can also be done successively, to
yield the multiplicative Schwarz (block GauB-Seidel) method:

ubHE = D g BT ASTR(f — Ay*H DY oy,

Because the most currently updated information is used, this method will generally
converge faster than additive Schwarz. The drawback is that it is less paraliel (but this
can be remedied by appropriate coloring of the subdomains).

For the multiplicative Schwarz method on p subdomains, the preconditioner can be
written as:

Multiplicative Schwarz preconditioner. (block Gaufi-Seidel on A)

My =[I-~(I—RIATR,A)-- (I - RTAT Ry A) AT (1.18)

Note that the multiplicative Schwarz preconditioner is non-symmetric with respect
to the A norm. A symmetrized multiplicative Schwarz method can constructed by the
additional application of subdomain steps in reverse order. The preconditioner for the
symmetrized multiplicative Schwarz method is:

Mot mm = [I—(I—~RTAT R, A) - - (I—RgAjRpA)(ImREA;IRpA) o (I-RTAT'R, A)| A7

16

1.4.2.4 Coarse grid The domain of dependence for elliptic problems is the entire
domain, but because Schwarz methods decompose the problem into smaller, independent
problems, information from one subdomain must travel large distances to reach another
subdomain. To avoid deterioration of the convergence rates of these methods, some sort
of mechanism for the global transfer of data is needed. This is achieved, to some degree,
by the overlapping of subdomains in the Schwarz methods. More overlap leads to more
coupling between subdomains. However, this adds redundant work and communications
overhead if too much overlap is introduced. Dryja and Widlund {26, 27] showed that the
condition number for additive Schwarz is given by:

R(MA) = O (H'E (1 + (—?)2)) ,

The condition number is independent of h. For sufficient amount of overlap (choosing
§ = O(H)), the condition number is O(H~?) and so will increase as f tends to zero.
This means that the method will not be scalable to a large number of processors.

This deterioration can be remedied by introducing a coarse grid to achieve additional
global coupling, see fig. 1.6. In addition to the subdomain restriction, interpolation and
stiffness matrices used in the one-level Schwarz methods (1.16), we need coarse versions
of them: Ry, R, Ap = RyARY, and Aj'. Here, Ry and R} will instead be the full
weighting restriction and linear interpolation matrices, respectively, which are commonly
used in multigrid methods. The two-level additive Schwarz preconditioner can then be
written as:

Additive Schwarz preconditioner with coarse grid.

P
M7 = RLAZ Ry + 5" RTAT'R,.

asc
g=1

It can be shown that the condition number for this two-level method is:

R(MZLA) = 001 + (H/8)%),

asc

and the method can be made independent of H,h with sufficient overlap by choosing
§=O(H).

The condition numbers for the one- and two-level additive Schwarz methods above
are dependent on the coefficients « in the PDE (1.1). For coeflicients with large jumps
but which are constant or mildly varying within each coarse grid element, it can be
shown that the condition number for the two-level additive Schwarz algorithm is given

by:
» HY\Y\
R(MZLA) = O(1+log (T)) in 2D,
1

17

Figure 1.6: Fine grid, 2, and coarse grid, {3, for two-level domain decomposition meth-
ods.

and

(M LA) = O(H/R) in3D.
1.4.2.5 Multilevel Schwarz Multilevel Schwarz is an extension of two-level Schwarz
with [different coarse levels, each level being decomposed into ¢ subdomains as previously
described. We will denote the i subdomain on the I'* level as: Q. Several different
variants of multilevel Schwarz can be created, depending on when the most currently
updated information is used:

o Fully additive multilevel methods would be additive among subdomains on the
same level as well as additive between levels.

o Multilevel methods which are multiplicative among subdomains on the same level,
but additive between levels can be viewed as “additive MG”.

o Classical V-cycle MG can be viewed as a multilevel Schwarz method which is
multiplicative both among subdomains on the same level as well as between levels.

The fully additive multilevel Schwarz preconditioner can be written as:

Fully additive multilevel Schwarz preconditioner.

= SR ()

18

:_/I“

;
Q / Q
:

2

i3
1
1
'

Figure 1.7: Nonoverlapping domain decomposition with two subdomains, 0 and {1, and
interface separating the fwo subdomains, I'.

1.4.2.6 Nonoverlapping DD

Two subdomain case. Let us consider first, the two subdomain case separated by

one interface: Q= ; Uy, and T = Oy N Qy, see Fig. 1.7

By reordering the linear system (1.5) so that the unknowns on the subdomains and the
interface boundary are grouped together, the solution can be written as u = (w1, us, ur)?,
the right-hand side as u = (fi, f2, fr)7 and the linear system as:

Asy 0 Asr Uy f 1
0 Azz Ag[‘ U9 = fg . (119)
Ar1 Ar: Arr up fr

Here, the blocks Ajg and Ay are zero because we are assuming there is no coupling
between the two subdomains. For discretizations with small stencils, this will be true.
Eliminating u1, u, from (1.19) gives the Schur complement system:

Sup = gr (1.20)
where

S = App — Am AT Air — Are Az Aor
gr = fr— AmAT L~ ArAs fa

Although the Schur complement system is small, solving it by direct methods is
_expensive since the Schur complement matrix S is dense. Also, forming S requires as
many subdomain solves as there are nodes on each of the boundary edges. It can be
shown that the condition number of the Schur complement system is «(S) = O(h™"), an
improvement over the condition number of the original system, x(A) = O(h™?%), but still
not optimal for iterative methods. Thus the solution is typically done by preconditioned
Krylov subspace methods. One only needs to compute Sv, which requires solves on
i, e.g. in Ap Aj Airo. However, one still needs a good interface preconditioner for S
and there are many different ones available. One such interface preconditioner is +/A1p,
where Ayp is the one-dimensional Laplacian matrix.

Many subdomain case.(see Fig. 1.8)

19

Figure 1.8: Nonoverlapping domain decomposition with many subdomains and interface
B.

As before, we group the set of unknowns into interior nodes, u;, and boundary nodes,
up, which in turn are made up of edges and vertices, ug = (ug, uy)?. Then as before,
the system can be written in block notation as:

(AH AIB) (uf) _ (fI)

Apr App/ \up Iz

where Aj; = block diag(Ajq, Az, ..., Ap,). After elimination of the interior nodes, the
Schur complement system is:

Sup = fg — ApiA7lf

where

S = App — Ap1A7; Arp.

It can be shown that k(S) = O(h™'H™!), an improvement over the O(h~2) condition
number of A, but again requiring the use of good preconditioners. There are many
~ available, one such example by Bramble, Pasciak, Schatz [28] is:

Ml;}l’S = RﬁAﬁlRH + ZRE,‘ME}REH

g=1

where Ag is the matrix associated with the vertex separators of the coarse grid, Ry :
B — V is restriction from the set of all interface boundary nodes to the vertex separators,
R, : B —+ E;, is restriction from the set of all interface boundary nodes to the i** edge

E;, and Mg, is an approximation to Ag,, the local stiffness matrix restricted to edge ;.
" The condition number of this preconditioner can be shown to be:

K(Mg};SS) ={) (i + Iog2 (%)) ;

The dependence on H and % occurs because the edges E; and V are not coupled in
the preconditioner. This dependence can be removed by introducing one more level of
coupling, namely, adding small “vertex spaces” which are small neighborhoods around
each vertex to provide some overlap between edges and vertices (see [29]).

20

1.4.2.7 Inexact subdomain solves In all of the domain decomposition methods
described above, subdomain solves, A7, are required. These can be done either exactly
or inexactly. Though the subdomain and coarse problems are much smaller than the
original problem, it can still be quite expensive to attempt exact solves on these problerns.

In the two-level additive Schwarz methods, we can simply replace the exact solves
with inexact solves: let M; = A;, My ~ Ap represent the inexact solves. Then the
preconditioner is given by:

B P
M7l =RLMZ; Ry +> RIMT'R.
=1
In the Schur complement methods, let M = block diag(My;), where My ~ Ay and
Mg =~ S. Then from the block LU factorization of A:

A = A A\ _ 1 0 A Ars
~ \ Apr ABsm AprAff I 0 S
we can define the following preconditioner:

M = I 0 M Are
AB[ME}I I 0 Mg |-

Note that:
e the iteration is on the whole domain, not just on the interfaces, and
e M~'v requires 2 solves on each subdomain.

Finally, care must be taken in terms of the scaling of Apy, Arp with Myr, Ms

1.5 Approaches for desighing multileve] methods on unstruc-
tured grids

The multilevel methods require a hierarchical grid structure. For structured grids, these
~ grids can be recovered from the fine grid. For unstructured grids, however, there 1s no
natural grid hierarchy. In addition, their lack of structure prevents these methods from
exploiting regularity and using fast solvers as with structured grids. Difficulties exist in
identifying coarse grid problems/spaces/boundary conditions which do not occur when
using structured grids. The algorithms which are based on unstructured grids must be
re-designed to handle these issues without sacrificing too much in terms of complexity
and performarnce.

There are several approaches for constructing the coarse spaces for unstructured
grids. The first one (see Mavriplis [30]) is based on independently generated coarse grids
and piecewise linear interpolation between the grids. The advantage of this approach
is convenience; the coarse grids can be generated by using the same grid generator
which produced the original fine grid. The disadvantage is that the interpolations can

21

be expensive to apply since the set of nodes in the coarse grids are not related in any
- way to the nodes in the fine grid. Thus no fast search routines can be applied and the
implementation will be O(n?).

An alternative approach is based on generating node-nested coarse grids, which are
created by selecting subsets of a vertex set, retriangulating the subset, and using piece-
wise linear interpolation between the grids (see [31, 32]). This still provides an automatic
way of generating coarse grids and now faster implementations of the interpolation (can
be implemented in O(n) time). The drawback is that in three dimensions, retetrahedral-
ization can be problematic.

Another effective coarsening strategy proposed by Bank and Xu [33] uses the geo-
metrical coordinates of the fine grid (which is available in most cases).

New coarsening strategies based on the algebraic approach recently were published
by Hackbusch [34], Braess {35] and Reusken [36].

In many of these approaches, problems may occur in producing coarse grids which
are valid and with boundaries which preserve the important features of the fine domain.
One of most popular and promising new coarsening techniques which avoids this problem
1s based on the agglomeration technique (see Koobus, Lallemand and Dervieux [37]).
Instead of constructiong a proper coarse grid , a neighboring fine grid elements are
agglomerated together to form macroelements. Since these agglomerated regions are not
standard finite elements, appropriate basis functions and interpolation operators must
be constructed on them. Such algorithms have also been investigated by Mandel, Vanék,
Brezina [38]) and Vanék, Kitzkova [39]. This approach essentially uses a simple initial
interpolation matrix, which might not be stable, and then this matrix is smoothed and
- stabilized by some of the basic relaxation schemes, e.g. Jacobi method.

. 2 Introduction to convergence theory

As mentioned in Section 1.3, the estimate of the convergence rate of the PCG requires
an estimate of the upper bound of k(M ~1A). In particular, estimates on the extreme
eigenvalues of M~ A must be obtained. In this section, we first give a general framework
for bounding (M ' A) and then we show how such an analysis can be carried out for
the overlapping domain decomposition method. Such an analysis can show {or predict)
the convergence rate and in most cases gives a good guess as to how the parameters and
approximate operators should be chosen in order to get an optimal iterative method. For
- a similar approach in analyzing the convergence properties of iterative methods using
general subspace splittings for structured meshes, we refer to [18].

We shall adopt a matrix approach for analyzing the domain decomposition methods,
in the hope that it is more intuitive and easier to understand. Such a presentation of the
analysis can also be found in (see e.g. [22]). More references concerning the theoretical
analysis of the domain decomposition methods also can be found there.

Although we are going to present the domain decomposition methods in matrix for-
mulation, the use of Sobolev norms cannot be avoided in a few places, so we will define
the notation for them here.

22

Let Q be a fixed domain in IR®. The norm in Sobolev space H*{{}) is defined to be:

el = (12; /Q[Dau(:cﬂzdm) ,

and the seminorm in H*(Q) is defined by:

W*k = (Z/ﬂ[l)ﬂu(z)lde))

|ee|=F

ford
where o = (@q,...,a4) is a multi-index, D = e and |o| = g + ...+ «aq.
Ty® .. :Cd
When the domain (e.g. (1) needs to be emphasized or clarified, the notation for the
seminorm and norm will be |ulkq and |ju||rq, respectively.

2.1 Subspace correction framework: matrix formulation

QOur initial setting in matrix form is as follows: Let be covered by p overlapping
subdomains Q;, 1 = 0,1,...,p. Each subdomain {}; corresponds to a subspace V; C IR".
The subspaces are defined through the restriction operators B; € R™*", ¢ = 0,1,...,p,
and we set V; = Range(R;)

REMARK. Note here that we will interchangably use the notation for the coarse grid
versions denoted with subscript H in the previous section, with the subscript 0, when
convenient. Here, V; denotes the coarse space.

We wish to construct a preconditioner for solving the following linear algebra problem

Au=f, Ae€IR™" is SPD. (2.1)

Let us first explain the intuition behind the construction of a preconditioner based
on this splitting of IR™. It is natural to take the best approximation to the solution
from each subspace, and then to extend these different approximations to the whole
IR” somehow in order to get a global solution. Thus the question is: What is the best
correction to the k-th iterate u* from V;?

If we measured the error in the A-norm, ||-||4, then this question can be reformulated
as the following minimization problem:

min [[{u* + B y:) — A7 flla. (2.2)
The solution is given by:

yi = (RARTY TR f — Au®) = ATYRi(f — AuF). (2.3)

The next iterate is then obtained via the equation (note that we correct here only in
one subspace V;)

W = oF 4+ RTATYR(f — Au®) (2.4)

23

Example. The Jacobi iteration (see Section 1.3) corresponds to the splitting V; =
span{e;} where e; is the i-th unit coordinate vector. The restrictions, R;, in this case
are defined as Riv = (v, €;)e;.

