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Abstract. We establish the existence of the viscous profile of an undriven
divergent detonation wave for a model problem with small viscosity.

It is known that there is a sonic point inside the reaction zone of a di-
vergent detonation wave. As a consequence, the detonation wave profile is a
transonic profile and the wave speed cannot be determined before the problem
is solved. The wave speed may be interpreted as a nonlinear eigenvalue. The
detonations exhibiting this type of behavior are sometimes termed eigenvalue
detonations. The shooting method and an asymptotic analysis are performed
to prove the existence of the viscous profile for small viscosity. The condition
we shoot at is the compatibility condition at the sonic point. In the construc-

tion of the viscous profile, an iteration is employed to treat the source term
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arising from the chemical reaction.

It is a consequence of the constructive proof that as viscosity tends to
zero the viscous profile tends to the inviscid profile of the undriven divergent
detonation wave [12]. Thus the undriven divergent detonation wave found in
[12] is structurally stable.

Finally, we study the nonlinear stability of the transonic profile. We prove
that the solution exists globally and approaches to a shifted traveling wave
solution as t— + oo for ’large’ perturbations of the transonic profile.

Key words. Detonation, curvature effect, shock wave, traveling wave,
sonic point, transonic, shooting method, asymptotic analysis, asymptotic
behavior, shift.
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1 Introduction

For 1- D reactive Euler equations, the detonation waves predicted by the ana-
logue of the Z-N-D (Zeldovich-von Neumann-Doring) theory has the internal
structure of an ordinary precursor fluid dynamic shock wave followed by a
reaction zone. Among all detonations, there is a detonation propagates at
the minimum speed. This wave is called CJ (Chapman-Jouget) detonation.

In higher dimensions, however, a divergent detonation is weakened by
expansion-induced rarefaction coming from behind the shock, and the end of
the reaction zone moves below the CJ point yielding a detonation in which
there is a sonic¢ point of transition within the reaction zone, or a fransonic

profile. In order to have a smooth transition through a sonic point, certain



solvability condition must be satisfied at the point. The solvability condition
is a relation between the normal velocity and the curvature of the detonation
front, which depends on the form of the rate and the equation of the state.
So for a curved detonation wave, the detonation speed is determined by the
reaction dynamics.

The effect of the divergence is similar to that of the endothermic chemical
reaction, radiation effect or the effect of a fluid with a nonconvex equation of
state [12] [13]. It is also an approximate analog of the standard convergent-
divergent nozzle problem [4] [7].

We study existence of the viscous profile of an undriven divergent deto-

nation through the following model

Ug + (Euf - qzc)a: = CUepy — J(uc - “o) (1)

Lew T kc,o(uﬁ)zf, (2)

(y) has the ignition form

0 y <y
@(y) = { smoothly increasing u; <y < 2u;
1 y > 2u;

where u, = u,(z,t) and z, = z.(xz,1) are scalar functions representing velocity
or temperature of the combustible gas and concentration of the unburnt gas,
and q, € and k > 0 are constants representing the amount of heat released
during the chemical reaction, the viscous coeflicient, and the rate multiplier.
o > 0 is the weak divergent curvature constant. u; > uy is a constant which
refers to ignition temperature and u, is the quiescent fluid state ahead of the
triggering shock.

The model was derived by Majda and Rosales [15] under the assumptions

of: weakly nonlinear, high activation energy and nearly sonic speed of the
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detonation wave. This model describes the motion of the combustible gas in
a divergent tube. It captures the main features of solutions in the physical
system. In particular, there is a sonic point in the viscous profile for the
model problem and a compatibility condition must be satisfied there. As
a consequence of the peculiar property of an undriven divergent detonation
that there is a sonic point in the reaction zone, the detonation wave profileis a
transonic profile and the wave speed cannot be determined before the problem
is solved. The wave speed may be interpreted as a nonlinear eigenvalue. The
detonations exhibiting this type of behavior are sometimes termed eigenvalue
detonations [5].

In [12], the author established the existence of the inviscid divergent det-
onation profile. Furthermore, it was proved that the solution to the initial
value problem exists globally and converges uniformly, away from the shock,
to a shifted traveling wave solution as t— + oo for certain ’compact support’
initial data.

