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Abstract

During the recent decades there was an enormous amount of activity related to the
construction and analysis of modern algorithms for the approximate solution of nonlinear
hyperbolic conservation laws and related problems.

To present some aspects of this successful activity, we discuss the analytical tools which
are used in the development of convergence theories for these algorithms. These include
classical compactness arguments (based on BV a priori estimates), the use of compensated
compactness arguments (based on H�1-compact entropy production), measure valued so-
lutions (measured by their negative entropy production), and �nally, we highlight the most
recent addition to this bag of analytical tools { the use of averaging lemmas which yield new
compactness and regularity results for nonlinear conservation laws and related equations.

We demonstrate how these analytical tools are used in the convergence analysis of ap-
proximate solutions for hyperbolic conservation laws and related equations. Our discussion
includes examples of Total Variation Diminishing (TVD) �nite-di�erence schemes; error
estimates derived from the one-sided stability of Godunov-type methods for convex con-
servation laws (and their multidimensional analogue { viscosity solutions of demi-concave
Hamilton-Jacobi equations); we outline, in the one-dimensional case, the convergence proof
of �nite-element streamline-di�usion and spectral viscosity schemes based on the div-curl
lemma; we also address the questions of convergence and error estimates for multidimen-
sional �nite-volume schemes on non-rectangular grids; and �nally, we indicate the conver-
gence of approximate solutions with underlying kinetic formulation, e.g., �nite-volume and
relaxation schemes, once their regularizing e�ect is quanti�ed in terms of the averaging
lemma.
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1 Introduction

The construction, analysis and implementation of approximate solutions to nonlinear conser-
vation laws and related equations were the major focus of an enormous amount of activity
in recent decades. Modern algorithms were developed for the accurate computation of shock
discontinuities, slip lines, and other similar phenomena which could be characterized by spon-
taneous evolution of change in scales. Such phenomena pose a considerable computational
challenge, which is answered, at least partially, by these newly constructed algorithms. New
modern algorithms were devised, that achieve one or more of the desirable properties of high-
resolution, e�ciency, stability | in particular, lack of spurious oscillations, etc. The impact
of these new algorithms ranges from the original impetus in the �eld of Computational Fluid
Dynamics (CFD), to the �elds oil recovery, moving fronts, image processing,... [74], [137],
[131], [1].

We survey a variety of these algorithms for the approximate solution of nonlinear conserva-
tion laws. The presentation is neither comprehensive nor complete | the scope is too wide for
the present framework1. Instead, we focus our attention of the analysis part { more precisely,
we discuss the analytical tools which are used to study the stability and convergence of these
modern algorithms. We use these analytical issues as our 'touring guide' to provide a readers'
digest on the relevant approximate methods, while studying there convergence properties.

Some general references are in order. The theory of hyperbolic conservation laws is
covered in [94], [173],[155], [147]. For the theory of their numerical approximation consult
[102],[57],[58],[157]. We are concerned with analytical tools which are used in the convergence
theories of such numerical approximations. The monograph [49] could be consulted on recent
development regarding weak convergence. The reviews of [167], [122, 123] are recommended
references for the theory of compensated compactness, and [39, 40],[17] deal with applications
to conservation laws and their numerical approximations. Measure-valued solutions in the
context of nonlinear conservation laws were introduced in [41]. The articles [61], [52], [44]
prove the averaging lemma, and [110],[111],[77] contain applications in the context of kinetic
formulation for nonlinear conservation laws and related equations.

Acknowledgments. I thank R. Spigler and S. Venakides for the hospitality during the 1996
Venice conference on "Recent Advances in Partial Di�erential equations and Applications"
honoring Peter Lax and Louis Nirenberg on their 70th birthday. The initial step of writing
this article was taken few years ago, following a lecture delivered at the University di Roma
"La Sapienza", and I thank I. Capuzzo Dolcetta and M. Falcone for their invitation.
Research was supported by ONR Contract N00014-91-J-1076 and NSF Grant DMS91-03104.

2 Hyperbolic Conservation Laws

2.1 A very brief overview | m equations in d spatial dimensions

The general set-up consists of m equations in d spatial dimensions

@t�+rx �A(�) = 0; (t; x) 2 R+ �Rd: (2.1)

Here, A(�) := (A1(�); : : : ; Ad(�)) is the d-dimensional ux, and � := (�1(t; x); : : : ; �m(t; x)) is
the unknown m-vector subject to initial conditions �(0; x) = �0(x).

1Among the methods omitted from our discussion are Dafermos' polygonal method, [34], the particle method,
[171], relaxation algorithms, [173], [19],[82],[124], and Boltzmann schemes, [38], [133],[136].
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The basic facts concerning such nonlinear hyperbolic systems are, consult [94],[112], [35],[155],[?],[147],

� The evolution of spontaneous shock discontinuities which requires weak (distributional)
solutions of (2.1);

� The existence of possibly in�nitely many weak solutions of (2.1);

� To single out a unique `physically relevant' weak solution of (2.1), we seek a solution,
� = �(t; x), which can be realized as a viscosity limit solution, � = lim �",

@t�
" +rx �A(�") = "rx � (Qrx�

"); "Q > 0; (2.2)

� The entropy condition. The notion of a viscosity limit solution is intimately related to
the notion of an entropy solution, �, which requires that for all convex entropy functions,
�(�), there holds, [93], [88, x5]

@t�(�) +rx � F (�) � 0: (2.3)

A scalar function, �(�), is an entropy function associated with (2.1), if its Hessian, �00(�),
symmetrizes the spatial Jacobians, A0j(�),

�00(�)A0j(�) = A0j(�)
>�00(�); j = 1; : : : ; d:

It follows that in this case there exists an entropy ux, F (�) := (F1(�); : : : ; Fd(�)), which is
determined by the compatibility relations,

�0(�)>A0j(�) = F 0j(�)
>; j = 1; : : : ; d: (2.4)

The basic questions regarding the existence, uniqueness and stability of entropy solutions
for general systems are open. Instead, the present trend seems to concentrate on special
systems with additional properties which enable to answer the questions of existence, stability,
large time behavior, etc. One-dimensional 2�2 systems is a notable example for such systems:
their properties can be analyzed in view of the existence of Riemann invariants and a family
of entropy functions, [55], [94, x6], [155], [39, 40]. The system of m � 2 chromatographic
equations, [77], is another example for such systems.

The di�culty of analyzing general systems of conservation laws is demonstrated by the
following negative result due to Temple, [170], which states that already for systems withm � 2
equations, there exists no metric, D(�; �), such that the problem (2.1), (2.3) is contractive, i.e.,

6 9D : D(�1(t; �); �2(t; �)) � D(�1(0; �); �2(0; �)); 0 � t � T; (m � 2): (2.5)

In this context we state the following.

Theorem 2.1 Assume the system (2.1) is endowed with a one-parameter family of entropy
pairs, (�(�; c); F (�; c)); c 2 Rm, satisfying the symmetry property

�(�; c) = �(c; �); F (�; c) = F (c; �): (2.6)

Let �1; �2 be two entropy solutions of (2.1). Then the following a priori estimate holdsZ
x
�(�1(t; x); �2(t; x))dx �

Z
x
�(�10(x); �

2
0(x))dx: (2.7)
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Couple of remarks is is order.

1. Theorem 2.1 seems to circumvent the negative statement of (2.5). This is done by
replacing the metric D(�; �), with the weaker topology induced by a family of convex
entropies, �(�; �). Many physically relevant systems are endowed with at least one convex
entropy function ({ which in turn, is linked to the hyperbolic character of these systems,
[60],[51],[119]). Systems with \rich" families of entropies like those required in Theorem
2.1 are rare, however, consult [146]. The instructive (yet exceptional...) scalar case is
dealt in x2.2. If we relax the contractivity requirement, then we �nd a uniqueness theory
for one-dimensional systems which was recently developed by Bressan and his co-workers,
[11]-[14]; Bressan's theory is based on the L1-stability (rather than contractivity) of the
entropy solution operator of one-dimensional systems.

2. Theorem 2.1 is based on the observation that the symmetry property (2.6) is the key
ingredient for Kru�zkov's penetrating ideas in [88], which extends his scalar arguments
into the case of general systems. I have not found a written reference of this extension
(though it seems to be part of the 'folklore' familiar to some, [36],[148]). For completeness
we therefore turn to

Proof of Theorem 2.1(Sketch). �1(t; x) being an entropy solution of (2.1) satis�es the entropy
inequality (2.3). We employ the latter with the entropy pair, (�(�1; c); F (�1; c)) parameterized
with c = �2(�; y). This tells us that �1(t; x) satis�es

@t�(�
1(t; x); �2(�; y)) +rx � F (�1(t; x); �2(�; y))� 0: (2.8)

Let '� denotes a symmetric C10 unit mass molli�er which converges to Dirac mass in R as
� # 0; set ��(t� �; x� y) := '�(

t��
2 )

Q
j '�(

xj�yj
2 ) as an approximate Dirac mass in R+ �Rd.

