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Abstract

The development of primal-dual interior-point methods for semidefinite programming problems
has attracted much recent attention. In this paper, we discuss issues related to such methods based on
the Monteiro and Zhang (MZ) family of search directions. This family includes a number of important
search directions, such as the AHO direction of Alizadeh, Haeberly and Overton, two HKM directions
proposed by several groups of researchers, and the N'T direction of Nesterov and Todd.

These search directions are computed via the solution of a linear equation whose coefficient matrix
is called the Schur complement. Tt is known that Schur complements associated with the HKM and NT
directions are symmetric positive definite, making these directions about half as cheaper to compute
as the AHO direction, whose associated Schur complement is in general non-symmetric.

Motivated by work of Todd, Toh and Tiitiincii, we parameterize a subset in the MZ family to be
referred to as the TTT family. The associated Schur complements for directions in the TTT family
are symmetric positive definite. We discuss interesting properties of directions in this family and show
that these directions include the HKM and the N'T directions and can be computed as efficiently.

The AHO direction, the HKM directions and the NT direction can all be computed in several
different ways. Although mathematically equivalent, it has been observed that these different ways
often lead to drastically different accuracy in the numerical solution to the semidefinite programming
problem. It has also been observed that, while more expensive at each iteration, the method based
on the AHO direction tends to produce more accurate solutions than other methods.

We analyze the computation of the AHO direction and directions in the TTT family in finite
precision arithmetic. Our analysis provides a theoretical explanation of the accuracy difference for
different ways of computing the AHO direction and other directions. Our analysis also explains why
the AHO direction tends to produce more accurate solutions. Several researchers have discussed the
computation of the HKM and NT search directions via the solution of a least squares problem. Our
analysis indicates that this approach, while more expensive than the Schur complement approach,
does not in general provide more accuracy.

Most importantly, our analysis indicates that, with the Schur complement approach, methods
based on the AHO direction and the TTT family of directions could be numerically stable if certain
coeflicient matrices associated with the search directions are well-conditioned, but unstable otherwise.
We present results from our numerical experiments that support our analysis.

*Department of Mathematics, University of California, Los Angeles, CA 90095-1555. This research was supported in
part by NSF Carcer Award CCR-9702866.
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1 Introduction
The semidefinite programming problem (SDP) is the following convex optimization problem:

minyegn CeoX
_X:bki k — 1_----???.; (11“&)

¥ 7

subject to Ay
X

Y »
=

where S™ is the vector space of real symmetric n-by-n matrices; A e B is an inner product satisfying

AeB¥ (AT -B)= 3 A;-Bi; for A,BeR™";
f,3=1
C € S™ and A € 8™ for k = 1,+--,m. By X = 0 we mean that X is positive semidefinite. The dual
problem to (1.1-a) is of the form

maxyeRm,Zesﬂ bT'y
subject to T A+ Z=C, (1.1-b)
Zx0,

where b = (b1, ++,by)T € R™. It is known that (1.1-b) can be reformulated as an SDP.

The SDP arises in many areas of science and engineering and includes the linear programming prob-
lem (LP) as a special case (see Vandenberghe and Boyd [28]). The recent book by Boyd, Ghaoui, Feron,
and Balakrishnan [4] and survey articles by Alizadeh {2], Lewis and Overton [14], and Vandenberghe
and Boyd [28] contain many applications in system and control theory, combinatorial optimization and
eigenvalue optimization.

Let svec be an isometry identifying S™ with R*(**+1)/2 5o that

K o L = (svec(K)Y - svec(L)

for all K, I € S™; and let smat be the inverse of svec. The optimality conditions for problem (1.1) are

Asvec(X) = b (1.2-a)
smat (.AT y) +Z = C (1.2-b)
XZ = 0, (1.2-¢)

where X and Z = 0; A = (svec(41),-- -,svec(Am))T; and ¥ = (31, +,%m) . Throughout this paper,
we assume that rank (A) = m and that equations (1.2) have a unique solution (X*, 2", y*). Hence,
(X*,Z*,4*) is a feasible solution to (1.1) that further satisfies the complementarity condition (1.2-¢),
which requires that X* and Z* be commutable. Consequently, there exist an orthogonal matrix Q* and
non-negative diagonal matrices A} and A} with dimensions r-by-r and (n — 7)-by-(n — r), respectively,
for an integer r, such that

X* = Q* diag(A%,0) (@7 and Z* = Q* diag(0,A}) (@1)" .

1.1 Interior-Point Methods for the SDP

Interior point methods typically produce a sequence of iterates which converge to the optimal solution.
From a computational point of view, these methods differ mainly in the search directions used to
determine the iterates.



Interior point methods for SDP were originally proposed by Alizadeh [1] and Nesterov and Ne-
mirovskii [22] and have been an active area of rescarch since then. Since it is generally accepted that
primal-dual methods are the most successful interior-point methods for LP, most of these methods
and search directions are based on the primal-dual formulation. Alizadeh [2] argued that many known
interior point algorithms for LP can be transformed into algorithms for SDP in a mechanical way.

Most of the interior point methods for SDP are path-following methods, meaning that they generate
a sequence of iterates approximating the so-called central puth and converging to the primal and dual
solutions. For SDP, the points on the central path satisfy the primal feasibility equation (1.2-a), the
dual feasibility equation (1.2-b), and the following complementarity condition relaxed from (1.2-c):

X Z-pl=0. (1.3)

It turns out that {1.3) is much more complex than its LP counterpart, making SDP more difficult.

It is well-known that under certain conditions the solution to (1.2-a}, (1.2-b) and (1.3) is unique
and converges to the optimal solution of (1.1) as p goes to 0 (see Nesterov and Todd [23]). Helmberg,
Rendl, Vanderbei and Wolkowicz [11], and Kojima, Shindoh and Hara [13] independently apply Newton’s
method to equations (1.2-a), (1.2-b} and (1.3) to obtain a method to be referred to as the X7 method.
Since the matrix X - Z is in general not symmetric, the X7 method produces non-symmetric search
directions. In fact, the X iterates are in general not symmetric and have to be explicitly symmetrized
at every iteration. In our numerical experiments, we observed that the X7 method sometimes converges
extremely slowly. On the other hand, this symmetrization issue does not arise in LP, since the LP
counterparts of X and Z are diagonal matrices and hence X - Z is always symmetric. See Wright [31,
Ch. 5] for a detailed discussion on primal-dual path-following methods for LP.

Several methods have been introduced in the literature to ensure a symmetric search direction. For
example, Zhang [32] defines a symmetrization operator

Hp (M) % L (P MPty(PM P“I)T)

2
for any given nonsingular matrix P, and shows that equation (1.3) is equivalent to
Hp(X Z2)—plI=0 {1.4)

for symmetric X and Z. Applying Newton’s method to equations (1.2-a), (1.2-b) and (1.4) results in
a family of symmetric search directions parameterized by P, usually referred to as the Monteiro and
Zhang (MZ) family.

The M7 family includes a number of important symmetric search directions that were introduced
earlier. The AHO method introduced by Alizadeh, Haeberly and Overton [3] is based on a direction
that corresponds to P = I. Taking PT P = X~ and PT P = Z result in the two directions suggested by
Monteiro [18]. These directions are also equivalent to two special directions of the family of directions
introduced by Kojima, Shindoh and Hara [13]; and the direction corresponding to PT P = Z was also
suggested by Helmberg, Rendl, Vanderbei, and Wolkowicz [11]. We refer to methods based on these two
directions as the HKM methods to reflect their history of discoveryl. The NT method, suggested by
Nesterov and Todd [23, 24], corresponds to a search direction defined by any P that satisfies

PTP=R" (RZ RT)% RT, (1.5)

where B € R™*™ is any matrix such that RT R = X. Another family of symmetric search directions has
been recently introduced by Monteiro and Tsuchiya [19].

Polynomial iteration complexity has been established for primal-dual path-following algorithms based
on any direction in these three families. See Kojima, Shindoh, and Hara [13}, Monteiro {18, 17], Monteiro
and Tsuchiya [19, 20], Monteiro and Zhang [21], and Zhang [32].

They are calted the H..K..M directions in [27].




1.2 Computational Issues

Since we are primarily concerned with computational issues in this paper, from now on we will not make
clear distinctions between interior-point methods and their search directions.

The reason interior point methods attract so much attention is because they appear to have remark-
able computational promise. Recently, attempts have been made to implement interior point methods
for SDP. Alizadeh, Haeberly and Overton [3] implemented and compared the XZ method, the AHO
method and the NI method; and Todd, Toh and Tiitiincii [27] implemented and compared the AHO
method, the NT method, and the HKM method corresponding to PT p = Z. An SDP solver coded in
O+t was developed by Fujisawa, Kojima and Nakata and is available in the public domain [9]. This
solver includes three types of search directions: the AHO direction, the NT direction, and the HKM di-
rection with PT P = Z. Mehrotra predictor-corrector modifications [15] were exploited in these studies
to accelerate convergence.

These studies revealed a number of computational issues for SDP that are surprisingly more com-
plicated than those for LP. It is observed that for these interior point methods, some implementations
were capable of yielding solutions in relatively good agreement with the true optimal solution, whereas
others, being slightly different but mathematically equivalent in exact arithmetic, yielded very limited
accuracy in the computed solution and sometimes even failed to converge. It is also observed that the
AHO method of [3] appeared to be the most accurate among the methods tested [3, 27].

The search directions of these methods are usually solved via a Schur complement equation (see §2.1).
The Schur complement is non-symmetric for the AHO method but symmetric positive definite for the
other methods tested. As a consequence, one AHQ iteration is roughly twice as costly as an iteration
generated by these other methods [27)].

Todd, Toh and Tiitiincii [27] showed that for a subfamily of search directions in the MZ family, the
Schur complement is symmetric positive definite, and the Schur complement equation can be expressed
as the normal equation of a linear least squares (LS) problem and thus can be solved instead as an
LS problem. Throughout this paper we refer to this subfamily as the TTT family. It includes the two
HKM directions and the NT direction. Zhang [32] also discussed the LS approach for the HKM direction
corresponding to PT P = Z. Although their numerical results indicated that the two approaches seemed
to be compatible in terms of accuracy, Todd, Toh and Tiitiincii [27] argued that the LS approach could
perform much better than the Schur complement approach in certain cases since the condition number
of the coefficient matrix involved in the LS problem is the square root of that of the Schur complement.

Computationa] issues have been discussed earlier for other barrier methods and interior-point meth-
ods in optimization. For example, Poncele6n [25] analyzed linear systems arising from barrier methods
for quadratic programming. Forsgren, Gill and Shinnerl {8] analyzed linear systems arising from interior
methods for constrained optimization. And Wright [29, 30] analyzed interior-point methods for LF and
linear complementarity problems.

1.3 Main Results

In this paper, we explicitly parameterize the TTT family of search directions. We discuss interesting
properties of directions in the TTT family. We show that these directions include the NT and the HKM
directions and can be computed as efficiently.

We analyze the accuracy of the AHO method and methods based on directions in the TTT family in
finite precision arithmetic. We explain why some implementations of these methods are more accurate
than others and why the LS approach in general does not perform better than the Schur complement
approach. Most importantly, we show that, with the Schur complement approach, methods based on
the AHO direction and the TTT family of directions could be numerically stable if certain coefficient
matrices associated with the search direction are well-conditioned, but unstable otherwise. We present



results from our numerical experiments that support our analysis.

Our error analysis is on the accuracy in the computed search direction for one step of the interior
point methods at a point (X, Z,y) that is “close” to the optimal solution of (1.1). We avoid the
discussion on the iteration complexity of these methods in finite precision partly because in practice
most interior point methods with known polynomial iteration complexity do not perform as efficiently
as those without. Wright [29, 30] took a somewhat similar approach in his finite precision analysis of
interior-point methods for LP and linear complementarity problems.

This paper is organized as follows. In §2 we discuss the Schur complement equation and the parame-
terization of the TTT family. In §3 we discuss the AHO method and analyze it in finite precision. In §4
we develop methods of the TTT family, relate them to the NT and HKM methods, and analyze them
in finite precision. In §5 we present results from our numerical experiments that support our analysis.
And in §6 we discuss some extensions and future work.

1.4 Notation and Conventions

Throughout this paper, the symmetrized Kronecker product of G and K is a square matrix of order
n(n + 1)/2; its action on svec(H), where H € S", is given by

(€ ®, K) svec(H) ™ %svec (k HG"+G HKT) . (1.6)

The appendices in [3] and [27] contain some frequently used properties of the symmetrized Kronecker
products in the context of SDP. They include

CR.K=K®,G, (G K =GT@, KT and (G®,G)'=G"1®,G".
(G®, K) (Ho,H)=(GH)®, (K H) and (H®,H) (GR. K)=(HG)®, (I K) .

We will need the following vector from time to time:

1 .- 1
ed‘“—?‘f svec ST € Rn(n-f—l)/? )
1 e 1

A flop is a floating point operation a o 8, where @ and 8 are floating point numbers and o is one of
+,—, X, and +. In our error analysis, we take the usual model of arithmetic:

fi{aof)=(aof) (1+§), (1.7)

where fl(a o 8) is the floating point result of the operation o and €} < €, with € being the machine
precision. For simplicity, we ignore the possibility of overflow and underflow.