Performing these subspace corrections simultaneously gives the additive subspace
correction preconditioner:

?
Mo =Y RIAT'R;.
1=

Defining now the projections P, = BT A7 R; A, for i = 0,...p, we get
] »
M A=3" P
1=20

As we pointed out earlier, the convergence of the PCG method depends on the
condition number of M~'A. Thus our goal is to find an upper bound for x(M*A) which
amounts to finding an upper bound for Amax(M,tA) and a lower bound for Ay (M7LA).

The estimate on the upper bound for Mn..(M1A) is easier and it follows directly
from the following simple lemmas.

Lemma 2.1 P, is a projection in (-,-)a, t.c.
AP =PfA, P'=P |PJa<1.
Proof. This follows by direct verification. O

Lemma 2.2 The mazimal eigenvalue of the preconditioned matriz satisfies the following
inequiality:
/\max(M_lA) g P + 1.

a8sc

Proof. This follows from the simple fact that

i=0

P
<SIPls=p+1.

A 1=0

REMARK. The bound given in the previous lemma can be easily improved to:

Ama.x(lr‘/lr;;}ch) Snctl= C1,y
where n. is the number of colors to color Q;’s in such a way that no two neighboring
subdomains are colored the same color.

We next give an estimate on the lower bound for Amin(M2 A). This estimate is based

on the following Partition Lemma which plays a crucial role in the convergence analysis
of the domain decomposition methods.

Lemma 2.3 (Partition Lemma). (Matsokin-Nepomnyaschikh [10], Lions [41], and
Dryja-Widlund [42, 26]). Assume that there ezists a constant ¢y such that

24

P

min > {uilll < eallully. (2.5)

U= QLU o0
ui €V;

then

asc

1

Proof. Using the fact that the minimal eigenvalue minimizes the Rayleigh, quotient
we get

. P (P, u)a
R 1 - — 2==0) 2ty i
')\mm(ascA "’\mm (ZP) 1;{1;51 (u, u,)A

Let us now consider the decomposition u = X¥_su;, u; € V;. Since the F5’s are projections,
we have

P

P
(uyut)a Z (i, u Z(ui,Piu)A.
7220

=0

Applying now the Cauchy-Schwarz inequality, we obtain

i(ufaPiM)A < (i(w,uﬁ;;)é(Zp:(Piu,Piu)A)%.

=0 1z=() =0

After taking minimum over u;, we get

(uv U)A < cé(ua u)i (i(ﬂua Piu’)A) '

=0

and thus

p ¥ P ¥
(u,u)i < cé (Z(Piu,Piu)A) = cg% (Z(Pm,u);) .

i=0 i=0

Squaring both sides and proper rearranging then yields the desired result. [
* The assumption we have made in the partition lemma (equation (2.5)) means that for
*any given u, a stable decomposition must exist in the sense that the sum of the “energy”
of all the pieces u; lying in V; is bounded by the global energy norm of the decomposed
vector. This assumption can be viewed as a condition on the Vi’s, l.e. the subspaces
must not introduce oscillations (high energy components) in u;.
Combining lemmas 2.1- 2.3, we get our main theorem:

Theorem 2.1 If assumption (2.5) holds, then for the condition number k(M7 A), can
be bounded by:

h(M 1A) < C1C9. (26)

asc

25

This result suggests how to construct the decompositions in order to obtain optimal
preconditioners. It is immediately seen that we want the constants ¢, ¢y to be indepen-
dent of the problem parameters such as the number of subdomains, the characterisctic
mesh sizes h and H, jumps in the coefficients of the underlying PDE, etc. It is also
desirable to make ¢; and ¢; as small as possible in order to get a condition number close
to 1. But ¢; and ¢; depend on the size of overlaps in the subspaces Vi. More overlap will
decrease ¢;, but the number of colors ¢; will increase. On the other hand, small overlap
will lead to large ¢y and small ¢;. Thus the space decompositions have to be made in
such a way to ensure that the product cic; is as small as possible.

2.2 Application to two-level overlapping domain decomposition
methods

As an example of the application of the above theory, we will present a detailed estimate
for the condition number of the two-level Schwarz method.

2.2.1 The intuitive idea

As in the previous section, we first present the basic intuitive idea using a simple 1D
version of (1.1).

We want a splitting which satisfies the partition assumption (2.5). Take Q to be
a fixed open interval on the real line and cover {1 with p overlapping subdomains };,
i=1,...,p (seefig 2.1). Consider the partition of unity §; corresponding to this covering.
By construction the functions #; satisfy

p

Nhi=1, 0<6:<1, e <67, (2.7)
=1

where 6 is the size of the overlap and |6, ., denotes the maximum, norm, i.e. the
maximum of the s-th derivative of §;. We define u; = 6;u, so we have u = XF_,u;.

I
|
)

Figure 2.1: No coarse grid.

since A corresponds to a discretization of the second order elliptic operator, a%a(m)&%,

it is easy to see that the A-norm and the H'-seminorm are equivalent in this case:

26

l|wlla & ||du/de||,. Our goal is to bound ||ug||a by |ju]|4. Looking at Fig. 2.1, we see that
the function u; changes from ||ullo to 0 over a distance é and we get:

| ()

We still need to bound |julls by jlulla. But the function, u, satisfying homogenous
Dirichtet boundary conditions, cannot change rapidly over the interval £ if there is
no significant change in the derivative. The well-known Poincaré inequality estimates
the norm of the function with the norm of derivatives and its application leads fo the

tollowing:
2 2
oo\ _ . (Tl
6 -) ‘

After summing over all subdomains, we get:

>l < 0 (%) ol

i=1

1 HN\E 1
o = 0(z) ‘O(<?§) F)
From these inequalities one may conclude that if the overlap is of size O(H), then
k(M~1A) = O(H~?), which is an improvement over O(h~?), but is still unsatisfactory.

- We can see that the overlapping subdomains alone cannot provide a stable partition of
.

Therefore,

It turns out that this dependence on H can be eliminated by using a global coarse
space, Vi, which couples all the subdomains. The idea is to construct a coarse grid
approximation uy to u satisfying the following two important properties:

luwlla < cllulla (2.8)
v —uwllo < cHljulla

Define w = u — ug and the following partition of wu:

14
uizﬁi(uwwu;,r), u:uH—i—Zui. (2.10)

i=1

Proceeding as before and taking into account that now the pieces u; change from 0
to O(H) (not to 1 because of the approximation property (2.12)), we have

folly < e (5{—*-'-5—“—) <o () s

27

e WL

’ [¥ ! il
} v 4 1
¢ { Y P 4 4
} { 1 t } 1

Figure 2.2: With coarse grid.

If we make the natural assumption that § = O(H), the bound for ¢; now reads

=0 ((%2) — o(1).

This estimate shows how the condition number can be improved and actually such a
choice of M1 gives a good preconditioner. Thus, we can see that the role of the coarse
grid Vi is to make |lu — uy| small enough (O(H)), so that it can be partitioned in a
stable manner.

We would like to comment on the choice of uy. As it can be seen (compare to section
1.4.2}, ug is a purely theoretical construction and there is no need of its use in the
algorithm. One possible choice is ug = Ryu, where Ry is a kind of interpolation or
projection operator. Of course, Ry must satisfy properties similar to (2.8) and (2.9)

namely

|Rpuli < culi (stability) (2.11)
|Reu—ullo < cH|ul;. (approximation) (2.12)

A natural candidate for such an operator is the nodal value interpolant on the coarse
grid, ug = Igu. A drawback of such a choice is that in 3D this interpolation does not
satisly the stability property (2.11}. To see this, we take w to be the basis function 2!
assoctated with the grid node z;. Then we have

fwl2 = fa, (1) = 0(h)
Lirwlf = fa, (&) = 00).

‘I'he last estimate shows that the stability requirement is violated.

If the grid is structured then a good and stable coarse grid approximation to the
elements of V), is the Ly-projection Qy from Vi, — Vi and we can define Ry = Qp, i.e.
ug = Q@pu. It is known that this uy satisfies the stability and approximation properties
(2.11) and (2.12) (see Xu [18] or Dryja and Widlund [42]).

28

2.2.2 Proof of the condition number bound

The above intuitive explanations will now be made mathematically rigorous.
First let us assume that Ry satisfies stability and approximation properties (2.11)
and (2.12). Further, for u € V;,, we define:

we=1u—Rygu, u; = L(fw), uw=Ryu t=1,...,p

where I denotes the nodal value interpolant on the fine grid. In what follows we will
implicitly use the following inequalities, which can be proved in a straightforward way:

Uh(Baw)l, < clwlibily,

}Ih9i|sloo S C|92‘| § = 0,1.

5,007

We now state the main result of this section.

Theorem 2.2 Under the above assumptions for the condition number k(M L A), the
following estimate holds

k(M7EA) = O(1 + (H/6)%). (2.13)

asc

Proof. Using the stability assumption on R, and the equivalence between || |l 4 and
| |1, it is easy to check that the following inequalities hold for any u € Vi:

|w]l2 < cH?|ul? (approximation)
lwl? < cfuli (stability)
[[uo||% < clul; (stability)

It follows then that the smallest eigenvalue of A can be estimated as follows:
c|uz|f = C|Ih(9z-w)|f

cl6:3 o llwllg + a5 00l

o5~ w2 + chu’

62 H? |ul? + c]uﬁ

¢ (14 (H/6)") ul

e (1 + @/8)) llull}-

To complete the estimate let us assume that each grid point belongs to at most -y
subdomains Q;’s, where v is a fixed number independent of & and H. Then we have:

a4

A IAIA

A 1A

[A

Yo lluilly < e (14 (H/6)") fulla = callull}.

=0

Therefore the constant ¢ in the partition lemma (lemma 2.3) is O(1 + (H/6)?), which
implies that
k(M7LA) = O(1 + (H[6)*).

asc

29

2.2.3 Some extensions

Inezact subdomain solves can easily be accommodated by using || - |las, satisfying:
[ulla S wllulla, Yue Vi

Then the constant w in the above inequality will be absorbed in the resulting bound for
w(M-TA).

The extension to multilevel Schwarz method is straightforward. An additional as-
swmption, however is needed in this case:

(uisui)a <eglludlalfulla Yui € V,,Yu; € V.

Such inequalities measure the abstract angles between the subspaces and are known in
the literature as “strengthened Cauchy Schwarz inequalities”. For a detailed discussion
of the issues concerning multilevel theory we refer to Xu [18, 14], Chan Mathew [21].
Note that p({e;;}) will enter in the bound for k(M1 A).

We now briefly comment on the convergence of the multiplicative Schwarz method
which was described in Section 1.4.2. From (1.18) for the error e*+!, we have:

e = (I—P,)- (I Pye.

Since each (I — P; is a projection in the A-norm, it immediately follows that [[e**]|4 <
lle*]| 4. The following result gives a bound for the damping factor of the multiplicative
iteration. '

Theorem 2.3 (Bramble, Pasciok, Wang, Xu [{3]; and Xu [18]) Let Vi’s satisfy the
assumptions of the Partition Lemma. Then the following estimate is true:

C
1= B)-- (1= R)flas 1= .

where ¢ depends on the number of colors for coloring the §);’s but is independent of p.

2.3 Convergence of multigrid methods

The convergence properties of multigrid methods (see Section 1.4.1) depend on many
- parameters. One can vary the number of smoothing steps, the smoothing operators, the
interpolation and restriction operators, coarse grid operators, etc. There are two main
approaches in constructing multigrid preconditioners. One of them uses nested subspace
splittings of V;, and the other one uses non-nested spaces or specially interpolated bilinear
forms (coarse grid matrices). The discussion of the convergence in both these cases is
given in [16, 43, 18, 14]. Here we give the simplest convergence result in the case of
nested spaces and so-called full elliptic regularity assumption:

[leefl2 < el Fllo-

where u is the solution, F' is the right hand side of (1.1).

30

We first consider the case when the spaces Vg,..., V] are nested, ie. Vo C V) C
.. Vi C Vj = V,. Again, the stability and approximation properties (2.11) and (2.12)
are crucial in the convergence theory. The stability property (2.11) is automatically
satisfied when the spaces are nested. It turns out that from the regularity assumption
the following approximation property follows {see Xu [18, 14]):

There exists a constant, ¢, independent of the mesh parameters (i.e. of the mesh
size h) such that

1
”I - Pk_1U”§1 S C}MHA;;U”% Yo S ‘/k, (214)
where P, denotes the eiliptic projection defined by (APyu,v) = (Au,v) Vv € V.
The other operator involved in the definition of M;* is the smoother and we make
the following assumption on it

p(Ax)

The smoother Syymm i is the symmetric version of Sj and is defined as: Ssymmk 1=
ST 8~ STAS. Inequalities of the type (2.15) are satisfied by the GauB-Seidel method.

An important thing to mention for the choice of the smoother is that we are trying to
choose smoother which will quickly capture the high frequency components of the error,
and we are not going to use it as a solver. For example if the matrix A; corresponds to
the five point finite difference stencil, it can be seen that the Jacobi method (with w = 1)
is not good for a smoother. One must use the damped Jacobi method with w < 1.

The subspace correction framework presented in the previous section applies to multi-
grid methods as well. As long as the stability and approximation properties are verified,
= the following convergence result holds:

(0,0} < (Ssymmiv,v) < (Af'v,0). (2.15)

Theorem 2.4 Under the assumptions (2.14) and (2.15), the following estimate is true:

1]~ M7 Alla < 1— Z—“ (2.16)
1

We want to point out that a convergence result similar to Theorem 2.4 is also true
in the non-nested case. We refer to work by Bramble et.al. [43] or Chan-Zou [44, 45] for
unstructured grids. The construction of interpolation operators satisfying the stability
property might be an issue. Some possible stable definitions can be found in [44] and
[45] and in Section 3.2.

