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Abstract

We present a variant of the popular BICGSTAB method for solving nonsymimetric
linear systems. The method, which we denote by ML(%k)BiCGSTAB, is derived from
a variant of the BiCG method based on a Lanczos process using multiple (& > 1)
starting left Lanczos vectors. Compared with the original BICGSTAB method, our
new method produces a residual polynomial which is of lower degree after the same
number of steps but which also requires fewer matrix-vector products to generate, on
average requiring only 1 -+ 1/k matvec’s per step. Empirically, it also seems to be
more stable and faster convergent. The new method can be implemented as a k-term
recurrence and can be viewed as a bridge connecting the Arnoldi-based FOM/GMRES
methods and the Lanczos-based BICGSTAB methods.

Key words: BiCGSTAB, FOM, Multiple Lanczos Starting Vectors, Krylov Subspace, Iterative
Methods, Linear Systerns.
AMS subject classifications: Primary 65F10, 65F15; Secondary 856¥25, 65F30.

1 Introduction

BiCGSTAB [23] is a popular Krylov subspace method for the iterative solution of nonsym-
metric linear systems. Its main features are that it is transpose-free, makes more efficient
use of matrix-vector products when compared to BiCG [6, 11, 17] and is more stable than
CGS [22]. In this paper, we introduce a new variant of BICGSTAB which inherits all of
these nice features. In addition, the key new ingredient of our method is the use of multiple
starting left Lanczos vectors which has the desirable effects of lowering the cost per step
and increasing the robustness.
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BiCGSTAB is derived from BiCG which is a Lanczos based Krylov subspace method.
In BiCG, the residual vector 7; at the I-th step lies in a Krylov subspace K, (r, A) and is
chosen to be orthogonal to an auxilliary Krylov subspace K)(q;, AT). In our variant of the
BiCG method, which we denote by ML{k)BiCG, 7, is still in K;,,(rq, A) but is now chosen
to be orthogonal to the union of k Krylov subspaces K;,,(g,, A7) and K;{¢.., AT), where
1<s<i<s <kand jk+1 =1, generated from multiple (k > 1) linearly independent
starting vectors g, u = 1,2, -+, k. Our motivation for using multiple left starting Lanczos
vectors is to mitigate somewhat the ill-conditioning of K,(g,, A”) for large I by replacing a
high degree Krylov polynomial corresponding to one starting vector by a set of lower degree
Krylov polynomials generated from different, independent starting vectors. We think this
leads to better stability and robustness of the resulting iterative method. We derive an
efficient implementation of this idea, requiring only memory of previous k iterates (i.e. a
k + 1-term recurrence).

But we consider the major contribution of this paper to be an extension of BICGSTAB,
which we denote by ML(k)BiCGSTAB, using multiple starting Lanczos vectors. The
derivation is similar to, but rather more complicated than, that of deriving BiICGSTAB
from BiCG. ML{k)BiCGSTAB inherits from BiCGSTAB the advantages of being transpose-
free and is more efficient in using matvec per step than ML(k)BiCG. Specifically, after
[ = jk -1 steps, where ¢ = 1,---,k and § = 0,1, -+, the residual vector ¥; can be written
as 7 = P41 (A)p( A)rg, where ¢ is the degree I polynomial corresponding to the residual
vector r; of ML(k)BiCG, and 9;,, is a degree j + 1 smoothing polynomial. Thus, the
“degree” of # is [ + 4+ 1. To compute 7, exactly [+ j + 1 matvec’s with A (and none with
A7) are required. Thus, the cost per step on the averageis 1+ 1/k matvec’s, but the cost
per degree of the residual vector of ML{k)BiCGSTAB is the same as that of BICGSTAB
(20 matvec’s to obtain degree 2/) and half as much as that of BiICG (I matvec’s with A and
! matvec’s with AT to obtain degree [). Both ML{k)BiCG and ML(4)BiCGSTAB can be
implemented efficiently as k-term recurrences.

A way to view our method is through the conditioning of the collection of vectors
which the residual vector is required to be orthogonal to, which we believe controls the
stability of the method. For FOM/GMRES [14, 15, 17], these vectors are mutually orthog-
onal and thus perfectly conditioned. For BiCG, these vectors are the Lanczos vectors and
they can be ill-conditioned. For our new ML(k)BIiCG, these vectors consist of a union of
k sets of Lanczos vectors, generated by initial vectors which are orthogonal, thus making
them better conditioned than in the BiCG case. Qur new ML{k)BiCGSTAB method, be-
ing a product method derived from ML{k)BiCG, inherits this increased stability. Thus,
ML(k)BiCGSTAB can be viewed as an attempt to merge the advantages of FOM/GMRES
(stability) and BiCGSTAB (short recurrence, transpose-free and efficient use of matvec’s)
while avoiding their disadvantages: FOM/GMRES (long recurrence) and BICGSTAB (im-
perfect stability [19]).

Our ML(kK)BiCGSTAB method has a close relationship to the Lanczos-type method
for multiple starting vectors proposed recently by Aliaga, Boley, Freund and Herndndez
(ABFH) [1]. Tn fact, even though we have developed our methods independently of the
ABFH framework, our BiCG extension ML(%)BiCG can be easily derived from the ABFH
framework, using one right Lanczos vector and & left Lanczos vectors. Even so, ML(k)BiCG
deserves some interest on its own right, because we believe it is the first attempt in using
multiple left starting vector Lanczos-type methods for solving a single linear system.’ The

!Freund and Malhotra [7] considered a QMR-type method based on the ideas in [1] for linear systems



main application of nonequal left and right starting vectors cited in [1] is for computing
transfer functions in multi-input multi-output time invariant linear dynamical systems. A
more significant difference between our present paper and [1] is that we have derived a
BiCGSTAB variant based on multiple starting vectors, with the advantages stated earlier.
We believe this is the first product Krylov method based on multiple starting vectors.

The origin of the ideas behind the new methods presented here can be traced to
Ruhe’s vectorwise implementation of the block Lanczos method [13], in the same way that
(1] can be considered an extension of Ruhe’s method to non-Hermitian matrices and non-
equal left and right starting vectors plus look-ahead. As such, we believe our methods
inherit the advantage of faster convergence of the underlying biock Lanczos method.

Gutknecht [9], Sleijpen and Fokkema [18] generalized BiCGSTAB to versions called
BiCGSTAB2 and BiCGSTAB(k) respectively, in which they replaced the GMRES(1) part
in BICGSTAB with GMRES(%). The purpose of doing so is to increase the robustness
and speed of convergence of BICGSTAB [19, 20]. The robustness of GMRES(%)/FOM(k)
for BiCGSTAB and BiCGSTAB(k) is exploited in [19] and [20]. From our experimental
results, ML(k)BiCGSTAB may be a good alternative to achieve this goal of exploiting the
robustness of GMRES(&)/FOM(k).

The outline of the paper is as follows. In §2, we give our version of a Lanczos-type
method with one right starting vector and k left starting vectors. In §3, a BiCG-like
method is derived from the Lanczos method in §2. §4 contains the main derivation for the
ML(k)BiCGSTAB method. Numerical results are given in §5.