Let @ and 8 be numbers. We write a = O(8) if Ja] < ¢ || for a modest positive constant c. We say
that a matrix or a vector is O(a) if its norm is O(e). We write a = Q(f) if & = O(f) and § = O(a).

For any matrix X, |X| is the matrix with entries (|X|);; = [Xil; and |X| < |Y| means that
|Xii| < |Yi;] holds for all ¢ and j. Omax(X) and omin(X) are the largest and smallest singular value of
X, respectively; and & (X) = Omax(X)/Omin(X) > 1 is its condition number. For any symmetric matrix
X, Amax(X) and Apin(X) are its largest and smallest eigenvalue, respectively. We say that X is positive
definite if it is both symmetric and positive definite.



2 The Schur Complement and the TTT Family

Primal-dual methods are Newton-like methods applied to optimality equations (1.2). At a given point
(X, Z,y), where X and Z are positive definite, the search direction (dX,dZ, dy) satisfies

Sy i & 7 W, (9 1. a
Fa -1 L\U.{\.} - fp \2.1 w
AT dy + svee(dZ) = 74, (2.1-b)

where 7, =b—A-svee(X) and r¢=svec (C — Z — smat (.AT . y)) .
For the MZ family, equation (1.4) is linearized to give
Hp(dX Z+ X dZ)=pl -Hp(X Z) . (2.1-c)

2.1 The Schur Complement

To solve for the search direction (dX, dZ,dy), we write equations (1.1) in a single 3 x 3 block equation
(c¢f. Todd, Toh and Tiitiincii [27] and Zhang [32])

E F 0 svec(dX) Te
JdxX¥ =R, J=|10 7T AT ], d¥=| svecdZ) |, R=| ra |, (2.2)
A 0 0 dy s

where 7 is the identity matrix of appropriate dimension and
£=(PT2z)®,P, F=(PX)® P" and ro=svec(ul ~Hp(X 2)).

A straightforward way to compute the search direction dX’ is to solve (2.2) as a dense linear system
of equations. However, this approach is too expensive for large SDPs. To compute di’ more efficiently
by taking advantage of the block structure in (2.2), we perform a block LU factorization on (2.2) to get

A 0 0 E F 0
0 I 0|0z AT |.d¥Y=R, (2.3)
AEY —AEY'F I 0 0 M
where
M=AETFAT

is the Schur complement. Todd, Toh and Tiitiincii [27] showed that £ is non-singular under the assump-
tion that both X and Z are positive definite. Apply forward block substitution to (2.3) to get

&E F 0 svec(dX) e
0 I AT |.| svee(dZ) | = g , (2.4)
0 0 M dy r,+ AEY (Frg—re)

and apply block backward substitution to (2.4) to get (cf. Zhang [32])

Mdy = 1+ AE (Frg—ro) (2.5-a)
dZ = smat(rs~ A" dy) (2.5-b)
dX = smat (5 (.~ F svec(dZ))) . (2.5-¢)



We now briefly discuss how to solve (2.5) efficiently, under the assumption that P is a general matrix
and no information about its possible relation to (X, Z,y) is known. The matrix-vector products F u
for w = r4 and u = svec(dZ) on the right hand sides of (2.5) are

Fu= %svec ((P X) smat() P! 4+ P~T smat(u) (P X)T) . (2.6)

Note that £~ appears in M and on the right hand sides of (2.5). Since £ is an n(n-+1)/2-by-n(n+1)/2
matrix, explicitly computing £ can be very expensive. However, the expressions & 1 (Fryg~r) and
£ (r, — Fsvec(dZ)) in (2.5) can be computed through two linear systems of equations of the form

Eu=n (2.7-a)

with right hand sides v = Frq — v, and v = r, — F svec(dZ), respectively. The Schur complement
matrix M can be computed in a similar way: we first explicitly compute the n(n + 1)/2-by-m matrix
F AT and then compute £~1 F AT by solving m linear systems of equations of the form (2.7-a). To
solve (2.7-a), we first rewrite it in matrix form as

PUZPY+PTZUP =2V, (2.7-b)
where U = smat(u) and V = smat{v) (see (1.6) and (2.2)). By setting
G=PUPT and Z=PTZP?,
we can rewrite (2.7-b) as o
UZ4+ZU=2V.
This la,stﬂequa,tion is a Lyapunov equation with a positive definite coeﬁﬁcient matrix Z. Hence the
solution U can be efficiently computed via the eigendecomposition of Z (see §3 and §4) and U can

be computed from {7 as U = P17 P~T. Most of the work in solving (2.5) is in the formation and
factorization of M.

For the AHO method in §3 and the methods in the TTT family in §4, additional information about
P and its relation to the current iterate (X, Z,y) is known. We will discuss more eflicient solutions
to (2.5) for these methods in §3 and §4, respectively.

2.2 The TTT Family

The Schur complement matrix M is not symmetric in general, Todd, Toh and Titiincii [27] considered
the family of search directions for which £~1F is symmetric. We refer to this family as the TTT family.
Lemma 2.1 below combines some of the results in Theorem 3.1 and Proposition 3.1 of [27].

Lemma 2.1 (Todd, Toh and Titiincii [27]) Matrix £V F is symmetric if and only if PX Z P!
is. Assume that £71 F is symmetric and Hp (X Z) is positive semidefinite, then the Schur complement
matriz M is symmetric positive definite and the system of equations (2.2) has a unique solution.

In the following we parameterize the TTT family. Let
X=RTR and Z=HTH (2.8)

be decompositions of X and Z, respectively. They can be computed via the Cholesky factorizations or
the eigendecompositions of X and Z. Let

RHT=w3zVvT (2.9)



be the SVD of R HT. Assume that R H7 has k distinct singular values o3 < -++ < o} and that W and V
are chosen such that ¥ = diag (o], -+, 0xl;) is a block diagonal matrix with distinct diagonal blocks.
By Lemma 2.1, £~1 F is symmetric if and only if

PXZP'=PTzXxPT,
which simplies to
(P P) (BT R) (HT H)=(H"H) (R R) (PTP) .
This last equation can be rewritten as
(g PTPHY)-(HETR HT) = (A R" RHT)- (BT PT P 7).
Plugging in (2.9) and simplifying, we have
(PH V)T (PHV). 2P =2 (P V)T (PHEV) .

In other words, the two positive definite matrices (P H~* V)" - (P H™1V) and £? commute. It follows
that there exists a non-singular block diagonal matrix B = diag(Bi,- -+, Bx), where the dimension of
B; is that of I; for j = 1,+-+,k, such that

T
(pE-'v) - (PH'V)=B"B.
Consequently,
P = SBH, where § € R™"*”? is an orthogonal matrix and H=VTH, (2.10-a)
= SBET, whee R=WTRand B=B%. (2.10-b)
Equation (2.10-b) is equivalent to (2.10-a) because equation (2.9) implies
RAT =%, (2.11)
The amount of freedom in choosing P depends on the distribution of the singular values of RHT. For
example, if X and Z are on the central path (see (1.3)), then all the singular values are identical, and
B, and hence P, can be chosen to be any non-singular matrix. In general, all the singular values are
distinct, and B must be a non-singular diagonal matrix. The search direction in (2.2) is determined by
B only; the orthogonal matrix § in (2.10) leaves (2.2) invariant.

The two HKM search directions [11, 13, 18] PT P = X~ and PT P = Z are members in the TTT
family with B = ™! and B = I, respectively; and the NT direction [23, 24] (see (1.5)) is a member in

the TTT family with B = £~3. Let P satisfy (2.10-a). Then
PxzP' = (§BVTH) (RTRH" m) (B-'v B~ s7)
= $BVIVERVvIVB11sT=55267,
Hence
Hp(X 2)=52* 87 (2.12)

is a symmetric positive definite matrix. It follows from Lemma 2.1 that M is positive definite and (2.2)
has a unique solution for any member of the TTT family.
Let B; = SijVjT be the SVI} of B; for j = 1,---,k. Then SVD (2.9) can be rewritten as

RHT =W £ VT = (W diag(Vs,- -+, Vi) = (V diag(Va, -+, Vi)' .

9



Similarly, equations (2.10) can be rewritten as

P = (8 diag(Sy,---,5))" diag(Dy,- -, Dy) - H , H= (V diag(Vh---,Vk))T H
= (8§ diag(5:,--,S%)) - (diag(Dy, -, Dy) ¥) - R-T  R=(W diag(V1,-- S Vi) R.

These relations show that the block diagonal matrix B can always be made diagonal with a proper
choice of the singular vector matrices of R H T in (2.9). We will discuss interior-point algorithms based
on the TTT family of search directions in more detail in §4.

Now we briefly turn our attention to scale-invariance, an interesting property of interior point meth-
ods discussed by Nesterov and Todd [23, 24], Sturm and Zhang [26], and Todd, Toh and Tiitiinci {27].
Let 7 € R™ ™ be non-singular. “Scale” problem (1.1) by replacing X, C, Z, and each A by

X=01x0"T, C=0TCU, Z=UTZU and Ay=UT A U. (2.13)

This “scaling” defines a new problem. If (X, Z, y) is feasible in problem (1.1), then ()? ,Z,y) is feasible
in the scaled problem with the same objective function values. Let the search direction (dX,dZ,dy)
for (1.1) at a given point (X, Z,y) be defined as a function of (X, Z,y):

(dX,dZ, dy) = (dX(X, Z,¥),dZ(X, Z,y),dy(X, Z,y)) .

This direction is called scale-invariant if the search direction for the scaled problem at (}? Z , ) is
similarly scaled:

(aX(X,Z,),d2%(X, Z,y),d¥(X, Z, y)) = (U7 dX(X, Z,9) U7, U7 d2(X, Z,9) U, dy(X, 2, v))-

A similar property holds for primal-dual methods for LP. In the MZ family, we assume that P = P(X,Z)
has been chosen as certain function of X and Z.

Lemma 2.2 (Todd, Toh and Titincii [27]) Assume that the function P = P(X, Z) satisfies
o T O
(p (X,Z)) P (X,%)=0" (®(X,2))" P(X,2) U,

where X and Z are defined in (2.13) for a non-singular matriz U € R"*™. Also assume that Hp (X Z)
is positive definite. Then the direction that solves (2.2) is scale-invariant.

With Lemma 2.2, Todd, Toh and Tiitiincii [27] showed that the NT direction and the two HKM directions
are scale-invariant.

In the following we show that every member of the T'I'T family is scale-invariant. Let X and Z be
decomposed as in (2.8). Then X and Z can be decomposed as

%= (rv?)" (RUT) and Z=(HUY (HU),

respectively. Since (R U‘T) (HU)T = RHT, the SVD (2.9) for (X,Z) is the same SVD for (X, Z).
By equations (2.10), we have

R (P(X,2)" P(X,2) R* = (RUT) (P ()?'Z“))T P(X,Z) (r U‘T)T =w BT BwWT .

Lemma 2.2 follows this relation and equation (2.12).

10




3 Analysis of the AHO Method

3.1 The AHO Method
The AHO method of [3] is a special case of (2.2) with P = I:

] kY s AY

E F 0 T
JdX¥ =R, where 7=} 0 I AT and R=1{ rq4 |, (3.1)
A 0 0 Tp
with £=2®,1, F=X®,1I and rc:svec(pI—X—g—-g—Z—{) .

The matrix-vector product (2.6) is
Fu= %svec (X smat(u) + smat(u) X) .

Hence F u can be computed with just one matrix-matrix product, which costs about 2n3 flops (see
Golub and van Loan [10, Ch. 1]). The matrix form of (2.7} is simply

UZ+2ZU=2V, (3.2)

which is already a Lyapunov equation. To solve it, eigendecompose Z to get Z = QAQT, where
Q € R™*™ is orthogonal and A = diag(Ay,+++, ) = 0 is diagonal. This computation requires about
9n? flops or less (see Demmel [7, Ch. 5] and Golub and van Loan [10, Ch. 8]). The solution to (3.2) is

2-Vi

— ir )T T —
U=QU@" where U_(A,-+Aj

) with V=QTVQ. (3.3)
The cost for computing V from V is about 3n® flops, taking into account symmetry in V; the cost for
computing U from V is about »? flops; and the cost for computing U from U is about 3n® flops.
There are m + 2 equations of the form (3.2) in (2.5), all of which can be solved via the same
eigendecomposition of Z. The total cost for eigendecomposing Z and solving these equations is about
6mn? flops. Adding up the costs for computing F AT and computing M from & -t F AT, the total cost
for computing M is about m?n? + 8mn3 flops. If we assume that Gaussian elimination with partial
pivoting, which is usually stable and costs about 2/ 3m? flops, is used to factorize M, then the total cost
for solving (2.5) is about 2/3m?® + m2n? + 8mn® flops. Algorithm 3.1 below describes the AHO method.

Algorithm 3.1 AHO Method
1. Choose 0 < o < 1 and determine (dX,dZ, dy) from (3.1), using p = o -

XeZ
—
2. Choose steplengths o and § and update the iterates by
(X,Z,y)— (X +adX,Z+ B dZ,y+ 5 dy) .
The steplength rule is given by choosing a parameter 7 € (0, 1) and defining, via the factorizations (2.8),

T T
a=min |1,— and f=min |1, . 3.4)
(’ Amm(R—dezR4)) (’ Amm(H‘Td21T4)) (

The computation of & and f involves the computation of the factorizations (2.8) and the eigenvalues
of R-TdX R-" and H-TdZ H~!. The total cost for this computation is about 24n3 or less. Hence
Algorithm 3.1 costs about 2/3m? 4+ m?n? + 8mn3 flops per step.