'Multiplication' of the entropy inequality (2.8) by ��(t� �; x� y) yields

@t(���(�
1; �2)) +rx � (��F (�1; �2)) � (@t��)�(�

1; �2) + (rx��) � F (�1; �2): (2.9)

A dual manipulation { this time with (�; y) as the primary integration variables of �2(�; y) and
(t; x) parameterizing c = �1(t; x), yields

@� (���(�
2; �1)) +ry � (��F (�2; �1)) � (@���)�(�

2; �1) + (ry��) � F (�2; �1): (2.10)

We now add the last two inequalities: by the symmetry property (2.1), the sum of the right-
hand sides of (2.9) and (2.10) vanishes, whereas by sending � to zero, the sum of the left-hand
sides of (2.9) and (2.10) amounts to

@t�(�
1(t; x); �2(t; x)) +rx � F (�1(t; x); �2(t; x)) � 0:

The result follows by spatial integration.

2.2 Scalar conservation laws (m = 1; d � 1)

The family of admissible entropies in the scalar case consists of all convex functions, and the
envelope of this family leads to Kru�zkov's entropy pairs [88]

�(�; c) = j�� cj; F (�; c) = sgn(�� c)(A(�)�A(c)); c 2 R: (2.11)

Theorem 2.1 applies in this case and (2.7) now reads
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� L1-contraction. If �1; �2 are two entropy solutions of the scalar conservation law (2.1),
then

k�2(t; �)� �1(t; �)kL1(x) � k�20(�)� �10(�)kL1(x): (2.12)

Thus, the entropy solution operator associated with scalar conservation laws is L1-contractive
({ or non-expansive to be exact), and hence, by the Crandall-Tartar lemma [32], it is also
monotone

�20(�) � �10(�) =) �2(t; �) � �1(t; �): (2.13)

Early constructions of approximate solutions for scalar conservation laws, most notably |
�nite-di�erence approximations, utilized this monotonicity property to construct convergent
schemes, [30], [141]. Monotone approximations are limited, however, to �rst-order accuracy
[71]. (We shall say more on the issue of accuracy in x3.1). At this stage we note that the lim-
itation of �rst-order accuracy for monotone approximations, can be avoided if L1-contractive
solutions are replaced with (the weaker) requirement of bounded variation solutions.

� TV bound. The solution operator associated with (2.1) is translation invariant. Compar-
ing the scalar entropy solution, �(t; �), with its translate, �(t; �+�x), the L1-contraction
statement in (2.12) yields the TV bound, [172],

k�(t; �)kBV � k�0(�)kBV ; k�(t; �)kBV := sup
�x6=0

k�(t; �+�x)� �(t; �)kL1

�x
: (2.14)

Construction of scalar entropy solutions by TV-bounded approximations were used in the
pioneering works of Ol�einik [128], Vol'pert [172], Kru�zkov [88] and Crandall [28]. In the one-
dimensional case, the TVD property (2.14) enables to construct convergent di�erence schemes
with high-order (> 1) resolution; Harten initiated the construction of high-resolution TVD
schemes in [69], following the earlier works [6], [98]. A whole generation of TVD schemes was
then developed during the beginning of the '80s; some aspects of these developments can be
found in x3.2-x3.4.

2.3 One dimensional systems (m � 1; d = 1)

We focus our attention on one-dimensional hyperbolic systems governed by

@t�+ @xA(�) = 0; (t; x) 2 R+ �R; (2.15)

and subject to initial condition, �(0; x) = �0(x). The hyperbolicity of the system (2.15) is un-
derstood in the sense that its Jacobian, A0(�), has a complete real eigensystem, (ak(�); rk(�)); k =
1; : : : ; m. For example, the existence of a convex entropy function guarantees the symmetry of
A0(�) (| w.r.t. �00(�)), and hence the complete real eigensystem. For most of our discussion
we shall assume the stronger strict hyperbolicity, i.e, distinct real eigenvalues, ak(�) 6= aj(�).

A fundamental building block for the construction of approximate solutions in the one-
dimensional case is the solution of Riemann's problem.

2.3.1 Riemann's problem

Here one seeks a weak solution of (2.15) subject to the piecewise constant initial data

�(x; 0) =

�
�`; x < 0
�r; x > 0:

(2.16)
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The solution is composed of m simple waves, each of which is associated with one (right-
)eigenpair, (ak(�); rk(�)); 1 � k � m. There are three types of such waves: if the k-th �eld is
genuinely nonlinear in the sense that rk � r�ak 6= 0, these are either k-shock or k-rarefaction
waves; or, if the k-th �eld is linearly degenerate in the sense that rk � r�ak � 0, this is a k-th
contact wave.

These three simple waves are centered, depending on � = x
t (which is to be expected from

the dilation invariance of (2.15),(2.16)). The structure of these three centered waves is as
follows:

� A k-shock discontinuity of the form

�(�) =

�
�`; � < s

�r; � > s;

here s denotes the shock speed which is determined by a Rankine-Hugoniot relation so
that ak(�`) > s > ak(�r).

� A k-rarefaction wave, �(�), which is directed along the corresponding k-th eigenvector,
_�(�) = rk(�(�)). Here rk is the normalized k-eigenvector, rk � rak � 1 so that the gap
between ak(�`) < ak(�r) is �lled with a fan of the form

ak(�(�)) =

8<
:

ak(�`); � < ak(�`)
�; ak(�`) < � < ak(�r)
ak(�r); ak(�r) < �

� A k-contact discontinuity of the form

�(�) =

�
�`; � < s
�r; � > s

where s denotes the shock speed which is determined by a Rankine-Hugoniot relation so
that ak(�`) = s = ak(�r).

We are concerned with admissible systems | systems which consist of either genuinely non-
linear or linearly degenerate �elds. We refer to [92] for the full story which concludes with the
celebrated

Theorem 2.2 (Lax solution of Riemann's problem) The strictly hyperbolic admissible
system (2.15), subject to Riemann initial data (2.16) with �` � �r su�ciently small, admits a
weak entropy solution, which consists of shock- rarefaction- and contact-waves.

For a detailed account on the solution of Riemann problem consult [16]. An extension to
a generalized Riemann problem subject to piecewise-linear initial data can be found in [5],
[99]. In this context we also mention the approximate Riemann solvers, which became useful
computational alternatives to Lax's construction. Roe introduced in [138] a linearized Riemann
solver, which resolves jumps discontinuities solely in terms of shock waves. Roe's solver has
the computational advantage of sharp resolution (at least when there is one dominant wave
per computational cell); it may lead, however, to unstable shocks. Osher and Solomon in
[130] used, instead, an approximate Riemann solver based solely on rarefaction fans; one then
achieves stability at the expense of deteriorated resolution of shock discontinuities.
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2.3.2 Godunov, Lax-Friedrichs and Glimm schemes

We let ��x(t; x) be the entropy solution in the slab tn � t < t + �t, subject to piecewise
constant data ��x(t = tn; x) =

P
�n���(x). Here � denotes the usual indicator function,

��(x) := 1fjx���xj��x=2g. Observe that in each slab, ��x(t; x) consists of successive noninter-
acting Riemann solutions, at least for a su�ciently small time interval �t, for which the CFL
condition, �t=�xmax jak(�)j � 1

2 is met. In order to realize the solution in the next time level,
tn+1 = tn + �t, it is extended with a jump discontinuity across the line tn+1, by projecting
it back into the �nite-dimensional space of piecewise constants. Di�erent projections yield
di�erent schemes. We recall the basic three.

Godunov Scheme. Godunov scheme [59] sets

��x(tn+1; x) =
X
�

��n+1� ��(x);

where ��n+1� stands for the cell-average,

��n+1� :=
1

�x

Z
x
��x(tn+1 � 0; x)��(x)dx;

which could be explicitly evaluated in terms of the ux of Riemann solution across the
cell interfaces at x�� 1

2

,

��n+1� = ��n� �
�t

�x

n
A(��x(tn+

1

2 ; x�+ 1
2

)�A(��x(tn+ 1

2 ; x�� 1
2

)
o
: (2.17)

Godunov scheme had a profound impact on the �eld of Computational Fluid Dynamics.
His scheme became the forerunner for a large class of upwind �nite-volume methods which are
evolved in terms of (exact or approximate) Riemann solvers. In my view, the most important
aspect of what Richtmyer & Morton describe as Godunov's "ingenious method" ([140, p.
338]), lies in its global point of view: one does not simply evolve discrete pointvalues f�n�g,
but instead, one evolves a globally de�ned solution, ��x(t; x), which is realized in terms of its
discrete averages, f��n�g.

Lax-Friedrichs Scheme. If the piecewise constant projection is carried out over alternating
staggered grids, ��n+1

�+ 1

2

:= 1
�x

R
x �

�x(tn+1�0; x)��+ 1

2

(x)dx, then one e�ectively integrates

'over the Riemann fan' which is centered at (x�+ 1
2

; tn). This recovers the Lax-Friedrichs

(LxF) scheme, [91], with an explicit recursion formula for the evolution of its cell-averages
which reads

��n+1
�+ 1

2

=
��n� + ��n�+1

2
� �t

�x

n
A(��n�+1)�A(��n� )

o
: (2.18)

The Lax-Friedrichs scheme had a profound impact on the construction and analysis of
approximate methods for time-dependent problems, both linear problems [50] and nonlinear
systems [91]. The Lax-Friedrichs scheme was and still is the stable, all purpose benchmark for
approximate solution of nonlinear systems.

