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Abstract

The standard construction of upwind difference schemes for hyper-
bolic systems of conservation laws requires the full eigensystem of the
Jacobian matrix. This system is used to define the transformation into
and out of the characteristic scalar fields, where upwind differencing is
meaningful.

When the Jacobian has a repeated eigenvalue, the associated nor-
malized eigenvectors are not uniquely determined, and an arbitrary
choice of eigenvectors must be made to span the characteristic sub-
space. In this report we point out that it is possible to avoid this
arbitrary choice entirely. Instead, a complementary projection tech-
nique can be used to formulate upwind differencing without specifying
a basis.

For systems with eigenvalues of high multiplicity, this approach
simplifies the analytical and programming effort and reduces the com-
putational cost. Numerical experiments show no significant difference
in computed results between this formulation and the traditicnal cne,
and thus we recommend its use for these types of problems.

*Research supported in part by ONR N00014-97-1-0027, ARPA URI-ONR-N00014-92-
J-1890, NSF #DMS 94-04942, and ARO DAAH04-95-1-0155



This complementary projection method has other applications. For
example, it can be used to extend upwind schemes to some weakly hy-
perbolic systems. These lack complete elgensystems, so the traditional
form of characteristic upwinding is not possible.



1 Introduction

The standard formulation of upwind difference schemes for hyperbolic sys-
tems requires finding the Jacobian matrix of the flux function and the as-
sociated eigensystem (eigenvalues and left and right eigenvectors). The left
eigenvectors define the transformation into the characteristic fields, the as-
sociated eigenvalues define upwind directions for these fields, and the right
eigenvectors define the transformation back to the primitive variables.

These characteristic upwind schemes are generally considered to give the
highest quality numerical results. There is a vast literature on this subject
(see e.g. [4] and the references therein). Their only drawback is that they
require specifying a complete eigensystem for the problem. In practice, this
can involve considerable analytical work, as well as some complications when
the eigensystem lacks uniqueness (or even existence). In this paper we point
out that, in many cases, the most problematic portion of the eigensystem
can be avoided entirely.

As motivation, consider a system which has a repeated eigenvalue {char-
acteristic speed). A common example is the compressible, multi-species,
multidimensional Euler equations [3], where the convective flow velocity is
an eigenvalue repeated once for each species and each spatial dimension (see
section 4.3). In such a system, the distinct eigenvalues have corresponding
unique eigenvectors {up to scalar multiples), but the eigenvectors for the
repeated eigenvalue are not unique. The eigen-subspace is well defined, but
an arbitrary choice of gpanning eigenvectors must be made to obtain a com-
plete eigensystem. These arbitrary vectors may form the great majority of
the eigensystem.

When designing a numerical method for such a system, various criteria
can be applied to help select one eigenbasis from the infinitely many choices.
For example, one can look for eigenvectors that are as sparse as possible, in
order to save time projecting into and out of characteristic fields. One can
also demand that the the left and right eigenvector matrices be numerically
well conditioned (i.e. determinant near 1). Still, there is a high degree
of arbitrariness left over, and for degenerate systems, there are typically a
variety of eigensystems presented in the literature.

QOur goal here is to present an alternative approach which eliminates the
need to find the ambiguous eigenbasis. The basic idea is to project data



directly into the characteristic subspace by using the complement of the pro-
jection operator defined by the unambiguous part of the eigensystem. Com-
ponentwise upwind differencing can be applied directly to this characteristic
vector field, in contrast to the usual approach of upwinding characteristic
scalar fields.



2 The Complementary Projection Method (CPM)

To describe the complementary projection technique in detail, we will show
how it relates to the standard characteristic decomposition used in upwind
discretization of a system of n hyperbolic conservation laws in one spatial
dimension,

U+ [F(O)L. =o. (1)
Let the Jacobian of the flux function, dF(U)/dU, have lett and right
eigenvectors L' and R, with associated eigenvalues M, i = 1,...,n. The

left and right eigenvectors are further required to be mutually orthonormal,
ie Li. R = d;;. Equivalently, the row matrix of left eigenvectors , £, and
column matrix of right eigenvectors , R, are inverses: LR =RL = 1.

