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Abstract. We shall study multigrid methods from energy minimizations and approximations.
Through the analysis of an multigrid method in 1D, we introduce the concepts of stability and the
approximation property in the classical theory. Based on them, we derive an energy-minimizing inter-
polation and present a two level analysis for it. Issues on coarsening are also addressed. Funally, we
demonstrate the effectiveness of the multigrid method by applying it to unstructured grids computa-
tions and discontinuous coefficient problems.

1. Introduction. Multigrid methods have been widely used as an efficient solver for second
order elliptic PDE’s yet it is still not completely understood. This is partially revealed by the poor
convergence of the standard multigrid methods applying to PDE’s whose coefficients are anisotropic
[16], discontinuous [1, 6, 9] or osciilatory [12, 31]. Special techniques, for instance, block smoothing {6},
semi-coarsening [10, 30], matrix-dependent interpolations [24, 26], frequency decomposition [17, 11, 31},
homogenization {12] were introduced to handle some of these cases. In this paper, we shall study
multigrid methods from the energy minimization and the approximation point of views which hopefuily
gives an insight to a robust multigrid algorithm.

The success of multigrid hinges on the choice of coarse grids, the smoothing and the interpelation
operators. In standard multigrid, full coarsening, Jacobi or (Gauss-Seidel smoothing and Linear interpo-
Jation are usually used. Clagsical convergence theory [5, 36, 37, 4, 16, 22, 29] shows that these simple
ingredients are already optimal for smooth and some rough coefficient problems. In general, however,
these choices may lead to slow convergence. To remedy the situation in one dimension, a well-known
robust interpolation [16, 34, 24] was used. It is obtained by solving local homogeneous PDE’s which
are actually equivalent to minimizing the energy of the coarse grid basis functions. Through the 1D
analysis in section 2, we introduce two important concepts for optimal convergence in the clagsical
theory: stability and the approximation property.

The extension to higher dimensions is not chvious since no natural correspondence exists between
the 1D case and the 2D case. Nonetheless, many attempts [15, 18, 1, 9, 16, 34, 25] have been made
to set up similar local PDE’s for defining the interpolation which, however, is not as rebust as that in
1D. In section 3, we shall derive another interpolation by solving a minimization problem in place of
local PDE’s with special emphasis on stability and the approximation property.

The highlights of the present paper are the applications of our method o two kinds of problems:
unstructured grids computations and discontinuous coefficient PDE’s with irregular interface. The
discussion and the numerical results are presented in section 4, Finally, we sumimarize our experience
by several remarks in section 5.

2. One Dimension. We begin with the following model problem:

(1) A%a(a)%u(t) = f in (0,1)
w = 0 atz=0and z =1,
where a(z) and f(z) are integrable and a(x) is uniformiy pesitive on [0, 1].

We discretize (1) by finite element and solve the resulting linear system by a multigrid method
with a special interpolation. Given a grid of size h = 1/n: 'c;] = jh,j=0,...,n,let Vi C H0,1)
he the usual piecewise linear finite element space. We define a coarse subspace: VT = span{¢f},
for multigrid where {7} is the set of coarse grid nodal basis functions to be defined. By definition,
pH (b)) =1 and pH(xh ) = qﬁff(;!:%i“) = 0. Interpolation essentially is a way to define ¢# (23,
and ¢ (2%, 1). For example, if we let them equal 1/2, it is just linear interpolation. In fact, there s
one to one correspondence between the set of coarse grid basis functions and the interpolation.

2.1. Formulation of Energy-Minimizing Interpolation. By the energy-minimization prin-
ciple [28], we define ¢ () by solving the following Jocal PDE [, 2]
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d d :
(2) ~ @) gyl (@) =0 in [23; 2],

Hi h o
¢ (T3-2) = 0, ¢; ("'gz) = 1.
The solution of ¢ (x) on |el;_,, o] defines ¢ (z2,_,) implicitly. The homogeneous PDE locks for
a "harmonic” function ¢7 which essentially minimizes the energy on its support. 1f a(x) = 1, for
instance, ¢ (x4, _,) = qbff(mgi_,_l) = 1/2, and we will reproduce the linear interpolation. In this case,
$# is harmonic in the usual sense and 1t has minimum energy. In general, we have
A
_ a(ééﬂ-_l,é?i) _ A2i-1,2i
B ] =
a{B3;_1, P21 Agiwl,ﬁiwl’

(3) @551(-’531'—1) -

where (Al}) is the stiffness matrix.