Both Godunov and Lax-Friedrichs schemes realize the exact solution operator in terms of
its �nite-dimensional cell-averaging projection. This explains the versatility of these schemes,
and at the same time, it indicates their limited resolution due to the fact that waves of di�erent
families that are averaged together at each computational cell.
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Glimm Scheme. Rather than averaging, Glimm's scheme, [54], keeps its sharp resolution by
randomly sampling the evolving Riemann waves,

��x(tn+1; x) =
X
�

��x(tn+1 � 0; x�+ 1

2

+ rn�x)��+ 1

2

(x):

This de�nes the Glimm's approximate solution, ��x(t; x), depending on the mesh pa-
rameters �x � ��t, and on the set of random variable frng, uniformly distributed in
[�1

2 ;
1
2 ]. In its deterministic version, Liu [113] employs equidistributed rather than a

random sequence of numbers frng.
Glimm solution, ��x(t; x), was then used to construct a solution for one-dimensional ad-

missible systems of conservation laws. Glimm's celebrated theorem, [54], is still serving today
as the cornerstone for existence theorems which are concerned with general one-dimensional
systems, e.g. [113],[20],[144].

Theorem 2.3 (Existence in the large) . There exists a weak entropy solution, �(t; �) 2
L1[[0; T ]; BV \ L1(Rx)], of the strictly hyperbolic system (2.15), subject to initial conditions
with su�ciently small variation, k�0(�)kBV\L1(Rx) � �.

Glimm's scheme has the advantage of retaining sharp resolution, since in each computa-
tional cell, the local Riemann solution is realized by a randomly chosen 'physical' Riemann
wave. Glimm's scheme was turned into a computational tool known as the Random Choice
Method (RCM) in [22], and it serves as the building block inside the front tracking method of
Glimm and his co-workers, [56], [21].

2.4 Multidimensional systems (m > 1; d > 1)

Very little rigor is known on m conservation laws in d spatial dimensions once (m� 1)(d� 1)
becomes positive, i.e., general multidimensional systems. We address few major achievements.

Short time existence. For Hs-initial data �0, with s >
d
2 , an H

s-solution exists for a time
interval [0; T ], with T = T (k�0kHs), consult e.g, [83],[78, x5.3].

Short time existence { piecewise analytic data. An existence result conjectured by Richt-
myer was proved by Harabetian in terms of a Cauchy-Kowalewski type existence result
[67].

Short time stability { piecewise smooth shock data. Existence for piecewise smooth ini-
tial data where smoothness regions are separated by shock discontinuities was studied
in [117],[106].

Riemann problem. Already in the d = 2-dimensional case, the collection of simple waves
and their composed interaction in the construction of Riemann solution ({ subject to
piecewise constant initial data), is considerably more complicated than in the one-
dimensional setup. We refer to the recent book [33] for a detailed discussion.

Compressible Euler equations. These system of m = 5 equations governing the evolution
of density, 3-vector of momentum and Energy in d = 3-space variables was { and still
is, the prime target for further developments in our understanding of general hyperbolic
conservation laws. We refer to Majda, [117], for a de�nitive summary of this aspect.
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3 Finite Di�erence Methods { TVD Schemes

We begin by covering the space and time variables with a discrete grid: it consists of time-
steps of size �t and rectangular spatial cells of size �x := (�x1; : : : ;�xd). Let C� denotes the
cell which is centered around the gridpoint x� = ��x := (�1�x1; : : : ; �d�xd), and let f�n�g
denote the gridfunction associated with this cell at time tn = n�t. The gridfunction f�n�g may
represent approximate gridvalues, �(tn; x�), or approximate cell averages, ��(tn; x�) (as in the
Godunov and LxF schemes), or a combination of higher moments, e.g., [23].

To construct a �nite di�erence approximation of the conservation law (2.1), one introduce
a discrete numerical ux, H(�n) := (H1(�

n); : : : ; Hd(�
n)), where Hj(�

n) = Hj(�
n
��p; : : : ; �

n
�+q)

is an approximation to the Aj(�
n) ux across the interface separating the cell C� and its

neighboring cell on the xj 's direction, C�+ej . Next, exact derivatives in (2.1) are replaced by
divided di�erences: the time-derivative is replaced with forward time di�erence, and spatial
derivatives are replaced by spatial divided di�erences expressed in terms ofD+xj�� := (��+ej�
��)=�xj: We arrive at the �nite-di�erence scheme of the form

�n+1� = �n� ��t
dX

j=1

D+xjHj(�
n
��p; : : : ; �

n
�+q): (3.1)

The essential feature of the di�erence schemes (3.1) is their conservation form: perfect
derivatives in (2.1) are replaced here by 'perfect di�erences'. It implies that the change in
mass over any spatial domain 
,

P
f�jx�2
g

�n+1� jC� j�
P
f�jx�2
g

�n� jC� j, depends solely on the
discrete ux across the boundaries of that domain. This is a discrete analogue for the notion
of a weak solution of (2.1). In their seminal paper [96], Lax & Wendro� introduced the notion
of conservative schemes, and prove that their strong limit solutions are indeed weak solutions
of (2.1).

Theorem 3.1 (Lax & Wendro� [96]) Consider the conservative di�erence scheme (3.1),
with consistent numerical ux so that Hj(�; : : :; �) = Aj(�). Let �t # 0 with �xed grid-ratios
�j := �t

�xj
� Constj , and let ��t = f�n�g denote the corresponding solution (parameterized

w.r.t. the vanishing grid-size). Assume that ��t converges strongly, s lim ��t(tn; x�) = �(t; x),
then �(x; t) is a weak solution of the conservation law (2.1).

The Lax-Wendro� theorem plays a fundamental role in the development of the so called
'shock capturing' methods. Instead of tracking jump discontinuities ({ by evolving the smooth
pieces of the approximate solution on both sides of such discontinuities), conservative schemes
capture a discretized version of shock discontinuities. Equipped with the Lax-Wendro� the-
orem, it remains to prove strong convergence, which leads us to discuss the compactness of
f�n�g.

3.1 Compactness arguments (m = d = 1)

We deal with scalar gridfunctions, f�n�g, de�ned on the one-dimensional Cartesian grid x� :=
��x; tn := n�t with �xed mesh ratio � := �t

�x . The total variation of such gridfunction
at time-level tn is given by

P
� j��n�+ 1

2

j, where ��n
�+ 1

2

:= �n�+1 � �n� . It is said to be total-

variation-diminishing (TVD) if X
�

j��n
�+ 1

2

j �
X
�

j��0
�+ 1

2

j: (3.2)
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Clearly, the TVD condition (3.2) is the discrete analogue of the scalar TV-bound (2.14).
Approximate solutions of di�erence schemes which respect the TVD property (3.2), share the
following desirable properties:

� Convergence { by Helly's compactness argument, the piecewise-constant approximate
solution, ��x(tn; x) =

P
� �

n
���(x), converges strongly to a limit function, �(tn; x) as we

re�ne the grid, �x # 0. This together with equicontinuity in time and the Lax-Wendro�
theorem, yield a weak solution, �(t; x), of the conservation law (2.1).

� Spurious oscillations { are excluded by the TVD condition (2.14).

� Accuracy { is not restricted to the �rst-order limitation of monotone schemes. To be more
precise, let us use ��t(t; x) to denote a global realization (say { piecewise polynomial
interpolant) of the approximate solution �n� � ��t(tn; x�). The truncation error of the
di�erence scheme is the amount by which the approximate solution, ��t(t; x), fails to
satisfy the conservation laws (2.1). The di�erence scheme is �-order accurate if its
truncation error is, namely,

k@t��t +rx �A(��t)k = O((�t)�): (3.3)

(Typically, a strong norm k � k is used which is appropriate to the problem; in general,
however, accuracy is indeed a norm-dependent quantity). Consider for example, mono-
tone di�erence schemes. Monotone schemes are characterized by the fact that �n+1� is
an increasing function of the preceding gridvalues which participate in its stencil (3.1),
�n��p; : : : ; �

n
�+q (| so that the monotonicity property (2.13) holds) . A classical result

of Harten, Hyman & Lax [71] states that monotone schemes are at most �rst-order ac-
curate. TVD schemes, however, are not restricted to this �rst-order accuracy limitation
(at least in the one-dimensional case2). We demonstrate this point in the context of
second-order TVD di�erence schemes.

3.2 TVD di�erence schemes

We follow the presentation in [132]. The starting point is the viscosity regularization (2.2) with
vanishing viscosity of order " = �x=2� (recall that � denotes the �xed mesh-ratio, �t=�x),

@t�+ @xA(�) =
�x

2�
@x(Q@x�): (3.4)

We discretize (3.4) with the help of

(i) An approximate ux, ~An
� = ~A(�n��p+1; : : : ; ; �

n
� ; : : : ; �

n
�+p�1) � A(�n� );

(ii) A numerical viscosity coe�cient, Qn
�+ 1

2

= Q(�n��p+1; : : : ; �
n
�+p).

These discrete quantities are used to replace the temporal and spatial derivatives in (3.4) by
appropriate forward and centered divided di�erences. The resulting �nite di�erence method
reads

�n+1� = �n� �
�

2

n
~An
�+1 � ~An

��1

o
+

1

2

n
Qn
�+ 1

2

��n
�+ 1

2

�Qn
�� 1

2

��n
�� 1

2

o
: (3.5)

2Consult [64], regarding the �rst-order accuracy limitation for multidimensional d > 1 TVD schemes. This
limitation is linked to the lack of a 'proper' isotropic de�nition for the total-variation of multidimensional
gridfunctions.
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Observe that (3.5) can be put into conservation form (3.1), in terms of the numerical ux

H�+ 1

2

(�n) =
1

2
( ~An

�+1 +
~An
� )�

1

2�
Qn
�+ 1

2

��n
�+ 1

2

:

Also, the stencil on the right of (3.5) occupies the (2p+1) neighboring gridvalues, �n��p; : : : ; �
n
�+p.