Given this complete eigensystem, any upwind difference scheme defined
for scalar equations can be extended to the hyperbolic system via a “char-
acteristic decomposition”. This can be described fairly generally as follows:
the spatial discretization of [F(0)], is expressed as a difference of fluxes be-
tween two grid cell walls. Thus the essential step is to compute the flux at a
grid cell wall, F,, given the fluxes, F(U), at the nearby grid cell centers l4].

The first step in defining the flux at a particular cell wall is to project the
vector fluxes at each cell center into “scalar fluxes for the i** characteristic
field”, defined by f? = Li,- F(7). Here L%, R, and X, are used to denote left
and right eigenvectors and eigenvalues evaluated at the wall in some fashion.
Note the assumed orthonormality implies we can write the original vector
flux in terms of these scalar fluxes as

Fy=fR,+ fPR2 + - + Ry, (2)

This shows that we can think of f*R%, as the vector contribution to the total
flux from the #** characteristic scalar flux, f*.

Next, for each scalar field ¢, the cell center characteristic fluxes, f?, are
interpolated to the cell wall of interest in an upwind fashion with the upwind
direction defined by the corresponding “characteristic speed” at the wall, A%,.
This yields the scalar characteristic wall flux, f&.

Finally, the desired total wall flux vector is defined as the sum of all the
characteristic vector contributions,

F,= iR, + f2R: + ...+ f2Rn. (3)



To introduce the alternative approach, suppose that from the n eigen-
values we have a p-fold repeated eigenvalue. Without loss of generality,
we will assume that the first p eigenvalues, A, = X% = = )P, are re-
peated The correspondmg p dimensional characteristic subspace is the span
of {IY,..., L%}, The part of the original cell center flux vector F(U) that
lies in ’ahxs characteristic subspace is

F = PR+ fPRL+ -+ fPRE, (4)

Note that all of the characteristic fields contributing to F have the same
upwind direction for interpolation, since their characteristic speeds (eigen-
values) are identical.

Since JF has a well-defined upwind direction, upwind differencing is possi-
ble without decomposing F further into the individual scalar fluxes. Instead,
we can dlrectly apply upwind interpolation to the cell center values of the
vector F in a component by component fashion. Let F, denote the re-
sulting ﬂux value interpolated to the cell wall of interest. Then, the net cell
wall flux required in the numerical method can be defined via the “partially
decomposed” form

F,=F,+ ot Roft 4 ppr2Rev2 .y foRn, (5)

instead of the fully decomposed form in equation 3.

So far there is no obvious benefit to this formulation. The critical obser-
vation that makes this partial decomposition useful is that we can compute
F without knowing the basis of left and right eigenvectors used to define it
in equation 4. Instead, it is simply the complement of the remaining part of
the decomposition, i.e.

F o= F@)- (i + e+ 4 /). (6)

Thus, in order to apply a fully upwind scheme to a problem where one
characteristic subspace has a repeated eigenvalue, all that is required are
the left and right eigenvectors corresponding to complementary subspace.
In practlce we simply define the cell wall flux via equation 5 and compute
F from F as calculated in equation 6, which requires only the left and
right eigenvectors associated with {A5", ... A%}, There is never any need
to choose a basis for—or characterize in any direct way—the subspace asso-
ciated with the repeated eigenvalue.

The basic method of complementary projection is exceedingly simple. In
the following remarks, we elaborate on its properties.



3 Remarks

Remark 1 For a system with a p-fold repeated eigenvalue, the above argu-
ment shows the entire vector field  has not only a definite upwind direction,
it actually has a well-defined characteristic speed. Thus, further decomposi-
tion into scalar characteristic fields does not provide any greater insight into
the time evolution of the data. Instead, it is simply an arbitrary decomposi-
tion into scalars that have no greater significance than the scalar components
of F itself.