2 A Lanczos method for k¥ Linearly Independent Left Starting
Vectors

Let A be an n x n real matrix and let k + 1 real vectors vy and ¢, ¢, *+, ¢, be given. We
define

y .
Diti = (AT) 4 (1)
fori=1,2,--+,k;7=0,1,2,- -, and suppose the matrices
pive piAvy -+ pf ATlwg
T ‘s T Al-1
pivg prAvg --- p3 AT
W, = z.u 2. o 2 o =12,
plve ol Avg - pr A g

are nonsingular, where v is the grade of v, with respect to A, i.e., the degree of the minimal
polynomial of v, with respect to A.
We now consider a sequence {9;}1-0,1 ..., of vectors from the Krylov space

K(vy, A) = span{vg, Avg, Avq, -}
with the properties

v € Alvg + Ki(vg, A) = Alvg + span{vy, Avg, -+, A7 v} €Kiy (g, A) (2)

with multiple right-hand-sides, but there the number of right and left Lanczos vectors are the same.



and
U L SPGW{P@P:&: e 7PI} . (3)

The existence and uniqueness of such a sequence is guaranteed by the nonsingularity of

TR ¢ A T P Py PO
LELE Fhp 8. 1l lall, 1L WE TAPITDSD U] ad

v = Alvg + ’Y{(Jr)’vo + ’)’ir)A'Uu +oet 'Yr(i)lAl_l"L’na (4)

then (3) is equivalent to W,y = — f where 4y = 0 A0 AT and f = [pf Alvg, -+ -, 0T Al
Two simple facts can be derived for the sequence {v;}1z0,1,..,¢ (a) v, = 0 and (b)

v Y pry: whenever I < v. To see (a), we note that v is the grade of v, and hence

A¥vy € K,(vg, A). Property (2) is now reduced to v, € K,(vy,A) and thus (a) follows

by the uniqueness of v,. To prove (b), we assume that v; L pry1. Then combining with

property (3), we have v; L span{p:, ', P41}, and hence Wi A = 0, where 0 =

[0, .- o,'y,(i}l, 1]* and A are defined in (4), in contradiction with the nonsingularity of

Wigi-
Applying (4) to itself recursively, we can represent v; in terms of its previous vg, -+, 71—y

as follows,

o = Avi_y + b v+ Mo vy h{ ™.

Noting that v; L span{py, -+, m}, v £ Piy1 and ATp; = pyy, and examining in turn
pi v =pi Avi_y + hgr_?)P?T»‘rq + h?_?)p?v:_z +oeet h(ol_l)pg"vo

for i = 1,2,---,1 — k — 1, we find all the coefficients zero except hS’_‘i’"),h?_‘;),- : -,hg;l)
where m; = max(l — k£ — 1,0). Thus we obtain a k + 2 term recursion relationship for

{w}i=1,...,, of the form,
o = Av_y + B0 + R o+ G Vv, (5)

If we set V, = [vg, 01, +,0,_y] and H, = (hy;)ij=1,.., the v x v Hessenberg matrix with
hiysj =1 hy = —h,(-J__li) for m; +1 <4 < j; hyy = 0 otherwise, and if we recall that v, = 0,
then the recurrence relations {5) can be written in matrix form as

AV, =V, H,. (6)
Moreover, set P, = [p1, s, * -, p,] and apply PJ to (6) from the left,
P AV, =P/V,H,. (7)

Because of (3) and the fact that v, £ gy, PV V, is a lower triangular matrix with all the
entries nonzero in its diagonal. Comparing the corresponding principal blocks of both sides
of (7), we obtain a condition, which guarantees the nonsingularity of H,: if the matrices

PTA'UO PiAg'Un et P?Ar”u
T 2 T 41
P2 Avg Py A%y - py Alvg
S = . : ) ., l=1,2,-p
P'{'A’Uo P?Agﬂo v P:rr AIIUO

are nonsingular, so are the principal blocks of H, .
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Finally, we can see from (2} that

K (v, A) = span{vy, vy, -+, v}, 1=0,1,-.-,v—1. (8)

[ TR . gy e

| H : a - ~ wro s ann b 3
Since the dimension of K, {v,, A) is v, the vectors {v1}1=0 1,..,—1 arc Hncarly independent.

Summing up the above discussions, we conclude that

Theorem 2.1 Let be given veclors vy, g, G, * *» Gr, P1sPay "Dy, ond malrices W, and
5, as defined above. If the principal submatrices of W, are nonsingular, there exist an
n X v matriz V, = [vg,v1,-++,0,_1) of rank v, whose first column is vy, and e v X v

Hessenberg matriz H,, which has upper bandwidth k and oll the entries by ; = 1 in ils
lower subdiagonal, such that

L Span{plup%' "7p1}3 Ur x‘p!—i-l) l= 0,1,---,v - la

and
AV, =V, H,. (9)

Such V, and H, are unique. Furthermore, if the principal submatrices of 5, are nonsingu-
lar, so are the principal submatrices of I, .

Our procedure for generating the vectors v;’s and p;’s are closely related to the multi-
ple starting vector Lanczos method in [1]. In fact, the columns of V, are exactly the same
as the right Lanczos vectors in [1]. However, the p;’s are different from the left Lanczos
vectors in [1]; in fact they are not orthogonal to the v;’s. It turns out we do not need the
full bi-orthogonality property in deriving our extensions of BiCG and BiCGSTAB.

3 ML(%)BiCG: A BiCG Variant Based on Multiple Starting
Vectors Lanczos

We now turn to the linear system °
Az =5 (10}

and we shall derive, based on Theorem 1, an oblique projection method by borrowing
the techniques used .in the derivation of the Biconjugate Gradient algorithm from the
nonsymmetric Lanczos procedure [p.211, 12]. Even though this is a well known procedure,
in our case there is some difference from the standard case and therefore we include the
derivation here for completeness and clarity.

Suppose an initial guess z, to (10) is given. We set in Theorem 1 vy = b — Azg. At
the Ith step of our projection method, we seck an approximate solution @; with

2 € &y + span{vg, vy, -+, V1) (11)

and
T b~ Am; L Span{plap.?a " '}pl} ) (12)

2Throughout the paper we do not assume the matrix A is nonsingular except where specified. We just
require that the assumptions in Theorem 1 hold.



where the v;’s and p;’s are as defined in Theorem 1.
Since PPV}, alower triangular matrix with all diagonal entries nonzero, is nonsingular,
it follows easily that @; is uniquely determined by conditions (11) and (12) and has the

{ollowing expression: _
iL'I:ﬂTD"I“%Hr_LBl. (13)

The corresponding residual 7 has the same direction as v. Recall that P, = [py, -+, p,
Vi = [vg, -+, 0_1], Hy is the { x [ principal submatrix of H,, and ¢; is the first column of
the I x I identity matrix. From (11) and (8), we have r; € vy — span{Avy, A®vy, -+, Alvg}
and hence v, # 0 if { < v since v is the grade of v,. Moreover, r, = 0 from (13) and (9).