Thus, (3.5) is a (2p+ 1)-points conservative di�erence-scheme. Harten in [69], was the �rst to
identify a useful su�cient criterion for the TVD property for such scalar di�erence schemes.
Harten's criterion, in its reformulation from [161], states that the di�erence scheme (3.5) is
TVD provided it contains `enough viscosity' in the sense that

�

������
� ~An

�+ 1
2

��n
�+ 1

2

������ � Qn
�+ 1

2

� 1: (3.6)

We distinguish between two types of TVD schemes, depending on the size of their stencils.

3.2.1 Three-point schemes

Three-point schemes (p = 1) are the simplest ones { their stencil on the right of (3.5) occupies
the three neighboring gridvalues, �n��1; �

n
� ; �

n
�+1. In this case, ~An

� � A(�n�), so that three-point
schemes take the form

�n+1� = �n� �
�

2

n
A(�n�+1)� A(�n��1

o
) +

1

2

n
Qn
�+ 1

2

��n
�+ 1

2

�Qn
�� 1

2

��n
�� 1

2

o
: (3.7)

Thus, three-point schemes are identi�ed solely by their numerical viscosity coe�cient, Qn
�+ 1

2

=

Q(�n� ; �
n
�+1), which characterize the TVD condition (corresponding to (3.6))

�jan
�+ 1

2

j � Qn
�+ 1

2

� 1; an
�+ 1

2

:=
�An

�+ 1
2

��n
�+ 1

2

: (3.8)

The schemes of Roe [138], Godunov [59], and Engquist-Osher (EO) [46], are canonical examples
of upwind schemes, associated with (increasing amounts of) numerical viscosity coe�cients,
which are given by,

QRoe
�+ 1

2

= �jan
�+ 1

2

j;

QGodunov
�+ 1

2

= � max
�2C

�+1
2

hA(�n�+1)� 2A(�) +A(�n� )

��n
�+ 1

2

i
;

QEO
�+ 1

2

= �
1

��n
�+ 1

2

Z �n�+1

�n�

jA0(�)jd�:

The viscosity coe�cients of the three upwind schemes are the same, Qn
�+ 1

2

= �jan
�+ 1

2

j,
except for their di�erent treatment of sonic points (where a(�n� ) � a(�n�+1) < 0). The Lax-
Friedrichs (LxF) scheme (2.18) is the canonical central scheme. It has a larger numerical
viscosity coe�cient QLxF

�+ 1

2

� 1.

All the three-point TVD schemes are limited to �rst-order accuracy. Indeed, condition
(3.8) is in fact necessary for the TVD property of three-point schemes, [160], and hence
it excludes numerical viscosity associated with the second-order Lax-Wendro� scheme, [96],
QLW
�+ 1

2

= �2(an
�+ 1

2

)2. Therefore, scalar TVD schemes with more than �rst-order accuracy re-

quire at least �ve-point stencils.



Approximate Solutions of Nonlinear Conservation Laws 13

3.2.2 Five-point schemes

Following the inuential works of Boris & Book [6], van Leer [98], Harten [69], Osher [129],
Roe [138] and others, many authors have constructed second order TVD schemes, using �ve-
point ({ or wider) stencils. For a more complete account of these works we refer to the recent
books by LeVeque, [102], and Godlewski & Raviart, [57]. A large number of these schemes
were constructed as second-order upgraded versions of the basic three-point upwind schemes.
The FCT scheme of Boris & Book, [6], van Leer's MUSCL scheme [98], and the ULTIMATE
scheme of Harten, [69], are prototype for this trend.

We quote here a �ve-point TVD scheme of Nessyahu-Tadmor (NT) [125], which is a second-
order upgraded version of the central LxF scheme (2.18): we use the same viscosity coe�cient,
Q�+ 1

2

� 1, but we augmented it with a modi�ed approximate ux, ~A� ; expressed in terms of

the cell averages, ��n� , and the midvalues �
n+ 1

2
� := ��n� � �

2 (A(��
n
� ))

0, this modi�ed ux is given by

~A� = A(�
n+ 1

2
� ) + (�n�)

0=2�. Using these quantities in the viscosity form (3.5) we end up with
a second-order predictor-corrector scheme, which admits a LxF-like staggered form (2.18)

�
n+ 1

2
� = ��n� �

�

2
(A(��n�))

0; (3.9)

��n+1
�+ 1

2

=
��n� + ��n�+1

2
� (�n�)

0 � (�n�+1)
0

8
� �t

�x

n
A(�

n+ 1
2

�+1 )� A(�
n+ 1

2
� )

o
: (3.10)

Here, fw0�g denotes the discrete numerical derivative of an arbitrary gridfunction fw�g.
The choice w0� � 0 recovers the original �rst-order LxF scheme (2.18). Second-order accuracy
requires w0� � �x@xw(x�); a prototype example is the so called min-mod limiter,

w0� =
1

2
(s�� 1

2

+ s�+ 1

2

) �minfj�w�� 1

2

j; j�w�+ 1

2

jg; s�+ 1

2

:= sgn(�w�+ 1

2

): (3.11)

With this choice of a limiter, the central NT scheme (3.9)-(3.10) satis�es the TVD condition
(3.6), and at the same time, it retains formal second order accuracy (at least away from extreme
gridvalues, �� , where �

0
� = s�� 1

2

+ s�+ 1

2

= 0).

We conclude we few additional remarks.

Limiters A variety of discrete TVD limiters like (3.11) was explored during the '80s, e.g,
[159] and the references therein. For example, a generalization of (3.11) is provided by
the family of min-mod limiters depending on tuning parameters, 0 < ��� 1

2

< 1,

w0�(�) =
1

2
(s�� 1

2

+ s�+ 1

2

) �minf��� 1

2

j�w�� 1

2

j; 1
2
jw�+1 � w��1j; ��+ 1

2

j�w�+ 1

2

jg: (3.12)

An essential feature of these limiters is co-monotonicity: they are 'tailored' to produce
piecewise-linear reconstruction of the form

P
[w� +

1
�xw

0
�(x � x�)]��(x), which is co-

monotone with (and hence, share the TVD property of {) the underlying piecewise-
constant approximation

P
w���(x). Another feature is the limiting property at extrema

gridvalues (where �0� = 0), which is necessary in order to satisfy the TVD property (3.2).
In particular, these limiters are necessarily nonlinear in the sense of their dependence on
the discrete gridfunction.

Systems (One-dimensional problems). The question of convergence for approximate solution
of hyperbolic systems is tied to the question of existence of an entropy solution { in both
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cases there are no general theories with m > 1 equations3. Nevertheless, the ingredients
of scalar high-resolution schemes were successfully integrated in the approximate solution
of system of conservation laws.
Many of these high-resolution methods for systems, employ the Godunov approach,
where one evolves a global approximation which is realized as a piecewise polynomial,

�(x; tn) =
X
j

pj(x)�j(x); �p�(x�) = ��n� : (3.13)

Typically, this piecewise polynomial approximate solution is reconstructed from the pre-
viously computed cell averages, f��n�g, and in this context we may distinguish between
two main classes of methods: upwind and central methods.

Upwind schemes evaluate cell averages at the center of the piecewise polynomial elements;
integration of (2.15) over C� � [tn; tn+1] yields

��n+1� = ��n� �
1

�x

"Z tn+1

�=tn
f(�(�; x�+ 1

2

; ))d� �
Z tn+1

�=tn
f(�(�; x�� 1

2

; ))d�

#
:

This in turn requires the evaluation of uxes along the discontinuous cell interfaces,
(� � x�+ 1

2

). Consequently, upwind schemes must take into account the characteristic

speeds along such interfaces. Special attention is required at those interfaces in which
there is a combination of forward- and backward-going waves, where it is necessary to
decompose the \Riemann fan" and determine the separate contribution of each com-
ponent by tracing \the direction of the wind". These characteristic decompositions (
{ using exact or approximate Riemann solvers) enable to solve with high resolution
the corresponding characteristic variables. At the same time, It is the need to follow
these characteristic variables which greatly complicates the upwind algorithms, making
them di�cult to implement and generalize to complex systems. The original �rst-order
accurate Godunov scheme (2.17) is the forerunner for all other upwind Godunov-type
schemes. A variety of second- and higher-order sequels to Godunov upwind scheme
were constructed, analyzed and implemented with great success during the seventies and
eighties, starting with van-Leer's MUSCL scheme [98], followed by [138, 69, 129, 26].
These methods were subsequently adapted for a variety of nonlinear related systems,
ranging from incompressible Euler equations, [4], [45], to reacting ows, semiconductors
modeling, : : :. We shall say more about these methods in x3.4 below. At this point we
refer to [58, 102] and the references therein a for a more complete accounts on these
developments.