Thus it seems that if we consider only the quality of the computed solu-
tion, there is no motivation for further decomposition of F. Our numerical
experiments on standard test problems confirm this—i.e. there is no sig-
nificant difference between solutions computed using full or complementary
projection.

Moreover, by not decomposing F we can avoid the arbitrary selection
of spanning left and right eigenvectors for the degenerate subspace. This
represents a reduction in the need for tedious analysis, programming, and
publishing, and can also noticeably reduce computational costs.

Based on these factors, we strongly encourage practitioners to use the
complementary projection formulation for systems with a repeated eigen-
value.

Remark 2 When applied to a system with a repeated eigenvalue having
a large multiplicity, complementary projection may require fewer operations
and therefore result in a faster code. Let us compare the computational costs
of full projection versus complementary projection in detail.

We will express the cost as a function of the dimension of the undecom-
posed subspace, p, and the overall system size n. We will compare only the
cost of the portion of the problem that is treated differently in each method,
i.e. the cost of treating the fields with the p-fold repeated eigenvalue.

The computational cost of a full decomposition into the p scalar fields
is pW, + pW,, where W, is the average cost of projecting into and out of
a field, and W, is the average cost of doing a scalar upwind interpolation.
The field projections require computing L%, - F(U) and fiRi. These are
operations on n-vectors, so the cost is proportional to n, and Wy = an. The



cost of a scalar interpolation, W,, has no dependence on system size n or
multiplicity p. Thus the total cost of the standard decomposition has the
form apn + piV,.

In the complementary projection method, the computational cost is nW,
+nW,, where W, is the work per component required to compute F via
equation 6. This is proportional to the number of terms which is n — p, and
W, = B(n— p). Thus the overall cost of complementary projection takes the
form B(n — p)n + nW,.

In the limit of a large system with a large multiplicity, the cost of the
traditional method scales like pn, while the new method scales like (n —p)n.
If we further assume that the repeated eigenvalue dominates the system, so
that p dominates n—p (e.g. in the equations for multi-species flow, n~p = 2
as p,n — o0), then the complementary projection method is asymptotically
less costly than the traditional approach.

This analysis makes it clear that complementary projection carries out
more upwind interpolations than the traditional approach (always n, instead
of p), but it can save even more work by avoiding p scalar field projections.
However, use of a vectorizing or parallel computer could potentially alter
this conclusion (e.g. by reducing the cost of the vector inner products used
for full projection).

Also note that it is possible to minimize W; by making the eigensystems £
and R collectively as sparse as possible. For example, consider multi-species
fiow n — p = 2, and thus the complementary projection method scales like
n. If the eigensystemn was dense, then the full projection method scales like
n?, while the sparse eigensystem chosen in [3] yields a full projection method
which scales like n.

Remark 3 Consider this projection technique on a more abstract level.
We are able to project onto the target subspace (and define F) without a
basis because we know the complementary projection explicitly. That is,
F= (I - P)ﬁ, where P is the projection defined explicitly by the known
part of the eigensystem. Since we have all the information needed to perform
P, we can perform the complement, I — P, with no additional information.

This algebraic trick can only be ugsed to define a single basis-free pro-
jection operator: we can project onto a subspace S; without a basis for it,
given a basis for its complement. But if we need projection operators for two
linearly independent subspaces 57 and S,, it is clear that we must select a
basis for at least one of them.



For example, this means that if the eigensystem of a flux function F(T)
has two distinct, repeated eigenvalues, it is not possible to separately upwind
each associated characteristic subspace without finding a basis for either one.
An eigenbasis must be selected for one of the subspaces, and then the other
can be treated without a basis.