In the current paper, we use the shooting method, previously used by
Bukiet [1} for numerical simulation of effect curvature on detonation speed,
Jones [8] for an asymptotic analysis of the curvature effect on detonation
speed, Hsu and Liu [7] for nonlinear singular Sturm-Liouville problems and
an application transonic flow through a nozzle, the asymptotic expansions in €
for € small and the result for the inviscid case [12] to establish the existence of
the viscous profile. The condition we shoot at is the compatibility condition
at the sonic point. In the construction of the viscous profile, an iteration is
employed to treat the source term arising from the chemical reaction.

It is also proved that as € tends to zero the viscous profile tends to the
inviscid profile of the undriven divergent detonation wave [12]. Thus the

undriven divergent detonation wave found in [12] is structurally stable.
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Finally, we Consider the initial value problem (1) (2) with

wl(0) = u(a) )
ze(+oo,t) = 1 (4)

where (2} satisfies

/+w(ul(:c) — ug)dx < 400.

The unique classical global solution of (1) (2) (3) (4) exists. The proof can be
found in [14]. We prove that the solution approaches to a shifted traveling
wave solution as t— + oo. Therefore, the transonic profile is nonlinearly
stable.

In Section 2 we give a brief derivation of the model given by Majda and
Rosales [15] . In Section 3 we establish the existence of the viscous profile
of (1) (2) for € small and the structural stability of the undriven divergent
detonation wave when € = (. Section 4 is devoted to the study of the Cauchy
problem (1) (2) (3) (4) and the large-time behavior of its solution.

2 Derivation of the Model

Under the assumptions of: weakly nonhinear, high activation energy and
nearly sonic speed of the detonation wave, Majda and Rosales [15] derived
the simplified model (1) (2) in the following way.
If the multi-D reaction front is described (to leading order) by
U(X)-T=0,

then ¥ solves the eikonal equation,

VY| = 1. (5)



The coordinate z is defined by

(@) -1)
6 )
and ¢ is defined by
X _ VY (X)
dt

with the initial condition ¢ = 0 at ¥(X) = 0. t is proportional to the arc

length along the characteristics of (5). Along characteristic rays, we have

dlIJ =1
-
E _ .

§ << 1 is the ratio of typical absolute values of the fluid velocities and
reaction front velocities.
Near the reaction front,
p =1+8p(w, X)+ ...,
u = ug(z, X) + duy(z, X) + ..,
T =1+46T(z,X)+...,
Z =Zy(x, X))+ 8Z(z, X) + ...
Plugging into the reactive Euler equations, one shows that py, uy and T
solve a homogeneous system of equations. Therefore these quantities should

be proportional to a proper eigenvector, i.e.,

1 ~
Po = (FYV"‘I})U(SE’X)-FP(X),
Ug =WU($,X)+E(X),

To = Uz, X)+T(X).

From the next order perturbation equations, one finds a compatibility con-

dition which yields a differential equation for U (U will be denoted as u from
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hereon),

wt (- g9+ AV =0 ©
5 = kou) @

z = z{z,t) represents concentration of the unburnt gas. As seen in the above
asymptotic expansions, u = u(x,t) plays a multiple role. The last term on
left hand side of (6) accounts for the amplitude growth or decay according
to the local geometric compression or expansion of areas in the wave front of
geometric optics. In this paper, we study the case where A¥ > 0 and 1s a
constant, see (1).

This way, the equation of propagation which governs the geometry of the
wave front is decoupled from the fluid mechanical and chemical phenomena

that control the local shape of the waves in the original model.

3 The Existence of the Viscous Profile

We establish the existence of the transonic profile for (1) (2). The profile is
constructed based on the inviscid one in [12] for ¢ small. Since there is a sonic
point in the reaction zone, a compatibility condition must be satisfied there.
We prove the existence by the shooting method [1] [7] [8]. The condition we
shoot at is the compatibility condition. In the construction of the viscous
profile, an iteration is employed to treat the source term arising from the
chemical reaction.

A traveling wave solution is a solution of the following form

(uc(mit)azc(mat)) = ("wbc(m - Dct)s Z(z ~ D))



where D, is the speed of the detonation wave.

Let (u{z,1), z(z, 1)) = (¥.(£), Z.(¢)) where ¢ = z— D t. Then (3, Z,)(£)

sotves the following ordinary differential equations

_Deil’; + ¢E/'Ib£ = anbg + Q'Z; - U(1lbc - uO) (8)
zZ, = k()2 (9)

If we let r = 4! and rewrite (8) (9} as a first order system of ordinary
differential equations for (¢, r, Z,), then the only critical points are (uq, 0, 0)
and (wug,0,1). They are both saddle points in (i, r) plane. The boundary

conditions for (v, Z,} are

5EIPm(¢€’ZE)(£) = (uﬂao) (10)
Jim (4,2)6) = (u,1). (11)

Our main result is the following.