In contrast to upwind schemes, central schemes evaluate staggered cell averages at the
breakpoints between the piecewise polynomial elements,

��n+1
�+ 1

2

= ��n
�+ 1

2

� 1

�x

"Z tn+1

�=tn
f(�; �(x�+1))d� �

Z tn+1

�=tn
f(�(�; x�))d�

#
:

Thus, averages are integrated over the entire Riemann fan, so that the corresponding
uxes are now evaluated at the smooth centers of the cells, (�; x�). Consequently, costly
Riemann-solvers required in the upwind framework, can be now replaced by straight-
forward quadrature rules. The �rst-order Lax-Friedrichs (LxF) scheme (2.18) is the

3There is a large literature concerning two equations { the 2�2 p-system and related equations are surveyed
in [155].
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canonical example of such central di�erence schemes. The LxF scheme (like Godunov's
scheme) is based on a piecewise constant approximate solution, p�(x) = ��� . Its Riemann-
solver-free recipe, however, is considerably simpler. Unfortunately, the LxF scheme in-
troduces excessive numerical viscosity (already in the scalar case outlined in x3.2.1 we
have QLxF � 1 > QGodunov), resulting in relatively poor resolution. The central scheme
(3.9)-(3.10) is a second-order sequel to LxF scheme, with greatly improved resolution.
An attractive feature of the central scheme (3.9)-(3.10) is that it avoids Riemann solvers:
instead of characteristic variables, one may use a componentwise extension of the non-
oscillatory limiters (3.12).

Multidimensional systems There are basically two approaches.
One approach is to reduce the problem into a series of one-dimensional problems. Alter-
nating Direction (ADI) methods and the closely related dimensional splitting methods,
e.g., [140, x8.8-9], are e�ective, widely used tools to solve multidimensional problems by
piecing them from one-dimensional problems { one dimension at a time. Still, in the
context of nonlinear conservation laws, dimensional splitting encounters several limita-
tions, [31]. A particular instructive example for the e�ect of dimensional splitting errors
can be found in the approximate solution of the weakly hyperbolic system studied in
[48],[81, x4.3].
The other approach is 'genuinely multidimensional'. There is a vast literature in this con-
text. The beginning is with the pioneering multidimensional second-order Lax-Wendro�
scheme, [97]. To retain high-resolution of multidimensional schemes without spurious
oscillations, requires one or more of several ingredients: a careful treatment of waves
propagations ('unwinding'), or alternatively, a correctly tuned numerical dissipation
which is free of Riemann-solvers ('central di�erencing'), or the use of adaptive grids
(which are not-necessarily rectangular), ... . Waves propagation in the context of mul-
tidimensional upwind algorithms were studied in [25, 103, 139, 154] : : :. Another 'gen-
uinely multidimensional' approach can be found in the positive schemes of [95]. The
pointwise formulation of ENO schemes due to Shu & Osher, [151, 152], is another ap-
proach which avoids dimensional splitting: here, the reconstruction of cell-averages is
bypassed by the reconstruction pointvalues of the uxes in each dimension; the semi-
discrete uxed are then integrated in time using non-oscillatory ODEs solvers (which
are briey mentioned in x3.4.2 below). Multidimensional non-oscillatory central scheme
was presented in [81], generalizing the one-dimensional (3.9)-(3.10); consult [105],[89]
for applications to the multidimensional incompressible Euler equations. Finite volume
methods, [85, 86, 24, 29]... , and �nite-element methods (the streamline-di�usion and
discontinuous Galerkin schemes, [76, 79, 80, 146, 121]...) have the advantage of a 'built-
in' recipe for discretization over general triangular grids (we shall say more on these
methods in x7 below). Another 'genuinely multidimensional' approach is based on a re-
laxation approximation was introduced in [82]. It employs a central scheme of the type
(3.9)-(3.10) to discretize the relaxation models models, [173], [19], [124],. . . .

3.3 TVD �lters

Every discretization method is associated with an appropriate �nite-dimensional projection.
It is well known that linear projections which are monotone (or equivalently, positive), are
at most �rst-order accurate, [59]. The lack of monotonicity for higher order projections is
reected by spurious oscillations in the vicinity of jump discontinuities. These are evident
with the second-order (and higher) centered di�erences, whose dispersive nature is responsible
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to the formation of binary oscillations [63],[104]. With highly-accurate spectral projections,
for example, these O(1) oscillations reect the familiar Gibbs phenomena.

TVD schemes avoid spurious oscillations | to this end they use the necessarily nonlinear
projections (expressed in terms of nonlinear limiters like those in (3.12)). TVD �lters, instead,
suppress spurious oscillations. At each time-level, one post-process the computed (possibly
oscillatory) solution f�ng. In this context we highlight the following.

� Linear �lters. Consider linear convection problems with discontinuous initial data.
Approximate solutions of such problems su�er from loss of accuracy due to propagation of
singularities and their interference over domain of dependence of the numerical scheme. In-
stead, one can show, by duality argument, that the numerical scheme retains its original order
of accuracy when the truncation in (3.3) is measured w.r.t. su�ciently large negative norm,
[120]. Linear �lters then enable to accurately recover the exact solution in any smoothness
region of the exact solution, bounded away from its singular support. These �lters amount
to �nite-order molli�ers [120], or spectrally accurate molli�ers, [118], [66], which accurately
recover pointvalues from high-order moments. (We outline such technique in x4.2).
� Arti�cial compression. Arti�cial compression was introduced by Harten [68] as a

method to sharpen the poor resolution of contact discontinuities. (Typically, the resolution of
contacts by �-order schemes di�uses over a fan of width (�t)(�)=(�+1)). The idea is to enhance
the focusing of characteristics by adding an anti-di�usion modi�cation to the numerical uxes:
if we let H�+ 1

2

denote the numerical ux of a three-point TVD scheme (3.7), then one replaces

it with a modi�ed ux, H�+ 1
2

�! H�+ 1
2

+ ~H�+ 1
2

, which is expressed in terms of the min-mod

limiter (3.11)

~H�+ 1

2

:=
1

�
f�0� + �0�+1 � sgn(���+ 1

2

)j�0�+1 � �0� jg: (3.14)

Arti�cial compression can be used as a second-order TVD �lter as well. Let Q�+ 1

2

be

the numerical viscosity of a three-point TVD scheme (3.7). Then, by adding an arti�cial
compression modi�cation (3.14) which is based on the �-limiters (3.12), �0� = �0�(�) with
��+ 1

2

:= Q�+ 1

2

� �2a2
�+ 1

2

, one obtains a second-order TVD scheme, [69], [132]. Thus, in this

case the arti�cial compression (3.14) can be viewed as a second-order anti-di�usive TVD �lter
of �rst-order TVD schemes

�n+1�  � �n+1� � f ~H�+ 1

2

(�n)� ~H�� 1

2

(�n)g: (3.15)

� TVD �lters. A particularly useful and e�ective, general-purpose TVD �lter was intro-
duced by Engquist et. al. in [47]; it proceeds in three steps.

fig (Isolate extrema). First, isolate extrema cells where ��n
�� 1

2

���n
�+ 1

2

< 0:

fiig (Measure local oscillation). Second, measure local oscillation, osc� , by setting

osc� := minfm� ;
1

2
M�g; f m�

M�
g = f min

max
g(��n

�� 1

2

;��n
�+ 1

2

)

fiiig (Filtering). Finally, oscillatory minima (respectively { oscillatory maxima) are increased
(and respectively, increased) by updating �n� ! �n� + sgn(��n

�+ 1

2

)osc� , and the corresponding

neighboring gridvalue is modi�ed by subtracting the same amount to retain conservation. This
post-processing can be repeated, if necessary, and one may use a local maximum principle,
minj�

n
j � �n� � maxj�

n
j as a stopping criterion. In this case, the above �lter becomes TVD

once the binary oscillations are removed, [153].
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3.4 TVB approximations

3.4.1 Higher resolution schemes (with three letters acronym)

We have already mentioned the essential role played by nonlinear limiters in TVD schemes. The
mechanism in these nonlinear limiters is switched on in extrema cells, so that the zero discrete
slope �0 = 0 avoids new spurious extrema. This, in turn, leads to deteriorated �rst-order local
accuracy at non-sonic extrema, and global accuracy is therefore limited to second-order4.

To obtain an improved accuracy, one seeks a more accurate realization of the approximate
solution, in terms of higher (than �rst-order) piecewise polynomials

��x(tn; x) =
X
�

p�(x)��(x); p�(x) =
X
j

�(j)� (
x� x�
�x

)j=j!: (3.16)

Here, the exact solution is represented in a cell C� in terms of an r-order polynomial p� ,
which is reconstructed from the its neighboring cell averages, f����g. If we let ��x(t � tn; �)
denote the entropy solution subject to the reconstructed data at t = tn, P�x�(tn; �), then the
corresponding Godunov-type scheme governs the evolution of cell averages

��n+1� :=
1

�x

Z
x

��x(tn+1 � 0; x)��(x)dx: (3.17)

The properties of Godunov-type scheme are determined by the polynomial reconstruction
should meet three contradicting requirements:
fig Conservation: p�(x) should be cell conservative in the sense that �RC� p�(x) = �RC� ��(x).

This tells us that P�x is a (possibly nonlinear) projection, which in turn makes (3.17) a
conservative scheme in the sense of Lax-Wendro�, (3.1).

fiig Accuracy: �(j)� � (�x@x)j�(tn; x�).
At this stage, we have to relax the TVD requirement. This brings us to the third requirement
of
fiiig TVB bound: we seek a bound on the total variation on the computed solution.

Of course, a bounded variation, k��x(tn; �)kBV � Const: (and in fact, even the weaker
(�x)�k��xkBV � Const:) will su�ce for convergence by L1-compactness arguments.