Mehrotra’s predictor-corrector (PC) rule [15] is a very powerful technique to accelerate convergence
and has been adopted for many of the interior point methods (see [31]). Alizadeh, Haeberly and
Overton [3] extended this rule to the AHO method to get
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Algorithm 3.2 AHO Method with Mehrotra PC Rule
1. Determine (dX,dZ, dy) from (3.1), using g = 0.
2. Choose steplengths a and j using (3.4), and define

)'¢

(¥ LadX e (Z 4+ B8dZ0\° XZ4+7ZX
(X ’:\z L8 )),rc=svec(pf—+ +c;XdZ+dZdX\.

3. Redetermine (dX,dZ, dy) from (3.1), and « and § from (3.4). Update the iterates by

=
il
N
Sle
by
——
v
B

(X,Z,y)— (X +adX,Z+pdZ,y+ (3 dy) .

Similar to Algorithm 3.1, one step of Algorithm 3.2 costs about 2/3m® + m?n? 4 8mn® flops. Alizadeh,
Hacberly and Overton [3] recommend that Algorithm 3.1 be used with o = 0.25 til the residual norms
|7pllz and [|r4]]2 become relatively small, in which case Algorithm 3.2 should be used. The value of 7 is
usually chosen to be between 0.9 and .999.

3.2 Preliminary Analysis

To prepare for our analysis of the AHO method in finite precision, in §3.2 we analyze the round-off
errors in the solution to equation (3.2). Assume that the eigendecomposition of Z is computed as

Z=QAQT +0(c-||2I) (3.5)
where () is a nearly orthogonal matrix satisfying OTQ = I+ O(e); and A = diag(xl,---,:‘:n) is a

diagonal matrix. Then there exists an ezactly orthogonal matrix Q7 such that Q = QN+ 0(e) (see
Chandrasekaran and Ipsen {5]). It follows that

- T .
Z=Q'R (@) +0(c-1ZI) = 2+ O (e |1Zl)2) - (3.6)
Note that Zf = QfK (QT)T is an exact eigendecomposition. We further let
-1
E=2" 0, I=E+0(c-|Zll2) and MP=A (£7) FAT. (3.7)

Lemma 3.1 below is the basis of our error analysis in §3.3. We leave its proof in Appendix A.

Lemma 3.1 Assume that equation (2.7-a) for £ = Z ®, I is solved as in §3.1. Then

(67 v) = svee (A (V) = (T + Ag) - (1) T (T4+0s) v, (3.8)
where Ay = O(€) and Az = O(¢) are n(n + 1)/2-by-n(n + 1)/2 perturbation matrices.

It is important to note that the matrix £1 does not depend on v. For different right hand sides v, the
corresponding numerical solutions in (3.8) will in general have different perturbation matrices As and
Aa, but always the same £ t
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3.3 Error Analysis for the AHO Method

In Algorithm 3.1, dX is computed using (2.5). Round-off errors are in general made at every step of the
computation. Let

svec(dX) { Te
dX = | svec{dz) and R=}| 7g
dy \ Ty )

be the computed versions of dX of R, respectively. In our analysis, we will put every round-off error in
computing R into R, and put every round-off error in solving (2.5) from R into the backward error in
J. We will show in §3.3 that there exists a perturbation matrix 67 such that

(T+6T)dX¥ =R . (3.9)

Tt follows from standard perturbation theory (see, for example, Demmel [7, Ch. 2]} that

|2 - ax| @ (s, JR-Rl,
DRy (u:fnz YL ) (310
1

Since Algorithm 3.1 is an iterative method, it usually is not necessary for dx toAbe computed very
accurately for the methods to make progress. However, if the round-off errors in R are so large that
“’R - ’R”2 = Q([|R|l,), or if the backward errors in 7 are so large that |67}, = @ (omin{J)), then the

right hand side of (3.10) becomes at least (1) or even undefined, implying that the computed search
direction d.X could be completely different from dX. In such cases it is likely that Algorithm 3.1 will not
make any progress. We make the following assumptions.

Assumption 3.1 The matrices Ay have been scaled so that || Allz = Q(1).
Assumption 3.2 7 is numerically non-singular, i.e., omin(J) > €- |7 ||z
Assumption 3.3 The current iterate (X, Z,y) is close to the exact solution (X, Z*,y*) and

[8ll> < O (|4liz |1 X1lz)  and {Clla < O(IZ]l2 + §Allz llvll2) -

Assumption 3.4 The Schur complement M is explicitly computed and the equation (2.5-a) is then
solved by a backward stable method.

We first consider round-off errors in 2. The computation of R involves a number of simple matrix-
matrix and matrix-vector products as well as matrix and vector additions. By standard error analysis
(see Golub and van Loan [10, Ch. 2]} and Assumption 3.3, we have

. O (e-1X 11z 1 Z1l2)
R=R+| O |12l + e | All2 Jlyllz) | =R+0(e-[|TNz iXl) - (3.11)
O (e Az IXll2)

We now consider round-off errors on the right hand side of equation (2.4). Let A be a matrix and =
be a vector. Then the round-off errors in the matrix-vector product Az satisfy (see Higham [12, Ch. 3])

fl(Az)=(A+6A) =z, where [64] <O(e) |A]. (3.12)
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Since F 74 is a matrix-vector product, by equation (3.12) we have
A(F ) =(F+6F) 74, where 6 F =O0(e-||Fll2) -

By our model of arithmetic (1.7), every component in fl (F #3) -7 is computed to high relative accuracy.
U &

S0 there exists an a{n + 1)/2-by-n{n + 1)/2 diagonal perturbation matrix &4 = O(¢) such that
A(Frg—Fa) = (T+ As) (F+6F) Fa—T7a) .
According to (3.8), there exist n(n + 1)/2-by-n(n + 1)/2 perturbation matrices A5 and Ag such that
A(e (Fra-i)) = T+A0) (6) @+85) A(FFa—T)
= (Z+ As) (5*)_1 (Z + As) (ZT+Ag) (F+6.F) Fa—7Ta)
Putting this together, we can write
(7 + ALY (Fru=72))
=T+ A7) (R A (AL (FRi-7)) =@+ A7) (Fo+ (A+84) 1 (71 (F a—7a)))
= (T+Ar) (F,, FAT6A) (T420) () (T +80) (F+8F) Fu- Fc)) , (3.13)
where Ay = O(€) € R™*™ is a diagonal perturbation matrix; 614 = O(e - [|A|lz) is an m-by-n(n +1)/2

perturbation matrix; and Ag = (T + As) (T + Ay) — T = O(¢).
Similar to (3.13), the (i,7) entry of the computed Schur complement M can be written as

svec(4i + ;AN (L+8:g) (1) (I +Bu5) (F +6i5F) svec(4;)
= svec ()" ()7 Fsvee(4;)+0 (e A2 1 (1) 1 ||JF||2)

= (M), +0 (<11 () I 17Te)

-1
Tn other words, the computed M can be written as M1+ 0 (e AlE H (8*) Iz |F ”2) By Assump-
tion 3.4, the backward errors committed during the solution of (2.5-a) are bounded by O (e - || M]l2),
-1
which is also bounded by O (6 A (5 t) 2 |F “2) Putting all these errors together, we have

— . _ A -1
(Mt +6MD) Ty =1 (7, + A £ (FRu—70), IMT=0 (e SHIGINT ufug) L (3.14)
With similar analysis, the round-off errors in equations (2.5-b) and (2.5-c) can be written as
dZ = smat ((I + Ag) (Fd —(A+ 64)7 Eg}))

dX = smat ((I + Aq1) (ST) - (Z + Aqo) (?c —(F + 62.F) svee (JE))) .

We now rewrite these equations in a form similar to (2.4) to get

EV+ 681 F b6 F 0 . 7
0 (T+Ag)™! (A+64)T |d¥ = o , (3.15)
0 0 Mt st fl(F+ AET (Frg—7o))
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where (see (3.7))
5t = (T + AD) E T+ AUDT - EV=0(e- |1 Z]]a) -

With (3.13), we rewrite equation (3.15) in a form similar to (2.3):

/T 0 0 \ [/ V4 8EY F46F 0 \ { 7.\
0 I 0 0 (T+80)t (A+86AT |d¥ =] 7 | . (3.16)
Lag Lag (T+A7)7 0 0 Mt smt P
where
-1 -1 -1
Lo = (At+d) @T+80) (€N @+ =4 (€))7 +0 (e Al I (1) u2)
-1 |
Lap = —Loa+(F+6F)=-A () F+0 ((-: Al 1 (1) e H}"Hg) .
Comparing equation (3.16) with (3.9), we see that the backward error matrix 6.7 satisfies
I 0 0 gty 66t F4+6,F 0
§7 = 0 z 0 0 (T+A0)7 (A+64T | -7
L31 L32 (T+ A'r)—l 4] 0 Mt At
et 68t —¢ 82 F 0
= 0 (ZT+A) 1 -T 82AT
Log €= A Log (F=F (T+28)7") (ZT+A)7 Mt Lap AT
0 0 0
+ 0 0 0
L32-66" Lan (8F —61F T+ 80)™") (T4 A7) 6ME 4+ Lsp - 6rAT
-1
= 0171 +0 (& (L 141 el +171) 1 (1) 1) - (3.17)

The first term in (3.17), which includes backward errors in the first two block rows of 7, is a small
backward perturbation to J; but the second term, which includes backward errors in the last block row,
could be very large. In fact, relation (3.10) implies that there maybe little accuracy in the computed
search direction dX if the second term is so large that

e (L4 AP (1€l + 1712 1 ()7 lla = @ (min()) -

Since

w11
Muin(2) = a2+ O 1210) = | (1) 7|+ Ote- 121
2
it follows that Algorithm 3.1 could stop making further progress if

Amin(Z) Amin(Z) .
s+ T ~ e+ 17— F) (3:19)
Putting it another way, we might expect Algorithm 3.1 to stop making progress as soon as it reaches
an iterate (X, Z, y) that satisfies (3.18). Since the optimal solution Z* is in general singular (see (1.2)),
if 7 is well-conditioned at every iteration, then (3.18) does not put a limit on the amount of accu-
racy in the numerical solution. On the other hand, if J is ill-conditioned, then (3.18) indicates that
Algorithm 3.1 could stop making progress well before some eigenvalues of Z become sufficiently small,
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making Algorithm 3.1 numerically unstable, Since equation (3.11) indicates that the right hand side
of (2.2) is always computed very accurately, the backward errors in J appear to be the only source of
potential numerical instability in Algorithm 3.1.

We have only analyzed Algorithm 3.1 in §3.3. For Algorithm 3.2, the coefficient matrices of the two
linear systems of equations it solves are the same as that in (2.2). Repeat the arguments in §3.3, it is
easy to see that Algorithm 3.2 might stop making progress as soon as it reaches an iterate (X, Z, y) that
satisfies (3.18), and hence Algorithm 3.2 could be numerically unstable if .7 is ill-conditioned.

The potential numerical instability of Algorithms 3.1 and 3.2 is due to the block LU factorization
procedure discussed in §2.1. As our numerical results in §5.3 indicate, this instability will disappear if
the search direction is computed by solving equation (2.2) as a dense linear system of equations.

Finally, we caution that the above analysis merely identifies situations in which Algorithms 3.1
and 3.2 could be numerically unstable. It does not assert instability in these situations nor does it
guarantee progress of the algorithms in other situations. Despite this serious weakness, it is clear
that this analysis does provide important new insight into understanding the numerical stability of
Algorithms 3.1 and 3.2 in finite precision arithmetic. In §5 we will present results from our numerical
experiments that support the analysis in §3.3.

3.4 Error Analysis for a Variation of the AHO Method

Several mathematically equivalent formulas are possible for computing the search direction. Tor example,
the expression Frq — 7. in (2.5-a) can be written equivalently as

Fry— 7. =svec (X (C' — smat(AT y)) + (C’ — smat(AT y)) X - 2,[1-_[) . (3.19)

However, Alizadeh, Haeberly and Overton [3] observed numerical instability leading to significant loss
of primal feasibility near the exact solution with (3.19). Todd, Toh and Titiinci [27] also observed that
some mathematically equivalent formulas for computing the search direction appear to be much less
numerically stable than others in the case of the NT method.

Tn the following we briefly explain why (3.19) leads to instability. It is clear that it does not hold in
general in finite precision. Define

n="1 (svec (X (C — smat( AT y)) + (C — smat(AT y)) X—-2p I)) —(Frg—"7.) -
Equation (3.13) now becomes
fl (7 + AET (FRa= 7)) = (T+Ar) (a, FA+8A4) T +06) ()7 (T +08) (FRu-7ot n))

= (T4 Ar) (P + Laan+ Loy (Fia—70)), Lag = (A+64) (T+Ae) (1) T (T+As). (3.20)

And equation (3.15) now takes the form

EV 4 68t F 4 6F 0 - 7,
0 (T+Ag)™! (A+84)7 |dX = o : (3.21)
0 0 Mt 4 st (7, + AEL (Fig—Fo))

where fl (7, + A £71 (F 74 — 7)) satisfies (3.20) instead of (3.13). Hence equation (3.19) amounts to a
replacement of mathematically equivalent but numerically different right hand sides in the middle of a
block Gaussian elimination procedure. After this replacement, equation (3.16) now becomes

I 0 0 Ety 6t F46F 0 . 7o
0 I 0 0 (T+ Ay (A+64)7 | d¥ = T
L31 —Ls1F (T+ Ayt 0 0 M+ smt Fot La1m
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On the other hand, similar to (3.11), we have

Iolla = O (e 1702 1¥l) and hence £aa =0 (<-4l (€)1 htlk) - (322

As before, the backward errors in the coefficient matrix of the equation above are bounded by (3.17).