Remark 4 In contrast to Remark 3, there is a special situation in which
multiple complementary projections can be used efficiently within a single
decomposition. If the flux Jacobian matrix has a block diagonal structure, it
is possible to apply complementary projection separately within each block.
In particular, within each major block it is possible treat a single repeated
eigenvalue without ever constructing an eigenbasis for the associated char-
acteristic subspace.

To clarify the procedure in this case, let B; and B, be the image spaces
in R™ associated with two distinct blocks in the diagonal of the Jacobian.
Consider subspaces §; C B; and S, C B,. We will show it is possible to
define the projections onto S; and S, without specifying a basis for either
one.

Let P, be the projection onto the complement of S; in B;. Construction
of P; requires knowing only a basis in R” for the complement of 5; in B;—
which does not require choosing a basis for the other subspace, S;. Then,
projection onto S; is defined in complementary fashion as @; — P;, where @);
is the projection from R™ onto B;. Note that the n x n matrix (}; is trivial,
since it is simply an identity matrix where the corresponding block, B;, in
the Jacobian is located, and zero elsewhere.

Remark 5 Another important situation where this complementary projec-
tion can be of use is the upwind discretization of a weakly hyperbolic system.
These systems have characteristic subspaces that lack a basis of eigenvectors.
The simplest example of such a system is

u, +ou, +v, = 0 (7)
vtav, = 0, (8)

where a is a real constant. The Jacobian is an irreducible Jordan block; it
has repeated eigenvalue a, but only a one dimensional family of eigenvectors
spanned by (1,0). The traditional upwind technique requires a full eigensys-
tem, and so it does not even apply. However, this system can be upwinded



with componentwise a-upwind differencing and special techniques for weakly
hyperbolic systems which damp out the unwanted linear growth.

More generally, a subsystem locally equivalent can occur as a block inside
a larger hyperbolic system. The traditional upwind technique requiring a full
eigensystem again does not apply. Still, as long as there is an eigenbasis for
the other characteristic fields, these fields can be upwinded in the standard
way and the complement, F, can be solved componentwise, using special
techniques for weakly hyperbolic systems. Note that the standard alterna-
tive is to treat the entire system with the weakly hyperbolic solver and thus
degrade the quality of the solution in the fields which are not weakly hyper-
bolic. For an example of a system of practical interest, where this technique
can be applied, see [2].

In practice, a complicated hyperbolic system may develop a repeated
eigenvalue or become weakly hyperbolic {eigenvectors become dependent)
transiently during a calculation. A full characteristic decomposition is ap-
propriate as the primary numerical method, but some special “back-up”
treatment is required when these degenerate cases arise. The method of
complementary characteristic projection provides a convenient “back-up”
formula for the flux in these circumstances.

Remark 6 Complementary projection can be used to upwind difference a
characteristic subspace composed of characteristic fields moving with differ-
ent speeds, as long as they all have the same upwind direction. Le., equa-
tions 5 and 6 provide a stable upwind differencing of the system as long as
AL, ..., AL, are all of the same sign.

For an extreme example, one could lump together all the positive speed
fields and apply componentwise upwinding with no decomposition, knowing
only a basis for the negative speed fields (which would in contrast be treated
by standard decomposition into scalar fields). If it so happened that all
the fields were positive at some cell wall, upwind differencing could be ap-
plied in a componentwise fashion to compute the cell wall flux ﬁw, with no
characteristic field projections at all (the p = n case).

However, lumping together fields moving at different speeds into a single
undecomposed subspace is not as attractive as it is for the case of a repeated
eigenvalue. The repeated eigenvalue case is free of any negative consequences,
while the more general application of complementary projection has several
deficiencies.

One major deficit is that there is no savings in analytical work—formulas
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for the entire eigensystem must be available. To see why, note that since
the characteristic speeds are different they will not always have the same
upwind direction. Under the right conditions they will differ in sign, and
the associated fields cannot be lumped into a subspace with a single upwind
direction. Since one must be prepared for this to occur, the characteristic
scalar decomposition must be available as an option for all fields, and so the
associated eigenvectors must be known even if they are seldom used. Still,
lumping together different fields can give a major savings in computational
work, becanse we only need this information when eigenvalues change sign.