The (re-)construction of non-oscillatory polynomials led to new high-resolution schemes.
In this context we mention the following methods (which were popularized by their trade-mark
of three-letters acronym ...): the Piecewise-Parabolic Method (PPM) [26], the Uniformly Non-
Oscillatory (UNO) scheme [73], and the Essentially Non-Oscillatory schemes (ENO) of Harten
et. al. [70]. There is large numerical evidence that these highly-accurate methods are TVB
(and hence convergent), at least for a large class of piecewise-smooth solutions. We should
note, however, that the convergence question of these schemes is open. (It is my opinion that
new characterizations of the (piecewise) regularity of solutions to conservation laws, e.g., [37],
together with additional tools to analyze their compactness, are necessary in order to address
the questions of convergence and stability of these highly-accurate schemes).

There are alternative approach to to construct high-resolution approximations which cir-
cumvent the TVD limitations. We conclude by mentioning the following two.
One approach is to evolve more than one-piece of information per cell. This is fundamentally

4The implicit assumption is that we seek an approximation to piecewise-smooth solutions with �nitely many
oscillations, [165]. The convergence theories apply to general BV solutions. Yet, general BV solutions cannot
be resolved in actual computations in terms of 'classical' macroscopic discretizations { �nite-di�erence, �nite-
element, spectral methods, etc. Such methods can faithfully resolve piecewise smooth solutions.
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di�erent from standard Godunov-type schemes where only the cell average is evolved (and
higher order projections are reconstructed from these averages { one per cell). In this context
we mention the quasi-monotone TVB schemes introduced in [23]. Here, one use a TVD evo-
lution of cell averages together with additional higher moments. Another instructive example
for this approach is found in the third-order TVB scheme, [142]: in fact, Sanders constructed
a third-order non-expansive scheme (circumventing the �rst-order limitation of [71]), by using
a 2 � 2 system which governs the �rst two moments of the scalar solution. More recently,
Bouchut et. al. [8], constructed a second-order MUSCL scheme which respects a discrete
version of the entropy inequality (2.3) w.r.t all Kru�zkov's scalar entropy pairs in (2.11); this
circumvents the second-order limitation of Osher & Tadmor [132, Theorem 7.3], by evolving
both { the cell average and the discrete slope in each computational cell.

Another approach to enforce a TVB bound on higher(> 2)-resolution schemes, makes use
of gridsize-dependent limiters, �(j) = �(j)f��n;�xg, such that the following holds, e.g., [149],

k��x(tn+1; �)kBV � k��x(tn+1; �)kBV + Const ��x:
Such �x-dependent limiters fail to satisfy, however, the basic dilation invariance of (2.15)-
(2.16), (t; x)! (ct; cx).

3.4.2 Time discretizations

One may consider separately the discretization of time and spatial variables. Let PN de-
note a (possibly nonlinear) �nite-dimensional spatial discretization of (2.1); this yields an
N -dimensional approximate solution, �N(t), which is governed by the system of N nonlinear
ODEs

d

dt
�N(t) = PN (�N(t)): (3.18)

System (3.18) is a semi-discrete approximation of (2.1). For example, if we let PN = P�x; N �
(�x)�d, to be one of the piecewise-polynomial reconstructions associated with Godunov-type
methods in (3.16), then one ends up with a semi-discrete �nite-di�erence method, the so called
method of lines. In fact, our discussion on streamline-di�usion and spectral approximations
in x5 and x6 below will be primarily concerned with such semi-discrete approximations.

An explicit time discretization of (3.18) proceeds by either a multi-level or a Runge-Kutta
method. A CFL condition should be met, unless one accounts for wave interactions, consult
[101]. For the construction of non-oscillatory schemes, one seeks time discretizations which
retain the non-oscillatory properties of the spatial discretization, PN . In this context we
mention the TVB time-discretizations of Shu & Osher, [150],[151, 152]. Here, one obtains
high-order multi-level and Runge-Kutta time discretizations as convex combinations of the
standard forward time di�erencing, which amounts to the �rst-order accurate forward Euler
method. Consequently, the time discretizations [151, 152] retain the nonoscillatory properties
of the low-order forward Euler time di�erencing | in particular, TVD/TVB bounds, and at
the same time, they enable to match the time accuracy with the high-order spatial accuracy.

4 Godunov Type Methods

4.1 Compactness arguments cont'd | one-sided stability estimates

We prove convergence and derive error bounds using one-sided stability estimates. The one-
sided stability estimates restrict our discussion to scalar equations { one-dimensional convex
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conservation laws in x4.2 and multidimensional convex Hamilton-Jacobi equation in x4.3. (We
refer to [100] for a recent contribution concerning the one-sided stability of one-dimensional
systems). We begin with the case d = 1.

Let f�"(t; x)g be a family of approximate solutions tagged by their small-scale parameter-
ization, ". To upper-bound the convergence rate of such approximations, we shall need the
usual two ingredients of stability and consistency.

� Lip+-stability. The family f�"g is Lip+-stable if
k�"(t; �)kLip+ := sup

x
@x�

"(t; x) � Const: (4.1)

This notion of Lip+-stability is motivated by Ol�einik's One-Sided Lipschitz Condition (OSLC),
�x(t; �) � Const, which uniquely identi�es the entropy solution of convex conservation laws,
(2.15), with scalar A00 > 0. Since the Lip+-(semi)-norm dominates the total-variation,

k�"(t; �)kBV � Const:k�"(t; �)kLip+ + k�"0(�)kL1; Const = 2jsuppx�"(t; �)j;

f�"g have bounded variation and convergence follows. Equipped with Lip+-stability, we are
able to quantify this convergence statement. To this end, we measure the local truncation
error in terms of

� Lip0-consistency. The family f�"g is Lip0-consistent of order " if
k@t�" + @xA(�

")kLip0(t;x) � ": (4.2)

It follows that the stability+consistency in the above sense, imply the convergence of f�"g
to the entropy solution, �, and that the following error estimates hold [163], [126],

k�"(t; �)� �(t; �)kW s(Lp(x)) � "
1�sp

2p ; �1 � s � 1=p: (4.3)

The case (s; p) = (�1; 1) corresponds to a sharp Lip0-error estimate of order " | the Lip0-size
of the truncation in (4.2); the case (s; p) = (0; 1) yields an L1-error estimate of order one-half,
in agreement with Kuznetsov's general convergence theory, [90]. (We shall return to it in
x7.3). Moreover, additional local error estimates follow, and we illustrate this in the context
of Godunov-type schemes.

4.2 Godunov type methods revisited (m = d = 1)

Godunov type schemes form a special class of transport projection methods for the approximate
solution of nonlinear conservation laws, [72].

Let E(t2�t1) denote the entropy solution operator associated with the convex conservation
law (2.15). A Godunov-type method yields a globally de�ned approximate solution, ��x(t; x),
which is governed by iterating the evolution-projection cycle,

��x(�; t) =
8<
:

E(t� tn�1)�(�; tn�1); tn�1 < t < tn = n�t;

P�x�(�; tn � 0); t = tn;

(4.4)

subject to initialization step, �(t = 0; �) = P�xu0(�).
Here, P�x is an arbitrary, possibly nonlinear conservative projection, which depends on a
small spatial scale �x. For example, the piecewise polynomial projection (3.16), P�x�(x) =
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P
p�(x)��(x), where the �� 's are the characteristic functions of cells C� with possibly variable

sizes, �x � jC� j � Const:�x.
The question of Lip0-consistency for Godunov-type schemes based on cell-conservative pro-

jections, P�x, could be answered in terms of the L1-size of I � P over all BV functions [127].
Together with Lip+-stability we conclude

k��x(t; �)� �(t; �)kW s;p � Const:kI � Pk
1�sp
2p

BV!L1 : (4.5)

The last error bound, (4.5), tells us that the convergence rate of a Godunov-type scheme
depends solely on the properties of P�x. First, Lip+ stability is guaranteed if P�x retains the
OSLC of the exact solution operator; the OSLC property of such projections was studied in
[128],[10], [126]. Second, the convergence rate depends on measuring P�x as an approximate
identity. Typically, kI�P�xkBV!L1 is of order O(�x), and (4.5) yields the familiar L1 rate of
order O(p�x), [114], [30], [141], [145],... (and [24, 27, 85, 86, 7] in the multidimensional case).
Moreover, one can interpolate between the weak W�1(L1)-error estimate of order O(�x), and
the one-sided Lipschitz bounds of � and ��x to conclude, [163]

j��x(t; x)� �(t; x)j � Const:[1 + max

x

j�x(t; x)j](�x)1=3:

This shows a pointwise convergence which depends solely on the local smoothness of the entropy
solution in 
x := fyj jy � xj � C(�x)1=3g.

4.3 Hamilton-Jacobi equations (m = 1; d � 1)

We consider the multidimensional Hamilton-Jacobi (HJ) equation

@t�+H(rx�) = 0; (t; x) 2 R+ �Rd; (4.6)

with convex Hamiltonian, H 00 > 0. Its unique viscosity solution is identi�ed by the one-sided
concavity condition, D2

x� � Const., consult [87], [108]. Given a family of approximate HJ
solutions, f�"g, we make the analogous one-sided stability requirement of

� Demi-concave stability. The family f�"g is demo-concave stable if

D2
x�

" � Const: (4.7)

We then have the following.