Letting r; = £v; for some scalar & which is not zero whenever i < v and setting
Ay = diag{&, €1, -+, &1} (13) can be rewritten as

@ =ay+ RAT H ey

where B, = [rg, 71, -+, 7_1). Write the LDU decomposition of H;A;, which exists and is
unique due to the nonsingularities of the principal submatrices of H;A;, as,

HzAr = LrDJUz 3

and define
Gy =90, 01y ] = BIUTH,  z=Di'Litey.

Because of the lower triangular structure of L, D;, we have

for some o;. As a result, 2; can be updated as
B =2+ Gy = 2o+ Grozioy gy = 8o+ oufis (14)

and hence
=T — g Ag_y . (15)

On the other hand, since Gy = Ry Urfu g, can be computed from the previous g;’s and
r; by the update

fhr=r+ ﬁz{9191~1 + ﬁz(f-)zgl—z +---F 5?(5?197?1; (16)
where 7; = max(! -k, 0) and where —ﬁ?), i=1ny, -, 0—1,and ——ﬁ,m = 1, are the nonzero

entries of the last column of Uy,
To compute the coefficients a; and £ in (14), (15) and (16), we need the A-
orthogonality of the vectors ¢; and p; and the orthogonality of the vectors p; and r,.

Since
PrTAGz = PITARIUr_l = PzTAVrArUr_l = PJT(VIHJ + ’f»’rezT)i'\.‘fUrm1

= PITWHJArUrwl = P;TV;L;DIUIU,"I = PITVILEDI )

where e, denotes the last column of the [ x [ identity matrix, and since PV} is nonsingular
and lower {riangular, we have

prAg =0, <] (17)
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and
P?Agz‘—z #0.
Thus, utilizing this information, we examine the following equations derived from (15),

T T T
P =P T — by Agiy

and
i
o Ag = pF Ary + B 0T Agi_s + BT Agiy + -+ B9 0T Agis,

for i going from 7, + 1 to . Then we get

T
PrT-a
oy = —m——— 18
YT opl Agiy (18)

and

M _P?ATJ + o7 Z;’;ﬁﬁ; JSI)AQJ'
= P Agiy
Now, putting the relations (14), (15), (16), (18) and (19} together, we have

,  d=ay 41,1 (19)

ArcoriTHM 1. ME{(k)BIiCG
1. Choose an initial guess xy and k vectors qy, 49, + 5 0+
2. Compute ry = b— Axg and set p, = ¢q, go = Ty
3. Forl=1,2,.-, until convergence:
4. ap = p?Ti—l/P?Agr—1;
5. T = Ti—1 T @ Gi-a;
6. 7= Ty — o Ag
7.  Fors=max(l—k,0),---,{~1
8. O = —pTa A (1 D haeevn 5090) /P71 Ag,;
9. FEnd
100 gr=m+ Tmax-k0) B4,

11.  Compute pyy according to (1)
12. End

It is worthwhile to remark on two special cases where k = 1l and & > v. f &k = 1,
then p; = (A7) ¢, and conditions (11), (12) become

2 € Tp + SPan{%a My vl—l} 3 T 1 I{I(QM AT) 3



which are exactly what the BiCG approximate solution 2f7“% needs to satisfy. As a result,

Algorithm 1 is equivalent to the BiCG algorithm mathematically. On the other hand, when
k> v, (11) and (12) reduce to

Ty € Tg + 313(1’”'{’00: Py '1/")1—1} ) T L Span{@ll, Gzy 't '591}

for 1 <1< w. If, at the Ith step of the computations, we choose (p;,, =) gy = r; while
setting (p, =) q; = r¢ beforehand, then Algorithm 1 is mathematically equivalent to the
FOM algorithm.

From its derivation, we can state the following result about Algorithm 1.

Theorem 3.1 Under the assumptions of Theorem 1, ML(k)BiCG does not break down by
zero division before step v, and the approvimate solution x, at step v is exact to the system

(10).

4 ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multi-
ple Starting Vectors Lanczos

The implementation of Algorithm 1 requires the use of AT to compute py, in Line 11.
In practice, however, the transpose of A is not always available, for instance if the ma-
trix is not formed explicitly and the matvec product is only given as an operator. But
this difficulty can be overcome by adopting the techniques in the derivations of CGS and
BiCGSTAB. In this section, we give a transpose-free version of Algorithm 1 which we call
ML(k)BiCGSTAB?.

We first rearrange the outer for loop of Algorithm 1 into a form more convenient for
our development. Let ! = 7k +1 and let the index 7 vary from 1 to k and j starting with 0.
Then we convert the loop in [ into doubly nested loops in § and ¢ respectively. By moving
the case where ¢ = 1 outside the i-loop, we rewrite the l-loop (omitting Lines 5 and 11) of
Algorithm 1 as,

1. For j=10,1,2,--.
2 g = P . /ph 1490 .
. Qipt1 = Dipp1 PG —0k+k/ Pie 190G - 10k+5s

3. Pkl = TG-Dk4k — Gket AGGo 1kt

4, Fori=1,2,---,k

5. Fors = max((j — 1)k +14,0),---, 5k +i—1
6. PR = _pT 1A (Tjk-t»é + o Cmax(( = 1)k +0) ﬂykmgt) /P Ags;
7. End

3The derivation of MEL{k)BiCGSTAB here may be simplified by adapting the approach to Lanczos-type
product methods used in [10], which includes the usage of the w- and w@-tables.



[l

[

12.
13.

14.

o=

Fhi—1 jkAi
Gikti = Tikpi T 23 n:ax((J = 1}k+, 0)'6(3 )

Ifi<k
Ojpridl = P?k+i+1'f"jfc+if’p?'k+i+14'l§jk+ii
Tiktitt = Tihpd — jk+i+1Agjk+i;
Fnd
End
End

in which Lines 5-8 can be again expanded into:

1.

o

Fors = max((j — 1)k +14,0),++,( —Dk+k—1
B = pT A ( Tikti T o =max((j—1)k+i,0) ﬂtjk+i)9z) /Pi1Ags;
End
ﬁgkt)ﬁ?ﬂ% - P;l'ﬂk+1A (Tik%-i + Zgjr;nla?}f(-l(-f:ll)k«i-i,ﬂ) lﬁ‘uﬂ1 ) /p?k+1Ag(j—l)k+k;
Fors=jk+1,- ,jk+i-1

_ i ki
ﬁgjk%’) = —pipi A (Tjk+z' + Egirnla)f&-;—l)kw,o) /39 +) et
. : A B g )/p?“Ags;
End

f— 1)kt ks ikl a(ihk+i
Gik+i = Tiki T Zgimix&jml)kﬁ,o)ﬁg} )gs t+ Zi:}_k—}-l ﬁgj )9 ?

and further into:

1.

1f5=0
B = —pF A [ pT Ago;
Fors=1,--+,i-1
ﬁg} =—pl A ("“i + ﬂ Go+ 2= 11ﬁt Q't) [P Ags;
End
. i—1 4(d) .,
g =T+ Dm0 Bs G5
Flse



10.