In the next sections, we will define subspaces satisfying the above assumptions or di-
rectly satisfying the approximation property similar to (2.14). The verification of these
assumptions is easy for structured grids and can be found in many papers. On un-
structured grids, however this might be rather complicated and tricky. Special attention
should be paid to the construction of the spaces themselves, rather than using stan-
dard spaces and verifying the above inequalities. Thus the crucial point in designing
effective subspace correction methods (such as multigrid itself) is the definition of the
subspaces. When the grid is structured, this might be done in many different ways and
one can obtain subspaces with excellent approximation and stability properties without

31

too much effort. The problem is that on unstructured grids it is not clear how to split
the subspace in such a way that the low frequencies are transferred to the coarse grid
successfully. Heuristically speaking, taking a “detailed” (i.e. more smooth) transfer op-
erator sometimes results in dense coarse grid matrices. On the other hand, if the low
frequencies are not well represented on the coarse grid, the convergence might be poor
and the method is no longer optimal.

3 Node-nested coarse spaces

Unstructured multilevel methods for solving linear systems like (1.5) require a hierarchy
of coarse grids. Grids which are node-nested have the advantage that they can be auto-
matically generated and that efficient methods can be used to create the interpolation
and restriction operators needed to transfer information from one level to the other. Dis-
advantages are that for complicated geometries, particularly in three dimensions, special
care must be taken to ensure that the coarse grids which are produced are valid and pre-
serve the important geometric features of the fine domain. With unstructured meshes,
the grid hierarchy can allow general grids which are non-quasiuniform and coarse grids
whose boundaries may be non-matching to the boundary of the fine grid, so care must
be applied when constructing intergrid transfer operators for various types of boundary
conditions. In this section, we will discuss some possibilities.

3.1 Maximal independent set (MIS) coarsening

An automatic approach to generating node-nested coarse grids is to take a maximal
independent set (MIS) of the vertices and retriangulate the resulting vertex set [31, 32].
We will call the set of nodes in the MIS, the coarse grid nodes. A sequence of coarse grids
can thus be created by repeated application of this technique. A maximal independent
set of vertices in a graph is a subset of vertices which is independent in the sense that
no two vertices in the subset are connected by an edge, and mazimal if the addition of
a vertex results in a dependent subset.

A simple technique for finding a MIS of vertices is to first choose a MIS of the
boundary vertices by choosing every other boundary vertex and eliminating all its near-
est neighbors, and then find a MIS of the interior vertices by selecting a random interior
vertex and eliminating all its nearest neighbors, and repeating the process until all ver-
tices are either eliminated or selected. The resulting vertex subset is then retriangulated
using for example, the same triangulation routine which generated the original fine grid.

3.2 Coarse-to-fine interpolations

In general, the resulting coarse grid boundary, 3, of the coarse grid will not match the
original boundary, 91, of the fine grid so the coarse space Vj is usually not a subspace
of the fine space V3. Indeed, even if Qg = Q, Vi may still not be a subspace of Vj, since
the coarse elements are generally not the unions of some fine elements in unstructured

32

grids. To construct a coarse-to-fine transfer operator, one can use the standard nodal
value interpolant associated with the fine space, V.

ALGORITHM 3.1 (Standard nodal value interpolation)

1. For cach fine grid node,

2. Search through all coarse grid elements until the coarse grid element
which contains it is found.

3 If the fine grid node is a coarse grid node, then

4. Set the interpolant to be equal to that nodal value,

5 Else

] Set it to be a linear interpolation of the 8 nodal values making

_up that coarse grid element (see Fig. 3.1).

areala;

Figure 3.1: Barycentric (natural) coordinates: A;{(z) = renlBn)? for ¢+ = 1,2, 3, where
Aqys is the simplex with vertices zy,2q, r3. The value of a function f at a point = is

given by: f(z) = Ml(z)f(z1) + Aa(z) fz2) + Ma{z) fes).

Standard interpolations here

7

Figure 3.2: Use standard interpolation for fine grid nodes interior to a coarse element.
What should be done for fine grid nodes which are not interior to any coarse grid element?
One way is simply with extension by zero.

33

A naive implementation of this routine requires O(n?) time, but exploiting the node-
nested property of the grids, one can implement this in O(n) time, since only nearest
coarse grid elements of a fine node need to be searched.

3.3 Interpolations on non-matching boundaries

Notice, however, that the zero extension interpolant is only well defined for those fine
nodes lying also in the coarse domain g, but undefined for those fine nodes lying outside
Q. That is, in Step 2 of the standard nodal value interpolation (Algorithm 3.1), there
is no provision for what to do if all the coarse grid elements have been searched, and none
contains the fine grid node. A simple and natural way to remove this barrier is to assign
those fine node values by zero. We shall denote this interpolant as the coarse-to-fine
interpolant, 79,

Where coarse grid boundary conditions are of Dirichlet type, the standard nodal
value interpolants with zero extensions can be accurate enough for mnterpolating fine
grid values outside the coarse grid domain Qg; we refer to [32, 1] for the theoretical and
numerical justifications of Z}.

The zero extension interpolant, ZJ, works well for Dirichlet boundary conditions but
will not be accurate nor stable for other boundary conditions. We provide a simple one
dimensional example to illustrate why better interpolants are needed at non-matching
boundaries. This example has a Dirichlet boundary condition at the left boundary point
and a homogeneous Neumann boundary condition at the right boundary point. The
mterpolated function is the solid line and the coarse grid approximation to it is the
dotted line. For Neumann boundary conditions the elements from V}, which have to be
- interpolated are generally not zero at the Neumann part of the boundary. Recall from
Section 1.1 that V} is a subspace of H}(2,T'p), which elements are restricted to vanish
only on Dirichlet boundary. Thus using a zero extension interpolant at a Neumann

boundary will not be accurate enough and introduces a correction with high energy (no
longer O(H)), (see Fig. 3.3).

Figure 3.3: Non-matching boundaries: Zero extension interpolation is not accurate at
the right end of the coarse domain.

To achieve better efficiency, we need to modify this intergrid operator to account for
the Neumann condition. Two general ways to treat such boundaries:

1. Modify the coarse grid domain to cover any fine grid boundaries of Neumann type
and use standard interpolation.

34

9. Increase the accuracy of the interpolants by accounting for the Neumann condition
for those fine nodes in Q\QH.

The first approach is motivated by the fact that standard nodal value interpolants
can still be used with efficiency, provided the coarse grid covers the Neumann boundary
part of the fine grid (see Fig. 3.4). This was first proposed and justified in [1]. We shall
denote this operator as the coarse-to-fine interpolant, T}. Let us still denote the modified
coarse grid domain by £35. Then for all v# € VH the interpolant 7} is defined as:

Tiv™(23)

vH(a:;?) for z* € QN Qy,
0 for a:f‘ €0\ 0y

J

Figure 3.4: More accurate interpolation with 7} done at Neumann boundary.

This is a natural extension of vy by zero outside the Diricklet boundary part of the
coarse grid domain. Similar zero extensions were used in Kornhuber-Yserentant [46] to
embed an arbitrarily complicated domain into a square or cube in constructing multilevel
methods on nested and quasi-uniform meshes for second order elliptic problems with
. purely Dirichlet boundary conditions.

Although the coarse-to-fine operator Z; works well for mixed boundary conditions,
one has to modify the original coarse grid so that it covers the Neumann boundary part
of the fine grid domain (see [3] for a description for modifying boundaries). This can
be very difficult to do for complicated domains. To avoid modifying the original coarse
grid, we now consider standard finite element interpolants which are modified only near
Neumann boundaries. The idea is as follows: Let us consider a fine grid point, z, which
lies outside the coarse grid domain. Find a nearby coarse grid triangle to « (say, T with
vertices 1, Ta, ¢3), and extrapolate u(z) using the values u(z),u(z2) and u(zs). We will
describe in more detail how this can be done in a couple of different ways. Note that
such an extrapolation should depend on the type of boundary condition at .

To do this, let us introduce some notation. Let 7/ be any coarse boundary element
in Ty which has an edge on the boundary dQp, denoted by el zH | We use Yzl zH) to

denote the union of all fine elements, if any, which has a non-empty intersection with the

unbounded domain formed by the edge 27z and two outward normal lines to aHzH

at two vertices z/, z¥ (cf. Fig. 3.5). By including a few more fine elements in some
Q(zf, o), if necessary, we may assume that the fine grid part (Q\ Q) is included in
the union of all Q(zf, zX). Moreover, we assume that the area of Q(zf, z7) is bounded

by the area of 7/

35

(H1)
(=", 2] < wlf,

where 44 is a positive constant independent of H and 5.

We remark that (H1) restricts the size of the fine grid part near the edge 2z but
outside the coarse grid domain QF, that is, each local fine grid part Q(z, zH) is not
allowed to be too large compared to its nearest coarse element 7. This is a reasonable

requirement in applications.

N HOH
I Qx“xr)

Figure 3.5: Shaded region, Q(z{, 27), shows the fine grid part which is not completely
covered by the coarse grid domain.

By analogy with the barycentric interpolation described in Fig. 3.1, we can now define
a general nodal value interpolant near Neumann boundaries by using three given Einea,r
functions 6y, #; and 83 which are defined in QU Qg but bounded in Q(xl ST,) U 'rh and
satisfying:

01(z) + Oa(z) + 03(z) =1, YVzehuly. (3.1)
Then for any coarse function vy € Vg, we define an operator 0, by
Onvn(z) = bi(z)vn(el’) + Oa(e)valal) + Os(e)vn(zf), Vz e Qaf, zf)url,
and assume that

(H2) Onvg = vy on the edge ;t:[H,

™

which means ©,vy is indeed an extension of vyy.
With the above notation, we can now introduce the general coarse-to-fine interpolant
Th:

Definition 3.1 For any coarse function vy € Vi, its image under the coarse-to-fine
interpolant I, is specified as follows:

(C1) For any fine node % in QnNy,

Ty (2}) = v (2});

36

Figure 3.6: More accurate interpolants: a) Z7: Fine nodal values outside the coarse
domain are interpolated with coarse nodal values on the nearest coarse grid edge; b) Zj:
Fine nodal values outs1de the coarse domain are interpolated with nodal values on the
nearest coarse element 7. Thick lines represent coarse grid boundaries or elemcnts and
dotted lines show the coarse nodes used to interpolate fine nodal value at :1:

C2) For any fine node = in Q(zf, 2)\ Uy with both 27 and 2¥ Neumann nodes,
7 i 7 { T
vt (;cj) Opvp(z h)

C8) For any fine node &% in Qzf 1)\ Qn with both 2l and o Dirichlet nodes,
! 7 i T

7

IhUH(xz-L) - 0;

C4) For any fine node o in Qzf, 2B\ Qy with one of x and 27 a Neumann node
Y 7 i T i r
and the other a Dirichlet node,

I}LUH(E?) = 0, if w? is a fine boundary node of Dirichlet type;

Ith(a:?) = Ovg(a h), otherwise.

The following are two specific examples of interpolants which satisty the above def-
inition and assumptions. We only give the corresponding forms of ©’s required in the
definition.

We define the interpolant at :c;‘ by using the nodes of the coarse boundary edge closest
(see Fig. 3.6):

-toscj

T (al) = Ao () + (1 = Az)))o" (27),

i

where A is the ratio of the }engths of two segments of the edge zflzf cut off by the
normal line passing through z to the edge (see Fig. 3.6). This kmd of interpolation
was also used by Bank and Xu [47] in their construction of a hierarchical basis on a
unstructured mesh.

We define a non-zero extension by extrapolation using barycentric functions (see

Fig. 3.6):

T (ah) = Meho (2f) + A (@™ (2]) + Xi(2))o" (27),

37

where A, A, A; are the three barycentric coordinate functions corresponding to .

REMARK. Note that the functions A;, A, and \; used in the definition of T3 satisfies
Al Ay Ay 2 0 for :ﬁf € 7, but not so for :c;‘ ¢ 7l The barycentric coordinates may still
be defined, provided we consider the area of a simplex to be orientation-dependent. That
s, area is > 0 for “right-handed” triangles (clockwise) and area is < 0 for “left-handed”
triangles (counter-clockwise). In the case as shown in Fig. 3.6b, we have zh ¢ T,
Alz) = 0,A.(z) 2 0, but Ai(z) < 0 and still A(2) + A (z) + A(z) = 1. By (H1), we
always have

M)l < s M@ <, and () S, Ve e Qa2 U,

where iy is a constant independent of A and H hut depending only on the constant pin
(H1).

We sumimarize the various interpolants:
I3: Zero extension with unmodified coarse boundaries,
T}: Zero extension with modified coarse Neumann boundaries,
T}: Nearest edge interpolation, and

T7: Nearest element interpolation.

3.3.1 A simple example

To illustrate the differences among the four different interpolants (Z3, 7}, 12, I3), let
us consider a simple fine grid with 10 nodes, and a 4-noded MIS coarse grid in which
the coarse grid boundary does not match the fine grid boundary. In particular, the
MIS coarse grid that is automatically generated will not contain the fine grid node, vy
(see, e.g. Fig. 3.7). The coarse grids and the corresponding interpolants are shown in

Figs. 3.7-3.10 below:

3 (10 0 0 0

8.5 0.5] 0

Fine grid 8 9 10 4 0 1.0 0 0
0 0 0 0 =

1 2 3

12: 0 0 1.0 0

4 5 0 0 05 05

o 0 0 0 1.0

Comsegrid |) 05 0 0 05

S 05 0 05 0

1 2y 0 05 05 0

Figure 3.7: Fine grid and MIS coarse grid and the corresponding linear interpolant, Z2.