2.2. A Convergence Analysis. Classical convergence analysis cannot be applied directly to
this multigrid algorithm since all the coarse grids basis functions, except on the finest grid, are not
standard finite element basis which are usually assumed in the theory. Thus the following analysis is
worthwhile in that finite element basis may not be necessary for optimal convergence, which provides
the basic ground for the construction in two dimensions. The analysis is based on the subspace
correction framework [37], where convergence analysis is possible by estimating two algebraic quantities
Ko and Ky defined later.

We first set up some notations. Let V = V* and V; C Vo C .-+ C Vs = V be a sequence of nested
subspaces of V' defined by the span of {¢f}'%,  k = 1,...,J, which are the nodal basis functions at
level k. The operator A : V — V is defined by: (Au,v) = a(u,v),u,v € V and the A-inner product by:
(-,-)a = (A ). Also, we define A; : V; — V; by (Asug, v;) = (Aug, v;), w;, v; € V;, which is a restriction
operator of A on V;. Correspondingly, we have R; : V; — V;, which is an approximate inverse of A;.
In the following analysis, the generic constant C is independent of the mesh size h.

Now we define the parameters Ky and K; as follows:

Kg: For any v € V, there exists a decomposition v = E;I:I v; for v; € V; such that
J

Z(R.;l'vz': 'Ug’} < _K()(A'U, 'U),
’i:l
where R; is usually known as the smoother in the multigrid context.
Ky For any § subset{l,... . J} x{l,..., J}and wy, s € Viori=1,...,/J,
J 7
Y (T, Tywg) € Kol (T ui) a) (Y (Tyog, 5000 F,
(1,168 i=1 i=1
wheve T; = R; A4; P and Py 1 V — V; is the A-orthogonal projection onto V;.

These two quantities give the lower and upper bound for the spectrum of the preconditioned systent
respectively. Because of limited space, we shall give an optimal estimate for Ky only which is enough
to illustrate the concepts of stability and the approximation property.

2.2.1. Stability. In [35], we observe that the coarse grid basis functions contain a hierarchy of
A-arthogonal basis functions. We start from the following two level result.

Lemva 2.1, Forany k=2,...,J,i=1,...,my_, = 1,...,n/2, we have a(¢f ™", ¢%;_}) = 0.

Proof. 1t is the direct consequence of the fact that the equivalent variational formulation of (2)
implies a(¢f =1, %, 1) = 0, and the support of ¢*~* is only on [2f,_,, 28, 5). O

LemmMa 2.2 Foranyl < k,i=1,...,n,7=1,...,n /2, we have a(qﬁg,qé‘gj_l) =0.
Proof. 'The case i=k —1 is proved in Lemma 2.1. Suppose it is true for I = k. By definition, qﬁf“l =
Zj:;_l aj ¢F, where agy =1, age ) = ¢f "ok _,) and iy = ¢F (2, ,) are given by (3). Thus
“(st_1;¢gj~l) = g qa(phi_y, fﬁ;zcj—ﬂ + a(d5;, ¢I5jg1) + asipra(hy, d’gj—l) = 0,

since all the terms vanish by assumption and the result follows from induction. 0O
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Lemma 2.2 implies that the interpolation algorithm generates implicitly a set of A-orthogonal
hierarchical basis functions. In some sense, this is a generalization of the hierarchical basis method
[38, 3, 23, 2]. The orthogonality property immediately implies the stability of the nested subspaces.

LEvmMAa 2.3, For any v € V, there is a nontrivial decomposition v = z;r:l v; with v; € V; such that
J
(4) Z(”i;vi)ﬁs = (v,v)a-
i=1
Proof. For any v € V, Lemma 2.2 implies that there exists an czthogonal 111e1a1ch1ca§ decomposition
of v constructed as follows: 1) vy = Y02 v(wh)el. 2) w = 207% we w(ehef b = 2,...,J, where
wy = v — Y.+ v By construction, we have v;h(z;“) = wi(2f) = 0, = even. Therefore, by Lemma
2.2, the vp’s are Aworthogonal since if | < k,

Nk n; nxf2
alv, vg} = G(Z wi{w; )C’Suzwk f:) = Z Z w;(zg)wk(mgj__l)a(izﬁi,QS";J-_I) =0
i=1 j=1

The equality (4) follows unmedlately from the orthogonality of vp’s. O

COROLLARY 2.4. Let W) = Vi, W, = Vi@ Vi_1,i=2,...,J, in the A-inner product. Then V' can
be expressed as a direct sum of Wy's: V=W @ Wy @ . -OW,.