11.

12.

13.

14,

15,

16.

Fors=14,--- k-1

(je+i)  _ T
B Dkrs = ~Pi-1ktrsnrd (Tjk+a' +
- fl+i e ]
£ t=id 8—1)2:+:9(_a‘—1)k+t) /p(j~1)k+x+1Ag{jm1)k+sa
End

{5k ki) .
'B(j ;—;Hk - kaHA ( Tiki T 2t—~1 8 1;k+t9'(g 1)k+1) /p?k+1Ag(j—-l}k+ka

Fors=1,---,i—-1

k
ﬁa(yfl—tt) = p;rk+s+1A ( Tikti T Et =g ﬂfj’ —Il-_-;k-ktg(j —)ktt T

(5k+1) T .
1:"*1 ikt Gkt /ij+s+1Agjk+s;

End

k ki i—1 k+
Gikti = Tiksi T Do ﬂg -11-)k+3g(j ks T Sy ﬁ§i+s%)ggk+s,

End

Thus, the I-loop of Algorithm 1 is equivalent to following triple nested loops.

1. Forj=0,1,2,---

2.

3.

10.

1.
12.

13,

Qjpyg = p?‘k+1T(j—1)k+k/pJTk+1Ag(j—1)k+k;
Tik+1 = TG-k+k — ajk+1Ag{j—1)k+k§
Fori=1,2,---,k
Ifi=0
B = —p¥ Ar, [pF Agy;
Fors=1,---,i—1
ﬂsi) = "P3"+1A (7}' + ﬁ Go+ 2ims (1)91) /Ps+1Ags,
End
i = T + E =0 3 gs)
Else
Forg=1d,--- k-1
ﬁ(1k+a

(G~ 1)b4s — p(g 1)k+s+1A(7"Jk+z+
ki) .
b ﬁ{(j 1;k+39(1 1)k+t) /pa’—l)k+s+1‘49{j—1)k+s:

10



14. End

k+i) k .
15. ﬁ((j Dktk = P3k+1A ( Tiki T Z ﬂ{(; -5;},“9; 1)k+t) /p?k+1Ag(j—1)k+k:
6. Fors=1,---,i—1

k+i {Fk+i)
ﬁﬁ-;—s = pjk+s+1A ( Pitkdi + Ei_1 ﬁ(j 1;k+tg(3 1)k+t+

o ﬁj(ilit”ggk#) /P?k+s+1Aij+s;
18, End

19. Gikvi = Tikti T 2 =i ﬁé}?k?;“sg(; 1k+s 2 ;i’:{:)g.?k‘l'ﬂ

20. End

21. Ifi<k

22. Ajpgitl = p?’k+i-;-17°jk+i/pfk+i+1Agjk+i;

23. Pikpitr = ik — ajk+i+1Agjk+i;

24. End

25. End

26. Fand

We now introduce an auxiliary polynomial ¢;(A) defined by the recurrence relation,
'l/)g(A) =1,

QPJ(A); (pj/\+]')¢3—~l()\)’ J = 1727"‘)

where p; is a free parameter. This polynomial 1;(A) was first used by van der Vorst in the
derivation of BICGSTAB [23]. If we express ;(A) in terms of the power basis,

bi(A) = 1N £ PN 4l

then it is clear that 773’ @) = pipy -+ p; and 7 = 1.

Next, we define the following vectors, analogous to those defined in BiICGSTAB,
Fiprs = U(Angis T = YA,

Oipri = Yi(A)irgss Wi = i A)gjrees

fori=1,2,---,k;5=0,1,-+-, and set 7y = wy = 1o (= gp). Our goal is to define m;xy,
to be the residual of our new method. The other three vectors are needed in deriving a
recurrence for 7. By recalling (1), (12} and (17), we find that the scalars o;’s and (s in
Algorithm 1 can be computed via these new vectors. The derivations are guite complicated

11



and therefore we give the details in the Appendix while summarizing only the resuits here.
In fact, we have
_ Q’T’F(j—l)ﬂk

Hikt = Q?Aw(j—l)k+k

for 0 < 5;

Gupist = Pip1 i1 jp i

qz+1( ki T ki)
for0<4,1<i<k
{{;‘) - _ Q}iﬂ'z
P14i Awy
for 1 <i<k;
@ Gipt (7?1: + 8 pr Ay + 000 t(i)(wt - f:-’t))

qg‘+1(ws - a’s)
for1<s<i<k

- 5— k+1)
giys (ij+i+2t;i1 ﬁ((j Dkl WG -1kt — w(fv—l)kﬂ))

Q31+1 (w(jml)k-i-s - w(j—l)k+3)

(3 k+4)
ﬁ(J 1k+s

for 1< j,1<i<s<k—1;

k—1 k+1)
(G k+i) _ q? (wjk+i + Pie1 Zt;i 168 1)k+tAw(J i}k+t)
BG ks =

Pj+1€1wa(j—1)k+k
for 1 <7,1<i<k

k ki kb -
G311 (ﬂ'jk+=' + Pt L= :H((j'—l;});-HAw(J et + 08 B Wik — B ))

ﬂ(jk-l-i)
qf'+1(wjk+3 - jk+s)

Fk-s

for1<7,1<s<i1<k.
Moreover, the vectors jj44, Tixeis @jppi and wyky; themselves can be updated as
follows,

Tikt1 = T(G-1)k+k — ijfc+1Aw(j—1)k+k
for 0 < 4
Tiket = Pj+1 AT kg1 + Tipan
for 0 < 33
Tihpits = Wjbyi = DBt~ D)
i1
for1 <i<k,0<7;
Tipsier = Typ4s — ajk-bi%»lijkH

for 1 <i<k,0<7;
& = &+ 0w+ 10 AV,
for I <i<k
w; = W+,@o)(P1AWo+w0)+zs =1 Do,

12



for 1 <4< k;

- = k (ik+1) i-1 A(fh+4i) ~
Wikss = Typas Do ﬁ(j—-l)k-}-sw(j“l)k"}-s + 2 /@jk+s Wikts
R B T N
0T 15 JL i 5 R
_ & (fh+i} i—1 A(ik+i)
Wikyi = Tjppi T Demi /B(j-—l)k+s(pj+1Aw(j—l)k+s + w(jmz)kJrs) + 2o ﬁjk+s Wikts

for 1 < j,1 < 4 < k. The details of the derivation of these equations can be found in the
Appendix.

The formulas we have just derived constitute the main operations of the ML{k)BiCGSTAD
algorithm, which we summarize as follows.