38

T3 [1.0000 0 0 0

0.6667 0.3333 0 0

Finegnd S % 10 4 0.3333 0.6667 0 0
0 0.5000 0.5000 0|«

e 27 3 7 0 0 0.6667 0.3333

A \ R 0 0 0.3333 0.6667

BRIy 0 0 0 1.0000

Coarse grid 0.5000 0 0 6.5000

0.5000 0 0.3333 0.1667

| R b | 0.3333 0.1667 0.5000 0

Figure 3.8: Fine grid and modified coarse grid and the corresponding linear interpolant,
17

6 3 (1.0 0 0 0]
0.5 0.5 0 0
Fine grid 5 J 10 4 0 1.0 0 O
0 0.5 05 0 <=
C— 2o 0 010 0
4 3 RT10 0 0 0.5 05
0 0 0 10
Coarse prid oA Ao 05 0 0 05
o 0.5 0 05 0
1 2 | 0 05 05 0

Figure 3.9: Fine grid and MIS coarse grid and the corresponding linear interpolant, Z7.

Note that Z0,77, and I} are identical except for the way that the value at fine
grid node, vy, is interpolated (row 4). Interpolant 77 results in a zero value extension,
interpolant Z# extends linearly in the normal direction with the nearest coarse boundary
edge, and interpolant 7} extends by barycentric coordinates of the nearest coarse element
{note here that the entries are not necessarily non-negative, but still sum to one). Because
all the coarse boundary nodes are also fine boundary nodes, the definition of the coarse
boundary conditions can simply be taken to be the same as that of the corresponding
fine boundary nodes.

Interpolant Z} differs in that the coarse grid domain was modified to contain the
fine grid domain. As a result, the grids are not element nested and some of the coarse
boundary nodes are not nodes from the fine grid. Standard linear interpolation is done
everywhere in this case with no special extensions required. However, choosing the proper
boundary conditions for the coarse boundary points which are not in the fine grid must
be determined somehow (see Def. 3.1).

39

— 3 [1.0 0 0 0]
‘ 05 05 0 0
Fine grid S/ 9L 10 4 0 1.0 0 0
-85 1.0 05 0! «
W 27 3 3 0 0 1.0 0
Ih:
4 3 g 0 05 0.5
0 0 0 1.0
P 0.5 0 05 0
1 2 0 05 05 0]

Figure 3.10: Fine grid and MIS coarse grid and the corresponding linear interpolant, 73

3.4 Stability and approximation of the non-nested interpola-
tion

The convergence theory for overlapping multilevel domain decomposition and multigrid
methods require the coarse-to-fine grid transfer operator to possess the local optimal
L*-approximation and local H'-stability properties as introduced in Sec. 2. The locality
of these properties is essential to the effectiveness of these methods on highly non-quasi-
uniform unstructured meshes.

Because the spaces are non-nested (they are node-nested, but still non-nested, as
coarse grid elements are not unions of fine grid elements), in the theory discussed in
. Section 2, the uy coarse space approximation to u should be defined as:

ug = IhRHu.

Since Ry € Vg ¢ Vi, we need to use the interpolation operator Z;, to map Ryu back to
Vi. The convergence theory now requires both 7;, and Ry to possess the stability and
approximation properties. When the mesh is quasi-uniform, the usual L% projection,
Qm, can be used for Ry. But when the mesh is highly non-quasi-uniform, the constant
_1n the approximation property (2.12) can deteriorate if we use Qg. The trick then is to
" use a localized version of the L*-projection, i.e. the so-called Clément’s projection. It is
known that this projection provides local stable and good approximations. We refer to
Clément [48] for its definition and Chan-Zou [44] and Chan-Smith-Zou [1] for its use in
domain decomposition contexts.

For 7, we can take the coarse-to-fine interpolants introduced in Def. 3.1 The key step
then is proving the stability and approximation properties for Z,. The proof that the
non-nested standard interpolation used in the interior is stable and accurate can be found
in Cai [49] and Chan-Smith-Zou [1]. The proof for the boundary-specific interpolations
can be found in [4].

40

3.5 Numerical results

In this section, we provide some numerical results of domain decomposition and multigrid
methods for elliptic problems on several unstructured meshes: see Figure 3.11. The well-
known NASA airfoil mesh was provided by T. Barth and D. Jesperson of NASA Ames,
and a fine, unstructured square and annulus were generated using Barth's 2-dimensional
Delaunay triangulator. All numerical experiments were performed using the Portable,
Extensible Toolkit for Scientific Computation (PETSc) [50], running on a Sun SPARC
920. Piecewise linear finite elements were used for the discretizations and the resulting
linear system was solved using either multilevel overlapping Schwarz or V-cycle multigrid
as a preconditioner with full GMRES as an outer accelerator.

o
0

it
Wy

AAD VAL TS ok

R R ARAR]

S RRIANAS
AR

Figure 3.11: Some fine grids: an unstructured square with 385 nodes (left), NASA airfoil
with 4253 nodes (center) and an annulus with 610 nodes (right).

We shall present numerical results for Schwarz solvers and multigrid methods. For
* partitioning, all the domains (except the coarsest) were partitioned using the recursive
spectral bisection method [51], with exact solves for both the subdomain problems and
the coarse grid problem. To generate overlapping subdomains, we first partition the do-
main into nonoverlapping subdomains and then extend each subdomain by some number
of elements.
In all the experiments, the initial iterate is set to be zero and the iteration 1s stopped
when the discrete norm of the residual js reduced by a factor of 107°.
For our first experiment, we use additive Schwarz to solve the Poisson problem on a
unit square with homogeneous Dirichlet boundary conditions. Because the fine domain
Jis so simple and Dirichlet boundary conditions are given, non-matching boundaries are
not an issue here and no special interpolants are used. Table 1 shows the number of
CGMRES iterations to convergence with varying fine grid problem and varying number of
levels. Providing a coarse grid greatly improved convergence, and without it the method
“is not, scalable to larger problems. Interesting things to notice are that for a fixed number
of levels, multilevel Schwarz is mesh-size independent, but that the number of iterations
increases with the number of levels for a fixed problem size. This had also been previously
observed for structured meshes using a multilevel diagonal scaling method in [22] and
is due to the additive nature of the method. Also, increasing the amount of overlap
improved convergence, but in practice, a one-element overlap was sufficient.

41

AN

<7

‘WAV‘

G?

/AV% Cxxl TN "‘7}““ \
INPEORR N KL
NP

NP
NV

o
DY

R :&%ﬂé‘?\v

Bz 2 % Gt
/" S A‘Ahﬁ;'
B

» Az
i\
\\/

P <N h‘\‘:g‘;
//f AN A

SES—7
T/

GO

Figure 3.12: Airfoil grid hierarchy with unmodified boundaries (left) and modified bound-
aries (right).

42

Table 1. Additive multilevel Schwarz iterations for the Poisson problem on a unit
square grid. All grids (except coarsest) were partitioned using RSI. Tables show the

number of GMRES iterations to convergence.

Dirichlet boundary conditions

#of | # of # of # overlap elements
levels | nodes | subdomains §| 0 | 1] 2
6409 256 84 | 63 50
1 1522 64 45 | 36 27
385 16 26 : 19 16
1522 64 19 | 16 16
385 1
2 385 16 19| 15 15
102 1
102 4 17|15 15
29 1
6409 256 28 | 24 25
1522 64
385 1
1522 64 32125 26
3 385 16
102 1
385 16 31| 26 26
102 4
29 i
6409 256 43 1 37 37
1522 64
385 16
4 102 1
1522 64 42 1 37 37
385 16
102
29 1

In our second experiment, we solve a mildly varying coeficient problem on the airfoil:

J S

Oz dz’ 0y

with either a purely Dirichlet boundary condition or a mixed boundary condition: Dirich-
let for # < 0.2 and homogeneous Neumann for @ > 0.2. For this problem, the non-
homogeneous Dirichlet condition is u = 2 + z* sin(3y). Table 3.13 shows the number of
(MRES iterations to convergence using additive multilevel Schwarz with the different
boundary treatments. We see the deterioration in the method when Neumann conditions

43

D (14)22 4 2 (in(39))55) = Chay + 2) sin(3y) + 92 cos(6)

are not properly handled.

In Table 3.14, we show results for the same problem, but solved using a hybrid
multiplicative-additive Schwarz (multiplicative between levels but additive among sub-
domains on the same level). As in the additive case, deterioration of the method occurs
when mixed boundary conditions are present. It can be seen that the multiplicative
method (both on the subdomains and between levels) behaves much like multigrid (see
Fig. 3.15 and Table 2). In fact, this is nothing more than standard V-cycle multigrid
with a block smoother, used as a preconditioner, A V-cycle multigrid method with
pointwise Gauss-Seidel smoothing and 2 pre- and 2 post-smoothings per level was used
to produce the results in Table 2.

Addilive mltilevel Schwarz o Dirichlet BC
a3 Y T T T

Additive smultifeve! Schwarz on mixed BG
g T ¥ T

— Interpolant & _ — infetpolant 0
10’ - Interpolant 3 1w} '§-\\ -+ Intatpolant 1

— — Inlerpolant 2 \L:.\ = — interpolant 2

-~ -~ Intarpolant 3 Ny -—-~ interpolant 3
10’ 10°)

Residual
B
Residual
3

c .
50 60 70

: L : ' L .
0 5 10 15 a0 a5 40 @ 10 20 a0 40
Precondifonsd GMRES iterations

20 25
Fraconditioned GMRES iterations

Figure 3.13: Additive 4-level Schwarz iterations for the elliptic problem with mildly
varying coefiicients on the airfoil grid (G°) with 4253 unknowns. All grids (except
coarsest) were partitioned using RSB, with 1 element overlap.

Table 3 shows some multigrid results for the Poisson equation on an annulus. The
forcing function is set to be one and both kinds of boundary conditions were tested.
A V-cycle multigrid method with pointwise Gauss-Seidel smoothing and 2 pre- and 2
post-smoothings per level was used. When mixed boundary conditions are present,
the deterioration in using the less accurate interpolation Z is less pronounced in the
~multigrid method than in the Schwarz methods, but it still exists.

3.6 Concluding remarks

When using general unstructured meshes, the coarse grid domain may not necessarily
match that of the fine grid. For the parts of the fine grid domain which are not contained
in the coarse domain, special treatments must be done to handle different boundary
conditions. The transfer operators using linear interpolation with a zero extension is
the most natural to implement and is effective for problems with Dirichlet boundary
conditions.

For problems where Neumann boundary conditions exist however, zero extension is
no longer appropriate and special interpolants should be sought. Qur numerical results

44

. Hybrid muliitevel Schwarz on Didchiel BC , Hybrid mulliievel Schwarz on mixed BG
10 T T 1w T T T T 3
— intarpotant § \ =~ Inlarpotant O
' i
0 - Imtempoiant 1 1 W5 -+ interpolant t
== Interpolant 2 ‘k = — Interpolam 2
-=-- Interpolant 3 vy —-- Interpotart 3
10° 10 &

.
Residual
3

10 < L

-
=

' s : :
20 25 3¢ 35 40

N
15 ¢ 5 10 15
Preconditioned GMRES Harations

5 10
Praconditioned GMAES #erations

Figure 3.14: Hybrid multiplicative-additive 4-level Schwarz iterations for the ellip-
tic problem with mildly varying coefficients on the airfoil grid (G*) with 4253 unknowns.
All grids (except coarsest) were partitioned using RSB, with 1 element overlap.

) Mullipficative multitavet Schwarz on Dirichlet BG . Multipficalive rautilevel Sthwarz on Dirichlet BG
T T T T T t T 10 T T d T T T t

T

I — intampolant & | 10‘ — interpolant 9
----- Interpolant 1 -+ Interpefant 1
-~ lntempolant 2 = - Inlempolant 2
10’ b -~ ~ Interpolant 3 10° - =~ interpolant 3

Rasidual
Residual

107 : . . 1 L
] 1.6 2

s s : L I : L s " :
4 45 5 1 15 2 25 3 a5 4 45 5 85 6
Praconditicned GMRES iteralions

25 3 a5
Praconditionad GMRES Reralions.

Figure 3.15: Multiplicative 4-level Schwarz iterations for the elliptic problem with
mildly varying coefficients on the airfoil grid {G®) with 4253 unknowns. All grids (except
coarsest) were partitioned using RSB, with 1 element overlap.

- show the significance of the assumption that when standard interpolations with zero
extension are used, the coarse grid must cover the Neumann boundaries of the fine grid
-problem, otherwise deterioration of the methods indeed occurs. The deterioration is
most significant when using additive multilevel methods, but can still be seen for the
multiplicative methods. When coupled with highly stretched elements, the deterioration
can be very significant, even for multiplicative methods.

Although modifying the coarse grid domains to ensure that this assumption is sat-
isfied is effective, this approach can be problematic to implement for particularly com-
plicated domains or can sometimes generate coarse grid domains which deviate signifi-
cantly from the fine domain. In addition, the modified coarse boundaries will no longer

45

Table 2: Multigrid iterations for the elliptic problem with mildly varying coefficients
on the airfoil. Tables show the number of GMRES iterations to convergence.