Theorem 3.1 Let € be small. There exists a unique solution (v, Z.) to
1
problem (8) (9) (10) (11) provided that o > 5 and u; — ug is small.
Furthermore, (., Z,) satisfies

k
UOSTJ)CS”U"‘%

and
0<Z, <1,
The propagating speed D, satisfies

D - u; + U n q — e} B o_ffloo(q,bc(ﬁ) — g )d€

¢ 2 Up — g U~ Ug




and

[ ) - uopie =

where u; = P (—1) and u) = P!(~1), solution and its derivative at the end of

the reaction zone.

Proof.

Let ¢ be small. We construct the viscous profile based on [7] the inviscid
one in [12] through asymptotic expansions in .

First, it can be proved by applying a maximum principle to (8) that ¥(£),
where ¢ = z — D, is bounded

k
ug < P Stp + 20—. (12)

For € > 0 small, there is an interior layer in solution t,(£) at 0 of width O(e).
Assume inside the interior layer that 1.(0) = u; without loss of generality.

Therefore from (9) (11) we have that

Z8) =1 (13)

for £ > 0.
Since there is a sonic point in the reaction zone, a compatibility condition

must be satisfied there. That is
be(bol€)) = D
and
—epp(§o(€)) + o (belbo(e)) — uo) = 4Z(&o(€)). (14)

For the inviscid solution, ¥#(£,(0)) > 0 bounded and £&,(0) < 0, see [12]. So
£o(€), which is close to £g(0) when € is small, is outside the interior layer and

P&y (€)) > 0 bounded as in the inviscid case.
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In order to construct the viscous profile inside the interior layer, we make
a transformation y = 3 inside the interior layer. Plugging it into (8), we
€

have that inside the interior layer v, satisfies

ﬁbsyy — (. — De)¢ey = 5(0'(7!)5 — ) — QZ:) (15)

and (12).
An iteration is then defined according to (15) to construct the viscous
profile inside the interior layer.

Consider the following problem

¢1yy - (111{)1 "' De)Trny =0 (16)
with data
P1(+00) = up, P1(0) = u,. (17)
The exact solution of (16) (17) is
y+uy
#1(3) = D, +7tanh (1) (18
where
Y= De — Ug >0
and
D, + fyta,nh(%) = u;.

Plugging 1, (y) into (9) and solving it along with (13), we have Z;{y).
Since in the interior layer 1, (y) and Z;(y) are bounded, hence they solve
equation (15) with data (17) with error O(¢). That is

¢1yy - (1/)1 - De)d)ly - 6(0(¢1 - uﬂ) - qZ{) + O(E)
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Outside the layer, Z,(£) is obtained from (9) and Z,(y). ¥,(£) can then be
obtained by solving equation (8), where Z,(£) is known, with the initial data
obtained from the interior layer solution 1, (y). It is easy to verify that ¥, (£)
and Z,(£) solve equation (8) with error O(e).

By applying a maximum principle to (8), we have
k
Uy < Py Suo—t-q;%—O(e).
Now we consider the following problem for 1, according to (15)

Yoyy — (g — Dc)¢2y = e{o(1h) — ug) — QZ{)- (19)

with data (17).
Integrating equation (19) from y to 400, we have
1 1

by = 50— DF =57~ [ olh—w)y+ [ aZydy.  (20)
2T G\¥2 € 2’}’ v 1 0j0Y . q L, QY.

The last two terms are of order ¢ since the interior layer is of width O(¢) and
Z, is continuous and /+w(¢1(y) — ug)dy < +oo by (18).
Hence 1, is boundeod both above and below by functions of the following
form
7y + yé))
2
where 4/ = v + O(e), !, = yo + O(€) and O(e) depends on ¢, and Z,.

D, + +' tanh( (21)

Consequently

|12 — 41| = O(e). (22)

By using (13) and (18), it can be derived from (20} that ,(y) — uo decays

to zero with the same rate of ¥, (y) — vy decays to zero as y — +oo. Hence

+co
/y (1) — t10)dy < +oo.
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Plugging 1,(y) into (9) and solving it along with (13), we have Z,(y).
By using (22) in the interior layer, we have that t,(y) and Z,(y) solve
equation (15) with data (17) with error O(e?). That is

1rb2yy - (11)2 - Dc)":be = 6(0(111)2 ""' uﬂ) - Q'ZQ + 0(62)‘

Outside the layer, Z,(£) is obtained from (9) and Z,(y). t;(¢) can then be

)
obtained by solving equation (8), where Z,(¢) is known, with the initial data
obtained from the interior layer solution 1, (y). It is easy to verify that 1,(¢)
and Z,(£) solve equation (8) with error O(e?).