There i1s another complication which can make complementary projec-
tion undesirable, in this non-repeated eigenvalue case. I fields moving at
different speeds are lumped into a single subspace, there is the potential for
a loss of resolution, when two discontinuities propagating in different fields
at different speeds move close together. In each individual characteristic
scalar field, there is only an isolated discontinuity; this will be resolved to
the extent possible by the chosen upwind scheme for all time. However,
in a vector mixture of two discontinuous fields, both discontinuities could
be present in the same vector component. Since they move with different
speeds, the faster discontinuity could overtake the slower one. No matter
how fine the grid, as the discontinuities pass through each other there will
be a temporary loss of resolution. The resulting errors—which are avoided
in the full decomposition-—can seriously corrupt the calculation.

Remark 7 In contrast to the loss of resolution difficulties mentioned in
Remark 6, such problems do not arise during calculations in the repeated
eigenvalue case. Even if multiple discontinuities are present in different de-
generate fields, because they move at the same speed, they cannot merge. A
high accuracy upwind scheme will maintain resolution as long as the initial
data was resolved by the grid. Further, even when it is possible in principle,
there is no practical way to isolate the discontinuities by projecting them
into different degenerate scalar fields. This is because there is no simple way
to determine which of the infinitely many distinct decompositions will yield
the desired separation of features.

Returning to the considerations in Remark 1, note that this reasoning
does suggest one possible accuracy-related motivation for performing a full
characteristic decomposition in the repeated eigenvalue case. Namely, the
possibility that one of the non-unique decompositions might yield a smoother
set of scalar fields for scalar upwind differencing than those provided by the
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components of the vector data, F. However, there does not seem to be
any practical, general way of determining which of the infinitely many pos-
sible decomposttions would yield the smoothest set of scalar fields. In the
absence of such knowledge, complementary projection remains our recom-
mended method for treating systems with repeated eigenvalues.
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4 Examples

We illustrate this approach by considering a few common hyperbolic sys-
tems of equations. All calculations were carried out using the ENO method
described in [4], though complementary projection can be used with any
characteristic upwinding scheme. (The eigenvalues and eigenvectors are all
evaluated at cell walls. In what follows, we will assume that this is given
and drop the subscript 'w’ as a notational change only.)

4.1 1D Euler Equations

This simple system provides a clear illustration of the operational differences
between full decomposition and complementary projection.
The 1D Euler equations are

b p = 2 pu
O=|pu |, FO)=| o+p |, (10)
E (E + p)u
where
pu s "
E=—p+5-+ph, WT)=h +f cp(8)ds. (11)
0

Here t is time, z is the spatial dimension, p is the density, u is the velocity,
E is the energy per unit volume, & is enthalpy per unit mass, b/ is the heat
of formation or enthalpy at 0K, ¢, is the specific heat at constant pressure,
and p is the pressure [3).

We assume pressure is a function (or table look-up) of the density and in-
ternal energy per unit mass, p = p(p, €), and denote its corresponding partial
derivatives by p, and p.. The Jacobian matrix of ﬁ(ﬁ) has eigenvalues

M=u—c XN=u N=u+tg (12)
and eigenvectors
- b v —bu 1 b
12y 2 7 = L
L —(2+20’ 2 20’2)’ (13)
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L;Z = (1 = bZJ bl'u‘: _bl) ) (14)

= b u —bu 1 b
3 __ (Y2 © 1 it 3
L _(2 PN +20’2)’ (15)

1 1 1
R' = w—c |, R2= u , R¥= u+c ., (186)
H—uc H-¢% H 4 uc
where
PPe E+p

Cc= + H:—, 17

Pot P (17)

b= by =1+bul—bH. (18)

pc’

Since all the eigenvalues are distinct, the above eigensystem is unique
{up to scalar multiples} and provides a good reference for comparison of full
projection and complementary projection methods. We will use complemen-
tary projection to avoid decomposing the characteristic field moving with
the flow velocity u (the 2nd field, or u-field).