1. Set 7 = wy = 7y,
2. Forj=0,1,2,--:

qffp?r(j—l)k-i-k .
Q?Aw(j—l)k%*k ’

w

Qi1 —

4. T = TGoaykek ~ k1 AWG 1)k 4k

5. Choose pj 1 # 0

6. Wiy = Py Afgeps + By
7. Fori=1,2,---,k
8. Ifij=10
9. G ___ @m
¢ qu'irAwe’
10. Fors=1,---,1—1
11. 5 o Q?+1 (7?5 + ﬁﬁi)plAwo + Zi;ll ﬁti)(wt - Jit)) ’
T q'sr+1(ws ™ "Z’s) '
12. End
13. G = i + BPwe + 28 890,
14. w; = m; + ﬁt(li)(plAwD + wy) -+ Zi;ll 55)%5
1b. Else
16. Fors=4,-- k-1
- s—1 olik+i -
17 (ik+i) Gy (ijﬂ' + Zt:ii ((;—T)il)wt(w(j—l)kﬁ - ‘”(J’—l)k+t))
) ﬁ(j—l)k+s == 3

q;+1(w(j—1)k+s - @(j-l)k+s)

13



18. End

(Fk+
19. guE) a (myss + py40 02 BEE 1;“*‘4“]{"'1)]““);
(1—-1)k-+k Pi+1 Aw(:i—l)Hk
20. Fors=1,---,i—1
ot (Fht

21 B = —93"+1( Tiai + Pyt Tims B DAt

B k+1 " )

ﬁ;%cﬂ Nwppe ~ jk+f)) /qu(ijs ™ Gige)
22, End
k¢ i k "
23. Wjpei = Fjpas + s ﬁg T)kwl«sw(f—l)k-%s + ¥ i ﬁg(?c::) Wiktss
24. Wippi = Mgy + Zf:;‘ )885-:;,%~;-3(Pj+1r4w(]~_1)k+3 + w(j—l)k+s) + Z
25. End
26. Ifi<k
Pis1Gi Finpi

27. Qjippip1 =

G (Wingi — Djrgs)’

98. Tibtirl = TWjpgi — ai:f:-l (Wikpi = Djra);
29. Wiktitl = Tjpgd ™ Qjppir1 Awi g

306. End

31. End

32. KEnd

Jk+8;

Some simplifications can be made to these operations, for instance, (a) resetting the
scalar jgyiqq in Line 27 1o be ¢fs Tipqi/ @1 (Wikgi — @jpga) SiCE Qyppiqq s only used in
Lines 28 and 29 and the factor p;,, will be cancelled in Line 28; (b) merging Lines 9-14
and Lines 19-24 by adding a conditional control “éf 7 > 1”7 in Line 16 and treating ﬁ,(i)
with | < 0 as zero; such ﬂ,(i)’s will appear in Lines 19-24 when j = 0; (¢) introducing the

auxiliary vector
djk+z‘ B Wik ™ Dk
which can be updated by using Lines 13, 14, 23 and 24 as

(jk+a

g = Tipgi — Fjpgi + Pina Zﬁ@ 1)k+sAw(; 1) kts + Bikts )djk+a .

With these changes, we rewrite Lines 8-30 as,

1. Fors=14,+-,k—T1andj>1

14



(7 k+4)
QsT+1( jk+£+ztmi }1 1)k+td(3 E)Hf)

2. ﬁ(‘jk'*‘z) o — )
(- 1kts qS+1d(J'*‘1)’~'+5
3. FEnd
T (71' P Dot BUEE AW )
4 GEH) B A Thdd T P51 2otmi PG -1k %0 - k42
: ﬁ(j—l)k+k == ;

pj+1q,{ Aw_y4r

b, Fors=1,-+-,i—1

k k+i) k+i
Gin (ij+i + Piar Dhes BEEN AW 1yee + Tt Bt dinae)

6. Uk _
jlts Qs+1djk+s
7. End
_ k jk+i k4 )
B. dijkpi = Mikdi — Fjni + Pitr Dosmi ﬁg—l)zf)c+sAw(j—1)k+s + i B s
k k+i) k+i
9. Wipti = Tjpgs + 2 emi 58 1)L+;(PJ+1AW(J ks + Wi 1)k+s) + Zs—ml ;EJHs i
10, ffi<k
qz+1'ﬂ'3k+«z
11. ; T
Qjptitl = q,,+1d‘,k+g

12 Fipgirt = Fikti — Grait1Gintss
13. Mikgisl = Mjpps — Pj+1ajk+i+1ijk+i3

14. Fnd

in which Lines 1-9 can be further rewritten as,

1o 23 = Fipgds 2 = Tjpgi Zaw = 05

2. Fors=1i,---,k—1landj>1

w

ﬁ(@km‘) __ s 417 ;
(J-VDk+s Q’T-;-1d(j»»1)k+s ’

4. zg =23+ ,3(;, 1)k+sd(3 k4ss

5. = 2, +ﬁ{(jkgk+sw(g k45t

6. Zaw = 24w BN ACG -1k
7. FEnd

8. !6{(_;,]—‘7-1-;});+k . a (Tjeei + Pj41740)

pj+1qg1Aw(j—1)k+k
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k+i)
9. = Zy + ﬁ(j DEHE(G - 1)k 4k}
10, 24, = Pj (%w + ﬁ((j-;ﬁ;;)ﬂkfiw(jﬂ)k{_k) }
L. 2g = Tjpas + Zaws

12, Fors=1,---,1—1

13, AUMD = _ igT.Fled ;

Gy 1% k+s
W za=zat ﬁgiitt)djﬁ-*i*s:
1o = A +ﬁ§§c’gg) Wik+ss
16. Fnd

17, diggi = Za — Tjpyss

18, Wjpps = Zu + 2aws

As the approximate solution z; at step I (= jk+1) of the ML{k)BiCGSTAB algorithm,
we define
Tipl = T-1)k+k — Li1Tines + Qe - btk (20)
for 7 > 0 and
Tipgitt = Tipti T L1 Xbi 1% ki (21)
for § > 0,k > i > 1. One can readily verify by induction that x, is the residual vector of
x;, that is, 7 = b — Az,

We are now ready to state the ML{k)BICGSTAB algorithm formally. As part of the
algorithm, we choose the parameter p;.; to minimize the 2-norm of the vector 7,4 =
P;+1Aﬁ3k+1+ﬁgk+1ai e Pjp1 = —Fhy1 AT /| AT || Noting that the data of Aw_1jiqr
gl di;—1)e4+s and q%,1d;5.. are repeatly used inside each loop of the control variable 7, to
save the computational cost, we introduce a variable ¢;i,; such that ¢ = @ +1d ey
if 1 <¢ <k—1and ¢ = ¢f Awjiqs i ¢ = k. Moreover since m; is the residual of #,
we relabel 7, as 7. We also relabel w; and #; as g; and u; respectively.

ArcorireMm 2. ML(k)BiICGSTAB
1. Choose an initial guess z, and k vectors g1, ¢z, "+, s,

2. Compute ry = b — Axy and set g, = rp.

3. Forj=10,1,2,--

4. wy_npek = AGG-Dk+k

5o Chot)bdh = €1 W(-1)bES

6. @1 = @1 TG nkak/ Sk kS
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10.
1L
12,

13.

14.

15.

186.

17.

18.

19.

20.

21.