Hence, 1, satisfies
ug Shy Sup + g + O(€?).

This process can be continued to any n so that ¥, (y) and Z,(y) solve
equation (15) with data (17) with error O(en). That is

Ipnyy - (¢n - DE)d)ny = E(U("rbn - UO) - qZ:;) + O(En) (23)
and ¥,(¢) and Z,(£) solve equation (8) with error Ofe") and
to S Y Sg+ T+ O(e), (24)

Furthermore, v,, is bounded by functions of the following form

"y + 1)

D, + O(e) + 4" tanh(Z ) (25)

where ¥ = v+ O(¢), ¥, = yo + O(e)-

Since 1, is bounded (24) uniformly with respect to n, there is a weak
star limit 1, of a subsequence of #,. According to (23) and (24), this limit
1, solves equation (15) with data (17) and is bounded. ), must also be a

classical solution since (15) is a second order ordinary differential equation.
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Outside the layer, 1,(£) can then be obtained by solving equation (8),
where Z,.(£) is known, with the initial data obtained from the interior layer
solution 1, (y). Hence ¢, and Z, solve (8).

Now we shoot for the compatibility condition (14) by adjusting the pa-
rameter D,. By taking D, —+ 400 and noting that ¥”(€(e}) > 0 bounded,

the equal sign in (14) is replaced by >.
U; — Ug

2

Using the assumption that u; —ug is small and taking D, —v, > >
0 small, we conclude that the equal sign in (14) is replaced by <.
There must be a D, such that the compatibility condition (14) is satisfied.
We have completed the construction of the viscous profile.
|
It can be shown that in the limit that ¢ tends to zero the viscous profile
tends to the inviscid profile of the undriven divergent detonation wave [12].

Thus the undriven divergent detonation wave found in [12] is structurally

stable.

Theorem 3.2 The undriven divergent detonation wave is structurally stable.

Moreover, we have the following rate of convergence in L' norm:

¥ = #lli < Cellne] (26)

where C' ts a constant independent of e.

Proof.The equation satisfied by ¢, — 9 is

_(D - ¢e)(¢e - ¢)' + ¢f(¢c - d)) + (D - De)’lvb:

= e — (b — )+ q(Z. — Z) (27)
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where 1,(0) = max, ¥ (z) and ¥(0) = max, ¥ (z).
Integrating (27) over (—o0, +00), we have that

[T~ @) =0, (25)

o0

From the proof of Theorem 3.1, we know that

e — #l(z) < Ce

except in the interior layer which is of width O(e).

;From the construction of the viscous profile 1,, we have that
for z > 0 and that
“+oo +oo
[ - w@de = [ g~ i)z = 0(0) > 0.
Since both ¥, and 1 decay exponentially to u; as t— — oo, therefore
L
| = ¢l(e)da = 0()

for some L = C'lne < 0.
For L < z < 0 which is outside the interior layer, using the above conse-

quence of Theorem 3.1, we have

[ 1= bz = Oeln ).

Adding the three integrals together, we have the desired results (26).
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4 Nonlinear Stability of the Transonic Profile

In this section, we study the time-asymptotic limit of solutions of initial value
problem (1) (2) (3) (4). The unique classical global solution of (1) (2) (3) (4)
exists. The proof can be found in [14]. We prove that the solution approaches
to a shifted traveling wave solution as {— + oo for ’large’ perturbation of the
transonic profile. That is that the transonic profile is nonlinearly stable.

We establish a bound for the solution by a maximum principle.

Lemma 4.1 Ifu, is a solution to problem (1} (2) (8) (4), then it is bounded:
gk
Ug S uc(m:t) § max{uU + ':;a MO} (29)
where My ts the mazimum value of the initial data.

Proof.Noting the initial data (3) and applying the maximum principle to
equation (1), we arrive at our conclusion.
|
We now prove a useful comparison principle for solution u, of (1) and (2)
and the viscous profile v, constructed in Theorem 3.1.

In the following theorem the initial value has the following form

u,(z,0) = { u(z) z <s(0)

11 z > s(0)

where u,(z) > ug and $(0) is the initial position of the ignition.

