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ABSTRACT. A model for the formation and evolution of longshore sand ridges in waters
deeper than the shoaling region suggests that a possible but by no means exclusive agent
for the formation of these bars are weakly nonlinear dispersive long waves. The model de-
scribes how these water waves, which are represented by wave packets, and a sandy bottom
topography, conspire to produce sand ridges. This study examines the behavior of the model,
and investigates how specific morphological features of the sand ridges depend on the water
waves’ characteristics.

1. INTRODUCTION

A model for the formation and evolution of three-dimensional longshore sand ridges on
the continental shelf was proposed in [3], [10], [14], and [13]. 1t identifies weakly nonlinear,
dispersive shallow-water waves as the agents of formation of these structures. Assuming the
fluid has constant density, is incompressible and irrotational, and that dissipative processes
can be ignored, these waves are governed by the dimensionless regularized Boussinesq
system

ne -+ V  {(h+ an)a] — %ﬁzv (VR )] =0
1) u +alu-Viu+ Vg =0,

where n(z,y,t) and u(z,y,t) connote the amplitude and transverse velocity of the water
waves, respectively. The shoreward coordinate is denoted by z and the spanwise coordinate
by y. Time is denoted by ¢. The parameters @ < 1 and 8% < 1 are the degree of
nonlinearity and dispersion in the waves, respectively. Eq. (1) was derived under the
assumption that O(a) ~ O(8?%), however, it has been shown in [6] that models of this type
are quite robust and capable of modeling waves in the Stokes régime «/f% = O(10 — 50),
which is an estimate of the oceanic situation in which the sand ridges are known to occur.
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2 J. M. RESTREPO

The vertical coordinate, denoted by z, is zero at the level corresponding to the quiescent
ocean. The ocean surface corresponds to z = n and the bottom to z = —h. The bottom
topography evolves in time, with typical scale T, which is much longer than the time
t tracking the progress of the hydrodynamics. The bottom topography is described by
h =1+ f(X,y,T), where f = O(1) and is assumed smooth and gently changing in
X = az and y.

Although the model for the water waves is the Boussinesq system, a wave packet repre-
sentation for the solutions of Eq. (1) is an approximation with some merit, since it captures
some of the essential characteristics of the water wave model, easily providing valuable in-
sight on some of the qualitative features of the sand ridge evolution model. The wave
packet representation is valid provided multiple scales are clearly defined and the spectra
of the water waves is amenable to a somewhat arbitrary separation into weakly interacting
wave packets. For presentation purposes, two interacting wave packets will be considered.
Hence, the dynamics of the surface waves are simplified by assuming

2) (e, X,y,t) = Y a;(X,y) + O(@)]e’7~ t c.c.,

j=1

a crude but still very useful ansatz. The symbol c.c. stands for complex conjugate of
the expression immediately preceding its appearance. The a’s are the complex incident
wave packet amplitudes. These packets are assumed to have significant spectral support in
Ak; € k;, where k; is the wavenumber of the j-th carrier wave. The reality of the physical
variables implies that a—; = a}. For simplicity, the reflected component of the water waves
has been neglected. Furthermore, it is assumed that the waves travel almost perpendicular
to the shore, which is in the direction in which z increases, and have weak spanwise y
dependence. If their spanwise dependence is weak enough, the parabolic approximation
holds [10], thus,

y —a'l?y,
g-u <—a_1/2g} - 1.

Since 43 + 7, = 0 holds at lowest order in the momentum balance, an expression for the
surface amplitude 7 is readily available:

2
3) n = 22a;(X,y) + O(a))ei®im0 + ce.
7

j=1

A plane-wave solution of the form given by Eqgs. (2) and (3) is valid, provided that the
relation
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FIGURE 1. Detuning parameter 6 dependence on the fundamental fre-
quency wy and the dispersion parameter § for the water wave problem.

holds, between the carrier frequency wj, and the carrier wavenumber k;. Eq. (4) is the
dispersion relation for the j-th carrier, the positive root k; corresponding to the shoreward-
directed wave. In this way, wy = 2wy, and ky = 2k; — 5, where & < 0. A plot of the
detuning parameter § as a function of the fundamental frequency wi and § for the water
wave problem, 1s shown in Figure 1.