Proof. Let v € V. By the construction given in the proof of Lemma 2.3, we have v = me vy,
v; € W;. The representation is unique since v;’s are A-orthogonal. 01

Corollary 2.4 induces a projection operator Qi+ V — V; defined by: Q,'v = vy +vg -+ - - -+ 1y, where
y= vy + -+ vy, € W;, is the unique representation of v.

2.2.2. Approximation. In order to prove optimal convergence, we need the following approw:-
mation property:

{5) 1(@x ~ Quor)vl] < Chel|Quvlla, b =2,...,J,
where C:);b. is defined previously. From the classical analysis, the approximation property (5) is ultimately

related to preserving constant functions.

LEMMA 2.5. Forany k=1,...,J, 5°0%, =1.

Proof. The case k = J is tllvml I‘01 k < J, consider the interval [z, | «f]. Only ¢! and gkl
are nonzero. Let ¥~ = ¢F~1 4 471 By (2), ¥* ! satisfies the following equations:

d ) . '
(ﬁ)‘c“l“;;‘»bf 1(73) =0 in [3";@'—2‘“}}5{]:

Pkl =1, o) =1

By uniqueness, $*~1 = 1 on [ef;_,, 2%;] and hence the result. D
LEMMA 2.6. For any v € V and any k = 2,...,J, we have [{Qr — Qr—1)v]} < Chel|@uvlla.

Proof. Since we can always change v to @Lv we assume v € V, le, v = z”"l v;¢¥. By definition,
Qe =Sk  wgpf ™t Let w = v Qr1v = 005 wigf. Then wy; = 0 and wy; ) = o1~ (v ot
Brahi=1,.. .,nk/Q, where o = d)l-wl (zF._ VYand 8= ¢ ek ). By Lemma 2.5, a + 2 = 1 and
hence wyi_1 = afvaiy — Vaia) — B{r2i — 1ri—1). Now we estimate the L? norm of w an {:zzgi*.z, 5]

& k E
Toj 5 Taj & 2 o T2 2 5 2 &
wrde = (waimiga;_q ) de = wy; 4 (¢ 1)7de = wi Moy g 051
k k k

wE . T3 5 Toi—a

where M¥ ; is the (j, j) entry of My (the mass matrix with respect to {#517%). By the formula of
w1 and the Cauchy-Schwarz inequality,

{6) f ! de;;; < Mgiwllgn;_ul[ﬂf(l/%——l - VZiw?)z -+ ﬁ(b’zi - V25*1}2}

242
By a direct computation, the A-norm of v is given by,
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/ a(z)(v')?dw = [a(vaiy — vai2)? + Bvas — vaim )AL ) ae 1,

22

where A%, is the (j, j) entry of Ay (the stiffness matrix with respect to {¢$ 1), Combining with (6),

alz)(v") dz,

T3 ME o5 2
(7) ] wide < ]%1—’—211/ alz)(v' ) dz < ChE /k

& o .
202 2i—1,20-1 Bi-2 Lgima

since M;"] = O(h) and A}“,j = O(h,;l). Summirg over { in {7), the result follows. 0
CoroLLARY 2.7, Forang v € V and any k= 2,...,J, [|(Qr — Qr-1)vl] < Ch||(Qx — Qu—1)vl|a.
Proof. Let ¥ = (@ — @j..1)v and apply Lemma 2.6. 0
Now we are in a position to put all the results together and give an optimnal estimate for Kj.
TueoreM 2.8. Let wo = minzcics(p(A:i)Amin (Ri)). Then Ko < £.
Proof. Forany v € V, let v = 2:;1 oy, Uy = (Qz - @iml}v. By Lemma 2.3, we have
J
(8) 1Qaolls + Q@ = Qia)oll% = vl

i=2

In view of the definition of K, for each ¢ > 1, we have

T p(Ai) 3. A 2 _C_ A A, p,
)\min(Rz') ('Uﬂvﬂ) < wo “(Q1 Q%—l)’u“ < WOH{QZ Qtwl)””As
by Corollary 2.7 and p(4;) = O{(h;?). For i = 1, since Ry = AT, we get instead
(Ritor, o) = (Bady) Hor, Aves) = [lolfg = [Quoll.