CREALACAY iR vARAs B2 211 AIMOY

However, the round-off errors on the right hand side could become huge as the iterates converge. For
example, assume that the current iterate (X, Z,y) is sufficiently close to (X*, Z*,y*) so that

Amin(Z) € O (Ve | X]l2)  and  ||R]2 < O (Ve [|Tllz [|¥]]2) -

It follows from (3.22) that there might be ne significant digits at all in the right hand side vector
7p + L3171, and [[F, + L3 7]j2 could be significantly larger than ||7c[jz and ||F4f|2. Hence the computed
search direction could be completely in error. It follows that the AHO method with (3.19) could stop
making progress when |R|l2 = O (v/¢ - || T{|2 | X]|2), even if 7 is well-conditioned.

Similar analysis holds for the NT method. As we will show in §4, the NT method, when implemented
according to a similar block Gaussian elimination procedure, is highly accurate in general. On the other
hand, if mathematically equivalent but numerically different formulas are used to replace computed
quantities during the computation, as is done for the AHO method in (3.21), then the resulting method
could be highly unstable. The same argument holds for all other methods in the TTT family as well.

4 Analysis of the TTT Methods

4.1 The TTT Methods

A search direction in the TTT family is a search direction defined by (2.2) with P satisfying one of
the two mathematically equivalent equations in (2.10). We assume that a proper choice of the singular
vector matrices of R H7 in (2.9) has been made so that B is a diagonal matrix. Arrange the singular
values as 0 < 07 < o2 < ++- < o, and let

B = diag(By,++,8,) and B=BY=diag(i o1, -, 0n 0n). (4.1)

We will base our development on the assumption that P is chosen using expression (2.10-a). It follows
from (2.2) and (2.12) that

£= (5B H)e, (SBH) and F=(SBH X)e, (s B HT) . (4.2-a)
With (2.10-b) and (2.11), these expressions can be rewritten as
£=(sB'SRT)e, (SBEET) and F= (sBR)e, (SBR). (4.2-b)
Similarly, equations (2.2), (2.10) and (2.12) imply that
T, = SVec (,uI - SHp (E’X I;’T) ST) = svec (S smat (7.) ST) , where 7, % svec (uI - 22) . {4.3)
With (4.2-b), the matrix-vector product (2.6) can be written as
Fu = %svec (S (E R smat(u) BT B! + B! R smat(u) BT E’) ST)

= —;-svec (.5‘ (D}' ® (ﬁ smat(u) ET)) ST) ) (4.4)
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_ Bioi , Bioj Bi of + B; oF
where X ©Y = (X; ;- Y;;) is the Hedamard product; and Dr = + = .
(Xes - Yi) P d (ﬁj o;j  Pio; Bi 3; oi 0;
We now solve equation (2.7). With (4.2-b), the left hand side of (2.7-b) can be rewritten as

s(B'SRTURSB+BETURSE) S =8 ({5 ; % 4 ;‘_UJ‘) (RTy é-l)ﬁ} s
i i
Hence the solution to equation (2.7) is
£~1py =2svec (IA?:T (Dg ® (ST smat(v) S)) ﬁ) where Dg = (cr,- - KE;?:_ ﬁf)) . (4.5)
With equations {4.4) and (4.5), we can rewrite the Schur complement matrix M as
M = (svec(A;)T err svec(Aj))
= 2 (svec(A;)T »8vec (RT (Dg ® (ST smat (F svec(A4;)) S)) E))
= (svee(A)T - svec (BT (Deo (ST (S5 (Dro (R 4; ET)) s7T) 5) R)))
= (svec(Ai)T - svec (ET ((Dg ODr)e (ﬁ A; ET)) E))
= (R4 B} o ((De0 DF)0 (Ea; BT))) = ADm A", (4.6)

i~ ~ — P ~ T
where A = (svec (R Ay RT) , e, 8Vec (R Am RT)) : and Daq is an n{n+1)/2-by-n(n+1)/2 diagonal
matrix that satisfies

2 52 4. G2 o2
‘DMemsvec(DgG)Df):svec( B oi + b o )

a? a? (B2 +52)

for the vector e in §1.4. Note that the matrix Dy is the only part in M that is affected by B. For any
choice of B, the entries of the matrix Dg @ Dy are always bounded. In fact,

1 PRot+piog
oF+ o} ot a? (B2 46

t

(4.7)

s;c}g! Lol

)s%+

Since the two HKM search directions [11, 13, 18] PT P = X! and PT P = Z correspond to B = L'
and I, respectively, and since the NT direction [23, 24] corresponds to B = -3 (see §2.2), their
corresponding Dg © Dy matrices take the form

2 o?+a? 1
—— 1], P R and .
o + o; 2 o} o; 0; O;

Now we use equations (4.4) and (4.5) to simplify the right hand side of (2.5). By (4.3) and (4.5),

£l1r, =2svec (ET (Dg ® (ST (,u, I—-8%? ST) S)) R) = svec (ET (Dg ©® smat (7)) E) .
Combining this relation with (4.4) and (4.5), and with some algebra similar to that used to obtain (4.6),
EY (Frg—r.) = svec (ET ((Dg ODs)O (E smat(rq) ﬁT) — Dg ©® smat (Fc)) E) . (4.8)
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However, we will compute £~ (7, — F svec(dZ)) differently. With (4.2-a), the left hand side of (2.7-b)
can be rewritten as

S(B“lﬁUﬁTB+BI?UﬁTB-1) ST = § ((%ﬁ'““ .g_;) . (foffT)ij) sT,

Hence the solution to equation (2.7) can also be written as

£t v =2svec (fI"l (I-Jg O] (ST smat(v) S)) I?_T) where Dg = (ﬁfi_f;z) .
i i

Combined with (4.3) and (4.4), and after some algebra, we obtain
£ (r. — F svec(dZ)) = svee (ﬁ“l (Dg ® smat (7;) — (Ds @ Dg) © (E dZ ET)) I?_T) . {4.9)

As we have seen throughout §4.1, due to relation (2.11), £, F, and M can be expressed in several
different but mathematically equivalent ways, each of which may lead to a different numerical solution
to (2.5). We have chosen to solve (2.5) via the SVD (2.9) in such a way that makes the symmetry of
M explicit and avoids the explicit inversion of H and R everywhere except in (4.9). Our approach is
somewhat different from that of Todd, Toh and Tiitiincti [27]. Algorithm 4.1 below is a more formal
description of the method described in this section. We will postpone some details on how to compute
expressions in (4.8) and (4.9) to §4.3. We will also discuss a new choice of B in §5.1.

Algorithm 4.1 TTT Methods

1. Choose a matrix B in (2.10-a).

2. Choose 0 < ¢ < 1 and determine (dX, dZ, dy) from (2.5-a), (2.5-b)}, (4.6), (4.8) and (4.9), using
XeZ tr (Z2)

p=a: =0
n n

3. Choose steplengths @ and B using (3.4) and update the iterates by
(X,Z,y) — (X +adX,Z+pdZ,y+p dy) .

The main cost of Algorithm 4.1 is in the computation and factorization of M. To compute A in (4.6),
we need to explicitly compute the matrices R A; RT for i = 1,---,m, which costs about 3mn® flops
(see §4.3). Since M is symmetric, computing M from A costs about 1/2m2n? flops. The Cholesky
factorization of M costs about 1/3m® flops. Adding it all up, we see that Algorithm 4.1 costs about
1/3m® 4+ 1/2m?n? + 3mn® flops per step, roughly half of the per step cost of Algorithm 3.1. Applying
the PC rule to Algorithm 4.1, we get an algorithm similar to Algorithm 3.2.
Algorithm 4.2 TTT Methods with Mehrotra PC Rule

1. Choose a matrix B in (2.10-a).

2. Determine (dX,dZ,dy) from the second step of Algorithm 4.1, using p = 0.

3. Choose steplengths o and 3 using (3.4), compute T' = H dX dZ B! and define

XOZ.((X-{—adX)o(Z-}—ﬁdZ)
XeoZ
4. Redetermine (dX,dZ,dy) from the second step of Algorithm 4.1, using redefined p and 7
redetermine steplengths o and B using (3.4); and update the iterates by
X, Z2,9) (X +adX,Z+p dz,y + 8 dy) .

As with Algorithms 3.1 and 3.2, we can use Algorithm 4.1 with o = 6.25 til the residual norms {|r,[2
and ||r4||2 become relatively small, in which case we use Algorithm 4.2. But we choose the value of 7 to
be between 0.9 and 0.99, more conservative than Algorithms 3.1 and 3.2 (cf. [3, 27}).

3
p= ) and Fc:svec(ufmﬁz—HB(T)) .

n
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4.2 Variations of the TTT Methods

Todd, Toh and Tiitinci [27] showed that the Schur complement equation (2.5-a) can be expressed as
the normal equation of a linear least squares problem. In fact, let D be an n(n + 1)/2-by-n(n + 1)/2
diagonal matrix that satisfies

2 8; B;
(o2 +p1.02) (g1 +52)

for the vector e in §1.4. With equation (4.5) and some algebra similar to that used to obtain (4.6), we
i~ l Rl
can write AE™! = ADZ, D. Let X, € S® be a symmetric matrix such that

D e = svee

~ 1
AD}, svee(X,)=1p. (4.10)
Then the Schur complement equation (2.5-a) can be rewritten as
o 1 ~ i\T w1 o
(.A 'Dj,,) . (A ’Df\,,) vdy = (A ’Dju) . (svec(X,) +D (Frq— frc)) ;
which is the normal equation for the least squares problem

(.Jf Di)’r ~dy — (svec(X.,,) +D (Fry— rc)) (4.11)

min
dy

2

Hence dy is the solution to the least squares problem (4.11), and can be computed by standard methods
for solving least squares problems, which are both efficient and backward stable (see, for example, Golub
and van Loan [10, Ch. 5]).

Similar to Algorithms 4.1 and 4.2, the main cost of the least squares approach is in explicitly comn-

puting and factorizing the coefficient matrix .A’D 24 As in Algorithm 4.1, the cost for computing A‘D %4
is about 3mn3 flops. If the least squares problem (4. 11) is solved by computing the QR factorization of

A‘D %1, then the cost of this factorlzatlon 13 about m?n? — 2/3m? flops. Hence the total per step cost
of the least squares approach is a,bout m*n? 4+ 3mn® — 2/ 3m? flops, roughly twice the per step cost of
Algorithms 4.1 and 4.2 if n € m < n?.

Since reliable methods for computing the SVD are only available for dense matrices, a potential
drawback with Algorithms 4.1 and 4.2 is that the SVD computation in (2.9) could be very inefficient if
matrices R and H were highly sparse or structured. Zhang [32] pointed out that equations (2.5) can be
solved without the SVD (2.9) in the special case PT P = Z, which corresponds to B = I in (2.10). To
see how this is done, choose § = V and B = I in (2.10-a) to get P = H. It follows from (4.2-a) that

E=H@,H and F=(HX)®,HT.
According to properties of the symmetrized Kronecker products in §1.4, we have
£l=H @, B and €' F= (A HX)®, (AT HT) =X, 27". (4.12)

In view of (2.8), the Schur complement now becomes

M= (svec(A;)T (X ®Rs Z'l) svec(Aj)) = % (A,- . (X A; 271+ Z71 A X)) .
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On the other hand, equations (2.8), (2.9) and (4.3) imply that
'rczsvec(p,f—VE?‘VT) =svec(,uI—HXHT) .
Plugging this equation and (4.12) into (2.5), we get
Mdy = r,+A ((X ®s Z‘l) ry — svec (,u z71 - X))
dZ = smat ('rd - AT dy)
dX = pZ7'-X-(X®,27") svec(dZ) .

Since the matrices X A; Z~! are in general non-symmetric, M in the above forms is slightly more
expensive to compute than in (4.6). Since the cost for Cholesky factorizing M is the same in both
cases, computing the search direction without the SVD is slightly more expensive than with it, if we
neglect sparsity and structure considerations. Predictor-corrector modifications of both Mehrotra type
and Mizuno-Todd-Ye type can be developed for this approach to accelerate convergence (see Mizuno,
Todd and Ye [16] and Zhang [32]).