A compatibility condition yields the equations for the spatial evolution of the surface
wave amplitudes, namely,

arx — iKya1yy +iK3 f(X,y)ar + 1 Kse” “SXa’{@ =0
agx —1Kaagyy + 1 K4 f(X,y)az +iKeeT*al = 0
ar(X = 0,y) = Ai(y,7)
() . a(X = 0,y) = Az(y,7),

where § = §/a will be known as the detuning parameter and is O(1). To complete the
problem boundary conditions must be specified on y = 0 and y = Y. These boundary
conditions are chosen in such a way that they do not introduce unwanted structure in
the solutions (see [12] for details). The K’s are real constant coefficients described in the
Appendix section. The data A;, where ¢ = 1,2, are given by the spectra of the incoming
wave field measured at the line X = 0. This spectra will change in time, with time scale
7, but at a rate much slower than the evolution times of the water waves themselves. The
time scale 7 1s determined by changes in the meteorological conditions which significanty
affect the infra-gravity oceanic spectra and is smaller or comparable to the time scale T
In this study we will not have occasion to explore the effects of time-dependent spectral
data hence the Als will be subsequently assumed constant.

The water waves provide the driving agent for the motion of the suspended sediment
in the turbulent boundary layer hugging the bottom. Moreover, the water waves endow
the velocity in the boundary layer with spatial structure which then influences the spatial
deposition and scouring of a sedimentary bed. In this model the evolution of the bottom
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topography is assumed to occur in time scales typical of T' >> f, time scales in which the
boundary layer drift velocity has a significant effect in advecting sediment in the transerve
directions X and y. The sediment concentration is governed by an advection-diffusion
equation. Since the suspended sediment is concentrated almost entirely in the boundary
layer and the water waves have very long wavelengths, as compared to the boundary layer

thickness, it is easy to see that
0 dp
3z (P * ”Ta) =9

provides an adequate approximation for the sediment concentration p, in the boundary
layer of thickness dy;, for sediment with dimensionless settling velocity wg, under the action
of waves with typical orbital velocity Uy. The turbulent eddy viscosity v above has been
made dimensionless by the factor dpwsUs, hence, it is an O(1 — 10) quantity in the
geophysical setting. Additional rules for the dynamics of the sand particles could also
include intra-particle collision rules, and drag effects. However, aside from the assumption
of the disparate time scales of evolution of the bottom and the hydrodynamics, the other
feature that makes this model somewhat different from others is that it asserts that the
structure of the sand ridges is almost entirely inherited from the structure in the drift
velocity which is generated by the inviscid flow, rather than from details of the flow in
the boundary layer. Hence, the dynamics of the sediment have little influence on the
gross features of the bars. Moreover, although the boundary layer is turbulent, little
qualitative difference is obtained by the adoption of different parameterizations of the
eddy viscosity vy, This issue needs to be checked, and studies are under way to determine
the veracity of this assertion. However, it seems to be a reasonable assumption, since
sediment concentration in areas deeper than the shoaling region is quite low, and almost
entirely concentrated in the boundary layer [4], and shearing forces due to these long waves
are significant in a comparatively very thin boundary layer.

The evolution of the bottom topography, and to be approximately described by the
mass transport equation

(6) of(X,y,T) _ K [OU , 6V
orT _p[) 1294 By

where K/py is a positive constant of proportionality;

1 7S]
U(Xy) = / (X, y, 2 VUK, y, 2'))d

is the shoreward mass flux, and V is the spanwise component of the mass flux. In the
above expression, the integration over the bottom-following vertical coordinate z' spans
the thickness of the boundary layer &5 p is the time-averaged suspended sediment con-
centration in the boundary layer, ¢ is the X component of the Stokes drift [9] in the
boundary layer generated by the surface water waves. Without forgetting the importance
of the contribution of the sediment concentration distribution in the boundary layer on
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the overall morphology of bedforms, in this presentation the issue of sediment dynamics
will be ignored and it will be assumed hereon that the sediment concentration is uniform
and constant throughout the boundary layer and equal to 1.

