Self-Focusing in the Presence of Small Time
Dispersion and Nonparaxiality

G. Fibich
G.C. Papanicolaou

April 1997
CAM Report 97-16

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555



Self-focusing in the presence of small time dispersion and nonparaxiality

G. Fibich
Department of Mathematics, UCLA, Los-Angeles CA 90095-1555
G:.C. Papanicolaou
Department of Mathemalics, Stanford University, Stanford CA 94305

We analyze the combined effect of small time dispersion and nonparaxiality on self-focusing and
their ability to arrest the blowup of laser pulses by deriving reduced equations which depend only
on the propagation distance and time. We calculate the pulse duration for which time dispersion
dominates over nonparaxiality, or vice versa. We identify additional terms (shock term, group
velocity nonparaxiality, etc) which should be retained when time dispersion and nonparaxiality are
of comparable magnitude. These additional terms lead to temporal asymmetry and in the visible
spectrum they can dominate over both time dispersion and nonparaxiality.

The simplest model for optical self-focusing is the nonlinear Schrédinger equation (NLS)

i, + AL+ Py =0, ¥(0,7) = tolr} . (1)

Here, 1(z,r) is the electric field envelope of a laser beam propagating in a medium with Kerr nonlinearity, z is the
distance in the direction of the propagation, r = \/z% + 3?2 is the radial coordinate and Ay = 82/8r% 4 (1/r)(6/0r)
is the Laplacian in the transverse two-dimensional plane. It is well known that if the initial power i1s more than a
critical value (i.e. [ |o|?rdr > N, = 1.86), solutions of eq. (1) may blow-up in a finite distance z. Since physical
quantities do not become infinite, it is clear that the validity of eq. (1} breaks down near the focal point and that
additional physical mechanisms, which are initially small, become important there and prevent singularity formation.

In this Letter we focus on the combined effect of two mechanisms which may arrest blowup and which are neglected
when approximating Maxwell’s equations by NLS: Small time dispersion and beam nonparaxiality. In previous studies
it was suggested that small nonparaxiality arrests self-focusing and leads to an oscillatory focusing-defocusing behavior
[1,2]. In other studies it was shown that small normal time dispersion delays the onset of self-focusing and causes the
temporal splitting of the pulse into two peaks which continue to focus [3,4]. However, it is still unknown at present
whether the solution will ultimately blow up or not. Recently, pulse splitting was observed experimentally [5].

An important question which arises when modeling physical self-focusing is whether time dispersion and/or non-
paraxiality should be included in the model. In this Letter we answer this question by identilying the regimes where
each mechanism dominates. While doing this, additional terms are identified which should be kept in the model when
time-dispersion and nonparaxiality are of the same order. In fact, these additional terms can even dominate over
both time dispersion and nonparaxiality in the visible spectrum. We then derive reduced equations which describe
self-focusing when all of the above mechanisms are present. We use these reduced equations to analyze the com-
bined effect of normal time-dispersion and nonparaxiality {both of which arrest self-focusing), the case of anomalous
tire-dispersion and nonparaxiality {which have opposite focusing effects) and the influence of the additional terms.

We begin by deriving NLS with nonparaxiality and time dispersion. If we neglect vectorial effects [6], the electric
field can be assumed to have the form

E(mu ,2,0) = EA{x, y, 2, t) exp(ikoz — dwot)

where the unit vector & is perpendicular to the z axis, The equation for the slowly varying envelope A is [7]:
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where k = wno({w)/e, ko = k(wo), c;l = (dk/dw)y,, no is the linear index of refraction and ny is the Kerr coefficient.
We change to a nondimensional moving-frame coordinate system with
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where 7 is the initial pulse width, Lgig = r¢ko is the diffraction length and T is the pulse duration. Dropping the
tilde and neglecting the (JA|>A)y term, which is O(e3), the equation for the nondimensional envelope ¥ is
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where
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The dimensionless parameter ¢; ~ (wavelength/radial pulse width)?, ez ~ (period of one oscillation/pulse duration),

and g is a dimensionless measure of group velocity dispersion (GVD). Note that
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The first component of the ez term is sometimes called the shock term {8]. The second component can be replaced
by:

— ety ~ iz [ALth + (|9]%%):] (4)

and its linear part (—iepA 1) was interpreted by Rothenberg as the effect of the variation of the group velocity of
a tilted ray projected onto the z-axis [8].
Let us define T} as the pulse duration for which time dispersion and nonparaxiality are of the same magnitude (i.e.

€1 = |eal):
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If Fis O(1) then, when T < T} time dispersion will initially dominate and ¢; < ez < €3, but as the pulse becomes
narrower €; ~ r—2 increases while eg ~ r? decreases, When 7" > T nonparaxiality dominates and €3 > ¢ > €.
Note that it is not possible to include in the model both the €; and €3 terms without retaining also the €z term.