Theorem 4.1 ([107]) Assume f�"1g and f�"2g are two demi-concave stable families of approx-
imate solutions. Then

k�"1(t; �)� �"2(t; �)kL1(x) � Const:k�"1(0; �)� �"2(0; �)kL1(x) +

+ Const:

2X
j=1

k@t�"j +H(rx�
"
j)kL1(t;x): (4.8)

If we let �"1 � �1; �"2 � �2 denote two demi-concave viscosity solutions, then (4.8) is an L1-
stability statement (compared with the usual L1-stability statements of viscosity solutions,
[29]). If we let f�"1g = f�"g denote a given family of demi-concave approximate HJ solutions,
and let �"2 equals the exact viscosity solution �, then (4.8) yields the L1-error estimate

k�"(t; �)� �(t; �)kL1(x) � Const:k@t�" +H(rx�
")kL1(t;x) � O("): (4.9)
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This corresponds to the Lip0-error estimate of (4.3) with (s; p) = (�1; 1). One can then

interpolate from (4.9) an Lp-error estimates of order O(" 1+p

2p ). For a general L1-convergence
theory for approximate solutions to HJ equations we refer to [3] and the references therein.

5 Streamline Di�usion Finite Element Schemes

5.1 Compensated compactness (m � 2; d = 1)

We deal with a family of approximate solutions, f�"g, such that

(i) It is uniformly bounded, �" 2 L1, with a weak* limit, �" * �;

(ii) The entropy production, for all convex entropies �, lies in a compact subset ofW�1
loc (L

2(t; x)),

8�00 > 0 : @t�(�
") + @xF (�

") ,! W�1
loc (L

2(t; x)): (5.1)

The conclusion is that A(�")* A(�), and hence � is a weak solution; in fact, there is a strong
convergence, �" ! �, on any nona�ne interval of A(�). For a complete account on the theory
of compensated compactness we refer to the innovative works of Tartar [167] and Murat [123].
In the present context, compensated compactness argument is based on a clever application
of the div-curl lemma. First scalar applications are due to Murat-Tartar, [122],[167], followed
by extensions to certain m = 2 systems by DiPerna [39] and Chen [17].

The current framework has the advantage of dealing with L2-type estimates rather than the
more intricate BV framework. How does one verify theW�1

loc (L
2)-condition (5.1)? we illustrate

this point with canonical viscosity approximation (2.2). Multiplication by �0 shows that its
entropy production amounts to "(�0Q�"x)x�"�00Q(�"x)2. By entropy convexity, "�00Q > 05, and
space-time integration yields

� An entropy production bound

p
"k@�

"

@x
kL2

loc(t;x)
� Const: (5.2)

Though this bound is too weak for strong compactness, it is the key estimate behind the
W�1

loc (L
2)-compactness condition (5.1). We continue with the speci�c examples of streamline-

di�usion in x5.2 and spectral viscosity methods in x6.

5.2 The streamline di�usion method

The Streamline Di�usion (SD) �nite element scheme, due to Hughes, Johnson, Szepessy and
their co-workers [76], [79], [80], was one of the �rst methods whose convergence was analyzed
by compensated compactness arguments. (Of course, �nite-element methods �t into L2-type
Hilbert-space arguments). In the SD method, formulated here in several space dimensions,
one seeks a piecewise polynomial, f��xg, which is uniquely determined by requiring for all
piecewise polynomial test functions  �x,

h@t��x +rx �A(��x);  �x + j�xj � ( �xt + A0(��x) �xx ) i = 0: (5.3)

Here, �x denotes the spatial grid size (for simplicity we ignore time discretization). The
expression inside the framed box on the left represents a di�usion term along the streamlines,

5Observe that the viscosity matrix is therefore required to be positive w.r.t. the Hessian �00.
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_x = A0(��x). Setting the test function,  �x = ��x, (5.3) yields the desired entropy production
bound p

�xk@t��x +rx �A(��x)kL2
loc
(t;x) � Const: (5.4)

Thus, the spatial derivative in (5.2) is replaced here by a streamline-directional gradient.
This together with an L1-bound imply W�1

loc (L
2)-compact entropy production, (5.1), and

convergence follows [79],[80],[158]. We note in passing that the extension of the SD method
for systems of equations is carried out by projection into entropy variables, [119], which in
turn provide the correct interpretation of (5.4) as an entropy production bound.

5.3 TVD schemes revisited (d = 1)

We replace the streamline di�usion term inside the framed box on the left of (5.3) by a weighted
spatial di�usion expression,

h@t��x + @xA(�
�x);  �xi+�x � h��xx ;  �xx iQ = 0:

This yields a semi-discrete �nite-di�erence scheme in its viscosity form (3.5), and one may carry
an alternative convergence analysis based on compensated compactness arguments [169].

6 Spectral Viscosity Approximations

6.1 Compensated compactness cont'd (m � 2; d = 1)

Let PN denote an appropriate spatial projection into the space of N -degree polynomials,

PN�(t; x) =
X
jkj�N

�̂k(t)�k(x);

here f�kg stands for a given family of orthogonal polynomials, either trigonometric or algebraic
ones, e.g., feikxg, fLk(x)g, fTk(x)g, etc. The corresponding N -degree approximate solution,
�N(t; x), is governed by the spectral viscosity (SV) approximation

@t�N + @xPNA(�N) =
1

N
@x(Q � @x�N): (6.1)

The left hand side of (6.1) is the standard spectral approximation of the conservation law (2.1).
The expression on the right represents the so called spectral viscosity introduced in [162]. It
contains a minimal amount of high-modes regularization which retains the underlying spectral
accuracy of the overall approximation,

1

N
@x(Q � @x�N) := 1

N

X
jkj>N�

Q̂k�̂k(t)�
00
k(x):

It involves a viscous-free zone for the �rst N � modes, 0 < � < 1
2 . High modes di�usion is

tuned by the viscosity coe�cients Q̂k.
Spurious Gibbs oscillations violate the strict TVD condition in this case. Instead, an

entropy production estimate, analogous to (5.2) is sought,

1p
N
k@�N
@x
kL2

loc
(t;x) � Const:

This together with an L1-bound carry out the convergence analysis by compensated com-
pactness arguments, [162], [116]. Extensions to certain m = 2 systems can be found in [143].
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6.2 Hyper-viscosity approximations

The second-order high-modes di�usion on the right of (6.1) is replaced by higher 2s-order
di�usion,

(�1)s+1
N2s�1

@sx(Q � @sx�N) :=
(�1)s+1
N2s�1

X
jkj>N�

Q̂k �̂k(t)�
(2s)
k (x): (6.2)

This allows for a larger viscosity-free zone of size N �, with 0 < � < 2s�1
2s (with possibly

s = sN �
p
N), consult [164]. The underlying hyper-viscosity approximation (for say s = 2)

reads
@t�

" + @xA(�
") + "3@4x�

" = 0: (6.3)

The solution operator associated with (6.3) is not monotone, hence L1-contraction and the
TVD condition fail in this case. Instead, compensated compactness arguments show, under
the assumption of an L1- bound6, the hyper-viscosity approximation (6.3) and its analogous
spectral-viscosity approximations, converge to the entropy solution.

7 Finite Volume Schemes (d � 1)

7.1 Measure-valued solutions (m = 1; d � 1)

We turn our attention to the multidimensional scalar case, dealing with a families of uniformly
bounded approximate solutions, f�"g, with weak* limit, �" * �. DiPerna's result [41] states
that if the entropy production of such a family tends weakly to a negative measure, m � 0,

8�00 > 0 : @t�(�
") +rx � F (�")* m � 0; (7.1)

then the measure-valued solution � coincides with the entropy solution, and convergence fol-
lows. This framework was used to prove the convergence of multidimensional �nite-di�erence
schemes [27], streamline di�usion method [79],[80], spectral-viscosity approximations [18] and
�nite-volume schemes [24], [86],[85]. We focus our attention on the latter.

7.2 Finite-volume schemes

We are concerned with �nite-volume schemes based on possibly unstructured triangulation
grid fT�g (for simplicity we restrict attention to the d = 2 case). The spatial domain is
covered by a triangulation, fT j�g, and we compute approximate averages over these triangles,
��n� � 1

jT�j

R
T�
�(tn; x)dx, governed by the �nite volume (FV) scheme

��n+1� = ��n� �
�t

jT� j
X
�

~A��(�
n
� ; �

n
��): (7.2)

Here ~A�� stand for approximate uxes across the interfaces of T� and its neighboring triangles
(identi�ed by a secondary index �).

Typically, the approximate uxes, ~A�� are derived on the basis of approximate Riemann
solvers across these interfaces, which yield a monotone scheme. That is, the right hand side
of (7.2) is a monotone function of its arguments (�n� ; �

n
��), and hence the corresponding FV

scheme is L1-contractive. However, at this stage one cannot proceed with the previous com-
pactness arguments which apply to TVD schemes over �xed Cartesian grid: since the grid

6The L1 boundedness of (6.3) is to the best of my knowledge, an open question, [62].
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is unstructured, the discrete solution operator is not translation invariant and L1-contraction
need not imply a TV bound. Instead, an entropy dissipation estimate yieldsX

n

�t
X
�;�

j�n� � �n�� j(�x)� � Const; 0 < � < 1: (7.3)

Observe that (7.3) is weaker than a TV bound (corresponding to � = 0), yet it su�ces for
convergence to a measure-valued solution, consult [24], [85].