As mentioned above, the medel assumes that the evelution of the bottom topography has
characteristic time scales that are much longer than the time scales in which surface waves
adjust to changes in the bottom topography: an mcident wave field senses a bottom which
is esgentially fixed in time, from the moment it enters the purview of the model to the time
it eventually leaves it. The bottom deforms slowly after the passage of many waves. The
phase of these waves is fixed by the slowly-changing topography and meteorological forcing.
These do not seem to change appreciably in time scales typical of the evolution of the waves.
Owing to the widely discrepant time scales between the (fast) evolution of the water waves
and the (slow) bottom topography, the coupled system, comprised of Eqgs. (5) and (6),
may be solved iteratively: given an initial bottom configuration h(X,y,Ti) = F(X,y),
a solution to the water waves may be found using Eq. (5). The drift velocity is then
calculated by solving for the Stokes drift in the boundary layer. The bottom is then
updated using Eq. (6), and the wave packet equations are solved using the new bottom
configuration. The whole procedure is repeated until some prescribed final time Ty > T},
say. The mput to the model is composed of an initial bottom configuration and the wave
packet amplitudes at the line X = 0. The physical parameters set by field data are the
fundamental frequency; the initial bottom configuration, and an estimate of the size of the
parameters o < 1 and § <€ 1, respectively,

This study is devoted to the analysis of the sand ridge model developed in [14] which has
been summarized above. Of interest is to determine what aspects of the water waves deter-
mine features of the bar morphology and what types of sand ridges are steady wave/bottom
configurations. In the process, we learn about the models’ predictive capabilities and its
weaknesses. Furthermore, we hope to discern how the more complex model, which uses
a full Boussinesq equation for the water waves, and the sediment concentration equation,
should behave under similar oceanic conditions.

The most interesting sand ridges are three-dimensional sedimentary structures. These
would be solutions of the system of equations comprised of Eq. (5) and (6), which we
will denote in this study as the “full model”. However, as a first step, this study will be
concerned with sand ridges with only height and shoreward dependence. The variant of
the model with shoreward and depth dependence will be denoted the “reduced model”.
The reduced model will be considered in Section 2. Exploiting well-known resulis about
the triad system represented by the wave packet equations, this paper will report on the
steady-state bottom configurations for the reduced model in Section 3. The analysis will
show that the behavior of the model falls into one of two dynamic regimes which can
be classified by the value of a dimensionless parameter. Furthermore, it will show how
dispersive and nonlinear effects in the water waves affect the shape, the interbar spacing,
and the amplitude of the bars. Section 4 summarizes the findings of this study.

2. THE REbPUCED MODEL

When the bottom only depends on X and T and the data at X = 0 is constant, the
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solutions will not have spanwise dependency. In this case Eq. (5) reduces to

arx +1Ksf(X)ay +iKse ¥ afag = 0
asx + 1Ky f(X)ag +1KgeT ¥ a =0
al(X = an) = A
(7) az(X = 0,y) = Ay,

where A; are constants. Furthermore, the mass transport equation reduces to

s Af(X,T) KU
) oT - £o BX

Egs. (7) and (8) comprise the reduced model. In terms of the wave-packet amplitudes, the
shoreward mass flux is

2
U=) Cilel,
=1

where C; = q;{1—382k2(1+ f)?], j = 1,2, and ¢; are boundary-layer dependent quantities
(cf. [10]) that will be set to 1 in the remainder of this study.

Consider the wave-packet system when f is fixed in time. Eq. (7) is then familiar to
the nonlinear optics and water wave community (cf. [2}, [5], [16] and [1] and references
contained therein). Some well-known results related to the wave packet systemn are reviewed
in what follows. We will then proceed to use these results to elucidate the behavior of the
reduced model.

Let a; = A;(X)exp 6;(X). Substituting into Eq. (7) yields

fj.lX :I{5 Al Az SiIl Q
Ayx =— KsA2sinQ

2

(9) QX =—§— I{gf(X) — [1{3% - z.K-sAsz COSQ,
2

with Q@ = 26; — 6, + 6X, and Ky = K, — 2K3. Replacing

M =Aysin}
N =45 cos (2
P =A2,

in Eq. (9) and performing some algebraic manipulations leads to a statement of conserva-
tion of energy

(10) Ks(M? + N*) + KsP = Ey,
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as well as the equation

i dM  K5(M? +3N?%) —[§ + Ko f(X)|N — Ey
(11) AN ([6 + Ko f(X)] — 2KsN)M ’

which may be used to investigate the structure of the phase plane of A;. The dynamics
of A; follow immediately from the conservation of the energy constraint. Let A(X) =
§ + Ky f(X), be the augmented detuning parameter, so that Eq. (11) may be written as