4,3 Preliminary Analysis

To motivate our error analysis of Algorithms 4.1 and 4.2, in §4.3 we examine equation (2.1-c) in ezact
arithmetic. Since

PdX (2P ') =sBHax A" B §T and (PX)dZP'=5BRdz RT B-1g7,
and since r. = svec (,u, I-5%? ST), equation {2.1-c) simplifies to
Hp (1 dx HT) + Hy (fzdziiT) = pul -2,

With (4.1), this can be further written as

(2 T L ((Bioi  Bidi\ (faz BT oy
2 ((ﬁg /@1) (HdXH ),J)-!_ ((ﬁJ 0'_,'+ﬂ10'2) (RdZR )i,j)-'ul X2 (4.13)

Some of the above scaling factors involving f8;’s and a; ’s can be arbitrarily large for very ill-conditioned
B. In addition, the matrices H and R themselves could be badly scaled as well. To see this, assume for
the moment that X and Z commute so that we can write their eigendecompositions as X = @ Ax QT
and Z = Q Az QT, where @ is an orthogonal matrix and both Ay and Az are positive diagonal matrices.
Equation (2.8) implies that there exist orthogonal matrices Wx and Wz such that

R=Wx AL QT and H=Wz;A3QT, or RHT=Wx (Ax Az)? WE.
By the definitions of the SVD in (2.9) and matrices R and H in (2.10), we get
R=WIR=AL Q" and H=WEH=ALQT.
In other words, if X and Z commute, then R and H are row-scaled by their singular values. For X and

Z that are close to the optimal solution (X*, Z*), some of these singular values will be very tiny. In
practice, X are Z are usually not commutable but become more and more commutable as they converge
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to (X*, Z*), making R and H potentially badly scaled. To fully understand the scaling problem in (4.13),
we rewrite B and H in scaled forms as

R=V%ER and H=0H, (4.14)

where ¥ = diag(v,:--,%,) and & = diag(¢1,:--,¢s) are chosen so that rows of R and H all have
2.norm 1. Hence equation (4.13) becomes :

1 (B, B 71 T 1 ({Bioi  Bio; 5 1o BT 2

(2 g (HdXH S (2% L% gy, (RdZ R = ul-%2. (4.

2 ((ﬁj * Bi 9 s ( X )t',J' +3 Bio; * B o Vi¥i ( )i,j a (4.15)
The ratios involving 8;’s and o;’s could be huge, but the factors involving ¢;’s and ;’s could be tiny.
There are n(n+1)/2 scalar equations in (4.15). Some of them might have huge coefficients whereas others

might only have tiny ones. This bad scaling could cause the matrix 7 in (2.2) to be very ill-conditioned,
even when the optimal solution to (1.1) is well-conditioned. This bad scaling problem can be avoided

by dividing the (i,7) entry in the matrix equation by (ﬁ { &) did; + (ﬁi 7 + ?3—05’) P;1pj. We

=+
Bi B Bioj  Bio
will discuss the scaling issue in finite precision in §4.4.
We now discuss the round-off errors in the following operations required in Algorithms 4.1 and 4.2:

D (U ®; U) svee(A) = svec (D ® (U A UT)) and (U ®; U)! svec(A4) = svee (U“’1 A U‘T) .

where A and D € 8™ and P is an n(n + 1)/2-by-n(n + 1)/2 diagonal matrix such that D e = svec(D).
We summarize their computations in Algorithms 4.3 and 4.4 and their error analysis in Lemma 4.1. We
leave the proof of Lemma 4.1 to Appendix A.

Algorithm 4.3 Computing V =D (U ®, U) svec(A)
1. Compute the matrix-matrix product U A.
2. Compute the (i,7) and (4,7) entries of U AUT as the sum 3,y (A(U A));y, Uss-
3. Compute fi (DO 4 (U AUT)).

Algorithm 4.4 Computing W = (U ®, U)! svee(A)
1. Factorize I/ with an efficient and backward stable method.

2. Let A = (@1,++,a,). Compute U1 4 by solving n linear systems of equations Uwv = a;.
3. Let i (U1 A) = (%1, ++,%,)7. Compute U-1 AU-T by solving n linear systems of equations
®F UT = %¥ and symmetrizing (%1, - -, @)

Algorithm 4.4 is not very efficient since it does not take advantage of the symmetry in U1 AUT,
This extra cost can be avoided with a more involved algorithm and is tiny comparing to other costs in
Algorithms 4.1 and 4.2. To achieve good accuracy in computing (4.9) for Algorithms 4.1 and 4.2, we
rewrite it using (4.14) as

£ (r, — Fsvec(dZ))
= svec (A 1@~1 (D © smat (%) - (De © D7) © (Baz R7)) $1H-T),  (4.16)
and compute (4.16) using Algorithm 4.4 with U = H.

Lemma 4.1 Let ¥ and W be the computed counterparts of V and W in Algorithms 4.3 and /.4, re-
spectively and assume that k(U) < 1/+/€ in Algorithm {.4. Then there ezist n{n + 1)/2-by-n(n + 1}/2
matrices ©1 and Oy such that

V=D (U®,U+01)svec(d) and (U®,U+03)- W = svec(4),
where [03] < O(€) - (JU] ®; U]} and |82]]2 < O (e- |U]]2)-
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4.4 Error Analysis for the TTT Methods

The error analysis for the TTT methods is much more complicated than that for the AHO method,
due to the potentially bad scaling of the complementarity equation (2.1-c) for the TTT methods. To
shorten the presentation, we will summarize some technical pieces of analysis into lemmas and discuss
them in Appendix B. As in §3.3, we will focus on Algorithm 4.1.

We begin by examining the round-off errors in the decompositions (2.8) and the SVD (2.9). Assume
that they are computed backward stably as

RTR=X+0(c-|X|p), ATH=2Z+0(c-||Z2) and RAT=WEVT+0 (c-[Rlz |Hls) ,

where W and V' are nearly orthogonal matrices satisfying WL W = I+ O(e) and V = I+ 0(e),
respectively; and ¥ = diag (o1, ++,8,). Let R and # be computed as

A(R) = WT B+ O0(c-|Rll2) and f(H)=VT H+0(e-|H|2) .
We define

X1 (8(7%)" A(R) = X +O0(e-[X[2) and 2t (A(H))" A(H) = 7+ O(e-12]1)

To make the notation less cluttered, in the remainder of this section, we will drop the symbol fl in ﬂ(ﬁ)
and fi(HT) and replace them by R and H, respectively. Combine the above equations to get

xt=F'R, 2=H"H and BAT=S+0(c-|Rl Iil.) ¥S+E. (4.17)

In our analysis, we will think of the search direction defined by (2.2) as a direction defined at the point
(X1, Zt, y), instead of (X, Z,y). These two points are identical in exact arithmetic, and differ slightly in
finite precision. However, this minor difference will make our analysis much simpler. Since the round-off
error matrix E in (4.17) is in general non-zero, the expressions in (2.10) for P and the expressions
in (4.2) for £ and F, while mathematically equivalent in exact arithmetic, are inconsistent in finite
precision arithmetic. As in §4.1, we base our analysis on the assumption that P is chosen using (2.10-a):
P =25 B H. We also set § = I since it is never involved in any computation (see §4.1). Under this
choice of P, the search direction defined by (2.2) at the point (X7, ZT,y) satisfies (cf. (4.2-a))

£E F 0O Te
JdX =R, where J=| 0 I AT and R=1| rq |, (4.18)
A 0 0 Tp

with £ = (B“l ﬁ) ®s (B fi) , F=(B 0 X*) ®, (B~ A7), re=svee (,uI — Hp (ff xt ET)) ,

T4 = svec (C — 7 — smat (AT y)) and 7, = b — Asvec(X1),

We could try to write the round-off errors during the computation of the search direction as pertur-
bations to (4.18), in a form similar to (3.9). However, the coefficient matrix J in (4.18) is in general
badly scaled and hence ill-conditioned. To make our error analysis meaningful, we need to re-scale the
rows of J to make it balanced, and then examine the error bounds in the re-scaled version of (4.18). In
this section, in addition to Assumptions 3.1 through 3.4, we further assume that

Assumption 4.1 The error matriz E in (4.17) satisfies || El]z < min}; 7;/2.

Assumption 4.2 The matric H defined in (4.14) satisfies s(H) < 1/+/€.
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We start our analysis by revealing the bad scaling in the matrix 7 in (4.18). Rewrite £ and F
according to (4.14) and (4.17),

£ = ((B'2)8.(B®) (Ao H)
-1 :"é)
- ( BE)-(1+ B$1)" E) 95 ((B 87 (+eE)” 1”{) :
Since the matrix I + E 51 is in general dense and has 2-norm (1) (see (4.17) and Assumption 4.1),
we can choose the diagonal scaling matrices for £ and F to be

Se ¥ (51 9) @, (B9) and S (p+9) - (BE) e, (BE)

F

1
N
ty
—

o~
+.
k=
o
an
S
ggl
TN
=
—_——
bl
..+.
by
S

respectively, where ¢ = max™_, ¢; = Q(||H|l2) and ¢ = maxl,¢; = Q(||R)|2)- The scaled £ matrix
S;1& = H ®, H is well row-scaled due to (4.14) and has 2-norm €)(1). The scaled F matrix SFlF
has 2-norm O(1), but could still be badly row-scaled for some E. We have chosen the factor (¢ + 1h)?
instead of 12 in front of 87 to make our analysis simpler. To see the diagonal entries of S¢ and Sr
more clearly, we apply Sg and S to the vector e in §1.4:

N AV ) T Y L
Sge_"é"'svec((ﬁ;+ﬁ_2) d%d’g) and Sf'e_w"zm_ Svec(ﬁjﬁj“}‘ﬂiﬁj).

Comparing with (4.15), which is the complementarity equation in exact arithmetic, we see that the
scaling factors for £ in finite precision arithmetic is similar to those for £ in exact arithmetic. On the
other hand, some of the ;’s can be much smaller than ¢ + 1, so the scaling factors for F in finite

precision arithmetic can be drastically larger than those for F in exact arithmetic.
We now re-scale J in (4.18) with Sg and S to get

STTE STVF 0 S,
Js dX¥ = Rs where Js = 0 z AT and Rs= Td )
A 0 0 Tp

with 8§ = 8¢+ Sr. Let R.s be the vector R with 7, replaced by S717,. Scale equation (3.9) to get
| (Js + 67s) dX = Rs . (4.19)

We point out that & is introduced as part of our error analysis, and is not part of Algorithm 4.1. As the
scaling factors for F in finite precision arithmetic and in exact arithmetic can be drastically different,
Js could still be il-conditioned (see §5).

We now consider round-off errors in . Although numerically R is evaluated at the point (X, Z, y),
instead of (X1, Z1,y), the difference between them is minor. Equation (3.11) still holds for 7y and 7y

fo=ratO(c|Zla+te Ml llyll) and 7=+ O Al [1X1) - (420)

Since the round-off errors in 7. are more complicated, we summarize the results here and leave the
analysis to Appendix B.

Lemma 4.2 In Algorithm 4.1,

0 (e (1R “ﬁ”g) ) for HKM direction PT P = Z and NT direction;

o v, =

0 (e K (ﬁ) IRl [lﬁ’”g) , in general.
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Combining Lemma 4.2 with (4.20), we get

I1Rs - Rslls = 0 (e 5 (E) I1X]a) - (4.21)
The factor &( E) disappears for the HKM direction PT P = Z and the NT direction. Since Algorithm 4.1
usually generates iterates that are not far away from the central path, the factor 5(2) is in general not

very large in practice.
We now analyze the round-off errors in computing the right hand sides of (2. 5). To this end, define

¢t= (BEET) @, (B1% ET), Fl= (BS B) e, (B8 E), Mt = A (") AT, (422)

Although £t = €, Fi = F,and M = M7 in exact arithmetic, these relations do not in general hold in
finite arithmetic. Let

2 52 4 G2 57 . : B; PO s
ﬁf:(wfi:"_s), De = B B and Dy = Dr0 De,
Bi B; 5i 5; oi o; (67 + B%)

and define diagonal matrices Dg, Dy and D s such that

ﬁ}-e = svec (ﬁ;p) R De e = svec (ﬁg) and ﬁM e = svec (EM) .