The vector flux contributions from the 1st and 3rd fields are computed
in the usual way, using eigenvector projection. Next we form

F=F({0) - I'FO)R' - PPFO)R. (19)

Note that F is precisely the unprojected 2nd field L2F(U)R2, yet it is ob-
tained without use of I? or RZ. We apply componentwise upwinding to
F , in the u-upwind direction. Since F is a 3 dimensional vector, 3 upwind
interpolations are required. The resulting vector flux is combined with the
contributions from the 1st and 3rd fields to get the total flux.

In contrast, the standard method would project the 3 dimensional F
into the 1 dimensional scalar u-field and apply the upwind interpolation
only once. Thus, the complementary projection method is more costly in
this case.

In numerical experiments, we have noticed no difference between the
complementary calculations in the case of the 1D Euler equations, except
that they run slower (as predicted since the savings occurs as the number of
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repeated eigenvalues increases). Even in the case of two shocks intersecting
[1] —which causes a transient loss of resolution and is therefore more sensi-
tive to different schemes—the numerical results agree quite nicely. Neither
scheme seems to have an advantage over the other as far as accuracy or
quality of the computed solutions are concerned.

As a representative example, consider Example 7 in [5] which is the
celebrated Woodward and Colella "bang-bang” problem. Using the CPM,
the convection step was 23 percent slower (as predicted), although the quality
of the solution is the same. In fact the pointwise relative difference between
the two solutions is on the order of 1072,

4.2 2D Euler Equations

This is a common system with a repeated eigenvalue. It also illustrates
how complementary projection applies equally well to systems with multiple
spatial dimensions.

The 2D Euler equations are

U, + [F(0)). + [G(O)], =0, (20)
p gu pv
2 _ | pu 2 | PutED o puv
U - p'U ] F(U) - p'wu ] G(U) - p,vz +P H (21)
E (E+pu (E + p)v
where
plu’ + v*)

T
Fe=—p+ +ph,  RT)=H + f o(9)ds.  (22)
43

2
Here y is the second spatial dimension, and v is the velocity in that dimension
{3]. As in the 1D Euler equations, p = p(p, e).

The eigenvalues and (one possible set of) eigenvectors for the Jacobian
matrix of F(U) are obtained by setting A = 1 and B = 0 in the following
formulas, while those for the Jacobian of G(U) are obtained with A = 0 and
B=1.

The eigenvalues are

M=t—c X=XN=4, M=ite, (23)
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and the eigenvecfors are

- b 4 buw A bv B b
r_ 2 4t A4 WY A
L _(2+2(:’ 2 2 2 20’2)’

. (1—b, & bu Bbv A b
2 _ e & bu B hv A b
L“‘( 5 22 202 Ta 2)’

= 15 9 bu B by A b
s _ (=2, Y A% 2 v F A
L _( 2 tao 2 Taws T 2)’
. b 4 bu A bv B b
4 _(22_~> A= 4~ A7, 71
L _(2 20 2 Ty 2c’2)’
1 1
= | uw—Ac S u— Be
= v—Bc |’ A= v+ Ac !
H —iic H—%-!—'f)c
i 1
=3 4+ Be By | utAc
A= v — Ac » R v+ Be |’
H—& —dc H + e

where

b= b, =14bq®—bH.

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

Note that the choice of eigenvectors 1 and 4 is unique (up to scalar
multiples), but the choice for eigenvectors 2 and 3 is not unique. Any two
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independent vectors from the spans of eigenvectors 2 and 3 could be used
instead.