Combining with (8), Zgzl(Rflvi,vé) = 1Qo]l4 + foz(Ri_lfui,vi) < max(1, f—?)HwHﬁi 0

(R;l’b‘i, Ui} .<_.

2.3. Implications. The analysis verifies that stability and the approximation property are useful
characterizations for good subspaces. We rewrite them here again but in a slightly different format.

7
(9) I@uolli + D Qs — Qu-1)ellh

k=2
(10) 1@k — Qu-)vll < Cihal|@rolla, Vi > 1.

Recall that the coarse grid basis functions determine uniquely the subsequent subspaces. The two
inequalities are actually two requirements for the basis functions.

One more remark is that, as mentioned before, the approximation property {10) is usually implied by
preserving constant functions. Sometimes it may be convenient to change (10) to: 0%, ¢¥(2) = 1,Vk.
These two conditions are our guidelines for defining multigrid methods in higher dimensions.

1A

Colivlla,

3. Two Dimensions. To facilitate our understanding of the 2D case, we shall first focus on
the standard structured triangular grids on the square domain Q: [0,1] x [0, 1] and postpone the
unstructured grids case to section 4.1. The 2D model problem is:

(11) ~V-a(z, y}Vulz,y) = flz,y), mO
v o= { on 952,

with the same assumptions on a(z,y) and f(z,y) as before.

3.1. Formulation of Energy-Minimizing Interpolation. The extension to two dimensions
is difficult since there is no definite or natural analogue between the 1D and the 2D case. Several
possibilities of setting up local PDE’s exist, for instance, the stencil or the so-called blackbox approach
(18, 1, 9, 18, 39, 34], Schur complement approach [25, 19, 13] and the algebraic multigrid approach
[32], each of which mimics the 1D case in some way.

The analysis of the 1D case shows that stability and the approximation property are two basic
requirements for the coarse grid basis funetions. Thus, the basis functions should have small energy and
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approximate fine grid functions with at least first order of accuracy. Suppose a maximal independent set
M is chosen as coarse grid points. Let the coarse grid nodal basis function 7 E}G{Ah oM O d)

We define the interpolation by solving a constrained minimization problem for {a]}
1 n it
(12) - min g STHeHIG subject to D @fi(x)=1 nQ,
i=1 i=1
where m = (n/2 -+ 1)?,h = 1/n. Notice that the coarse grid nodal basis functions on the boundary
with Dirichlet condition are also constructed so that the constraint makes sense.

The solution method for the minimization problem is briefly explained as follows. For each 7, ¢;' =
ijl @ qﬁh and ¢ = (@ - i) is a sparse vector with at most seven nonzeros. Let & = [t ™
be an mn x 1 vector appending all the oi’s. Noting that ||| = (#))T Atw;, where A" is the
assembled siiffness matrix on the fine grid without boundary conditions, (12} can be written as the
following equivalent linear constrained quadratic minimization problem:

1
(13) min 5&@@ subject to BT ® =

The symbol 1 is unﬁlerstood as a vector of all 1’s. The mn x mn SPD matrix @ is block diagonal with
each block equals AP where

(_Agf)kl:{ Al if @b £ 0 and @} # 0

Si;  otherwise.

The n x mn rectangular matrix 87 = [JT .- FF], where J; = J& is a near identity matrix cor-
responding to the restriction operator that maps v to v; such that v = v»; on supp(¢f ) and v; = 0
otherwise. More precisely,

0 otherwise.

1 ifk=1{and @l £0
(jz) :{ Sok?é

It is clear that J7¢' = @' and hence BT® = 310, 7T o' = Y1, ' =1. By the Lagrange multiplier
formulation, (13) is equivalent to:

EHIRER!

where A is an n x 1 vector of Lagrange multipliers. After solving for A and substituting back into (14),
the system is reduced to:

0% =B(BTe B!
The solution process for @ is divided into two steps: 1) Solve BT Q~4Bg = 1. 2) Solve @& = By.