Dirichlet boundary conditions
of fine | MG | # of coarse || Interpolant Used

grid nodes | levels | grid nodes |[Z7 [ZJ [27 | T3
2 1170 4 | 414 | 4

4253 3 340 4 | 4|4 4

4 101 41414 | 4

Mixed Dirichlet/Neumann boundary conditions
of fine | MG | # of coarse || Interpolant Used

grid nodes | levels | grid nodes || ZP [ZT [17 [T}
2 1170 6 | 5| 4| 4

4253 3 340 6 |4 15|35

4 101 7151515

Table 3: Multigrid iterations for the Poisson problem on an annulus. The exit condition
was decreased to 107® from 1075. Tables show the number of GMRES iterations to
convergence.,

Dirichlet boundary conditions
of fine | MG | # of coarse || Interpolant Used

grid nodes | levels | grid nodes || Z} | 27 [Z7 | I}
2 610 4 14 14| 4

2430 3 160 4 | 414 4

4 47 4 14| 4] 4

Mixed Dirichlet/Neumann boundary conditions
of fine | MG | # of coarse || Interpolant Used

grid nodes | levels | grid nodes || I, | Z} | Z2 | I3
2 610 6 | 5|4 4

2430 3 160 71544

4 47 T]15] 4] 4

be node-nested to the fine boundaries, so some way of defining boundary conditions on
those nodes must be made.

An alternative is to modify the interpolants so that non-zero extensions be used on
those fine grid boundaries which have Neumann conditions and which are not contained
within the coarse grid domain. Since we are using the multilevel methods only as pre-
conditioners, the extension need not be particularly accurate.

46

4 Agglomerated coarse spaces

4.1 Agglomerated multigrid methods on unstructured grids

In this section, we will consider a general approach for constructing nested coarse spaces
and transfer operators. The difference between this technique and node-nested coarse
spaces from the previous section is that here we want to produce a nested sequence
of spaces to be used in the multigrid method. The common point will be that our
construction must satisfy the approximation and stability properties mentioned in the
subspace correction framework, section 2.

4.2 Coarse points and construction of macroelements

The agglomeration technique is based on the construction of a coarse grid with “macro-
elements” consisting of unions of fine grid elements (triangles). An example of such a
coarse grid is given on Fig. 4.1. Then as in the standard finite element method, the
basis functions in each coarse grid macroelement are appropriately defined. The coarse
space Vi is then determined as the space spanned by these functions. If the coarse grid
basis functions are defined as linear combinations of fine grid basis (i.e. the usual finite
element basis), then Vi is a proper subspace of Vj, i.e. we obtain nested spaces by
construction.

The construction of a basis in Vg is equivalent to the definition of the restriction
matrix Ry, because the coordinates of these hasis functions with respect to the fine
srid basis form the rows of the restriction matrix. Thus, the basis defined, we have the
restriction Ry, the interpolation (or prolongation) R}, the coarse grid operator R g ARL
and we can apply the V-cycle algorithm from section 1.4.1.

Figure 4.1: An example of macroelements

Although the nestedness is assured by construction, there are some important rules

47

which have to be followed in order to ensure good convergence rate of the resulting
multilevel methods. These rules are summarized below:

¢ Smoothness: The basis functions have to be smooth enough. This requirement is
needed because the elements from Vi have to satisfy the stability property (2.11),
which involves the A-norm of the coarse grid function.

¢ Approzimation: The functions in Vx have to satisfy the approximation property
(2.12). An implication of this is that the individual basis function in Vi cannot be
independently chosen, and there must be some global relation which couples the
basis functions.

o Small supports: The functions in Vi must have compact support. This requirement
is based on the fact that once the basis {®;} in Vi is given, then the coarse grid
matrix elements are defined to be a(®;, ®;) (see (1.4}). Thus, if the basis functions
have large supports, the coarse grid matrix will be dense, and the coarse grid
problem is expensive to solve.

o Conformity: For finite element discretizations it is desirable that the resulting
coarse grid is formed by conformal macroelements, an analogue of conforming trian-
gulations in finite element methods. This facilitates the analysis and constructions
of the algorithms.

o Recursion: The coarse grid should have the same properties as the fine grid, allow-
ing the recursive application of the algorithm to construct a multilevel method.

A careful look at these rules shows that it is difficult (even impossible) to satisfy all
of them simultaneously. Usually some of them have to be weakened in order to satisfy
- others. For example, to have conforming macroelements of size & 2k on an unstructured
grid (which is a desirable choice in multigrid) is almost impossible. Taking smoother basis
functions will increase the supports, and make the coarse grid operator more dense.

In this section, we will present algorithms for definition the coarse grid and construct-
ing of the coarse basis functions on it. We will use a MIS {see section 3.1) for the coarse
grid nodes.

A recent paper by Koobus, Lallemand and Dervieux [37] deals with agglomeration
with the finite volume discretizations. The basis functions are piecewise constant on
each cell, and the coarse grid cells are formed as unions of fine grid cells. A drawback
of this algorithm is that the stability of the coarse grid basis functions is not easy to
control.

An algebraic agglomeration algorithm can be found in the recent papers by Mandel,
Vanék, Brezina (see [38]) and Vangk, Kiizkovs [39]. This approach uses an algebraically
smoothed basis functions, and the coarse grid nodes are not explicitly defined. This
allows the process of the basis construction more automatic, but it is more difficult to
control the sparsity of the coarse grid operators.

Our approach is based first on the definition of the coarse grid points (MIS) and then
using them to define the macroelements. We will first explain our algorithm for grouping

43

the triangles on the fine grid using the MIS, following as closely as possible the rules
given at the beginning of this section.

Let us consider a triangulation of as the one on Fig. 4.2. To this triangulation
corresponds a graph G = (V, E), where V is the set of vertices (grid nodes) and E is
the set of edges (boundaries of the triangles). We want to group neighboring elements
on this grid together. This is equivalent to grouping together vertices in the so-called
dual graph of G. The dual graph for this triangulation is drawn on Fig. 4.2 with dashed
line. For our presentation, it will be enough to keep in mind that to each triangle
in the triangulation corresponds a vertex in the dual graph, and to each edge in the
triangulation corresponds an edge in the dual. Taking vertices in the dual together and
separating the formed group from the rest is equivalent to removing some of the edges
in the dual graph. In other words, if we form a macroelement by grouping together
some neighboring triangles and consider its boundary, all the edges in the dual graph
corresponding to this boundary are removed. In summary, forming the macroelement
houndary is equivalent to removing some of the edges in the dual.

The algorithm, which is given later is fully based on this observation. Roughly 1t
works in the following way:

ALGORITHM SKETCH:

o Remove some of the edges in the dual, selected by a reasonable criteria.

e Find the connected components in the dual graph. These connected components
correspond to macroelements in G, see Fig. 4.3.

By connected component in the above algorithm, we mean a sub-graph, such that there
is a path between every two vertices in it. A path between two vertices is any collection
of edges connecting these two vertices.

Figure 4.2: A triangulation and its dual

First we will try to give an intuitive idea of what we meant by the reasonable criteria
mentioned in the algorithm sketch above.

49

Let us look at the rules we give at the beginning of this section. We will focus on
the relationship between the macroelements and the supports of the basis functions.
Clearly, each support will be a union of macroelements. The situation here is very
similar to the finite element discretization on the fine grid, except that the elements
have different shape. The nonzeroes in the coarse grid operator appear whenever we
have a{®;, ®;) # 0, L.e. whenever a point of the fine grid belongs to both the supports
supp(®;) and supp(®;). If we now reverse this point of view and look at the fine grid
nodes (i.e. the nodes not in the MIS), we see that cach such node will create a number
of nonzeroes exactly equal to the number of supports it belongs to. But because of
the approximation requirement, a fine grid node should belong to as many supports as
possible, to assure accurate data transfer from coarse to fine grid. This conflict can
be avoided if we take into account that, if the fine grid node lies on the macroelement
boundary it will belong to only two supports. Consequently the nodes interior to the
macroelements would create more non-zeroces in the coarse grid operator. Our goal in
accordance with this observation will be to create as many macroelement boundaries as
we can and in addition to keep the size of macroelements reasonably small.

Connected components of the dual
and the fictitious macroelements.

Connected components.

Figure 4.3:

Because of the conformity requirement, we want to avoid more than two macroele-
ment boundaries intersecting each other only at coarse grid nodes. Thus, through each
coarse grid node we will try to pass a maximum number of macroelement boundaries.
The correspondence between the dual graph and the triangulation suggests the following
algorithm.

o For all coarse grid points do:
¢ Take all the triangles attached to a coarse grid point.

e Remove the edges in the dual between these triangles.

a0

¢ endFor.

e Proceed with the second step of the ALGORITHM SKETCH.

Before we present the algorithm in detail, we want to focus our attention on two
more issues. The first one is that such an algorithm might produce large macroelements.
To avoid this, we break in pieces any of these large elements. Another issue is that
removing the edges might create isolated vertices in the dual (isolated triangles). The
approximation requirement might be unsatisfiable if a fine grid node (not in MIS) is
surrounded by such triangles. We avoid this by creating a “fictitious” macroelement
with the closest coarse grid nodes as vertices, see Fig. 4.4

The new graph for the recursive call of the same algorithm is prepared by cutting each
macroelement with more than three coarse nodes as vertices into triangles; see ig. 4.4.

Y

ad

Figure 4.4: Gregi
The detailed algorithm is given below:

ALGORITHM 4.1 [Macroelement construction)

Step 0: Consider the graph corresponding to a triangulation in the plane: G =
(V,E), and its dual G* = (V*, E7).(sce I'ig.4.2).

Step 1: Coarse nodes. Choose a mazimal independent set (coarse nodes) M(G)
in G.. Designate as blocked triangles, those triangles which have a
coarse node’ as o vertez. Call the other triangles free triangles.

Step 2: Initial dual splitting. Remove the edges in the dual of the form
blocked—blocked and obtain the new graph G = (V*, Ef).

~ Step 3: Domain splitting. Find the connected components wn G, The corre-
sponding triangles in G are called macroelements.

Step 3*: Refined splitting of “large” macroelements. During Step 3, after form-
ing each macroelement, we pick all the edges from G (1 macroelement
which are not incident with the boundary of that macroelement. Then
mazimum cardinalily matching [52] in this set is found, and the corre-
sponding edges in G are removed. Thus, every macroelement in which
we are able to find a non-boundary mazimum cardinalilty matching ts
divided in pieces.

51

Step 4: Next graph Gepe = (M(G), Epest). The next graph for multilevel coars-
ening we s defined as follows:

o Macroelements obtained from step 3 and 3* are faces in this graph.

o Additional faces are oblained considering all the vertices which are
NOT in these macroelements, and are NOT coarse points. These
pownts are either surrounded by triangles, which are not visiled
during Step 3, or they lie on the boundaries of the macroelements.
For each such node i, we consider the neighboring vertices from
M(G). If the number of such neighbors is greater than TWQO
we put a fictitious face there (i.e. node i might be viewed as an
internal node for this face). (see Fig.{.3)

It can be verified that, the above algorithm fully recovers the coarse structure of a
“structured”, topologically rectangular mesh. If the grid is unstructured, but is obtained
by regular refinement, and the maximal independent set coincides with the real coarse
grid vertices, then the macroelements will form exactly the underlying coarse grid.

4.3 Coarse space basis functions.

Given the set of macroelements, we will now introduce three different ways to define
the coarse grid basis functions. Recall that we want to meet the first two rules given in
the previous section. We need to define smooth basis functions so that the coarse space
satisfy the approximation and stability properties.

To assure the approximation property, we have to take a basis which preserves at
least the constant function, i.e. the constant function must be always in the coarse
space V. To do this, we first define basis functions possessing this property on the
the macroelement boundaries, and after that we extend them into the interior of the
macroelement as discrete harmonic functions. This extension obviously will not destroy
the constant preserving property, because the constant function is harmonic.

We define the coarse basis functions on these edges as linear functions minimizing
some quadratic functional. The H'/? norm on the boundary is one good choice for the
quadratic functional, as it is the interface analogue of the A-norm.

Let the macroelement boundary be formed by £ edges from the fine grid, (see Fig 4.5)
connecting two coarse grid points, zg and z,, and let this path contains the vertices
To,...,Ze. We define the basis function corresponding to the coarse grid node g as
follows: ®q is a linear function in IR?:

®02‘1£+bc+cv (éaC)EIRZ'

We want : ®p{zg)} = 1, Bo(zs) = 0. These are only two conditions and we have three
parameters. To complete the set of conditions, we require that the function ®, minimizes
the functional (discrete H'/? norm):

L& hby
EIVCHEDISY #(éo(xf) - Bo(z;))?, (4.1)

=1 j=i41

32

where h; is the length of the edge (z:,zi41) and hi = jzi — z;|. After using the first
two conditions, this minimization is equivalent to minimization of a simple quadratic
function of one variable which can be easily proved analytically.

Tn the interior of the macroelements, we extend the basis functions by solving the
equation:

a{®o, @) =0, for any ¢ € V4. (4.2)

In this way, we define the basis in Vg and thus also defining the restriction operator Ry.
ALGORITHM 4.2 (Geometric coarsening-Harmonic extension I)

1. The boundary values minimizing the HY? discrete norm.
2. For the nodes internal to the macroelements, the values of the basis
functions are obtained via the harmonic extension, see Iig. 4.0.

" eenson
n’: 1‘ g‘ \“:.

Coarse

node -
90 X

Figure 4.5: Minimizing X /2 on the boundary and harmonic extension in the interior

We will now give two simpler variants of this algorithm. The first one uses simpler
boundary conditions: The function is defined on the boundary using the graph distance
(see Fig 4.6). The graph distance dist(i, j) is equal to the number of edges forming the
shortest path connecting the vertices ¢ and j, (in the case we consider these vertices are
¢ 2o and xg).

- ALGORITHM 4.3 (Geometric coarsening-Harmonic extension II)
1. The boundary values are taken using the graph distance interpolation,
see Fig. 4.0.

2. For the nodes internal to the macroelements, the values of the basis
functions are obtained via the harmonic extension, see Fig. 4.5.