22,
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

Uikt = TH—1k+k — W1 WG Dbk

pra1 = — kg1 At /[ Al

Ao sa T M g r o — fe My s
IRt R W Loy ol Ll B P 8 _,lli."f‘i '

- oy

Tipd1 = Pjp1 AlUjpgr + Ujpgs

Fori=1,2,---,k

Zg = Uiktiy Bg = Tiktis 2w — 0;

Forsg=14,..

jkti
ﬁ(} )

k—landj> 1

- T .
G—1)kts — _q.s+lzd/c(j—1)k—|~s)

2g = g+ /6(3 1)k+3d(3 Uyk+s?

(Fl+2)

g = &g +ﬁ(; V49 —1k+s5

ki)
Zy = 2y +/88 1;k+3w{_1 1}k+3:

End

ﬁ(jk-{-i) _ ¢l (Pjngs + pj+1zw);

G-1k+r =

Pj+16(j ~1)k+k

ki .
2y =25 + ﬁg——l)i)c+kg(jml)ia+k1

Ic+z
w = i1 (Zm + ﬂ(; 1),)k.|.kw(j 1)k-1-k)

Zq = Tikti T 2w}
Fors=1,---,i—1
ﬁ(ﬁ'kﬂ)

jk+s —QS+1zd/ch+s)

- (G h+i)
g = 2 + ﬁjk-}-s dJk+3}

(7 k+i)

2y = 2yt Biigs Giktss

End
Gikpi = Za — Ujkyis
Gikyi = Bg ¥ Zu

Ifi<k

7T .
Cipti = q!'-i-ldjk-!-ia

_ T .
Ciptiyl = Qi~§-1ujk+i/cjk+ia

Uiptivr = Ujpai —

g pid1 it

17
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34. Tihtirl = Tjppi T Pj 41050 pi 1G5 b+

35. Wipgs = AGyriss

36. Pikdidi = Tidi P ki Wik
37, End

38. End

39. FEnd

The denominators in the ML(4)BiCGSTAB algorithm appear only in the evaluations
of @’s and 8% and from the process of their derivations, these denominators differ from
their counterparts in Algorithm 1, but can not be zero if the denominators in Algorithm
1 are not zero, assuming the p;’s defined in Algorithm 2 are nonzero. Hence, under the
assumption that p;; # 0 for all j, we can see that if Algorithm 1 does not break down by
zero division at some step, then neither does ML{k)BiCGSTAB at the same step. More-
over, since the residual vector r},,; is by definition the vector Py 11(A)7} 4, where 7j34;
and 73;4; denote the corresponding residual vectors in Algorithms 1 and 2 respectively,
and since 7}y € Kjppip1(vo, A), we have rjy1; € Kjgpiijia(vo, A). Thus it is possible that
Tka vanishes when jk+ 1+ j+1> v, or jk+i> v —j — 1. On the other hand, r] must
be zero because v} = 0.

Theorem 4.1 Under the assumplions of Theorem I and if pj1 # 0 for all j, the ML(k)BiCGSTAB
algorithm does not break down by zero division before step v and an exact solution Y10 (10}
15 obtained at or before step v.

A similar remark to the one at the end of §3 can also be made here. Mathematically,
ML(1)BiCGSTAB is equivalent to BICGSTAB since it was established based on BiCG by
using exactly the same techniques used in deriving BICGSTAB. In the case where k > v,
we can obtain an exact solution in the first loop of 7, i.e., 7 = 0, and the algorithm now
can be regarded as a FOM algorithm (with the ¢;’s appropriately chosen), for the reasons
stated in the following. Since

v} € vy — span{Avy, A%y, - -, A'ug}
from §3, we have
rf = (A)r} € r§ — span{Ar, A*E - Alr{},

where vy = b — Azg, 7§ = ,(A)vy and r} and 7} are the residual vectors of Algorithm
1 and ML(k)BiCGSTAB respectively and 1 < ¢ < ». Thus if A is nonsingular and since
Pr(A) = pA+1, .

(E;_? € mﬂ? + span{Tg, A’J"g, B AI_ITUF}

where z? denotes the approximate solution of ML{k)BiCGSTAB, defined by (20) and
(21), with residual #} and where af = 3o — pyvo and r§ = b — Az{. If at step i of

*If the coefficient matriz A is singular, the system (10) may have more than one solution.
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the ML(k)BiCGSTAB algorithm, we choose g;(= A% = p1) = ¢1(AT)¥1(A)vy * and
ge(= Aqy = pir) = P (AT rfi_; for 2 <4 <4, then

(of Y7} = (AT (Ayv) '} = piri = 0, 1<4,

and
() = (2 (A = Pyt = 0, 1<¢<i-1

by (12). In other words,
TELspan{Tg:Tga"'aT?wl}s 1£%§U

As a result, the ML(k)BiCGSTAB (k > v) algorithm with the special choices for ¢;’s
described above is mathematically equivalent to the FOM algorithm defined by

F - _F F o4 F 1
el € of + span{rf, AvL, -, A}

and
o P _F F
i —L{TU:TI-)"')T:'I—I}:

where the initial guess zf and residual r{ are defined as above.
It is quite straightforward to give a preconditioned version of ML(k)BiCGSTAB.
Suppose we are solving the right-preconditioned system,

AM Yy =10, y=Mz.

Directly applying the ML{(k)BiCGSTAB algorithm to the system AM~'y = b for the
y-variable and then recovering the z-approximation from the y-approximation with the
relation y = Mz, yields the following algorithm.

ALGORITHM 3. ML(k)BiCGSTAB WITH PRECONDITIONING
1. Choose an initial guess xy and k vectors ¢, ¢y, +, k-
2. Compute ry = b— Az, and set gy = 719,
3, Forj=10,1,2,---

4. Gevper = MG Dp4rs

5. W —1yk45 = Ag(j—l)k+k;
6 €; = gfwy, :
' (G—~Dk+E = 91 Wi 1)k 4k
7 Qi1 = G 7 /¢ ;
' ikl = G TG -1k 48/ O -1k
8. Uik+1 = TG -Dk+k — Frr1 WG _13p4ri
—~ _— _1 .
9. Ujppr = M7 0403
I - ~ 2.
10. Py = Uiy Alljpg /1| Ax 4l

SNote that p1, the leading coefficient of ¥1(}), is a function of g1 according to Steps 4-8 of Algorithm
2 and here we suppose the equation g1 = 31 (AT )31 (A)vo has solutions for ¢:.
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11.

12.

13.

14.

15.

16.

17.

18.

19,

20,

21.

22,

23.

24.
25.
26.
27.
28,
29.
30.
31.
32.
33.
34.
35.
36.
37.