" dM  K5(M? +3N?)— A(X)N — E,
(12) dN (A(X) - 2KsN)M ‘

When A = § the gradient of the above system is given by

(13) A= ( 2Ks M 6KsN — 5)

6 —2K;N —2K;M
The dynamics of Eq. (12) will be investigated next as a function of the parameter R =
—~6(/12KsEy > 0. Tt will be seen that the parameter R is useful in characterizing the
phase trajectories of Eq. (12). Three cases, depending on the size R, will be examined.
Suppose that R = 0. This case corresponds to A = 0, i.e. f(X) = —é/Kp, or when
both § = 0 and f(X) = 0. Note that Ky # 0, except when 8 = 0. Setting dM/dX = 0,
dN/dX = 0, and M = 0, gives the two centers, at (M,N) = (0,%/Ey/+/3K;5). They
are centers since the eigenvalues of A are imaginary. Setting N = 0, dM/dX = 0 and
dN/dX = 0, gives the radius of the bounding circle, at /Ey/+/Ks, beyond which the
orbits diverge. Additionally, there are two saddle points at (M,N) = (£ Ey/v/Ks,0).
These are saddle points since the eigenvalues of A are real, distinct, and of opposite sign.
Motion along the limiting circle takes place in such a way that A; = 0 and Ay = Ey//Ks.
If, for example, Ay # 0 and A, = 0 initially, motion in the plane takes place along the line
N =0 up to the limiting curve, the phase Q is then equal to #/2. From Eq. (9), it may
be inferred that £ in this limit is given by

(14) QX—2K5E3/2 cos {3 = 0.

The transition from sin {2 = 1 to sin{) = —1 occurs along the limiting circle. The distance
X on which this transition occurs is infinite, but it can be estimated by solving Eq. (14).

The solution is
Q = tan"[exp (—2K5ES/ZX) tan Qo]

and hence, an estimafte of the spatial length for which the energy of the first wave packet
makes an almost complete transition to the second one is

L~ 1/2KsEL*.

The distance in which this energetic exchange occurs is denoted subsequently as the “in-
teraction length.” The variation of the amplitude of A; along N = 0 may be discerned
from

(15) Arx = K5 A} — B,
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which is obtained by eliminating P from Eq. (9) and making use of the energy relationship.
The solution of Eq. {15} is

1/2 1/2 41/2
Ay = (B /K2 tanh[KFPEM? (X — X5)),

with Az = (Bq/Ks) /2 tanh{(KsF /2 X;]. At the beginning of the growth process, 4; >
Ay so that sinQ = 1 and the growth of the second mode is independent of A;. With the
solution of A in hand, using Eq. (10) and the first expression of Eq. (9), it can be shown
that

Ay

\/ 1 — tanh?[K}/2 B2 X,

Al(X) = SeChVK5E0(X —Xg).

This solution shows that irreversible energy conversion from A; to Az takes place for
R = 0. This solution is not stable, however, since the stationary states are reached by
motion along the limiting curve on the phase plane. The smallest variation of R away from
zero invariably results in motion along homoclinic orbits with consequent oscillations in
the amplitude of A; and A,.

The dynamics when R # 0 but small are similar to the R = 0 case, and the phase
trajectories are similar in structure. The phase plane depicted in Figure 2 corresponds to
R # 0 but small. The phase portrait for B = 0 would be similar except that the lobes
would be symmetric about the N = 0 axis.

In this case the phase is described by

16 x+6— 2K cos{} = 0.
(16) Qx + 6 — 2K B2/ cos Q2

Consequently, the interaction length, assuming é is constant, decreases as é increases:

(17) L= . .
\/4K5E§/2 62

With regards to the sand ridge model, the interaction length is correlated to the inter-
bar spacing. From the above expression it is seen that the bar spacing will decrease for
higher frequencies of the water waves, and/or when the energy in the water wave spectra
is reduced, and will also progressively decrease if the bottom topography is sloped.

For R < 1 the centers are at (M, N) = (0, &[1 + /1 -+ L255Ee]) and the line N = 0

is no longer the line of symmetry. Also, the line N = % will not generally intersect the
Limiting circle, as shown in Figure 2.