The second variant, which does not include harmonic extension is as follows:

53

/ Harmonic
eygnsion
BT A

Syt O v
By o

¢ =213
4

coarse
e
node

g=0 X,

Figure 4.6: Graph distance on the boundary and smooth extension in the interior

ALGORITHM 4.4 (Geometric coarsening)

1. On the macroelement boundaries the graph distance interpolation is
used.

2. For the nodes internal to the macroelements and fictitious faces (see
Step 4), the values of all basis functions whose supports form the
macroelement take one and the same value: the reciprocal of the number
of coarse points forming the macroelement, sece Fig. 4.7,

coarse /.
y
node
CI?} =0 X

Figure 4.7: Graph distance on the boundary and in the interior. ¢ denote the coarse grid

points

The approximation and stability properties of the agglomerated spaces given above

are assured by the next lemma. A detailed proof will be included in the paper [5].

Given a triangulation 7 and the corresponding linear finite element space Vj, C
HY(Q). Let Vg C V,, be obtained by the agglomeration algorithm described in the above

section. Let Qu : H'(Q) — Vi be the L2-projection.

54

Lemina 4.1 Assume that the constructed basis preserves the constant function. Then
the following stability and approzimation properties hold for the agglomerated subspaces:

|Quvllie < clvllie, (4.3)
lv - Quvloe < cHvla, Yov e H'(Q). {4.4)

4.4 Numerical examples

We consider an elliptic equation of following type:

" Figure 4.8: Surface plot of the coefficients for Example 2 — rapidly varying coefficients.

We use three types of coeficients for the equation (4.5) on three different grids. As
a standard example we take ¢ = b = 1, i.e. the Laplace operator.

In the next example, Ezample I, the coefficients are mildly varying: a(z,y) = (2* +
y2+1+sin(z+y)) and b(z,y) = (22 +y*+1+cos(z +y)). In Ezample 2 the coeflicients
are varying in the range [1072,30]. For the grid given in Fig. 4.9 the surface plot of the
coefficients for Example 2, can be seen in Fig. 4.8. For all the grids the coefficients change
*in the same range. In these experiments we use the standard V-cycle preconditioner and

the outer acceleration is done by CG method. In the V-cycle we use 1-pre and 1-post
smoothing steps. The smoothing operator is forward GauB-Seidel. The PC(G iterations
are terminated when the relative residual is less then 1079,
In Figures 4.9-4.11, the macroelements are shown for different unstructured grids and
different number of levels. Figure 4.12 shows the convergence histories for the different
types of coefficients and different grids. All these experiments in are done using the
simplest interpolation algorithm 4.4. Figure 4.13 shows the convergence histories for a
varying number of unknowns on two types of grids. One of these {(one-element airfoil)
has one internal boundary, the other one has four internal boundaries. The numerical
experiments are done using Algorithm 4.3. ‘

39

VAN
KSR S
RIS

Figure 4.9: Macroelements for an unstructured grid level= 4 N, = 3422; level= 3
Nj; = 938; level= 2 N}, = 268; level= 1 N§ = 77; level= 0 N§ = 21.

Figure 4.10: Macroelements for one element airfoil: level= 5 N, = 12665; level= 4
Ny = 3404; level= 3 N = 928; level= 2 Nj = 257; level= 1 N& = 74; level= 0

These computational results show that the convergence is uniform with respect to
the mesh size h. The convergence in the experiments shown on figure 4.13 is a little
better becanse the aspect ratio of the grids is better and Algorithm 4.3 was used instead
of Algorithm 4.4. The behavior for roughly varying coefficients is not as good, as it can
be seen on Fig. 4.12. The grid on Fig. 4.9 is made with the Portable, Extensible Toolkit
for Scientific Computation (PETSc) [50]. All other finite element grids grids used for the
experiments in this section were produced using Barth’s SIMPLEX2D mesh generator.

56

AL
e
‘}‘)gw*‘

B

Figure 4.11: Macroelements for four element airfoil: level= 5 N, = 12850; level= 4

N} = 3444; level= 3 N} = 949; level= 2 N3 = 270; level= 1 Nj; = 80; level= 0
5
N = 26.
Grid-Fig. 4.9 Grid-Fig. 4.10 Grid-Fig. 4.11
Example Reduction Example Reduction Example Reduction
factor factor factor
Laplace 0.11754 Laplace 0.20701 Laplace 0.21144
Example 1 0.12298 Example 1 0.20724 Fxample 1 0.21454
FExample 2 0.24887 Hixampie 2 0.42600 Example 2 0.46994
16" ot
» . Caplace - — Lapisce
- - Example | - - Exampe t
e Examplez - faampla 2

Figure 4.12: Convergence history and average reduction per iteration for Laplace equa-
tion, Fxample 1 and Example 2 on the different grids

4.5 Extensions

More “algebraic extensions” of the algorithm presented here can be derived. One of them
is based generally on the graph of the matrix and does not use the dual graph. In this

57

1-element airfoil 4-element airfoil

nodes Reduction nodes Reduction
factor factor
Np, = 72139 | 0.16834 Np = 72233 | 0.15454
Ny = 18152 0.14236 Np = 18328 0.13836
Ny = 4683 0.14911 Ny, = 4870 0.15488
Ny, = 13156 0.14087 Ny = 1502 0.14727
w’ 10
" — nodes: 72149 o ‘ - nodes: 72283
-~ nodes: 10152 Xy - - nodes: 16324
----- nedes: 4683 % . - podes: 4870
10 == rodes: 1315 1w o - podes: 1502

Figure 4.13: Convérgence history and average reduction per iteration for varying number
of unknowns

way each fine grid node belongs to macroelement with vertices few of the closest (3 or 4)
coarse grid nodes. Depending on the matrix graph see [53], this algorithm might produce
a huge number of non-zeros in the coarse grid operators after two or three levels. In the
next numerical experiment such a type of agglomeration is called algebraic coarsening.

Smooth interpolations can also be done for such a method in an algebraic way. They
are known as matrix dependent prolongations (see M. Griebel in [54]). In this case
the prolongation operator is defined by R}, = [A;j A1e, []T. Here Ay is the block in
Ay formed by the natural splitting of the unknowns into two non overlapping subsets,
corresponding to fine and coarse grid unknowns respectively:

Ail A12
Ay = . (4.6)

AZI A22

The block Ay; corresponds to the contributions fine ~ fine. Then it is straightforward
to see that the coarse grid matrix is equal to the Schur complement of A, § = A;_, =
Ags— Ay AT Ay, Unfortunately block A7l is generally a dense matrix, which is a serious
drawback of using this approach. There are ways of defining approximations to this type
of matrix dependent prolongations as proposed by A. Reusken [36] and M. Griebel in

a8

[54]. -

The agglomeration coarsening algorithm presented here and the aggregation given
in [38] also might be viewed as ways of approximating the first entry A7l Ay, in the
prolongation with a sparse matrix.

4.5.1 Anisotropic problems

Another issue we would like to comment on are the anisotropic problems. The problem
in applying multigrid methods for such problems is that the smoother does not smooth
the proper range of the high frequencies. A semi-coarsening (i.e. coarsening only in one
direction) is often used to remedy this.

For anisotropic problems, the relevant changes in the agglomeration algorithm are
straightforward. A dropping strategy can be used for the small off-diagonal elements
in A, on each level. A new coarse grid operator Ay, is then obtained and this matrix
corresponds to a new graph which is disconnected. Different dropping strategies can be
applied (see [13] for example). Here we apply a simple one:

@i
If ﬁ < 0.0001 then set ay = ay -+ ayy; a5 = aj; +aj a; =05 ag =10
iQjj
Then the algorithm is exactly the same as the algebraic coarsening algorithm. In the
next example, the algorithm which uses the dropping strategy is called reduced graph
algorithm. Similar approach for handling anisotropic problems can be found in [38].

The last numerical example in this section is the Laplace equation. The grid is given
on Fig. 4.14. The anisotropy here is introduced by the geometry and the geometrical
aspect ratio is of order 10%. This grid was also generated by Barth’s triangulator. It can
be seen that the algorithm which uses the anisotropic agglomeration is faster than the
others.

VAN
S N
SNl

VALY
s"-’".‘ 0y
<

A

Figure 4.14: Macroelements (geometrical algorithm), second level geometric coarsening,
zoomed 200 times near the airfoil. Convergence history for the stretched mesh: Geomet-
rical coarsening; Geometrical coarsening-harmonic extension II; Algebraic coarsening;
Reduced graph coarsening {anisotropy).

39

4.6 Concluding remarks

The agglomeration algorithms can provide a good approach for developing multilevel
methods on unstructured grids. We presented here a general technique for constructing
basis for the coarse space satisfying stability and approximation properties. We have
to point out that the general theory for the construction of agglomerated spaces on un-
structured grids is not still developed. On the other hand, numerically these methods
have good performance and can be applied to a large set of problems, including ellip-
tic, anisotropic and convection dominated problems. For such experiments, we refer
to Koobus, Lallemand and Dervieux [37], Mandel, Vanék, Brezina (see [38]) and the
experiments presented in this section.

We presented three different types of basis construction over agglomerated macroele-
ments: Algorithm 4.2, Algorithm 4.3, Algorithm 4.4. We prefer to use Algorithm 4.4,
because the convergence rate is as good as with the other two algorithms and this al-
gorithm is simpler. The last numerical experiment we performed shows that for more
complicated problems, such as anisotropic problems, the interpolation must be done de-
pending of the direction of the anisotropy. In this case, the algorithms for constructing
the coarse grid need to be done very carefully, following this direction.

5 An algebraic nonoverlapping domain decomposi-
tion method for convection-diffusion problems

In this section, we will describe some recent joint work of the first author with Tim Barth
of NASA Ames and Wei-Pei Tang of the University of Waterloo on using nonoverlapping
Schur complement domain decomposition methods for flow problems [6].

The starting point of this approach is the block Gaussian elimination Schur comple-
ment framework described earlier in Section 2. The main feature, however, is that we
will be making several approximations, both in the form of inexact subdomain solvers,
as well as in setting up the coarse problem and solving it approximately. Unlike in
the overlapping case described in Sections 3 and 4, the coarse space is constructed alge-
braically through an appropriate approximation of the Schur complement of the interface
unknowns in the global stiffness matrix. The approximations are based on matrix el-
ement dropping strategies, localized Schur complement computations and supersparse
matrix computations. Even though a rigorous theory for such an algebraic approach
is lacking at this point, we are motivated in pursuing this approach because both the
implementation and the performance are not sensitive to the type of PDE we are solving
and works equally well for purely diffusive elliptic problems and convection dominated
problems.

Our main objectives are to develop robust and efficient parallel solvers for the com-
pressible Navier-Stokes flows about general geometries discretized on simplicial unstruc-
tured meshes. Our focus is on algorithms that possess coarse grain parallelism and our
target architectures are parallel systems with a significant but not massive number of
processors. A sample of such systems available at NAS at NASA Ames includes the IBM
5P2 (160 processors), the SGI Array (40 processors) and the Cray J90 (20 processors).

60

We will first describe the fluid flow context in which the discretized PDE problems
arise before moving on to describe the details of the domain decomposition preconditioner
itself.

5.1 A model convection-diffusion problem

Let us consider the model convection diffusion equation:
uy + div(du) = eAu, (z,t) € @ x [0,T]

with
u(z,0) = ug(z), z € Q

u(z,t) = g(x,t), z €L,

where Au represent the flux of the transported quantity.

For the discretization, we shall consider the Streamline Upwind Petrov-Galerkin
(SUPQ) finite element method of Johnson, Hughes, et. al. [10]: Find u* € V, such
that Vw € ¥,

0 h ,
-(9—75'/ﬂwu dQl + jﬂwdw()\u)dﬂ-{—/ﬂe(Vw-Vu) dQ

+ [_ (div(hu) — eAu) T (div(hw) — eAw) dS)
9)
+ Discontinuity Capturing Operator =0

This stabilized numerical method extends naturally to systems of conservation laws such
as the Buler and Navier-Stokes equations governing fluid flow. Inserting standard Co
" finite element spatial approximations yields coupled ordinary differential equations of
the form:

Dus = R(u), R(u):R*—R" D>0,De&R"™

Linearizing with Newton’s method and using a backward FEuler time integration gives:

o (g

“The above equation can also be viewed as a modified Newton method for solving the
steady state equation R(u) = 0. In practice, we let At vary with || f{u)|| so that Newton’s
_method is approached as {| {u)|| — 0.
' (Consider a representative matrix problem Az = b taken from one step of (5.1). We
“shall be describing preconditioners for this linear system. We shall allow nonstationary
‘preconditioning and hence we shall be using the flexible GMRES method described in
Section 1.
1t is well known that many preconditioning techniques for elliptic problems are not
rohust for convection dominated problems. In particular, their performance can be quite
sensitive to the nature of the characteristic directions of the flow field. In Figure 5.1,
we show three different kinds of flows that are known to cause convergence problems for

61

many preconditioning techniques. The entrance/exit flow is probably the most benign of
the three but still care must be taken in the preconditioner to "follow” the characteristic
direction (from left to right in this case). The boundary layer flow has high anisotropy
which can cause severe problems for many preconditioners. The recirculation flow is
probably the most problematic of the three. In some sense, there is a stronger global
coupling than the other two flows.

Entrance/exit flow Recirculation flow Boundary layer flow

Figure 5.1:

Figure 5.2 shows the convergence history of an ILU (with Cuthill-McKee ordering)
preconditioned GMRES iteration for an entrance/exit flow and a recirculation flow with
and without dissipation. It can be seen that the convergence rate can be much worse
for the non-dissipative recirculation flow. Dissipation (perhaps artificially added) can
alleviate the problem somewhat, but can adversely affect the quality of the numerical
solution.