Tikpg1 = TG-1k4k — Pi+1Bikst + Xrp10G -1)k+k5

ittt = Piaa Alljpp + Bjpgss
Fori=1.2,..-.k
g = ugk+n Z =T; L+z'; 2y = 0;
Fors=14,---,k—landj>1
k
58 —11—;;,4.3 = _q;+lzdlc(j~—l)k+3;
o
Zg = Zq+ ﬁ((j_J{););+ad(j—1)k+s;
(Fh+41)
2y =2+ ﬁ(f 1;k+sg(.’:‘ Dk+s
k+i)
Zy = By F ﬁ{(}: 1)k+sw(;’ k+ss

End

ﬁ(jk+i} _ 9'1( k+z+PJ+1zw)
G-tk = P16 1okt ’

(ik-+4)
2y = %y +ﬁd 1)k+kg(.i' 1)k-+k}

Ry = Pit1 ( + ﬁ(;ki)awkw(:r 1)k+k)
24 = Tipgs T 2w
Fors=1,---,1—1
Bt = —qhs1za] Ciasss
zZg = 23+ ﬁg(y;tg)dakw,
Z, =z, +ﬁ§n1kiti)gjk+s;
End
difpi = Za — Ujktis
Gibti = Zg + 2y
Ifi<k
Cigti — qg:l-ldjk%-i;
Qg1 = ‘IiT+1“jk+i/Cjk+i§
Ujppitt = Yiki = Cghtit10ires;
Gikgi = M_lgjk+i;

Tihiitl = Tihti T L1 Xkpis1Gib4is
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Preconditioning (M~v) | 1+ 1/k | Vector addition 3
Matvec (Av) 1+ 1/k Sazpy 2.5k + 3.5+ 1/k
dot product k+2 | Scalar operation k+3—1/k
Secalar-vector i Storage A+ M + dkn + O(k) + On)

Table 1: Average cost per step of the preconditioned ML{k)BiCGSTAB and its storage
requirement.

38. Wikgi = Abjryes

39. Tiktitl = Tihts = Pi+1Q5b+i+1 Wikt
40. End

41. End

42. FEnd

With suitable changes of variables, it may be shown that both the left and split precon-
ditioning versions of ML(k)BiCGSTAB also lead to Algorithm 3 provided that ¢, ¢5,* -, g
are appropriately chosen. For the concepts of left, right and split preconditioning, one is
referred to [17}.

Each loop of the control variable j in Algorithm 3 involves solving &+ 1 systems with
coefficient matrix M, k 4+ 1 matrix-vector multiplications with A4, k* + 2k dot products,
2.5k%+ 3.5k + 1 saxpy’s, 3k vector additions, k scalar-vector multiplications and &*+3k—1
scalar operations. Since there are k steps in each loop of j, the average cost per step
can be calculated and is listed in Table 1. Regarding the storage, the data {g;, -, g},
{di_iyei> s Biigie1ds {9G -1+ s Girrio1) a0 {WG1yk4i, -+, Wigyi—1 } are used in the
process at step jk + ¢ and hence they must be stored. Since they dominate the memory
when % is large, the storage of the algorithm is about 4kn. We note that when k = 1 the
cost is the same as BICGSTAB’s and for large & the cost tends to that of FOM.

5 Numerical Experiments

In this section, we shall illustrate the numerical convergence behavior of ML(k)BiCGSTAB.
We shall compare ML(k)BiCGSTAB to BiCG, BiCGSTAB and GMRES(m)® [15] on a test
suite of matrices from the Harwell-Boeing Collection [4]. For the implementation of these
latter three methods, we used the versions described in [2]. All the experiments were run
in MATLAB 4.2c on a SUN SparcStation with machine precision about 107'¢. As for
the initial guesses and right-hand sides, we always chose 2, = 0 and b = [1,1,---,1}%.
For the initial vectors qi,qs, -, ¢ in the ML(k)BiCGSTAB algorithm, we first chose &

random vectors with independent and identically distributed (iid) entries from a normal

SWe note that we have only compared with the basic versions of BICGSTAB and GMRES. There exist
now many new variants of these methods which may perform better, e.g., BICGSTAB2, BiCGSTAB(k),
Deflated GMRES {5, 12}, FGMRES [16], GMRESR [24], Mixed-BiCGSTAB-CGS [3] and etc..
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distribution with mean 0 and variance 1 (N (0,1)) and then made them orthogonal to each
other by using the modified Gram-Schmidt algorithm [8]. The iteration was stopped as
soon as the true relative error ||b — Azy||o/||b]|z was less than 1077, Finally, all the figures
plot the true relative residual versus the number of matrix-vector multiplies taken.

We ran all four methods, on a representative group of matrices from the Harwell-
Boeing collection. The results are summarized in Tables 2 and 3. In Table 2, we used
fy = 7o in the BiCG and BiCGSTAB codes and in Table 3, 7, was a random vector with iid
entries from N(0,1). We observe that, in terms of number of matvec’s, ML(50)BiCGSTAB
and ML(100)BiCGSTAB are always better than the other four methods, at least for this
collection of matrices. The only exception is the matrix watt2 where only BiCG and
GMRES converged. We can also see that ML{k)BICGSTAB for k£ = 25 is almost as good
as for & = 50, whereas & = 100 does not give much improvement over £ = 50 in most cases.
We believe that the improvement of ML(k)BiCGSTAB over BiCGSTAB can be attributed
to the use of multiple starting vectors. In principle, ML(k)BiCGSTAB can never be better
than full GMRES, but as we can see from the table, it can be much better than restarted
GMRES. We can also see from the table that ML{k)BiCGSTAB and BiCG tend to converge
and diverge more or less on the same subset of matrices, but ML(k)BiCGSTAB typically
requires many fewer matvec’s when they all converge.

Next, we present the convergence history for three matrices from Table 2. These
matrices are described below. We have used ML{30)BiCGSTAB in these examples.

Ezample 1. This example is the first matrix named IMPCOL D from the CHEMIMP
group of the Harwell-Boeing collection. The order of the matrix is 425 and it has 1339
nonzero entries. In this example, no preconditioner was used and the convergence curves
are plotted in Figure 1(a). BiICGSTAB encounter a breakdown after 450 matvec’s.

1¢f 10
Point: BICG
10 407 L Plus: BICGSTAB
b Dashed: GMAES(30}
10° s Safid; ML{30)BICGSTAB
- ~10°
o =
5
o o
4 3
g R
g 210
3 2
310 3 2 ++
S & #
B <10 ¥
107 Peint: BIC&
$+
Plus: BICGSTAR . a4 {ﬁ
-6 N
107 Dazhed: GMAES(30) E 16 £
Solié: MLIZ0)BICGSTAB S
10‘5 1 1 1 1 1. i 3 L 10—3 1 i 1 1. 1 1 L
2 500 1000 1600 2000 2500 2000 3500 4000 4500 o 500 1000 1500 2000 2500 3000 8500 4000
(a) maliix-vector muiliplies (b) matrix-vecior mufliplias

Figure 1: (a) Example 1: with no preconditioning; (b) Example 2: with no preconditioning.

Ezample 2. The matrix is the second one named ORSIRR1 from the OILGEN group.
The order of the matrix is 1030 and the number of nonzero entries is 6858. We first run
the algorithms without preconditioning and then with ILU(0) preconditioning. The results
are shown in Figures 1(b) and 2(a) respectively.