7.3 Error estimates | compactness arguments revisited

Kuznetsov [90] was the �rst to provide error estimates for scalar approximate solutions, f�"g, of
multidimensional scalar conservation laws. Subsequently, many authors have used Kuznetsov's
approach to prove convergence + L1-error estimates; we refer for the detailed treatments of
[141], [115], [166],... . A more recent treatment of [24] employs the entropy dissipation estimate
(7.3), which in turn, by Kuznetsov arguments, yields an L1-convergence rate estimate of order

(�x)
1��
2 (independently of the BV bound).

Kuznetsov's approach employs a regularized version of Kru�zkov's entropy pairs in (2.11),
��(�; c) � j�� cj; F �(�; c) � sgn(�� c)(A(�)�A(c)). Here, one measures by how much the
entropy dissipation rate of f�"g fails to satisfy the entropy inequality (2.3), with Kru�zkov's
regularized entropies. Following the general recent convergence result of [7], we consider a
family of approximate solutions, f�"g, which satis�es

@tj�" � cj+rx � fsgn(�" � c)(A(�")�A(c))g � @tR0(t; x) +rx �R(t; x); (7.4)

with

kR0(t; x)kMt;x + kR(t; x)kMt;x � Const � ": (7.5)

Then, the convergence rate proof proceeds along the lines of Theorem 2.1: Using the key
property of symmetry of the regularized entropy pairs, (�� := ���; F

� := ��F ), one �ndsR
x �

�(�"; �)dx � Const:"=�. In addition, there is a regularization error, k�� � �kL1(x), of size
O(�), and an L1 error estimate of order O(p") follows (under reasonable assumptions on the
L1-initial error w.r.t. BV data), consult [7]

k�"(t; �)� �(t; �)kL1
loc
(x) � Const:

p
":

Observe that this error estimate, based on (7.4)-(7.5) is the multidimensional analogue of the
Lip0-consistency requirement we met earlier in (4.2).

8 Kinetic Approximations

8.1 Velocity averaging lemmas (m � 1; d � 1)

We deal with solutions to transport equations

a(v) � rxf(x; v) = @svg(x; v): (8.1)

The averaging lemmas, [61], [52], [44], state that in the generic non-degenerate case, averaging
over the velocity space, �f(x) :=

R
v f(x; v)dv, yields a gain of spatial regularity. The prototype

statement reads
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Lemma 8.1 ([44], [110]) . Let f 2 Lp(x; v) be a solution of the transport equation (8.1)
with g 2 Lq(x; v); 1� q < p � 2. Assume the following non-degeneracy condition holds

measvfvj ja(v) � �j < �gj�j=1 � Const � ��; � 2 (0; 1): (8.2)

Then �f (x) :=
R
v f(x; v)dv belongs to Sobolev space W �(Lr(x)),

�f(x) 2 W �(Lr(x)); � <
�

�(1� p0

q0 ) + (s+ 1)p0
;

1

r
=
�

q
+

1� �
p

: (8.3)

Variants of the averaging lemmas were used by DiPerna and Lions to construct global weak
(renormalized) solutions of Boltzmann, Vlasov-Maxwell and related kinetic systems, [42], [43];
in Bardos et. al., [2], averaging lemmas were used to construct solutions of the incompress-
ible Navier-Stokes equations. We turn our attention to their use in the context of nonlinear
conservation laws and related equations.

8.1.1 Scalar conservation laws

The following result, adapted from [110], is in the heart of matter.

Theorem 8.1 ([110]) Consider the scalar conservation law (2.1) whose ux satis�es the non-
degeneracy condition (consult (8.2))

9� 2 (0; 1) : measvfvj j� + A0(v) � �j < �g � Const � ��; 8�2 + j�j2 = 1: (8.4)

Let f�"g be a family of approximate solutions satisfying the entropy condition (2.3),

@t�(�
") +rx � F (�") � 0; 8�00 > 0: (8.5)

Then �"(t; x) 2 W
�

�+4

loc (Lr(t; x)); r = �+4
�+2 .

Proof. To simplify notations, we use the customary 0th index for time direction,

x = (t$ x0; x1; : : : ; xd); A(�) = (A0(�) � 1; A1(�); : : : ; Ad(�)):

The entropy condition (8.5) with Kru�zkov entropy pairs (2.1), reads

rx � [sgn(�" � v)(A(�")� A(v))] � 0:

This de�nes a family of non-negative measures, m"(x; v),

rx � [sgn(v)A(v)� sgn(�" � v)(A(�")� A(v))] =:m"(x; v): (8.6)

Di�erentiate (8.6) w.r.t. v: one �nds that the indicator function, f(x; v) = ��"(v), where

��"(v) :=

8<
:

+1 0 < v < �"

�1 �" < v < 0
0 jvj > �"

; (8.7)

satis�es the transport equation (8.1) with g(x; v) = m"(x; v) 2 Mx;v
7. We now apply

the averaging lemma with (s = q = 1; p = 2), which tells us that �"(t; x) =
R
��"(v)dv 2

W
�

�+4

loc (Lr(t; x)) as asserted.

Couple of remarks is in order.

7Once more, it is the symmetry property (2.6) which has a key role in the derivation of the transport kinetic
formulation (8.1).
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1. The last theorem quanti�es the regularity of entropy satisfying approximate solutions,
f�"g, in terms of the non-degeneracy (8.5). In particular f�"g is compact and strong
convergence follows.
In fact more can be said if the solution operator associated with f�"g is translation
invariant: a bootstrap argument yields an improved regularity, [110],

�"(t > 0; �) 2 W �
�+2 (L1(x)): (8.8)

This shows that due to nonlinearity, (8.4), the corresponding solution operator has a
regularization e�ect beyond the initial layer at t = 0.

2. In particular, Theorem 8.1 provides an alternative route to analyze the entropy sta-
ble multi-dimensional schemes whose convergence proof was previously accomplished by
measure-valued arguments; here we refer to �nite-di�erence, �nite-volume, streamline-
di�usion and spectral approximations ..., which were studied in [29],[24],[85],[86], [79],[80],[18],: : :.
Indeed, the feature in the convergence proof of all these methods is theW�1

loc (L
2)-compact

entropy production, (8.11). Hence, if the underlying conservation law satis�es the non-
linear degeneracy condition,

measvfvj � +A0(v) � � = 0g = 0;

then the corresponding family of approximate solutions, f�"(t > 0; �)g becomes compact.
Moreover, if the entropy production is bounded measure, then there is actually a gain of
regularity indicated in Theorem 8.1 ({ and in (8.8) for the translation invariant case).

8.1.2 Degenerate parabolic equations

The above results can be extended in several directions, consult [110] (and [111] for certain
m = 2 systems). As an example one can treat convective equations together with (possibly
degenerate) di�usive terms

@t�
" +rx �A(�") = rx � (Qrx�

"); Q � 0: (8.9)

Assume the problem is not linearly degenerate, in the sense that

measvfvj � + A0(v) � � = 0; hQ(v)�; �i= 0g = 0: (8.10)

Let f�"g be a family of approximate solutions of (8.1) with W�1
loc (L

2)-compact entropy pro-
duction,

@t�(�
") +rx � F (�") ,! W�1

loc (L
2(t; x)); 8�00 > 0: (8.11)

Then f�"g is compact in L2loc(t; x), [110].

The case Q = 0 corresponds to a multidimensional extension of Tartar's compensated compact-
ness arguments in x5.1, and it quanti�es the regularity of DiPerna's measure-valued solutions
in x7.1. The case A = 0 correspond possibly degenerate parabolic equations (consult [84] and
the references therein, for example). According to (8.10), satisfying the ellipticity condition,
hQ(v)�; �i> 0 on a set of non-zero measure, guarantees regularization, compactness ...
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8.2 Kinetic schemes

We restrict our attention to the scalar case (| and refer to [15],[109], [133] for a comprehensive
rigorous treatment of Boltzmann equation). Here, we demonstrate an application of Theorem
8.1 in the context of the BGK-like relaxation model introduced in [135] following the earlier
works [9],[53],

@tf
" +A0(v) � rxf

" =
1

"
(��" � f ") : (8.12)

As before, the indicator function ��"(t;x)(v) denotes the `pseudo-Maxwellian' (8.8) associated
with �" := �f ". The relaxation term on the right of (8.12) belongs to W�1(Mt;x), [9], and
the averaging lemma 8.1 applies with (s = q = 1; p = 2). It follows that if the conservation
law is linearly non-degenerate in the sense that (8.5) holds, then f�"g is compact { in fact
f�"(t > 0; �)g gains Sobolev regularity of order �

�+2 , [110]. The relaxation model (8.12) was
analyzed previously by BV-compactness arguments, e.g., [53], [135].

There is more than one way to convert microscopic kinetic formulations of nonlinear equa-
tions, into macroscopic algorithms for the approximate solution of such equations. We conclude
by mentioning the following three (in the context of conservation laws). Brenier's transport
collapse method, [9], is a macroscopic projection method which preceded the BGK-like model
(8.12) (see also [53]). Another approach is based on Chapman-Enskog asymptotic expan-
sions, and we refer to [145], for an example of macroscopic approximation other than the
usual Navier-Stokes-like viscosity regularization, (3.4). Still another approach is o�ered by
Godunov-type schemes, (4.4), based on projections of the Maxwellians associated with the
speci�c kinetic formulations. These amount to speci�c Riemann solvers which were studied in
[38], [134], [136].
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