To avoid choosing any basis for this ambiguous subspace, we apply the
standard characteristic scalar projections to the 1st and 4th fields, and then
apply complementary projection for the u-fields:

F=F0)-I'"FOR - D) R (33)
We upwind difference F componentwise in the w-upwind direction. The
result is then combined with the flux contributions from the 1st and 4th
fields. Note that the eigenvectors for the 2nd and 3rd fields were not needed
for the discretization.

Four upwind interpolations are required to compute the contribution
from the repeated eigenvalue for the complementary projection method, in-
stead of only 2 upwind interpolations if full projection were used. However,
we also save two projections.

For a standard dimension by dimension discretization, the complemen-
tary projection method applies independently to the flux for the second
spatial dimension. Using the eigenvectors appropriate for G(T), we form

¢ =G~ I'GOR - I'GO)R (34)

and upwind difference J in the v-upwind direction.

4.3 Multi-species Euler Equations

The multi-species Euler equations provide an important example of a hy-
perbolic system with an eigenvalue repeated many times. Complementary
projection becomes quite attractive for such systems, due to the large ana-
lytical and computational savings.

The 2D Euler equations for multi-species flow with a total of N species
are

U, +[FO). + G0, =0, (35)
(7 ) () ()
pu pu”+p puY
pu puv p: +p
O=| E |, Fh=]| EB+pu | G@)=| (E+pl |36)
pY; puY; Yy
\ PYJl\f—l } \ Pu}}N—i } \ pvyf.\f—ls )



where

R s s (i Y;hi)  R@=h [ (o) (aT)

=1

Here, Y, is the mass fraction of species ¢, h; is the enthalpy per unit mass of
species %, h{ is the heat of formation of species 4, and ¢, ; is the specific heat
at constant pressure of species i [3]. Note that Yy =1 - Y ' ¥

The pressure is a function of the density, internal energy per unit mass,
and the mass fractions, p = p(p,e,Y1, -+, Yny_1), and the corresponding
partial derivatives are denoted by p,,p. and py,.

The eigenvalues and (one possible set of) eigenvectors for the Jacobian
matrix of ﬁ(ﬁ ), are obtained by setting A =1 and B = 0 in the following
formulas, while those for the Jacobian matrix of G(/) use A = 0 and B = 1.

The eigenvalues are

A =g (38)
M= = AV =g (39)
M =4+, (40)

Note the (N + 1)-fold repeated eigenvalue.
A particularty sparse choice of left eigenvectors are given by the rows of
the matrix

[y @yl —tm_ A _my B b chm L. chae
2 2ec 2 2 2¢ 2 2c 2 2 2
1-— bg - bg bl'u. bI'U _bl b]_Z]_ e blzN—l
] B -4 0 0 0
Y 0 0 0 , {41)
: : : : I
YN 0 0 0
\§-f+y W oWR o o e

and the corresponding sparse choice of right eigenvectors are given by the
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columns of the matrix

/1 1 0 0 0 1
u— Ac U B 0 0 u+Ac
v— Be v -A 0 0 v+ Be
H-tc H—3 -0 2 - 2y, H4ie : (42)
Y ¥ 0 Yy
: : : I :
\ Yy Yy 0 Yy_1 /

where [ is the N — 1 by N — 1 identity matrix and

¢ =u*+v*, 4= Au+ Bv, 9= Av — Bu, (43)
PPe E+p
c= +=, H=——, 44
o+ . (a1
_ De _ 2
bl - 91 62_1+b1q _blHa (45)
pe

N-1 —p
by =0 Y Yiz,, &= p—" (46)

i=1 €

Note that the eigenvectors 2 through N + 2 are not uniquely determined.
Fach one could be replaced by an arbitrary linear combination of those
shown, as long as linear independence is maintained. This gives an indi-
cation of the enormous range of possible eigensystems that could be used,
though in practice they would yield similar computed solutions. (The costs
may differ, though, depending on sparseness.)