The matrix-vector product fl (.?"’t ’rd) has the form in Algorithm 4.3 with D = ﬁ}- and U = R.
According to Lemma 4.1, the round-off errors satisfy

f(F17;) = (F1+&F) fa, where 6171 < O(e) - D - (|&| e |R]) -
As in §3.3, there exists an n(n + 1)/2-by-n{n + 1)/2 diagonal perturbation matrix Ay = O(e) such that
fi(F7-7) = (@+) ((F1+ 5 FY) - 7e) -

-1 ~ S
The application of (8*) to Ft7; — 7, in (4.8) can be performed by applying (RT ®s RT) De to
il (FT Fq — Fc). Similar to Lemma 4.1, the round-off errors satisfy

f ((5*)" (f* ’f‘d-—’a"c)) = ((5*)'1 +@1) fA(F 77, [0 <00 (|| o, E"|) - De
= ((81)“44-92) ((.77*%-51-7:?) d—‘T‘c) ’
where @, % ((5*) +@1> (T+ A1) - (f:‘f)"1 satisfies @] < 0(6).([1’%1" ®, |AT|) De

With these relations, we can write
1 (ﬁp +A (N (Fria- ?)) = (T+Ay) (F,, F(A+6A) 1 ((gf)‘l (! 7 - ?)))
= (T+Ay) (ﬂ, +(A+ 8.4) ((f:f)“1 + (—)2) ((F+6,7) 7 a:)) , (4.23)

where &4 = Ofe- ||Allz) and Az = O(¢) are perturbation matrices, with Ay being diagonal. The
round-off errors in solving (2.5-c) are analyzed by Lemma 4.3 below.
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Lemma 4.3 The round-off errors in solving (2.5-¢) satisfy

(Mt +oml) dy=a(F+AE (Fia-7)), MI=0 (e i3 |xt,

-1
Al ) :
(z) |,
A remarkable feature of Lemma 4.3 is that the upper bound on §M! does not depend on B. Hence the

Schur complement equation is solved to the same accuracy no matter how badly ihe compiemeniarity
equation (2.1-c) is scaled (see (4.15)). As in §3.3, the round-off errors in equation (2.5-b) satisfy

dZ = smat ((I + As) (?d —(A+ 62.A)T E’?;)) ’

where 834 = O(e - || A||2) and Az = O(e) are perturbation matrices, with A, being diagonal.
Now we consider the round-off errors in solving equation (2.5-c) using (4.16). Similar to (4.23),

fi (FCMTT svec (d’é)) = (T + Ay) (?c._ (ff+ 52.7'-1) svec (EZ)) )

where Ay = O(e) € R™*™ is diagonal and |52}'Tl < O(e)- Dr - ('ﬁl ®Rs 1}7,&) By Assumption 4.2 and
Lemma 4.1, we write the round-off errors in the solution of equation (2.5-c) as

(B 2@, B®) (H®, H+03) dX =(Z+A4) (Fo- (F! + 6271) svec(dZ)) ,
where [|©3]l2 = O (e - || H||2) = O(e¢). Since Ay is a diagonal matrix, this last equation becomes
(€ + 86) dX = 7o~ (F1 +8,F1) svec(dZ) , (4.24)
where 66 (T +0)7" (B 20, B8) (Ao, H+0:)-&= (B @@, B )0y,
with 0, T +A) (AR, H+0:)—H®, H=0().

Putting Lemma 4.3 and all these relations together, we get an equation similar to (2.4),

£+66 FtibF! 0 N e
0 (T+A3)7" (A+64)T |dX¥ = " :
0 0 Mt 4 smt fl (ﬁ, +A (sf) (f’f g — ?))
Combining this with (4.23), we obtain an equation similar to (2.3) and (3.16):
I 0 0 E+6E FrybyrFt 0 . Fe
0 z 0 0 (T+A4a3)7Y (A+64)7 |d¥=| 7 |,
L1 Laz T+A)7" 0 0 Mt smt T

where La7 = (A + 61.4) ((5*) 4 02) and Lag=—Lsn (F146F) .

Scale the first row by §~!, we arrive at equation (4.19) with the backward error matrix 6Js satisfying

(s 0 0 E+86 FlbFt 0
§Js = 0 I 0 0 (T+As)Y (A+86A4T | -Ts

\ L31 L3z (T+ Az 0 0 Mt smt
[ S16¢E §7V(Ft - F + 8,77 0

= 0 (T+As)y1 -1 AT
\ Lag €~ A Lag (FI=FU (T +80)7") (Z+82)7" M4 Lag AT

0 0 0
+ 0 0 0 . {4.25)

L3108 Lan (FT—8F (T4 As)!) (T+D0)7" SM 4 Log - 824
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Lemma 4.4 The matriz §Js in (4.25) can be bounded as

Ofe p), for HKM direction PT P = Z and NT direction;
0Js =
| O (e /] (K, (E) + \/ﬁn , in general,

ahere p = (111 +1211) (I (X) 7 a1 (2) " 1)-

As we argued after Lemma 4.2, the factor n(ﬁ) is usually not very large in practice. For the sake
of argument in the following we assume that it is less than ,/p. Now the bound in Lemma 4.4 looks
like (3.17). With arguments similar to those in §3.3, we conclude that Algorithm 4.1 could stop making
further progress as soon as it reaches an iterate (X, Z, y) that satisfies

min (/\min(Z), Amm(X))

max (2T X~ e (e (4.26)

and Algorithm 4.1 could be numerically unstable if Js is ill-conditioned. As with the AHO method, by
repeating the arguments in §4.4, it is easy to see that Algorithm 4.2 could also be numerically unstable
if Js is ill-conditioned.

If k(E) > 1, then the error bound in equation (4.21) on the scaled right hand side of (2.2) will be
large. We can eliminate the factor n(ﬁ) in the error bound by choosing a scaling matrix § with larger
diagonal entries, thereby making s potentially worse scaled and therefore worse conditioned. Similar
considerations apply to Algorithm 4.2.

At first sight, equation (4.26) seems to suggest that the TTT methods could be as accurate as the
AHO method. However, our numerical results in §5.3 show that the matrix Js for the HKM methods
and NT method is in general much worse conditioned than the matrix J for the AHO method, indicating
that these methods are in general less accurate. In §5.1 we discuss a choice of B that appears to make
Js better conditioned than other choices.

The above analysis was on Algorithms 4.1 and 4.2 only. Since the NT method [23, 24} as implemented
in [27] is not identical to Algorithms 4.1 and 4.2, our results do not directly apply to it. However, the
difference between these variations does not appear to be fundamental. It is very likely that the NT
method in [23, 24, 27] suffers from the same numerical instability problems Algorithms 4.1 and 4.2 face.
The same argument holds for the HKM direction PT P = X~

While the HKM direction PT P = Z can be computed without the SVD, the matrix Z* is still
needed in the formation of M (see §4.2). Hence we would expect the upper bound on the round-off
errors in solving equation {2.5-c) for this direction to be at least compatible with that in Lemma 4.3.
Consequently, we could expect this variation to be numerically unstable if Js is ill-conditioned.

Unlike the AHO method, the potential numerical instability of Algorithms 4.1 and 4.2 in general
remains even if the search direction is computed by solving equation (2.2) as a dense linear system of
equations (see §5.3).

4.5 Error Analysis for the Least Squares Variation of the TTT Methods

Now we discuss the round-off errors for the least squares variation of the T'I'T methods discussed in §4.2.
In addition to Assumptions 3.1 through 4.1, we further assume that

Assumption 4.3 Problem (4.11) is solved via an efficient and backward stable method.

As in §4.1, we will think of the search direction defined by (2.2) as a direction defined at the point
(X1, Zt,y) in (4.17), instead of the point (X, Z,y). Hence the search direction satisfies equation (4.18).
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Let R be computed as before and let X, be the computed version of X, in equation (4.10). Define
gt, F1, and M? as in (4.22) and let the coefficient matrix and the right hand side vector of the least

o 1 ” ~
squares problem (4.11) be computed as fi (.A ‘Dj,,) and fl (svec(XT) +D{(Frqg— rc)), respectively.
With analysis similar to that in equation (4.23), we write

l (svec(X,) + D (Fra - re)) = (T+ Bg) (svee(X,) +(Z+41) D ((F1+6u7Y) 7a—70)) o (4:27)

where A; and A, are diagonal perturbation matrices and 6;F1 is a perturbation to F¥. Furthermore,
with an analysis similar to that in the proof of Lemma 4.3, we can write

~ L ~ L 1 ~ ~
f (A Di,,) = ADY +6ME, where 8MF =0 (Al 1Bl 1F12) - (4.28)

By standard error analysis (see Higham [12, Ch. 19]), the computed solution dy is the ezact solution to
a slightly perturbed least squares problem

min

dy ’

—~ - T - P
(ﬁ (_A DJIZM) + @) ~dy—1f (svec(XT) +D (Fra— 'rc))
2

w1
f (A ’Dj’u)
this result in an equivalent way, @ is the ezact solution to the normal equation of this perturbed least
squares problem:

. 1 Ut T . - 1 ~ ~
(ﬂ (.A 'D;"'M) + @) (ﬂ (.A 'Dj,f) + @) dy = (ﬂ (.A ’Djd) + G)) i (svec(Xr) +D (Frqg— 'rc)) .
In light of (4.28), this equation can be rewritten in the form of Lemma 4.3 as

(Mf+6Mf) dy = (ﬁ (,,ZDJ%M) -;-9) -ﬂ(svec()?,)ﬁ-ﬁ (.T'rd—rc)) )

where the m-by-n{n+1)/2 matrix ©® = 0 (e .

o 1
) is a perturbation to fl (.A D}M) Stating
2

- 1 .~ 1 T
where smt 4 (AD§4+5M%+®) (.AD%A+6M%+®) v
w1 1 T 1 ~ k 1 T
= AD} (bME +0) + (M +0) (A’D}W+6M5+®)

= o(enaz e, J)7]).

Comparing with Lemma 4.3, the error bounds for SM?1 in both cases are identical. Although in the
least squares approach 6 M7 has a special form, it does not seem to make |6 MT||2 smaller.

Assume that equations (2.5-b) and (2.5-c) in the least squares approach are solved as in Algo-
rithm 4.1. We get an equation similar to (2.4),

E+4 66 FtydFt 0 . e
0 (Z+As)"' (A+6A47 |d¥ = T )
0 0 Mt smt fl (svec(X,) + D (Fra- re))
which can be combined with (4.27) to give an equation similar to (2.3):
I 0 0 E4+6E FtibFt 0 . Fe
0 I 0 0 (T+A3)" (A+64)7 |aX¥ =] 7 |,
La1 L3z T 0 0 M+ smt Tp
~ L ~
where L33 = (ﬂ (.A 'wa) + e) T +02) @T+A) D, Log=—Lan (FI+6F
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- 1 -
and 7 = (ﬁ (A Dj’w) + @) (T + A;) svec(X,). Asin §4.1, we can now scale the above equation by §

and bound the round-off errors in both Js and Rs. Since the upper bounds for &Mt are the same in both
cases, the upper bound on the backward errors in the (3, 3) block of Js for the least squares problem will
be about the same as that of 7 for Algorithms 4.1 and 4.2, regardless of how small the backward errors in
other blocks of Js might be. Since the upper bound for § M7 is roughly the upper bound in Lemma 4.4,

~ -1 -1
under the assumption that « (E) = O(,/p) and that || (X t) |l = @ (“ (Zf) |]2), it appears that

the least squares approach in general does not seem to be more accurate than Algorithms 4.1 and 4.2.

5 Numerical Experiments

In §5 we first discuss a new choice of search direction in the TTT family. We then discuss how to
measure the amount of accuracy in a numerical solution to problem (1.1). And finally we present results
from our numerical experiments that support our analysis for the AHO method and the TTT methods.

5.1 A New Search Direction in the TTT Family

Our error analysis of the TTT methods indicates that one factor that potentially limits the amount
of accuracy in the numerical solution is the scaled condition number k(Js) (see (4.26)). To achieve
maximum accuracy in the numerical solution, we would like to find a direction in the TT'T family that
minimizes k{Js).

However, such a direction appears to be very hard to find. Instead, we note that the source of
potential bad scaling in equation (4.15) is the ill-conditioning of the matrix P in (2.10-a). This motivates
us to choose a direction in the TTT family that minimizes x(P). Asin §2.2, write B = diag(By,-- -, Bi),
where the dimension of B; is the multiplicity of the singular value o; of R H T, Partition the matrix H

~ ~ ~\T
in (2.10-a) accordingly as H = (H1,- - H k) . The following result of Demmel suggests a particular
choice of B that is at most a factor of /& away from optimal.
Lemma 5.1 (Demmel [6]) Define B = diag (By,- -+, Bi), where B; is chosen so that B; ﬁf is Tow
orthonormal, i.e., B; Ihf}‘ H; BT =1 forj=1,---,k. Then

n(B ﬁ) <vk min{n (B fl)[ where B:diag(B1,---,Bk).} .

We compared the TTT method with B = B with the AHO method and other TTT methods in our
numerical experiments. In our implementation, we ignored the possibility of multiple singular values in
R HT and instead scaled H as in (4.14) and chose B = ®='. This choice of B corresponds to the matrix
B in Lemma 5.1 with k¥ = n. See §5.3 for numerical results.

5.2 Measuring Accuracy in a Numerical Solution

Some of the recent numerical studies of interior-point methods on SDPs measured the amount of accuracy
in a numerical solution by computing ||r5ll2, ||7allz and tr(X Z), the duality gap. In the case of linear
programming, the current iterate (X, Z,y) is in general close to the optimal solution if these three
quantities are sufficiently small. However, this may no longer be true in the case of SDP. Since the
matrix X Z need not be symmetric, let along positive definite, a small duality gap does not necessarily
imply a small [|X Z||;. Tn this paper, we measure the accuracy in (X, Z,y) by computing the residual

svec{X Z+7Z X)/2
R =1 svec (Z + smat (.AT 'y) - C)
b— Asvec(X)
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To relate R to the amount of accuracy in (X, Z,y), we note that X* Z* = 0 and hence

XZ+ZX = XZ+ZX-X*2"-2*X*
(X -X*) Z4+X* (Z-2Z9+(Z2-2") X +2* (X - X*).