When R > 1, instead of a pair of stationary solutions, only one is possible, and the
energy is concentrated mainly in the lower mode. The two modes interact weakly, and
the spatial beats get smaller and shallower as the detuning paramenter is increased. The
phase portrait for this case is shown in Figure 3. In this regime, 4;(X) will have nearly
constant amplitude, approximately equal to Ay, and Ay will show very shallow and frequent
oscillations in its amplitude.
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FIGURE 2. Phase plane of A; for R <« 1, when f(X,y) = 0. The N
axis increases to the right. The M axis is vertical. The dots indicate
the location of the centers.

If dissipative effects were to be included in the model for the surface waves in the form
of a Rayleigh-type dissipative mechanism, representing the combined effect of bottom drag
and surface losses, and it 1s assumed that these affect both modes in the same way, then

AlX - I{5A1A2 sin §2 + XA;[ =1
Agx KﬁA? sin €l -+ yA, =0,

where x is a positive real constant. The phase equation remains similar to its non-

dissipative counterpart.
When dissipation is included, energy is no longer conserved. The wave packets are now

constrained by
Ks(M? + N?) + Ko P = Eye™ X%,

and the dynamics of A, is given by

dM  KZM? 4 (2K2 + K2)N? — KsxM — Ks A(X)N — KeEge XX
dN Ks(A(X) — 2K5N)M — KsxN ‘
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PR Al

FIGURE 3. Phase plane for A; for R > 1. The dot indicates location
of center, the cross indicates the location of saddle point.

Introducing the new variables
M=M Eé /2gxX
N=N Eé [2e—xX

and the reduced distance
¢ = 2B,/ (1 — ¥/,
one obtains
dM  K2M? 4 (2K2 + K2)N? — KB (1 — By P x&)A(EN ~ 1
dN KsE7 A1 - By Y2 x6)N — 2K2 M N

(18)

Assuming A = 0, the system phase trajectories are described by

2dM 1 KZM? — (2K% + KZ)N*
dN MN
which has the same structure in the phase plane as the R = 0 non-dissipative case, with

the important distinction being that £ is related nonlinearly to X. Thus, the damping of
the waves is characterized by

7 = x/(KsEy).
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FIGURE 4. Interaction length dependence on the nonlinear parameter
R. The detuning parameter is scaled so that as 6 — 0, R — 1.

For ¥ < 1, there is weak damping, and the waves travel a considerable distance before the
energy is fully dissipated. On the other hand, if ¥ > 1, only a small arc of the trajectory
in phase plane is traversed. The waves substantially attenuate over short distances.

In summary, the parameter R is useful in characterizing the behavior of the solutions of
the wave packet system. Basically, there are two regimes in R. The solutions for small R
are characterized by long interaction lengths and substantial sharing of the energy among
the wave packet amplitudes. The wave packet amplitudes have an oscillatory behavior in
X and nonlinear effects are more important. The form of the solutions is akin to Jacobi
Elliptic functions. The interaction length is relatively insensitive to § and substantial power
transfer occurs, the interaction length is very large. For R large, the interaction length is
fairly short and there is less energy interchange among the wave packet amplitudes. The
amplitude of the first wave packet is nearly constant and the amplitude of the second wave
packet oscillations is proportional to 1/8. The second mode oscillates sinusoidally with
a frequency proportional to 1/6. Figure 4 summarizes how the interaction length varies
nonlinearly over the range of R.

3. STEADY BoTTOM CONFIGURATIONS OF THE REDUCED MODEL

Numerical solutions to the full model were presented in [11]. They showed that initially
smooth bottom topographies developed bar-like structures and that bar generation was a
fairly smooth process in time. The bars developed refractive patterns in response to an un-
even incoming wave spectra, or when there was a gradient in the initial bottom topography.
Other phenomena, such as tuning between the bar features and the water waves, smooting
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of features in the initially rough bottom topographies were also possible. As a general rule
the water waves had a stronger effect in reshaping the bottom topography than the bottom
had on the water waves. The process of readjusting of the water wave/bottom topography
system lead at times to the displacement and transformation of the bottom, changes that
persisted until some quasi-equilibrium configuration was reached. This quasi-equilibrium
was such that the bars did not move appreciably in X and y, however, they did continue
to grow in size.