We now look at some potential candidate preconditioners and consider their pro’s
and con’s:

1. The ILU family of preconditioners are purely algebraic and can be generally ap-
plicable but their convergence rate can be sensitive to the mesh size® (See Figure
5.3) and they are not easily parallelizable without some further deterioration in
convergence rate [55]. Furthermore, ILU preconditioners can be sensitive to how
well the ordering of the unknown can follow the flow characteristics.

2. Another possibility is the classical multigrid methods as preconditioners. While
they are unquestionably successful for elliptic problems, their behavior for convec-
tion dominated flow problems are still poorly understood and remains a research
frontier.

3. Additive Schwarz variants of ILU on overlapping subdomains can alleviate some-
what the sensitivity to the flow characteristics but to be scalable they need a coarse
grid (or more generally a coarse space) and an approximation of the PDE on it (see
Sections 3 and 4} which may not be as easy to derive for convection dominated
problems as for standard elliptic problems. Moreover, as stated earlier, tetrahedral
coarsening is problematic in 3-D.

!This behavior is usually called non-optimal in the literature.

62

AT
.)

5

AT
3.4

TAY
A

R

S

=

i
KB
X
“VAYP

i,

FAY
i
Ly

T
K
)
NS

o

— e Uy =0
oo yanx iyl
Xty =.00F (L Rx+u)

R

=
RO
TR
R
V&

72
V¥,
0

ral

v
i
V%
7
ey,

e,
'&#

Y VS TATaTAY
e
SOCLERT
FORLILA

MNorm (Ax -b)

Iy 7
S
70K

1>
N

Ay,
v,
AN
SRSl
qéﬂib"‘h
5
AT
i
%
ij
7
5
i

ol
%
gy,
¥
W
& éz‘v
PTAY SV
AR
X
0
;
oy
Y
N

L
T ‘-‘#
ol
¥,
é\'

5
D

¥
2
T

2
S0
iy
%
5

%)

ATavy

Vi

Ty
o

i

A

KX

) g
X
S
R,
Evé'

RIS

104 20 40 60 80 10D
GMRES Matrix-Vector Mulliplies

>t
P4
“"

%

L7

A

A

G
Ve
A
VA‘
ok

oA
0

vt
NSERAPE
vavil A'E’#%“ ¢

X A
SRR aval

EA AN v
a#]ﬁ Virars

i
0
L

Y,
v,
7o)

Fdy

i

Figure 5.2: Performance of ILU for two different flows.

4. This leads us to the subject of this section, namely nonoverlapping Schur comple-
ment domain decomposition preconditioners. We shall be using an algebraically
constructed coarse space to provide the global coupling, which makes them less
sensitive to the ordering of the unknowns or the particular types of flow character-

istics. Finally, like the overlapping methods, they are well suited to coarse grain
parallel architectures.

Figures 5.4 and 5.5 taken from [56] show the performance of the additive Schwarz
algorithm used as a preconditioner for GMRES. The test matrix was taken from one
step of Newton’s method applied to an upwind finite volume discretization of the Euler
equations at low Mach number (M, = .2). These calculations were performed without
coarse mesh correction. As expected, the graphs show a degradation in quality with

63

Diffusion Dominated Problem Advection Dominated Problem

=M= Ok dol

s ”".%&‘xzmeém..,wﬂr
! a

Norm (Ax - b)
Norm (Ax-b)

GMRES Matrix-Vector Multiplies GMRES Matrix-Vector Multiplies

Figure 5.3: Dependence of ILU on mesh size for diffusion and advection dominated
problems using scalar SUPG discretization and Cuthill-McKee ordering.

[t

10 3 :
CFL=100,000,000
4 —— 1 Cell Overlup, Dist-1 Preconditioning
: ===« 2 Cell Overlap, Dist-1 Preconditioning | :
-1 wwo| @+ | Cell Overlap, Dist-2 Preconditioning .3
'g 10 3 ~B-- 2 Cetl Overlap, Dist-2 Preconditioaing
= 1
- -
2]
&
10 3
o 3
3]
o -
&) 3
E 10 ;
o] J
Z a4l
10]
5 H H H H
1 0 T H ¥ 1
O 100 200 300 400

Matrix-Vector Products

Figure 5.4: Effect of increased overlap and matrix fill.

decreasing overlap and increasing number of mesh partitions.

5.2 Nonoverlapping domain decomposition via Schur comple-
ment

Consider the subdomain partition as illustrated in Fig. 5.6. As discussed earlier in
Sec. 1, if we order the subdomain variables before the interface variables, the discrete
equations can be written in a 2 x 2 partitioned form as illustrated in Fig. 5.6.

We can write the partitioned linear system in the following form:

to= o aml () =(5):

64

0. .
10§
: CFL:]OO.D;)O.DDG
= 107 T Fantons
g IO 3 H- 16 Parlilions
:‘2]
8
2.
210
N -
T
£]
-3
2 107
E]
z 4,
10 1 :
5| : 1
10 4 50 100 150 200

Matrix-Vector Products

Figure 5.5: Effect of increasing the number of subdomains.

1 2 3 4 56789 x

xo~Noan &

AR

Figure 5.6: Domain decomposition and induced 2 x 2 matrix partitioning.

“where 21,25 denote the interior and the boundary variables respectively. By using the
following block LU factorization of A,

. _ Arr O] [I A}—IIA[B}
AMLU—{ABI o A

we can eliminate z; by
zr = Ay (fr — A1),

and solve for zp from the reduced equations:
Szp = fg — ApiA7l f1

where S = App — ABIAE}AIB is the Schur Complement of App in A.

65

From this block partitioning, we can easily derive an ezact Schur Complement solver
for A system as follows. First, in a preprocessing step, calculate the Schur complement

S = Apg ~ Y (A0 A (A1B)s,

4

where the (Aj/);’s are the diagonal blocks of A;; corresponding to the i-th subdomain
and the (Arp)i’s and (Agr);’s are the corresponding blocks of A;g and Ags respectively.
Then we can solve the system Az = r via the following steps:

Step (1) w; = (A7t (parallel)
Step (2) v, = (Apr)iwi (parallel)
‘Step (3) wp =1y~ T v; (communication)
Step (4) ap= S 1w, (serial,communication)
Step (5) yi = (Arg)i s (parallel)

Step (6) @ =w; — (A;)7 y; (parallel)

The above approach requires exact solvers for the subdomain problems A;’s and the
Schur complement S. As explained earlier in Sec. 1, the cost can be dominated by just
forming S alone, not even counting the cost associated with solving a linear system with
it. Instead, we shall use the setup above to derive a family of preconditioners for A. Our
general approach is to implement a flexible GMRES outer iteration with a preconditioner
for A built from inner iterations for solving approzimately the S and Ay linear systems
in the above setup. The various preconditioners differ in how the approximations for the
Az and S solves are constructed. We shall describe three such preconditioners next. As
indicated above, both the vector dot products and the matrix-vector products can be
easily parallelized.

5.3 Preconditioner I: Inexact Subdomain Solve

The main 1dea behind the first preconditioner is to replace the exact solves with the A;’s
and & by a fixed number of ILU preconditioned GMRES iterations. Specifically, in the
“exact” algorithm above, we make the following replacements:

1. (A7 (A1) — (A7 (Arp)i using my steps of ILU+GMRES so that § — S.
2. {(An1)7 % — A7}z using my steps of ILU+GMRES.

3. S~y — S1w, using ms steps of ILU+GMRES.

In the preprocessing step, we calculate the approzimate Schur complement:

§ = App — Y (Apn)i(An) (Ars):.

2

66

Now the preconditioner step becomes {solving Mz = r):

Step (1) wi= (A7t r (parallel)

Step (2) v = (Apr)iui (parallel)

Step (3) 1wy =74 — 3 v; (communication)

Step (4) @ = 5" wy (serial,communication)
Step (5) i = (Arm)iz (parallel)

-~

Step (6) x; = u; — (A)7 'y (parallel)

P

.
o

Pk
P e %
b 4 ,@wﬂ?
G
VYAt e
oo
LA
A

Next we evaluate the performance of the baseline Schur complement strategy for
scalar diffusion and advection dominated test problems using Galerkin and SUPG finite
element schemes respectively. We consider a scalability experiment for which the mesh
size and number of processors are successively quadrupled. This implies in 2-D that the
number of solution unknowns for each subdomain is held roughly constant. In these cal-
culations the adjustable parameters are all chosen identical my = mg = mz = 2. Tables 4
" shown below gives the number of global GMRES iterations needed to solve the matrix
problem to a 107° iterative stopping criteria. The timing columns give the time needed
to form the Schur complement preconditioner and the time needed to apply the Schur
complement preconditioner to vectors supplied by the outer (global) GMRES iteration.
Ohserve that the time to apply the Schur preconditioner is proportional to the number of
global GMRES iterations needed to solve the matrix problem. The number of iterations
starts at 12 for a single domain solve, drops to only 3 iterations for 4 subdomains, and
grows slowly as the mesh size is increased. The initial drop in number of iterations when
solving the single and 4 subdomain problems can be understood as the result of break-
ing the single domain ILU recurrence into four smaller recurrences recombined via Schur

67

complement. Recall that the ILU factorization introduces an error which propagates
with the recurrence. The shorter recurrences have less error propagation before being
recombined by the Schur complement. This can dramatically improve the quality of the
factorization. The slow growth in the number of iterations is a direct consequence of
our choice of parameters my, ms, and mz. Clearly, we could reduce the number of global
GMRES iterations simply by increasing the value of these parameters. Unfortunately,
this may result in larger execution times. From our experience choosing small values of
the parameters my, ma, and ms < 3 often leads to minimum CPU times. Turning to the
fourth column of the tabulated results, we observe a linear growth in the time needed
to form the preconditioner. This growth is easily explained given that we have chosen
to assign a single processor to the task of forming the Schur complement and individual
processors for each subdomain. In our scalability experiment, the number of elements
In each subdomain is held roughly constant so that the execution time is also nearly
constant and scalability of the subdomain work is obtained. Unfortunately, a number
of seemingly innocuous operations performed by the Schur complement processor are
proportional to size of the Schur complement, e.g. matrix assembly of the interface.
Since the size of the interface and Schur complement grow linearly in the scalability
experiment, eventually the work becomes imbalanced between subdomains and Schur
complement processor. In more recent work (not presented here), we have further de-
composed the Schur complement matrix among additional processors so that scalability
can be approximately obtained.

Table 4: Scalability experiments for the baseline Schur complement preconditioner.

Pure Diffusion Problem:

Mesh | Number of Time | Time
Size | Subdomains | Iter | Form | Apply
100 1 12 0 .02
400 4 3 .03 02
1600 16 4 04 .03
6400 64 5 12 .04

25600 256 7 44 .06

Pure Advection Problem:

Mesh | Number of Time | Time
Size | Subdomains | Iter | Form | Apply
100 1 12 0 .02
400 4 3 .02 .02
1600 16 4 .03 .03
6400 64 5 11 04

25600 256 h A4 .04

68

5.4 Preconditioner II: Drop Tolerance Approximation

It is clear that in Preconditioner I, the major bottleneck is the cost in forming and solv-
ing the S system. First, we note that S is generally much denser than A: A particular
variable on the interface is coupled to all other variables sharing a common subdomain.
This increased density of § increases the cost of preconditioning and solving its asso-
ciated linear systems. We thus look for ways to further approximate S by a sparser
approximation. We are helped in this regard by the well-known fact that, for elliptic
problems at least, the size of the entries of § are rapidly decaying away from the main
diagonal. The decay is faster than the decay of the corresponding entries of (A7;); " [57].
Therefore, a natural idea is to drop all elements of S whose size is less than a given
tolerance: i.e. drop elements of the Schur complement matrix, 5’53- if:

(1) |Si;} < tol (scalar matrix entries)

(2) According to a prescribed sparsity pattern

The preprocessing step now becomes: Calculate the approximate Schur complement:

S =App - Z_(AB,)A;E(AIBL, 5= DROP(S),

2

where DROP represents the specific dropping strategy for 5.
The preconditioning step { solving Mz = r) is now:

Step (1) w; = (Ap);i ' (parallel)

Step (2) v, = (Apq)iw (paraltel)

Step (3) wp =1y — Y, v (communication)

Step (4) == S wy (serial,communication)
Step (B) wi = {AmB)i 2y (parallel)

Step (6) @ =u; — (ﬁn)f‘ y; (parallel)

5.5 Preconditioner III: Wireframe Approximation

" The miain cost in Preconditioner II is the formation of S itself: one subdomain solve
. is needed for every variable on the interface. The main idea in Preconditioner 111 is
" to approximate S by the (approximate) Schur complement of a relative thin wireframe
region surrounding the interface variables. In matrix terms, what we do is to take
a principal submatrix of A corresponding to the variables within the wireframe and
compute the (approximate) Schur complement of the interface variables in this principal
submatrix instead of A itself. The main advantage is that the subdomain solves to form
this approximation Schur complement is much cheaper because the number of variables
within each subdomain is much reduced. It is well known in domain decomposition

69

theory that the exact Schur complement of the wireframe region is spectrally equivalent
to the Schur complement of the whole domain.