Step 1: Since we do not want to form the huge systems Q™! and 87 Q1B explicitly, direct solve is not
preferred. As BT Q18 is SPD, conjugate gradient is used instead. The only nontrivial procedure is
the matrix-vector muitiply. Recall that B is a block of near identity matrices J;. There is no operation
involved in forming Bg =g =[g";- ;5] By the definition of 7;, the nonzeros of § equal those of @'
Thus forming § = @~ g only involves converting a little 7 % 7 submatrix of .Ah for each 7*. Finally
BTg=3S" ¢, §=13" ;™). The overall computations only involve O(n) operations.

It 1s interesting to note that if A" is definite, for instance, the equation in (11) has a positive zeroth
order term, A" itself is a natural preconditioner for BT Q15 since

nf2 n/2
1O B =Y I AN = YRR AR IR,
i=0 [ESY

where ’R’,T is the submatrix of nonzero rows of J;, and it is now clear that BT Q1B is the additive
Schwarz preconditioner for A",

Step 2: It is similar to Step I and is not discussed.



3.2. Special Features. The above formulation is consistent with the 1D case described in section
2.1 in several aspects:

1) In 1D, the constraint exists implicitly since it is automatically satisfied if {#¥} solve the local PDE’s
(see Lemma 2.5).

2) Since no explicit constraint is needed in 1D, the minimization of Z”/Q )% can be splitted into
m independent problems each of which is equwalent to (2).

3) Ha(z,y) =1, we almost reproduce the linear interpolation in the sense that numerical experiments
show the interpolation values are close to 1/2. The minor discrepancy probably comes from the
boundary where the interaction between minimizing energy and preserving constant functious is
different from the interior.

"This interpolation also possesses some other advantages that make it flexible and applicable to
complicated problems:

1) Like algebraic multigrid, the construction of the interpolation operator is purely aigebraic. In other
words, geometry and in particular the grid information are not needed. Unlike algebraic multigrid,
however, the hidden geometric information in the stiffness matrix is exploited by the constrained
minimization problen:.

2) The interpolation is still valid if the coarse grid points do not form an independent set. Independent
sets are certainly beneficial to efficiency but nevertheless necessary. In some situations, we may
want to remove this requirement, Further discussions on coarsening will be given in section 4.2.

3.3. A Two Level Analysis. Since our interpolation is implicitly defined by the minimization
problem, analysis is tricky and has not yet been fully investigated. Nevertheless, a two level analysis,
which is essentially due to Xu [35] [27], is presented. In this special case, only the preserving constant
property is actually used. The role of the minimization is explained afterwards.

We shall verify the stability and the approximation properties (9), {10} which are equivalent to the
following in the two level case.

LEMMA 3.1, There exists an average interpolant I such that for any v € V* C HIQ),

(15) folia < Colvlia
(16) o~ Iollon < Ciklplig,
where || - [log, || - llie and |- |1 q are the uswal L2, H' and H' semi norms respectively.

Proof. Tor any coarse grid point .’E:‘, . let ¢; be an edge that contains 'cH. Let ¢ be the linear
function on e; such that (v,4;)0.e; = v(2f'), Yo € Pi(e;), where Py(c;) is the set of piecewise linear
functions on e;. Define I : V* — VH by (Ifly)(x) = 25 (0,9 )o,e,07 ().

We now prove (16). Let S; C § denote the interior of the support of ¢f and 8" be the set of
mtersections of {S;}. Then it is not hard to see that there exists G* ¢ &* such that Gk’s € G are
digjoint and §] = UG’h In the agglomeration multigrid context, G’“s are just agglomerated macro
elements. Let G” € g" and consider an auxiliary triangle K} that contains G? and all its neighboring
elements G’h, le. G’h’ n ("h # ¢. Let FKh K K" be an affine mapping that maps the standard

reference element K to K?. Define G = FK,%(G’T") C K, 88 = v(FKh (£)),% € K and THy = [Hoy,
(Note v is extended by zero if K} is outmde ?). By the trace theorem, it can be pLoved that

|6 — IHvHG é; < Clid]l; z- Since constant functions are invariant under I, so are under TH . Hence

o — ﬁ«ano g = infllo+¢- TH(5 + Mo, < C infllo+&lly 5 < Clél, 4

Transforming back to K[, we have [|lo — IH'UIEO,Gh < Ch|vl1,K¢. Thaus
v — IHU”%,Q - Z l|v IH”H{B),GJ;t <R Z EUE%,K? < Chz,”'iﬂ

Inequality (15) can be proved similarly using the H! norm instead and hence is omitted. [

The role of the minimization can be revealed by the estimation of [|[I%u]|4 in the case when (11)
has a positive term b(x, y)u and ! is the nodal value interpolant:
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Despite that the bound may not be sharp, the minimization problem essentially minimizes the constant
in the stability ineguality (9).