FExample 3. This is the HOR131 matrix from the NNCENG group. The order is 434
and it has 4710 nonzero entries, The ILU(0) preconditioner was used and the result is
plotted in Figure 2(b).
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[ Mairiz | Order | BiCG | BiCGSTAB | GMRES(100) | ML(25) | ML(50) | ML(100) |

1188bus | 1138 | 4748 5872 - 1966 1384 1395
bespwr0f | 1454 | 5810 14246 - 3167 2720 1899
besstk(8 | 1074 | 15844 - - 3859 1902 1242
bessthig | 1806 | 20204 - - - 13315 6336
besstk19 817 - - — - - -
besstm27 | 1224 — - — — - -
cani064 | 10564 | 9908 - - 4053 3126 2606
dwti@05 | 10056 | 1178 2934 - 673 625 645
erisi176 | 1176 | 1426 1530 1197 698 532 499
feb414 541 2738 2640 — 728 469 403
gr3030 960 76 52 38 40 40 40
grel107 | 1107 — b — — 8676 3262
hori31 434 — - - 1945 1268 1048
impeold 425 o b - 1619 916 597
Jjagrmesh? | 1009 | 1726 2058 - 1152 995 1129
jpwhd91 991 100 58 49 55 53 55
Insbi1 511 — o — — — -
lock1074 | 1068 0 - - - - —
Ishp1270 | 1270 | 2492 4458 - 1628 1591 1445
mahindas | 1258 o b - — - —
mcfe 765 — — — - — -
nncld374 : 1374 - b - - - -
noss 960 494 384 1968 251 249 246
orsirrl 1030 | 2068 3318 1270 838 781 772
plat1819 | 1919 — - - - — e
poress 1224 — — — - — -
saylrd 1000 7 - - o o 0
shermang | 1080 e b — — - —
watt? 1856 | 19406 - 1131 — - —
west0989 | 989 — - — - — —

Table 2: Comparison of Methods on a Representative Group of Matrices from the
Harwell-Boeing Collection. ML{25), ML(50) and ML(100) stand for ML(25)BiCGSTARB,
ML(50)BiCGSTAB and ML(100)BiCGSTAB respectively. The vector 7, in the BiCG and
BiCGSTAB codes was set to be ry. The numbers in the table are number of matvec’s, “-”
means no convergence within 20n matvec’s for BiCG and 10n for the other methods, “b”
denotes breakdown, “o” denotes overflow.
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] Matriz | Order] BiCG | BiCGSTADB ] Matriz | Order] BicG | BiCGSTAB !

1138bus | 1138 | 10504 8164 Jpwh991 491 108 62
bespwr06 | 1454 - 13258 Insb11 51l - -
besstk08 | 1074 - — lock1074 | 1068 0 -
besstkld | 1806 | 35184 - Ishp1270 1 1270 — 4662
besstk19 + 817 - - mahindas | 12568 - -
besstm27 1 1224 - - mcfe 765 - —
canifb4 | 1054 | 10844 - nncl874 | 1374 - —
dwti00s | 1005 — 2744 nos3 960 512 388
erisl176 | 1176 - 1648 orsirrl 1030 | 2214 3676
fsb414 hal 2668 4142 plat1919 | 1919 — -
gr3030 900 82 55 pores? 1224 - -
grell07 | 1107 - - saylrd 1060 - —
hori31 434 - - sherman2 § 1080 — b
impcold 425 — b watt? 1856 - -
jagmesh2 | 1009 | 2894 3300 west(989 | 989 — -

Table 3: A test run of BiCG and BiCGSTAB on a Representative Group of Matrices from
the Harwell-Boeing Collection. The vector 7, was set to be a random vector with iid entries
from N(0,1). See Table 2 for the meaning of the notations.

{eglirue relative error}

T
Dashdet: BiCG

Plus: BICGSTAB
Dashed: GMRES{30)
Sofid: ML{30)BICGSTAB

logitue relative error}

Dashdot: BICG

Plus: BiCGSTABE
Dashad: GMRES{39)
Salid: ML(30)BiICGSTAB
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Figure 2: (a) Example 2: with ILU(0) preconditicning; (b) Example 3: with ILU(0)
preconditioning.
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We observe that when all four methods converge {as in Examples 2 and 3), ML{30)-
BiCGSTAB requires approximately the same or fewer matvec’s than the other three meth-
ods. In fact, it can be significantly faster than the other three methods, as in Example 2.
Moreover, ML{30)BiCGSTAB manages to converge when the other three methods fail, as
i Example 1.

Finally, we present some numerical results to demonstrate the dependence of the
performance of ML(k)BiCGSTAB on the value of k. In Figure 3, we plot the number of
matvec’s (scaled by 1/10m) versus k for the two matrices ORSIRR1 and HOR131. In order
to illustrate the improvement of ML(k)BiCGSTAB over BiICGSTAB for k > 1, we plot for
k = 1 the number of matvec’s for BICGSTAB instead of for the mathematically equivalent
ML{1)}BiCGSTAB. We observe that for both matrices there is a dramatic improvement
in performance as & increases from 1. This behavior is typical for the matrices that we
have tested and this can be partially observed from Table 2. Thus the advantage of
ML{k)BiCGSTAB can be realized even for small values of k. On the other hand, we
can also see that for large enough values of k (e.g. £ > 10 for ORSIRRI and & > 30
for HOR131), the performance is not sensitive to the value of k. Thus, it is not crucial
to choose an optimal value of k as long as k is large enough. We have also found that
the performance is not sensitive to the specific choice of the random starting vectors ¢;’s,
provided that k is large enough. However, we should caution that the performance could
be sensitive to the choice of ¢;’s for small values of k.

{a) HOR131 {b) CRSIRR1

11 035,
i G}QDDOK o
03}
8.9
x
Sos Soast
g £
ha =
a 2
% 07 * E *
g g 02
g 081 ;i g
£ € *
S5} Zo.18F
* 1
04} *
213 *x
03} x E WK .
02 ; L L . . . \ ; " 005 . : s . N R \ . .
o W 20 4 40 &0 B0 70 BO 90 100 0 19 20 30 46 S 60 70 8 90 100
k k

Figure 3: Number of matvec’s / 10n vs. k for the matrices HOR131 (a) and ORSIRR1
(b). “o” denotes no convergence within 10n matvec’s. For k = 1, we plotted the number
of matvee’s for BICGSTAB. Note that there is a dramatic improvement in performance as
k increases from 1, but that for k& > 30, the performance is not sensitive to k.

More testings are of course needed to better understand and assess the performance

of ML(k)BiCGSTAB, but we hope we have at least demonstrated the potential advantages
of this new method.
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6 Appendix

Here we give the detailed derivation of the coeflicients ¢; and 8; of the ML(k)BiCGSTAB
algorithm.
@, 7 —i ()T
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: = 4 = = ‘
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The detailed derivation of the formulas for updating ;44 Tjgsis @jp4s a0d Wjpy, are
given below. We have used the formulas in Algorithm 1 in our derivations.
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for 1 < 7,1 <14 <k, where I is the n x n identity matrix.
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