In particular, all the fields in the eigensystem for 13([}) have eigenvalue
u, except for the first and last. To avoid choosing any eigenbasis for this
degenerate subspace, we apply the standard projection method to the first
and last fields, and treat all the u-fields by complementary projection,

F = F(0) - I'"FOR* — INBFOHRN, (47)

We upwind difference F in the u-upwind direction. The resulting cell wall
flux is combined with the wall flux contributions from the first and the last
fields to yield the net numerical wall flux.
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A total of N 4+ 3 upwind interpolations are required to compute the
contribution from the repeated eigenvalue for the complementary projection
method, instead of only N + 1 upwind schemes if projection is used. Thus
only 2 extra upwind interpolations are needed to eliminate N + 1 character-
istic projections. Starting at about 4 species, we expect the complementary
projection method to be less costly. Moreover, there is no need to ever
construct most of the eigensystem shown above. Had this approach been
available for previous work, it would have allowed a major savings in ana-
lytic work, as well as programming and reporting.

For a dimension by dimension discretization, the same considerations
apply to the flux in the other spatial dimension. Using the first and last
eigenvectors appropriate for G(U), we form

G =G0 - D'GIHR —~ LN GTHRN+ (48)

and upwind ¢ in the v-upwind direction.

Numerical experiments were carried out on examples from [3] and [1]. For
the case of nine species, the complementary calculations were faster than the
traditional approach, even though the set of eigenvectors for the repeated
eigenvalue had been carefully chosen to be as sparse as possible and the
implementation took full advantage of the sparseness. As the number of
species is increased, the percentage savings in CPU time increases as well.

As a particularly difficult example, we compute example 5.1 from [3]
which is a chemically reacting ”Sod” shock tube problem. The convection
step was 59 percent faster using the CPM, with no degradation in the quality
of the solution. We show the solution in figure 1 and the relative difference
in figure 2. The differences are on the order of about 1 percent, and only the
underresolved species (HQ, and H,0;) differ by as much as 2 percent. The
largest differences occur near large gradients in the solution where the two
schemes capture discontinuities in slightly different ways. These differences
are too small to be seen by the naked eye and have no effect on the size or
strength of the discontinuities, only the intermediate points which span the
jumps. In fact, both schemes give the result depicted in figure 1.

We note that the standard scheme and the CPM have approximately
the same CPU time when the eigenvalue is repeated 4 times. That is, for
4 species (3 mass fraction equations) in 1 spatial dimension, for 3 species
(2 mass fraction equations) in 2 spatial dimensions, or for 2 species (1 mass
fraction equation) in 3 spatial dimensions. After this point, the CPM is
faster with the gains in CPU time proportional to the number of species.
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Figure 1: Thermally Perfect Solution (2300 steps)
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5 Conclusions

We have introduced the complementary projection method for use in up-
wind difference schemes for systems of hyperbolic conservation laws. This
approach provides an alternative to full characteristic decomposition of a
characteristic subspace, if all associated characteristic speeds are of the same
sign. Instead, projection onto the subspace is defined as the complement of
the projection onto the remaining characteristic spaces. This allows the ap-
plication of any upwind method without the need of an eigenbasis for the
specified subspace. All that is required is a complete eigenbasis for the com-
plementary subspace.

This has particular application to problems with a repeated eigenvalue.
There the eigenspace associated with the repeated eigenvalue does not have
a unique eigenbasis. The complementary projection method eliminates the
need to construct such a basis, without any negative side effects, reducing
the analytical and programming effort required to apply upwind differencing.
Qur analysis and experiments also show that avoiding the decomposition can
save computational time in practical multi-species compressible flow calcu-
lations, with no significant change in computed results.

We recommend that in the future, practitioners use the complementary
projection method to treat hyperbolic systems with repeated eigenvalues.

This method has other potential applications. The most interesting is
formulating upwind difference schemes for weakly hyperbolic systems. For
these systems, a complete eigensystem does not exist, and thus traditional
upwind characteristic schemes do not apply. In contrast, the complimentary
projection method provides a simple way to extend upwind differencing to
these systems.
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