3.4. Numerical Results. We verify the optimal convergence behavior of our multigrid method
by comparing it to the standard one when they are used to solve the Poisson equation on [0,1] %
[0,1] with homogeneous Dirichlet boundary condition and f(z) = 1. Two pre and post Gauss-Seidel
smoothings are used and the iteration is stopped when the relative residual norm is less than 16-1e
Table 1 shows the number of multigrid iterations to convergence with different number of levels (2-5).
{Entries with no data are denoted by #). The previous analysis only predicts optimal convergence in
two level but optimal resnlts are indeed observed in the multilevel case as well.

grid Linear Energy-min.
273141512314
WEx 169110 « | % 91111 =
32320011011 %« pO]10 114 +
64 xB4 O 106111110910 11]12
TABLE 1

Convergence of multigrid using linear and energy-minimizing interpolations.

4, Applications. The special features of our interpolation lead to applications to unstractured
grids computations and discontinuous coefficient problems.

4.1. Unstructured Grids Computation. Unstructured grids are irregular grids which are not
obtained by successive refinement of coarser grids. Thus there is no natural choice of coarse meshes.
The challenge of multigrid is to define interpolations on such grids. One approach is by retrian pulation
114, 21]. A maximal independent set for the coarse grid points is determined and the coarse meslh is
formed by a retriangulation of the coarse grid points. The linear interpolation is defined naturally on
the retriangulated grid. Another approach is by agglomeration {20, 33]. Groups of nearby elements are
agglomerated together to form bigger macro elements. The piecewise constant interpolation is usually
used but nevertheless higher order interpolations are also possible by extra costs.

The former approach has a nice theory to govern optimal convergence. However it suffers from
the geometric dependence of the algorithm. For complicated geometries, special care {7, 8] is needed
to handle different types of boundary conditions correctly, Besides, grid information is required for
future retriangulation and interpolation. Moreover, its application to 3D problems is difficult since
tetrahedralization of arbitrary points in space is nontrivial. 'The latter approach, on the other hand,
is algebraic if injection is used for the interpolation and hence it is applicable to 2D and 3D problems.
However, mesh information is still necessary if higher order interpolations, which have been noted in
the literature [34] necessary for optimal convergence, are used.

Our multigrid method can be viewed as a kind of agglomeration multigrid. The elements on the fine
grid are implicitly agglomerated together through the construction of the coarse grid basis functions.
The constraint in the minimization problem ensures our interpolation is at least first order accurate.
If a(z,y) = 1, the optimal linear interpolation is almost recovered (cf. section 3.2) in the structured
grids case. Thus close to linear interpolation is expected on the unstructured grids as verified by the
numerical results shown later. Furthermore, since the algorithm is purely algebraic, the previously
mentioned geometric difficutties disappear.

4.1.1. Supplements. However, the interpolation described in section 3.1 is incomplete for the
unstructured grids case and a further discussion is needed.

Supplement I: Unlike the structured grids case where the noncoarse grid points are connected to
exactly two coarse grid points, it is possible that some noncoarse grid points are attached to one coarse
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grid point only. The constant preserving constraint enforces the values at those points the same as
the corresponding coarse grid points. In some sense, it is like piecewise constant interpolation which is
not sufficient for optimal convergence. Our solution is simply to change those noncoarse grid points to
coarse grid points. Independence among coarse grid points are thus broken which, however, does not
affect the convergence nor the construction of the interpalation {cf. section 3.2). Since usually only a
few number of such points exists, the overall complexity increases cnly by a bit.

Supplement 2: Another difficulty comes from the boundary. In contrast to the structured grids case,
it is possible that a noncoarse grid point on the boundary with homogeneous Dirichlet condition is
connected to an interior coarse grid point. The interpolated value at the noncoarse grid point, in
general, is nonzero which is inconsistent with the boundary condition. Qur solution is that interior
coarse grid points do not interpolate boundary points with Dirichlet condition.