Lemma 4.2 (A Comparison Principle)
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Suppose that u (z,t) is the solution of (1) and (2) with initiel data u,(z)
and the position of the ignition s(t). If

S(O) > Detlt=0
and
ul(x) S ¢c($)a T S Dctlt:m
then there is a T > 0 such that for 0 <t < T,
uz,t) <z - Dt), z <z
where x,, < Dt is the mazimum point of v,.

Proof.Consider the equation for the difference 1, —u,,

(d’s—uc)t—l_(l!)bc_uc)"/bem_*'uc(’rbc_uc)mWQ(Zc—zc)w = _U(ws_ue)+e(¢c_uc)mm'
Noticing that s(0) > D,t];—, there is a T' > 0 such that for 0 <t < T
s{t) > Dt

and the maximum point of w, is bigger than that of ..

Hence, from (2) we have
@q(Z, —~ 2z.) >0

for z < z,,, where z,, < D,t is the maximum point of 9.
;From Theorem 3.1 and the results of [12], we have that ¢, > 0 for
r < z,,. Noting that u,(z) < #.(z) and applying a maximum principle to
the above equation for 3, — u,, we have that there is no negative minimum
of ¥, — u, for z < z,,. Since (Y, —u )(z,t) — 0 as @ — —o0, we conclude at
the following
u (z,t) < Pz — D), z <z,
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Similar to the inviscid case [12], there is an asymptotic conservative prop-

erty for the solution of (1) (2) (3) (4).

Lemma 4.3 Ifu./(z,t) is a solution of (1), (2), (3) and ({), then
d oo
ﬁ(e"* . (u.(z,t) - ¥ (z — Dt))dz) =0
Or
4o +co
| wle,t) ~ e — Dz = et [ (u (2, 0) - pule))da

We now study the convergence of the solution u, to the traveling wave v,

as t— 4+ oo.

Theorem 4.4 The unique classical solution (u,,z.) of (1) (2) (3) (4) satis-

fies
lim {i(u,, 2)(5t) — (¥ Z)(- = Dt + Clly = 0

t—r400

for some C. and provided that the initial data satisfies

+co
j_ (UE(:IJ,O) - uo)dfﬂ < 400,

Proof.The proof consists of two steps. In the first step, we prove shape
convergence to the traveling wave. In the second one, we determine the shift
in the resulting traveling wave.

First, take the initial data uy < u.(z,0) < () and nondecreasing,.

Step 1.

For each time { > 0, let s(t) be the maximum point of u (z,t). That is

u(s(t),t) = max u.(z,1).
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Choose C ; such that
Pe(s(t) — Dt + C ) = maxyp(z — Dt + C.1)-
Using the result of the comparison Lemma 4.2, we have
up < uc(w,t) < .z — Dt +C.p).
Hence

e, ) = (- = Dt + Clly
= [l t) = le — Db+ Co))dal

Now using the asymptotic conservative property of the solutions proved in

Lemma 4.3, we have,
”ue('%t) - ¢c( - Dct + Ce,t)“l = dte_at_”o (30)
as t— + oo where d; satisfies

If ¢e($ + Ce t))dicl dt < 4-00.

Step 2.

In this step, we obtain estimates of C, ;. Our goal is to determine a shift C,
which is independent of ¢ such that the solution converges to ¥.(z — Dt +C.)
as t-+ + 00.

;From (30) in Step 1 and the smoothness of the solutions, we conclude
at that

u(z,t) — 4 (2 — D1+ C, ;) = Oe~).

In particular,
uc(s(t), 8) = ¥ (s(t) ~ Dt + C ) = O(e™ "),

18



That is the strength of the viscous shock wave in the solution of the initial
value problem approaches to that of the viscous shock wave in the trav-
eling wave exponentially fast. Hence the speed of the viscous shock wave
approaches to that of the viscous shock wave in the traveling wave exponen-
tially fast. That is

s'(t) — D, = O(e™t)

which implies that
s(t) — D t+ C, = O(e™%)
for some C,. That is
C, = C, 4+ Ofe™").

The proof of the conclusion in this case is finished.

For the initial data u.(z,0) > ¥ (z), nondecreasing and satisfies
+co
| (e, 0) = uo)da < oo,

we can prove the same result using the same methed.
By using the comparison principle Lemma 4.2, for any initial data that is
in between two initial data of the above kinds, we can prove the same result.
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