Since the left hand side is symmetric, we symmetrize the right hand side to get

X +X*
XZ+ZX=(X-X) S5—+55— (X -X")+ “2

This, and the fact that (X*, Z*,y*) is the exact solution to equations (1.2), imply

VAR S AR A A

X+ X"

(Z-7)+(2-2) =

(T+T)- (X -x)=2R,

Zo, I X@,I 0 7RI X*®:,I 0
where J = 0 T AT and J* = 0 I AT
A 0 0 A 0 0

Note that 7 is the coefficient matrix in equation (3.1). Writing this equation in the form of (3.10), and
assuming that (X, Z) is sufficiently close to (X™*, Z*), we get

1 = &7, 2 |&], 17,
TR 7+ 7T, 170, 1715 12,

We call the ratio in the last expression the normalized residual. This equation suggests that the smaller
the normalized residual, the more accurate the numerical solution. Similarly, the smaller & (T + J™) is,
the more accurate the numerical solution will be. The quantity « (J + J*) appears to play the role of
the condition number for the SDP. In general, we would expect a stable numerical method to reduce the
normalized residual to the order of machine precision, independent of how big & (J + J*) might be.

<K(T+ T ~ k(T 4T

5.3 Numerical Results

We have implemented the AHO method and the TTT methods in matlab and have performed a number
of numerical experiments. We summarize some of the numerical results below. The computations were
done on an Ultra Sparc Station in double precision (¢ & 2x107'9). We tested the following methods:

e The AHO method.

¢ The NT method by choosing B = %% in Algorithms 4.1 and 4.2.

o The HKM method with PT P = Z, without the SVD, as discussed in §4.2.
o The method discussed in §5.1. We will call it the New method.

In our numerical experiments, we also tested Algorithms 4.1 and 4.2 with B = I, which is a variation
of the HKM method with PT P = Z, without the SVD. Our numerical results indicated that these
two variations are compatible in terms of the number of iterations and the amount of accuracy in the
numerical solution. The NT method in our experiments is not identical to the NT method in [23, 24, 27].
However, as we argued at the end of §4.4, we expect both variations to suffer from similar numerical
instability problems,

For comparison, we also implemented the above four methods by solving the corresponding equa-
tion (2.2) with a backward stable dense linear equation solver, with proper re-scaling whenever necessary.
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Nos. oF ITERATIONS

(ryn,m) AHO NT HKM New
(3,10,9) 13 19 28 15
(6,20, 24) 12 18 26 16

NORMALIZED RESIDUALS
(r,n,m) AHO NT HEKM New

(3,10,9) || 7.2x10716 | 1.5x10~1° | 3.3x10713 | 4.8x10~*
(6,20,24) || 5.1x10715 | 1.9x107%° | 9.9x10~!? | 2.3x10~1

(ScarLeEn) ConbDITION NUMBERS
(r,m,m) AHO NT HKM New
(3,10,9) 1.5x 102 3.5x108 4.5%10% 1.1x10°
(6,20,24) || 5.7x10° | 1.7x10° | 1.9x10% | 3.6x10*

Table 5.1: Type-I SDPs, With Block LU Factorization
In all cases, we set the initial guess to be X = Z = I and y = 0. We chose ¢ = 0.25 and 7 = 0.98, and

switched to the Mehrotra predictor-corrector versions as soon as (cf. [3])

fIroll2 [Irall2 —4
+ <107,
1Al 1IXNE 1 Z1lF + (Al [z

We chose the following two types of test problems:

¢ TypeI SDPs. For any given m and n, we generate the following quantities randomly:

~ an n-by-n orthogonal matrix Q*; the m-by-n(n+1)/2 matrix A = (svec(41),- - ,svac(Am))T
and the m-vector y*.

— an integer r in (0,n) and positive diagonal matrices A} and A} with dimensions r-by-r and
(rn — 7)-by-(n — r), respectively.

We then define the SDP by setting
X* = @* diag(AL,0) (@7 , 2" = Q" diag(0,A3) (@) , b= Asvec(X*) and C = Z* + A" y",

It is straightforward to verify that (X*, Z*, y*) is a solution to (1.2). Type-I SDPs tend fo have a
relatively well-conditioned unique solution if r(r +1)/2 < m < rn —r(r — 1)/2.

o Type-II SDPs. We generate the symmetric matrices Ay, <+, Ay, as
. * Uk L;{ T
A = Q ( Ly Vi (Q ) 3
where U € 8™ and Vj € 8" are random symmetric matrices, and L is an (n — r)-by-7 matrix
such that || Lx|lz < || 4kllz = 2(1). The rest of the SDP is generated as in Type-1. With the analysis

given in Alizadeh, Haeberly and Overton [3], it can be shown that Type-If SDPs generally have a
relatively ill-conditioned unique solution if r(r + 1)/2 < m < rn— r(r — 1)/2.
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Nos., OF ITERATIONS

(r,n,m) AHO NT HKM New
(3,10,9) 14 19 23 18
18 20 19

ey
2+

rs O
(6,20,24)

NORMALIZED RESIDUALS
(r,n, m} AHO NT HKM New

(3,10,9) || 9.3x10717 | 1.2x1071° | 3.2x1071! | 5.0x1071°
(6,20,24) || 1.7x1071% | 1.9%x1071° | 4.4x107'% | 1.2x107"°

(ScaLEDp) CoNDITION NUMBERS
(r,n,m) AHO NT HKM New
(3,10,9) 1.5x102 | 1.8x10® | 4.8x10° | 5.1x10?
(6,20,24) | 5.7x10° | 4.2x10° | 53x10° | 5.7x10°

Table 5.2: Type-I SDPs, Without Block LU Factorization

Our analysis in §4.4 indicates that the amount of accuracy in the numerical solution computed by
the TTT methods is related to #(Js). But our choice of S suggested in §4.4 may not be optimal. In the
numerical experiments we computed the condition number as k,(J) = k(D J), where D is a diagonal
matrix chosen so that the rows of ? 7 all have 2-norm 1. Since J is an (m+n(n+1))-by-(m+n(n+1))
matrix, by Lemma 5.1, &, (J) is at most a factor of \/m + n(n + 1) away from the optimal. In our
numerical experiments, we also computed the normalized residual returned from each of the methods,
and the number of iterations it took to achieve it.

Tables 5.1 through 5.4 summarize our results. Table 5.1 shows that for the Type-I SDPs tested,
the AHO method was able to reduce the normalized residual to O(¢), and its corresponding k (J) was
modest. On the other hand, the NT method could only reduce the normalized residual to about 1010,
and its corresponding &, (J) was quite large. The HKM and New methods were more accurate than
the NT method, but less accurate than the AHO method. Among the three TTT methods, the New
method had the smallest x, (7) and took the least number of iterations.

We also solved the problems in Table 5.1 using these four methods by solving (2.2) as dense linear
systems of equations. The results are summarized in Table 5.2. It is interesting to note that the NT
method and the HKM method still failed to reduce the normalized residual to full machine precision.
Since the normalized residuals were still quite small, it is unlikely that this failure is due to non-
convergence of these methods. This suggests that the numerical instability problem with these two
methods is inherent and there might be no way to overcome this problem for these two methods.

Table 5.3 shows that for the Type-II SDPs tested, every one of these methods failed to reduce
the normalized residual to (¢), and the corresponding x {J) or &, (J) was very large for all methods.
Table 5.3 supports our conclusion that the AHO method and the TTT methods could be numerically
unstable if the 7 matrices have large (scaled) condition numbers.

As in Table 5.2, we also solved the problems in Table 5.3 using these four methods by solving (2.2)
as dense linear systems of equations. We summarize the results in Table 5.4. As in Table 5.2, both the
AHO and the New methods were able to reduce the normalized residual to full machine precision, but
the NT and the HKM methods still failed to do so.
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Nos, oF ITERATIONS

(r,n, m) AHO NT HKM New
(3,10,9) 11 16 16 15

(8, 20, 24) i1 14 18 26

NORMALIZED RESIDUALS
(r,n,m) AHO NT HKM New
(3,10,9) 2.3x10~° | 1.5x10~% | 3.6x10~% | 4.8x10°®
(6,20,24) || 1.6x1071° | 1.3x10~® | 1.1x10~"* | 1.8x10~®
(ScarLep) ConNDITION NUMBERS

(r,n,m) AHO NT HKM New
(3,10,9) || 3.6x10'° | 2.2x10'% | 7.0x10" | 7.8x10"
(6,20,24) || 2.5x10' | 8.9x10' | 3.2x10'* | 5.3x10M

Table 5.3: Type-11 SDPs, With Block LU Factorization

6 Conclusions and Future Work

Tn this paper, we analyzed the AHO method in finite precision. We also developed the TTT family
of methods and analyzed them in finite precision. Our results indicate that the AHO method and the
TTT methods could be numerically stable if a (scaled) condition number associated with the coefficient
matrix in (2.2) is well-conditioned, but unstable otherwise. Our analysis also resolves a number of other
computational issues related to these methods.

Our analysis raises a number of questions as well. For example, in his finite precision analysis
of a number of interior-point methods for linear programming and linear complementarity problems,
Wright [29, 30] concluded that these methods are numerically stable under the assumption that the
optimal solution is well-conditioned. In light of our results, it would be interesting to investigate how
these methods behave if the optimal solution is relatively ill-conditioned.

QOur numerical experiments indicate the reason the AHO method appears to be more accurate than
the TTT methods is that the condition number for the AHO method is smaller. It is not clear whether
this is true in general. A related question is how to choose a direction in the TTT family to achieve
best convergence and maximum numerical accuracy.

Finally, the most important question to be answered is whether it is possible to develop interior-point
methods that are as efficient and as robust as existing ones but are always numerically stable.

Acknowledgements. The author thanks Professor Michael Overton of the Courant Institute for at-
tracting his attention to the subject of this paper, for many helpful discussions, and for making available
to him a matlab code of the AHO method and other methods.
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Nos. oF ITERATIONS

(r,n,m) AHO NT HKM New
(3,10,9) 19 23 35 24
(6,20,24) 18 22 21 27

NORMALIZED RESIDUALS
(ryn,m) AHO NT HKM New

(3,10,9) | 6.5%10717 | 1.4x1071° | 1.6x10712 | 3.7x10"¢
(6,20,24) || 1.1x10~1 | 3.3x10~"! | 9.4x107? | 1.3x1071°

(ScaLep) ConDITION NUMBERS
(r,n,m) AHO NT HKM New
(3,10,9) 4.3x1011 | 4.7x1012 | 1.9x10" | 4.4x10"

(6,20,24) | 3.7x10'" | 3.5x10'° | 4.2x10'! | 3.4x16"

Table 5.4: Type-II SDPs, Without Block LU Factorization

Appendix

In this Appendix we provide proofs to the lemmas in §3 and §4.

A  Proofs of Lemmas 3.1 and 4.1

Proof of Lemma 3.1. In equation (3.12), if the matrix A is close to an orthogonal matrix, A=
At 4+ O(e), where A is exactly orthogonal, then (3.12) can be rewritten as

fi(Az)= Al (I+A4) e)= (I +4) (Ala), (A1)
where A= (AN (A+84)~T1=0() and A=(A+84) (af) T _1=0().
Since ||smat(v)||F = ”QJ‘ smat(v) (QT)T“F = ll (Q*)T smat(v) QT“F for all v € 8", it follows that
v — svec (QJr smat(v) (Qf)T) and v — svec ((QT)T smat(v) QT)

are orthogonal linear transformations on Rr(H)/2 With {3.5), the matrix V in (3.3) is computed as
(V) =1 (QT |4 Q) This can be viewed as a matrix-vector product with a nearly orthogonal matrix.
Similar to (A.1), there exists an n(n + 1)/2-by-n(n + 1)/2 perturbation matrix Ay = O(e) such that

fi(V)= (Qf)r smat ((Z + A1) v) QT . (A.2)

The matrix U in (3.3) is computed from fi (V) and A as

0= (1(57552)
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By our model of arithmetic (1.7), every entry in U is computed to full relative accuracy from fl (V) and
A. In other words, fl (U/) satisfies the equation

A7) A+ AA(0) =28(V) +6V, (A.3)
where the perturbation matrix 6V € S™ satisfies
|(67),5| < 0} - | @ (7)) 5] = Oe- loll2)

Furthermore, the solution to equation (3.2) is computed from fi (U) as i(U) = 1 (Cj (0) @T)
Similar to (A.1) and (A.2), fl (U) satisfies

1 (U) = smat ((I + Ay) -svee (QT 1 () (Qf)T)) , (A.4)

where Ay = O(¢) is an n{n + 1)/2-by-n(n + 1)/2 perturbation matrix.
To put all this together, we note that relations (3.6), (A.2) and (A.3) imply

smat (c‘,'1L svec (Q‘i (7)) (Qf) T))
(a0 @) 2+ (@00 (@))_(0-(0 3+520)-0))
- = 2

2
Q' (v) (@)’
2

Qtaev) (o)

—ota@) (o) + ;

=smat((Z + Ay) v)+

svec (QT oV (Qf)T) T
2 {|Ii3

According to (A.2) and (A.3), we have Az = O(¢) for all non-zero vector v. Hence

= smat ((Z + A3) v} , where Aj f Ay +

. T -1
svec (Q‘fﬂ () (@) ) = (g’f) (T + As) v) .
Combining this with (A.4) yields the equation in Lemma 3.1. |
For the proof of Lemma 4.1, we need to introduce some notation. The standard Kronecker product

of any two n X n matrices G and K is G ® K = (gi; K). As is shown in the appendix of [27], there
exists an n(n + 1)/2-by-n? row orthogonal matrix @ such that

G ®, I(:%Q (G@K+K®G)QT forall G and K € R, (A5)
Let vec(G) be the n?-dimensional vector obtained by stacking all the columns of G. Then
00T =7 and svec(H)= Qvec(H) and Q7 Qvec(H)=vec(H) forall H€S" (A.6)

Let P € R¥*% be the permutation matrix such that P vee(G) = vee(GT) for all G € R™*", It is easy
to verify that

P=PT, P(ARA)P=A®A and P vec(H)=vec(H) for HeS". (A7)
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We also need the following result concerning round-off errors in a dot product (see Higham [12, Ch. 3]),
8(a7-y) o7 (y+6v), where |63 <O(9-Isl. (A8)

Proof of Lemma 4.1. Let A = (ay,+--,a,). According to equation (3.12), the i-th column of U A

is computed as (I + &¥7) a;, where |6;U] < O{¢j - |U|. Hence

AT A) = (U+6U)a, -, (U+6U)as) -
By Algorithm 4.3 and equation (A.8), both the (7,7) and (4,1} entries of U A UT are computed as

(8 (UAUT))ij = S (AU Ay (Usk + 6:5Us) , where  |6;U54] < O(e) - [Usel -
k=1
Now we use the above round-off error quantities to define a linear transformation

© svec (4) dof cvee (Z (U + 6:U) 1y, (U + 8,U) @)y, (U + 6,-5Ujk)) — §Vec (U A UT) (A.9)
k=1

for any A = (@, - --,i,) € S*. The n(n +1)/2-by-n(n + 1)/2 matrix © is defined by (A.9) and satisfies
fA((U®,U) svec(A)) = (U @, U + 0) svec(A) .