4.1.2. Numerical Results., We demonstrate our multigrid algorithm on unstructured meshes
by solving the Poisson and a variable coefficient problems on the well-known NASA airfoil [8] with 4253
unknrowns. The Poisson problem is associated with the homogeneous Dirichlet boundary condition and
the variable coefficient problem:

I u 4 u
S+ ) + 5 ein(a) 3
with a mixed houndary condition: u = 2 + #*sin(3y), z < 0.2 and Gu/dn = 0,z > 0.2. The stiffness
matrix Is solved by the conjugate gradient method. One V-cycle multigrid with two pre and post
Gauss-Seidel smoothings is used as a preconditioner. For comparison purpose, the initial guess is zero
and the iteration is stopped when the relative residual norm is less than 105 and 10-5 for the Poisson
and the variable coeflicient problem respectively.

) = {4ay + 2) sin(3y) + 92” cos(6y),

Energy-min. MG Retriangulation MG
MG | number of coarse number of ifer. number of coarse rumber of iter.
levels grid points Poisson | Var. Coeft. grid points Poisson i Var. Coefl.
2 1285 6 6 1170 5 4
3 373 6 6 340 5 5
4 74 6 7 101 5 - b
TABLE 2

Convergence of multigrid preconditioners on the airfoil.

The results are shown in Table 2 where the data of the retriangulation multigrid with special
treatments on the Neumann boundary condition is obtained from [7, 8] (note: GMRES were used).
Both methods have roughly the same number of iterations which verify that our method has optimal
convergence behavior. Although our multigrid method takes more coarse grid points initially due to
Supplement 1, it takes about the same number as the other one eventually.

4.2. Discontinuous Coefficient Problems, The standard multigrid converges slowly when
the coefficient a(z,y) is piecewise constant with jumps differed by several order of magnitudes, The
finite element discretization is tricky in itself. Despite that, suppose the discretization is properly done.
We want to derive a multigrid method which is as insensitive to the jump as possible.

The focus of the tackling strategy in the literature was to define an interpolation so that the dis-
continuous behavior of the derivative of the solution along the interface is correctly handled. The
motivation is probably due to the effective interpolation described in section 2.1. In fact, this approach
is effective for regular interface problems, for example, the interface forms a square, on structured
squared grids. Not much attention has been paid to irregular interface problems which are naturally
arised in unstructured grids and in other problems. We shall consider irregular interface problems on
structured triangular grids and introduce the coarsening aspect for multigrid methods. The unstruc-
tured grid case is treated similarly.

As mentioned before, a successful multigrid method depends not just on the interpolation but all
the procedures as a whole. Our key observation is that coarsening is crucial for interface problems.
Specifically, the coarse grid points should resolve the shape of the interface in some sense deseribed
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later. Intuitively speaking, experiences reported in the literature [1] revealed that the parts of the
solution on regions of different constant coefficients behave independently and connected together
through a Neumann boundary condition on the interface. Theoretically speaking, convergence proofs
for interface problems [36] require the discontinuities lie on all coarser meshes. In view of these, we
present a coarsening algorithm for discontinuous coefficient problems.

Remarks: 1) Special coarsening techniques are quite common for anisotropic problems. To the author’s
knowledge, however, no coarsening strategy specific to discontinuous coefficient problems has been
discussed in the literature. 2) It is interesting to notice that unstructured grids muliigrid has to be
used after one level even though the original grid is stractured, if the following special coarsening is
used to resolve the interface.

4210 A Coarsening Algorithm. Let (%, Q7 be disjoini open subsets of £ such that 2 =
OF UG-, Let T = 8Q% be the interface and TN 802 = ¢, Let a(z,y) = ¥ in OF and a{z,y) = a” in
Q- and a~ < a¥. The case of multiple jumps is treated similarly and hence is emitted.

Algorithm L
1) Determine the set of fine grid points N in O+,
2} Full coarsening on N+,
3) Full coarsening on N~ = N\N*, N=set of fine grid points.
4) Either (a) or (b) is used. Change a noncoarse grid point z? to a coarse grid point, if
(a)i) =} € N* and &ff € N~ for any coarse grid point z} connected to xls else if
#) af ¢ N~ and rf € Nt for any coarse grid point :cf connected to x?; else if
iii) #» € N* and more than one coarse grid point zfl € N™\0Q is connected to zh; else if
iv) z € N~ and more than one coarse grid point tff € Nt is connected to 2}; else if
v) zf € 9Q and no 1:3“ € O is connected to @l
(b) i} &} € N¥ and less than two coarse grid points .’B}-H € Nt connected to af; else if
i} z} € N~ and less than two coarse grid points 135: ¢ N- connected to zf; else il
i) =} € 09 and no 1:3” € Q is connected to zl.
In addition, coarse grid points in N* do not interpolate those in N~ and vice versa.
Step 1: Notice that A% = at f, |Vé}*de for any b e N*. If at >» a7, the set of grid points In Nt
can be easily determined by the large diagonal entries of fii’;
Step 2, 3: They are just standard coarsenings with points i N + first followed by those in N~
Step 4: Since there is no definite choice how the interpolation is done along the interface, two possible
sets of criteria are suggested to ensure that the noncoarse grid points on I' are properly interpolated