The €5 term is usually asswmed to be small compared with either time dispersion or nonparaxiality. However, we
now show that in the visible spectrum it can dominate both. The index of refraction of optical materials such as
water [9] or silica {10] in the range of transparency is almost constant and |wn,| < 1 [11]. For example, by using data
digitized from [9] it was estimated that for water in the visible spectrum |jwn,,| ~ 0.03 [12]. Therefore, ¢; ~ ¢/no,
€y > 0 and
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with F' ~ 100 for water, for example. This implies that in the visible regime and with 7' = O(T}), both ¢; and ¢3 are
small (O(1/+/TF])) compared with e. When T' = Ty\/[F[(or T = T/ VIF]), €1 = €2 (or €3 = ¢3) and e3/ex = O(1/F)
{or €1/e3 = O(1/F)). Only when T > T \/|F| (or T' < Ty/+/|F) do we have that €5 < ez < €1 (or €1 € e3 K €3).
Moreover, using (4) and ¢, ~ ¢/ng, eq. (2) reduces to

i, + ALy + 912 + etpes o+ den [([WP)h — ALt] — eathr = 0 (5)

The separate effects of small time dispersion and nonparaxiality were analyzed before [2,4] using a perturbation
method that allows the derivation of simplified equations [13]. Briefly, near the focal point the solutions of (2) or (5)
have the form

1 P e
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where R(r) > 0, the radial profile (Townes soliton), satisfies Ay R — R+ R® = 0 and [ R rdr = N.. By averaging
over the transverse coordinates we find that the modulation functions L and ¢ must satisfy the reduced equations
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where 71 = 261N./M, 72 = ea(Begnofc — 2)N,/M for eq. (2) and 72 = desNe/M for eq. (5), 3 = 2e3N, /M and
M = 1/4fR2r3 rdr = 0.55. The modulation functions have the following meaning [13,14]: 8 is proportional to
the excess cross-sectional power above critical, L is the non-dimensional radial pulse width, and is also inversely
proportional to the on-axis intensity |9(z,{,» = 0)| so that blowup occurs when L = 0, and  is the rescaled
axial distance. The system (6-7) is much easier than eq. (2) for both for analysis and simulations, since the radial

dependence has been eliminated.

In the pulse splitting experiment [5] the values of the nondimensional parameters are: € = 1.3% 1078 & =
5% 1073, e5 = 1.5 % 10~1. Using these values and the initial conditions L(0,#) = I, 8(0,1) = N (1.05exp(—t?)—1)/M,
we integrated egs. (6-7). These initial conditions may not be close to those of the experiment in the focusing regime,
which are unknown, but they do give an idea of how the pulse evolves. We observe (Fig. 1) pulse splitting (due to
normal time dispersion), accompanied by a temporal shift of the focus towards later times and enhanced focusing of

the second peak (due to the ey term).
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FIG. 1. Evolution of the on-axis intensity (1/1) versus time according to Egs. (6-7) at the propagation distances indicated.

Following [4], we can analyze the initial effect of the three terms in (2) by looking al special solutions of (6-7).
Away from the focal point, the three perturbing terms in {2) are small and each ¢ cross-section of the pulse (i.e. the
2D plane ¢t = const in the (z,y,t) space) focuses independently with

Lz, t) = L(Za(t) ~ 2) , Blz,t) = B(Z(t) ~ 2) , ((2,1) = {(Ze(t) — 2) - (8)

Here Z(t) is the location of the focus in the (z,%) plane when ¢; = €3 = €3 = 0 [14]. Therefore, eq. (7) becomes
By =-m (—1-) + 722 (L) (=Bl 4 250, where = & %)
Z), 7)), dt
This equation can be transformed into a nonlinear Airy equation [4]
gss = S5¢+kg°, with g=L71>0. (10)
Here
§= (ﬁa - TsZcC) (732.:)‘2/3 , Bo~B(0,),
o= —On = e =) (2e)

The initial conditions for eq. (10) are given at
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At the time g of the initial peak power of the pulse, Z.(¢) attains its minimum, Zc(ta) = 0 and the evolution is
.\ -2/ .
given by (10) with £ = —11 (732(,) < 0. Because Z,(ty) > 0, as z — Z, and { — +o0, 8 — —o0 for normal

time dispersion (c3 > 0), and both time-dispersion and nonparaxiality (first and second terms on the right-hand-side



of (10), respectively) contribute to the arrest of the blowup by preventing g from becoming infinite. When time
dispersion is anomalous (e5 < 0), it enhances blowup (s — +oc) while nonparaxiality opposes it. Eventually, as
s — 400 nonparaxiality prevails and the solution of (10) will decay (no blowup).

In the case of normal time dispersion and e = €3 = 0, blowup is arrested only in an exponentially small neighborhood
of to where pulse splitting occurs [4]. To assess the added effects of nonparaxiality and the mixed term, we note that
the condition for blowup [4] in (10) as s — —co is & > 2L%(0, ¢} A4*(so) or

. . .\ 2/3
12" > =2+ 2L2(0,048(s0) (10 )

where Ai(s) is the Airy function. Therefore, if nonparaxiality dominates, arrest of blowup occurs over a much larger
region (possibly everywhere). If the e; term dominates, blowup will occur when 5 > mfg/ZC, i.e, only for ¢ > ;.
Note that as the solution starts to deviate from that of the unperturbed NLS, the 2D self-similar structure (8) will
gradually break down. Therefore, for later z this 2D self-similar argument becomes invalid and the full 3D nature of
(7) has to be considered.

From eq. (9) we see that the effect of the €3 termon a self-focusing pulse is a temporal power transfer towards later
times (recall that § is proportional to the excess power above critical). This will result in an asymmetric ternporal
development of the pulse, with a greatly enhanced trailing portion and a suppressed leading part, in agreement with
previous results on the effect of the shock term [15] and of the linear component of the e, term [8].
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