The preprocessing step is now: Calculate the approximate Schur complement on the
localized subdomains:

§=App = 3 (Ap)d A (A1), 5= DROP(S)

%

where (AH);,;, (JZIIB), Agpr are algebraic restrictions of A;, B, €' to the localized Schur sub-
domain(s).
The preconditioning step (solving Mz = r} is now:

Step (1) u; = (Ar); ' rs (parallel)

Step (2) v; = (Apr); u; (parallel)

Step (3) wy=m— v (communication)

Step (4) x5 = Sty (serial,communication)
Step (5) v = (A1) (parallel}

Step (6) @ =wi—(A)7 w (parallel)

Figure 5.7: Wireframe Localized Schur Complement Approximation

The wireframe technique introduces a new adjustable parameter into the precondi-
tioner. For simplicity, we usually specify the width of the wireframe strip in terms of
graph distance on the mesh triangulation. Table 5 gives performance results for a fixed
mesh size (1600 vertices) while varying the width of the wireframe. For sake of compari-
son, we have chosen all other parameters to be identical to the baseline results presented
earlier. As expected, the quality of the preconditioner improves rapidly with increasing
wirelrame width with baseline-like results obtained using modest wireframe widths. As
a consequence of the wireframe construction the time taken form the Schur complement

70

has dropped by approximately 50%. Further improvements in cost/performance might
be obtainable by choosing the shape of the wireframe to better represent the PDE being
solved.

Table 5: Performance results for a fixed mesh size (1600 vertices) while varying the width
of the wireframe.

Pure Diffusion Problem:

Mesh | Number of Time | Time
Size | Subdomains | Support | Iter | Form™ | Apply
16800 16 2 15 012 Al
1600 16 3 i1 017 .08
1600 16 4 6 020 .04

Pure Advection Problem:

Mesh | Number of Time | Time
Size | Subdomains | Support | [ter | Form* | Apply
1600 16 2] 012 .09
1600 16 3 6 017 .06
1600 16 4 4 019 .03

5.6 Preconditioner IV: Supersparse Matrix Approximation

Although the wireframe construction significantly reduces the cost of forming the Schur

complement matrix, it is possible to introduce further approximations which improve

on the overall efficiency of the Schur complement preconditioner. To see this, begin by
~ noting the following observations:

1. Tterative calculation of A7} Ayg is expensive.
2. Columns of Ajp are usually very sparse.

3. Unpreconditioned Krylov subspace methods require computation of the vector se-
quence [p, Ap, A%p, ..., A™p], p = col(B) for small m.

4. ILU preconditioning destroys sparsity of the preconditioned Krylov subspace vec-
tors [p, M Ap, (M A)?p,...,(MA)"p].

From these observations we have developed the following cost saving strategy:

1. Eliminate wasted flop’s in matrix-vector products by storing wvectors as well as
matrices in sparse form.

2. Approximate the ILU backsolves based on a vector fill level strategy to maintain
sparsity.

71

X X X] ’o] ’ 0
X X 0

X & 0 av

0

X X X . u 3 _ fov

X 0 0

X 0 0

xx| 1e 0

x o x¥X lo] v |

Figure 5.8:

The motivations should be clear. By storing vectors in sparse form, we avoid multiplying
nonzero matrix entries by zero vector entries, thus saving a significant number of flop’s.
The idea of approximate ILU backsolves based on fill level is motivated by the known
decay phenomena associated with elements of A~* for elliptic problems. To carry out the
preconditioning step, we first compute a sparsity pattern to be imposed onto the resulting
vector by symbolically computing and truncating the fill level structure produced during
the lower and upper triangular solves (sweeps). Next we perform the actual numerical
backsolve truncating the computation to nonzero elements imposed on the resulting
vector.

Table 6 shows the performance of the Schur complement preconditioner with super-
sparse arithmetic for a 2-1) test problem consisting of Euler flow past a multi-element
airfoil geometry partitioned into 4 subdomains with 1600 mesh vertices in each sub-
domain. Computations were performed on the IBM SP2 parallel computer using MPI
message passing protocol. Various values of backsolve fill level were chosen while moni-
toring the number of global GMRES iterations needed to solve the matrix problem and
the time taken to form the Schur preconditioner. Results for this problem indicate pre-
conditioning performance comparable to exact backsolves using backsolve fill levels of
only 2 or 3 with a 60-70% reduction in cost. Note that this technique can be combined
with the previous wireframe strategy with combined 5-7 fold performance gains.

Table 6: Performance of the Schur complement preconditioner with supersparse arith-
metic for a 2-D test problem consisting of Euler flow past a multi-element airfoil geometry
partitioned into 4 subdomains with 1600 mesh vertices in each subdomain.

Il Level & | Global GMRES Tter | Time(£)/Time{oo)
0 26 0.299
1 22 0.313
2 21 0.337
3 20 0.362
4 20 0.392
00 20 1.000

72

5.7 Concluding Remarks

Experience with our nonoverlapping domain decomposition method with an algebraically
generated coarse problem shows that we can successfully trade off some of the robustness
of the exact Schur complement method for increased efficiency by making appropriately
designed approximations. In particular, the localized wireframe approximation and the
supersparse matrix-vector approximation together result in dramatically lowering the
cost without giving up very much in convergence rate.

Much work remains to be done. For example, our current implementation solves
the interface system in one single processor. As the number of subdomains increase,
the growth of the Schur complement matrix necessitates further work which should be
distributed among all the available processors. We shall report on these developments
and their applications to various flow problems in the future.

References

[1] T. F. Chan, B. Smith, and J. Zou. Overlapping Schwarz methods on unstructured
meshes using non-matching coarse grids. Numerische Mathematik, 73(2):149-167,
April 1996,

[2] T. F. Chan, B. Smith, and J. Zou. Multigrid and domain decomposition methods
for unstructured meshes. In LT. Dimov, Bl. Sendov, and P. Vassilevski, editors,
Proc. of the 3rd Int’l Conf. on Advances in Numerical Methods and Applications,
Sofia, Bulgaria., pages 53-62. World Scientific, August 1994.

[3] T. F. Chan, S. Go, and J. Zou. Multilevel domain decomposition and multigrid
methods for unstructured meshes: Algorithms and theory. Technical Report CAM-
95-24. Department of Mathematics, University of California at Los Angeles, May
1995. also in Proceedings of the Eighth International Conference on Domain De-
composition, May 1995, Beijing.

[4] T. F. Chan, S. Go, and J. Zou. Boundary treatments of multilevel methods on
unstructured meshes. Technical Report CAM 96-30, Department of Mathematics,
University of California at Los Angeles, September 1996. To appear in STAM J. Sei.
Comp.

[5] Tony F. Chan, J. Xu, and Ludmil Zikatanov. Agglomeration strategies in multigrid
method. in preparation.

[6] T. J. Barth, T. F. Chan, and W.-P. Tang. A parallel algebraic non-overlapping
domain decomposition method for flow problems. In preparation.

(7] Q. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice Hall,
1973. '

8] P. Ciarlet. The finite element method for elliptic problems. North-Holland, 1978,

73

9] 5. Brenner and L.R. Scott. The mathematical theory of finite element methods.
Springer-Verlag, 1994,

[10] Claes Johnson. Numerical solution of partial differential equations by the finite
element method. Cambridge University Press, Cambridge, 1990.

[11] D.L. Brown, G. Chesshire, W.D. Henshaw, and H.-O. Kreiss. On composite over-
lapping grids. In T.J. Chung and G.R. Karr, editors, Finite Element Analysis in
Fluids, pages 544-559. UAH Press, 1989,

[12] G. Chesshire and W. D. Henshaw. Composite overlapping meshes for the solution
of partial differential equations. J. Comp. Phys., 90(1):1-64, 1990.

[13] Yousef Saad. [fterative methods for sparse linear systems. PWS$ Publishing company,
1996.

[14] J. Xu. An introduction te multilevel methods. To be published by Oxford Univer-
sity Press, 1996. Lecture notes: VIIth EPSRC Numerical analysis summer school,
Leicester University, UK.

[15] William Briggs. A multigrid tutorial. Society for Industrial and Applied Mathemat-
ics, Philadelphia, 1987.

[16} J. Bramble. Multigrid methods. Pitman, Notes on Mathematics, 1994.

[17) W. Hackbusch. Multi-grid methods and applications. Springer Verlag, New York,
1985.

[18] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM
Review, 34:581-613, December 1992.

[19] J. H. Bramble and J. E. Pasciak. New convergence estimates for multigrid algo-
rithms. Math.- Comp., 49:311-329, 1987.

[20} J. H. Bramble, J. E. Pasciak, and J. Xu. The analysis of multigrid algorithms with
nonnested spaces or noninherited quadratic forms. Math. Comp., 56:1-34, 1991.

{21} T. F. Chan and T. Mathew. Domain decomposition algorithms. Acta Numerica,
pages 61-143, 1994.

[22] B. Smith, P. Bjorstad, and W. Gropp. Domain decomposition: parallel multilevel
methods for elliptic partial differential equations. Cambridge University Press, Cam-
bridge, 1996.

[23] H. A. Schwarz. Gesammelte mathematische abhandlungen. Vierteljahrsschrift der
Naturforschenden Gesellschaft, 15:272-286, 1870.

[24] G. Kron. A set of principles to interconnect the solutions of physical systems. J. of
Applied Physics, 24(8):965, 1953.

74

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

136]

J. S. Przemieniecki. Matrix structural analysis of substructures. A[AA Journal,
1:138-147, 1963.

Maksymilian Dryia and Olof B. Widlund. Some domain decomposition algorithms
for elliptic problems. In Linda Hayes and David Kincaid, editors, lterative Methods

for Large Linear Systems, pages 273-291, San Diego, California, 1989. Academic
Press.

Maksymilian Dryja and Olof B. Widlund. Additive Schwarz methods for ellip-
tic finite element problems in three dimensions. In Tony F. Chan, Dawnid E.
Keyes, Gérard A. Meurant, Jeffrey S. Scroggs, and Robert G. Voigt, editors, Fifth
Conference on Domain Decomposition Methods for Partial Differential Fquations,
Philadelphia, PA, 1992. STAM.

J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioners for
elliptic problems by substructuring, I. Math. Comp., 47:103-134, 1986.

B. Smith. An optimal domain decomposition preconditioner for the finite element
solution of linear elasticity problems. SIAM J. Sci. Stat. Comput., 13(1):364-378,
January 1992.

D.J. Mavriplis. Unstructured mesh algorithms for aerodynamic calculations. Tech-
nical Report 92-35, ICASE, NASA Langley, Virginia, July 1992.

H. Guillard. Node-nested multi-grid method with Delaunay coarsening. Technical
Report RR-1898, INRIA, Sophia Antipolis, France, March 1993.

T. F. Chan and Barry Smith. Domain decomposition and multigrid methods for
elliptic problems on unstructured meshes. In David Keyes and Jinchao Xu, editors,
Domain Decomposition Methods in Science and Engineering, Proceedings of the
Seventh International Conference on Domain Decomposition, October 27-30, 1993,
The Pennsylvania State University. American Mathematical Society, Providence,
1994. also in Electronic Transactions on Numerical Analysis, v.2, (1994), pp. 171-
182,

R. E. Bank and J. Xu. An algorithm for coarsening unstructured meshes. Technical
report, Dept. of Math., Univ. of Calif. at San Diego, 1994.

W. Hackbusch. [terative solution of large sparse systems of equations. Springer
Verlag, Heidelberg, 1993. Applied Mathematical Sciences, Vol. 95.

D. Braess. Towards algebraic multigrid for elliptic problems of second order. Com-
puting, 55:379-393, 1995.

A. A. Reusken. A multigrid method based on incomplete Gaussian elimination.

Technical Report RANA 95-13, Kindhoven University of Technology, October 1995.

75

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

45]

[46]

B. Koobus, M. H. Lallemand, and A. Dervieux. Unstructured volume-agglomeration
MG: solution of the Poisson equation. International Journal for Numerical Methods
in Fluids, 18(1):27-42, 1994.

P. Vanék, J. Mandel, and M. Brezina. Algebraic multi-grid by smoothed aggregation
for second and forth order elliptic problems. Computing, 1995. to appear.

P. Vanék and J. Kiizkovd. Two-level method on unstructured meshes with conver-
gence rate independent of the coarse space size. Technical Report 33, University of
Colorado at Denver, January 1995.

A. M. Matsokin and S. V. Nepomnyaschikh. A Schwarz alternating method in a
subspace. Soviet Mathematics, 29(10):78-84, 1985.

P. Lions. On the Schwarz alternating method. I. In Roland Glowinski, Gene H.
Golub, Gérard A. Meurant, and Jacques Périaux, editors, First International

Symposium on Domain Decomposition Methods for Partial Differential Equations,
SIAM, Philadelphia, 1988,

M. Dryja and O. Widlund. An additive variant of the Schwarz alternating method
for the case of many subregions. Technical Report 339, also Ultracomputer Note
131, Department of Computer Science, Courant Institute, 1987.

James H. Bramble, Joseph E. Pasciak, Junping Wang, and Jinchao Xu. Convergence
estimates for multigrid algorithms without regularity assumptions. Math. Comp.,
57(195):23-45, 1991.

T. F. Chan and J. Zou. Additive Schwarz domain decomposition methods for elliptic
problems on unstructured meshes. Numerical Algorithms, 8:329-346, 1994.

T. F. Chan and J. Zou. A convergence theory of multilevel additive Schwarz meth-
ods on unstructured meshes. Technical Report 95-16, Department of Mathematics,
University of California at Los Angeles, March 1995, to appear in Numerical Algo-
rithms.

Ralf Kornhuber and Harry Yserentant. Multilevel methods for elliptic problems
on domains not resolved by the coarse grid. In David Keyes and Jinchao Xu,
editors, Domain Decomposition Methods in Science and Engineering, Proceedings
of the Seventh International Conference on Domain Decomposition, October 27-
30, 1993, The Pennsylvania State University, volume 180, pages 49-60. American
Mathematical Society, Providence, 1994.

R. Bank and J. Xu. An algorithm for coarsening unstructured meshes. Numer.
Math., 73:1-23, 1996.

P. Clément. Approximation by finite element functions using local regularization.
R.A.LR.O. Numer. Anal., R-2:77-84, 1975.

76