g0 that the discontinuous derivative behavior of the solution is captured.

4.2.2. Complexity Issue. Resolving the interface increases the total number of coarse grid
points which in turn increases the overall complexity. However, if the interface forms a simple piecewise
smooth curve, the increase in coarse grid points is at most the total number of grid points on the
interface, which is only O(+) compared to O(4) for the total namber of coarse grid points. The
complexity, no, of one V-cycle multigrid with standard coarsening is estimated to be:

1 1 4
T?O—O("l—z‘i‘m W+)MO(§E“§),
and the complexity, n1, of one V-cycle multigrid with our special coarsening is:

m=0(k + (g + B+ G+ D+ )+ GGla + D+ H) T3+ ) = Oz + 5)-

Thus the increase in complexity is asymptotically small compared to the standard one.

+

4.2.3. Numerical Results. We demonsirate the importance of coarsening by two examples.
The number ¢~ = ! and at is varied from 10 to 10*. The iteration stops when the relative residual
norm is less than 10~%. Other settings are the same as in section 3.4.

Example 1: A square interface on an 8 x 8 grid as shown in Fig.1(a), with OF —shaded region, is
enough to show the importance of coarsening. For llustration purpose, only two levels are used and
the set of coarse grid points (denoted by o) is manually selected. Also, in addition to criteria set 4(a},
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coarse grid points only interpolate the points i the same region of coefficients. Table 3 shows the
number of multigrid iterations to convergence using our special and the standard coarsenings together
with energy-minimizing and linear interpolations respectively, The standard muitigrid converges slowly
with the increasing size of the jump because the standard coarse grid points (denoted by x), never
approximate the two darker corners well, if @t » «~. On the other hand, an addition of four coarse
grid points at the corners improves the convergence dramatically.

at 10 1 102 ] 109 | 10%

Special Coarsening 6 6 ] 6

Standard Coarsening | 12 | 21 | 23 | 23
TaBLE 3

Convergence of multigrid methods with different coarsenings.

Example 2: A more complicated irregular interface shown in Fig. 1 (b) is used. The results in Table
4 shows that the convergence is independent of the mesh size and the jump but probably depends on
the number of levels. Same settings have been repeated for the linear and the interpolation described
in [9]. They both take more than 1000 iterations to converge with convergence rate arcund 0.99.

Grid size | Level | # of nodes | at =10 | at =107 [ a™ =10% | ¢ = 107
1/32 2 344 12 13 14 14
3 116 14 14 15 15
4 40 20 22 22 22
1/64 2 1261 13 13 13 13
3 367 14 14 14 14
4 102 18 18 18 18
5] 28 30 37 39 39
1/128 3 1258 18 18 16 16
4 319 19 19 19 19
b 36 27 28 28 28
6 25 43 22 54 54
TABLE 4

Convergence of the special coursening mulligrid with different sizes of grid and jump.

5. Conclusions. From the energy-minimizing interpretation of the 1D interpolation, we have
derived an analogous 2D interpolation which preserves constant and in a way minimizes the energy of
decompositions of functions. The resulting muitigrid methods has been shown theoretically pleasing
and numerically effective. Its purely algebraic implementation makes it particularly aitractive to
unstructured grids computations where geometric complications do not raise a problem.
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We have also addressed the issue of coarsening for multigrid methods applied specifically to dis-
continuous coefficient problems. The slow convergence of standard multigrid may be due to the poor
choice of coarse grid points. In fact, we have presented a heuristic coarsening algorithm which has
shown to be effective for this kind of problems.

Acknowledgments. The anthor would like to thank Barry Smith for his introducing the concept
of energy minimization and Tony Chan for his guidance throughout fke paper.
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