To bound ©, we choose A > 0 and rewrite (A.9) as

O svec (A) = svec (Z (U + 61U) @1, -, (U + 80 @)y, 65Uk + Y (61U @1+ -, 80U i) U,-k) .
k=1 k=1

Taking absolute value entry-wise, and using the upper bounds on the round-off error quantities, we
immediately get

| svee (4)] < 0(e) - svee (Z (U] @1, -, 10} @)y lUjkl) = 0(e) - (U] 8, |U]) svee (A) .

k=1

Since the last relation holds for all A > 0, we conclude that [0 < O(e) - ([U] ®, [U]).
The last step of Algorithm 4.3 is applying a diagonal matrix D to l({U ®, U) svee(4)). By our
model of arithmetic (1.7), there exists a diagonal perturbation matrix Ay such that

V = (DA, U) svec(A)) =D (Z+ A1) ((U R, U) svec(4))
= D (U®,; U+ 6y) svec(4)) ,

where

0 (T4+A) (URU+0)— (U, U) satisies [0:] < 0(e)- (U], [U]) -

To prove the remaining part of Lemma 4.1, define and partition

ol i
V=a(UT74) =@ 0= | and W=A(A(U714)U")=] :
T iy,

It follows from Algorithm 4.4 that there exist round-off error matrices §;U/ with 16: U2 = O (e -{|Ull2)
such that (U + 8U)%; = a;, and &U with |§;Ulls = O (e -{|Ul}2} such that @7 (U + 8,U) = o for all 1.
Putting all these relations together and simplifying, we get

(U U+ Az) vee (ﬁ?) = vec(A), where [[Azlla=0 (e . liUnﬁ) € RVX (A.10)
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To convert this equation into the form in Lemma 4.1, we apply (Z + P)/2 to it and simplify to get

(I+P) vec (ﬁ;) I4+P
3 = vec(A) — 5

where we have used equation (A.7) and the fact that Ac S B

(ZT+P) vec(ﬁ’) W+ wT r W+ wT
5 = vec — = @' svee —

(Ual) Aq vee (W) | (A.11)

efinition and relation (A.6),

A
fru T

Apply @ to {A.11), and simply the resulting equation with this relation and (A.5) and (A.6) to get,

o N
(U ®s U) svec (.W,_.”;—W._) = SVEC(A) huad Q I_gp Ag vec (W) N
which can be further rewritten as
7 4T Q &2? Ay vee (W) - svec (mw-)
(U &, U)+ As) svec (———%——) =svec(4), Az o 5

(ﬁ? + WT)
svec '—2—-—

To derive an upper bound on Az, we define W* = U1 A U-T ¢ 8", By assumption in Lemma 4.1,
K(U) < 1/4/c. 1t follows that & (U ®, U) < 1/e. Since the backward error in (A.10) is of the order
O (c- |\U||3), it follows from standard perturbation theory (cf. (3.10) and see Demmel (7, Ch. 2]} that

2

vec (V’I?) — vec(W*)

fel
Consequently,
P o~ * T (5w
SVGC(E“ZWK) — svec W+(WMW) - (W W)
2
2
— T
— W-W*) —(W-—-Ww* .
s oo ()], s [ LTI o ee (7))

2

Plugging this into the definition of Aa, we have
1Agllz = O (JAsllz) = O (< U]I3) -

To complete the proof, we note that W in Lemma 4.1 is obtained by symmetrizing W in finite precision.
By our model of arithmetic (1.7), there exists a diagonal perturbation matrix Aq = O{e) such that

— W+ w7
W = (I+ Ay) svec (——-E—_Q—?—V—) .
Hence W satisfies the equation in Lemma 4.1 with

0, % (U, 1)+ As) U+ A U@, U =0 (e-|UIF) . 1
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B Proofs of Lemmas in §4.4

Proof of Lemma 4.2. According to Algorithm 4.1 and (4.17),

_xtezt (}ﬂiﬁT)o(fiﬁ'T)

n n

-
—_ i

(§+E)T (§+E)

n

A(p)

n

ﬂ(ai@) 2#+atr(§2"(§“‘3)

p+ 0 (c- ISl 1Bl 1H])

: (E+E)) .

0 (- 1213)

where we have used Assumption 4.1, With fi(x), r. in (4.3) can be computed as
smat (7,) =l (fi(n) [ - 5?) =p I - £+ B,

where both 7, and E, are diagonal matrices, with |E| < O (e NEl IR |2 | H ][2) I. Tt now follows

from (4.17) and (4.18) that

smat (r.)

pl—Hg (EETRET) = pul-Hg ((§+E)T(§+E))

= B(uI-5%) B -Hp (ETS+SE+ETE)
- smat(fc)-Ec.-—HB(ET§+§E+ETE)

= smat(7.) — Hp (Ec) , Where E.¢

It follows from Assumption 4.1 and the upper bound on E, that Ea =

o= .-,

= |smat (S svec (HB (E )))l

( 2 (HB (Ec))ig’

My Lt ETS+ S E+ETE

OGMﬂﬁmmﬁM)Tmm

F

B;0; )
ﬁz g 7

(G5) eorrer (320
Bi | B e o
B [y A G AT D
= | Ao Bigy CERE
\B;5; * BiG;

F

3 ~2 2~2
B;o; + B; o]

_|(me (g4 8 O (e ISl NE: 17 1)
(¢ +4)°

(B.1)

F

The HKM search direction [11, 13, 18] PT P = Z and the NT direction [23, 24] correspond to B = I
and B = f]"%, respectively. Since (¢ +)? = O(”f}[]g), the expression on the right hand side of (B.1)
is bounded by O (e- VB, | H []2) for these two choices of B. In general, we use (4.7) to bound the right

hand side of (B.1) by

i((3§+3§) 0

(c- IS0 1B e 1)
(¢+ )

516

F
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Proof of Lemma 4.3. We first consider the round-off errors in computing A in (4.6). It follows
from Lemma 4.1 that
~nT
)

14 (4) - 4] < 0(9)- (svec (Iﬁ,] |A4] |E|T) ... svec (|1“é| An] !é]T))T = 0(0)- |- (|

Hence the round-off errors in the computed Schur complement M in (4.6) are bounded by

®s

009 1Al (|| @ |&)" B (7] e |7 "A'i
= 00 ((1’?. Al RT) : ((aﬁ. U'(;zﬂiﬂ;)) © (|R| |41 IEF)))
< o0 (1w )- (3 + ) o (1 141
= 0@ ((|" ad | 5 o (1] 142 7] )

+o@- (57 |7 1 |R]") o (5 & 1451 [A])) -
where we have used (4.7). By Assumption 4.1, we have
57 |B=|(r+ 2 B) BT = ([E1],)

With this estimate, the round-off errors in the computed Schur complement can now bounded by

o (c-taiz & I &) = 0 (e- vt 21, [7];) =0 (e-nat 1, [ (#)7],) -

Tn other words, the computed M can be written as MT+0 (e Il HX tnz ” (Z*) - ) In addition,

it is clear from this analysis that

2

()"

By Assumption 3.4, the backward errors committed by the backward solver to solve (2.5-c) after M
is computed are bounded by O (6 . HMTHg) . Putting all these errors together, we arrive at Lemma 4.3. |

|t], <tz |

2

Proof of Lemma 4.4. It is obvious that terms in the second row of §7s in equation (4.25) are
bounded by (¢ (1 + ||A]l2)). In the following we will derive upper bounds on the terms in the second
and third rows that do not depend on B.

We first consider the third row of §7s. With arguments similar to those in the proof of Lemma 4.3,

-1
we can bound all the terms in the (3, 3) and (3, 2) blocks of §Js by O (6 -[lAl17 ”Xfllz (Z’r) ) and
2

-1
0 (e - 1All, "X t“z (Z*) 2), respectively. To bound the round-off errors in the (3, 1) block, rewrite

£3,1£ — .A-l- £3‘1 68 = (.A + 51.A) ((E?)—l 4 @2) E— .A+ ,C3,1 6&

A ((gf) e I) + A€+ 614 ((5*) y 02) £+ La1 66, (B2)
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By definitions (4.17), (4.18) and (4.22), we have

@) ¢ = (B3 F7)e. (1277 (5 B)ou (1)
- (o) (80.5) (R0 )" (7018)(F. 1)

- (o). (5 057 (10.7) - (5 B ). (57 7 B
= (2‘1 (£+ E)T) ®s (f:*‘ (£+ E)T)
= T+ (i"‘ ET) ®s (2"1 (‘2 + E)T) +I®, (Si“l ET) .

By Assumption 4.1 and with the last expression, we bound the first term in (B.2) as

A ((5*)"1 5—1)

0 (1All2 £, 1211z) = 0 (e IMAll2 1 Blla NE 1 |57],)
0 (et (111 ()™ e 2 (1) )7
By definition (4.18) and Lemma 4.1, all the other terms in (B.2) are bounded by

0 (€) - | A - (IEIT ®s lleT) (B S ®, B! E)ml ((B“l ®s B) l®|)

= 0O(e)|A]- (12“1 l’ilT ®s |§’1 EiT) I® for some O =1 ([|fI[[%) .

IA

2

VAN

-1
Similar to the proof of Lemma 4.3, this bound can be simplified to O (e HAll, 12 02 1l (Z*) “2)
Adding it all up, the terms in the third row of 67s are bounded by

0 (- (L Wl (1 +120R) (1 (e o+ 1 (2) 1))
= o (e (It 025 (0 () I+ 1(2) 7 1R)) - (3)
Now we consider the terms in the first row of §7s. A bound on 6 is given in (4.24). Since
§=8:+852 8 =(B" @@qu)) :
it follows from (4.24) that the term in the (1,1) block of §7s satisfies
|s-1ee|, = |57 ss 04, < f1@sll, = 0(e).-
For the (1,2) block, we use definitions (4.17), (4.18) and (4.22) to get
Fi-F = (BSE)e, (B2 R) - (B H x") o, (B i)
- (BER)e (5787 (848) )~ (B (S+5) F)e. (57 BT
BY

R)o, (B & E A7) - (BETR)e, (B A7) . (B.4)
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- =1
Since S > S = (¢ + ¢)? - (B 2) R (B E) , we can scale and bound the first term in (B.4) as

Bl || E]lF 1H-T|iF
(¢ + ¥)?

< 0 ( (1t + 121]s) (u (XN e+ 11 (21) ™ uz)

|s (BER) &, (57187 E H77)|, <
1\
)
where we have used (4.17) and the fact that ¢ = Q([|H[lz) and ¥ = Q(]|R|]2). We also chose to write
the bound in a form similar to {B.3). For the second term in (B.4), we have

|s7 (8 B7 &) @, (B E7)|, < |57 (B oo B7)], - 1BIe 1Bl 1T (B5)

To see the diagonal entries of S}l (B ®, B“l) more clearly, we apply it to the vector e in §1.4:

B, b
- - 1 Bi B
S,‘Fl (B Qs B 1) e = WSVEC “ﬁm

B;o; B0y

Similar to (B.1), the entries in the last matrix is bounded by 1/(¢ + )% for the HKM search direction
PT P = Z and the NT direction, and bounded by & (ﬁ) /(¢ -+ 1)* in general. Combine this with (4.17)
and (B.5), we obtain a bound on the second term in (B.4) similar to that on the first term.

|5t (BET &) o, (87 BT)|, <0 ( - (8) (151 +012102) (1 () a0 (21) 1) ) .

The last term of §7s to be bounded is S™18,F T, 1t follows from Lemma 4.1 that

B <o (BE %)) o (B 2! |&]) = 0(9)- 85 (|E|®s

E) .
Hence an analysis similar to above yields nS"1§2.7-" t Hz = O(¢). Adding up bounds for all three rows of
6.Js, we arrive at the equation in Lemma 4.4.
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