Attention is now focused on finding steady solutions of the reduced model. For steady
bottom configurations, 0h/0T = 0, and Eq. (8) may be integrated. Such integration yields
an integration constant I'. It is then possible to write the bottom topography in terms of
the wave packet amplitudes. After integrating, the bottom topography is given by

(19) AR* — BR* +C =0,
where

A :c§w1 e cgwg
B :2(61?1)1 e Cg'LL?g)
C =un + wg — 1N

and ¢; = %ﬁzkf, with 7 = 1,2. The functions w; are

un :M2 -|-417V2
and
B Ko,
T K Kg U

Since the bottom must be positive, the relevant square root of Eq. (19) is

_ B+ [B?-4AC)Y/?

20 h?
(20) —a

and it determines physically-relevant configurations. Furthermore, since A* cannot be
complex, there is a threshold condition for the constant of integration I". This condition
will be examined shortly.

When the expression for f, in terms of M and N, is substituted into Eq. (11), it is then
possible to examine the issue of steady bottom configurations since they are given by

dM  Kg(M? + 3N?) — [§ + Ko f(M,N)IN — By

(21) AN T (Bt Kof(M,N)] — 2K )M

The global behavior of the above system will be inferred by studying the behavior of
the linearized version at specific points of the phase plane as well as by direct numerical
integration. The gradient of Eq. (21) is given by

( 2K M — KoN 2L GKsN—‘S—KOMBfJ\IIV)
§ —2KsN + Kof + KoM 2L —2KsM + KoM ot )
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Comparison of the above expression with Eq. (13) suggests that the phase dynamics are
very similar when f is a smooth function of M and N. As in the previous case, there is a
limiting circle of axis length Ey/Ks. Beyond this circle conservation of energy is violated.
Thus, all physically-relevant solutions lie within this limiting curve. When M = 0 and
dM/dX =0, the N coordinate of the critical points are given by the points of intersection
of two curves & = 3K5N? — §N — Ey and Ky f(0, N)N, i.e. points where

(22) = = Ko f(0, N)N.

The Z curve is always convex for physically-relevant conditions. The curve Ko f(0, N) is
even for all N. This can be demonstrated algebraically by confirming that Kf(0,N) —
Ko f(0,~N) = 0. Hence the function Ky f(0, N)N is odd.

Since Eq. (22) is quadratic, it is natural to ask whether there are real roots, and if so,
and whether there are two, or one. The roots of Eq. (22) are given by

§+ Kof(O,N) 1 ,
12K5Ey ) .

It is immediately clear that since the discriminant is always positive, there will always
be real roots and there will be two. However, only one root is relevant if the root is
not bound by |N| < 4/Eo/K3, since this is the radius of the bounding circle. Moreover,
if [§ + Kof(0,N)]? >» 12K5FEy, the problem will be dominated by the single root at

approximately QLW' Hence, the appearance of the bottom topography in the above

expression would require us to redefine the parameter R. The new definition would be
R =[6 + |Kof|]/(12K5Ey)!/?, where f = f(0, N). Doing so would require an estimate of
the size of Ky f . In what follows, however, the old definition of R is retained.

Whether these critical points are centers, saddles, or spirals is determined by solving

for A in

(N f)
N

(23) A = (6KsN —6 — Ky Y6 — 2KsN + Ko f).

If the value of A? is negative these critical points are centers. The absence of the term

KyN 5%%)\ in the above equation results from the fact that the term vanishes. This can be
shown by direct calculation. In order to determine the nature of the critical points, the
solutions to Eq. (23) will be investigated, using values of N given by solutions to Eq. (22).

To do so, we first need to determine a sensible value for the parameter T', such that A?
is non-negative. The gridded areas of Figure 5 give the range of T, for a sufficiently large
span of N, for which the discriminant in Eq. (20) is non-negative.

By fixing the energy Ey = 1, and I’ = 1, a direct calculation shows that with w = 1.2,
A? is indeed negative for a range of # and N as shown in Figure 6a. On the other hand, if
B = 0.08, fixed, and vary w and N, Figure 6b shows a range for which A\* is negative. The
numerical values of the parameters are chosen to be fairly representative of the geophysical
context. These calculations show that the critical points, which lie on the M = 0 axis,
are centers in the range —0.5 > N > 0.5 for the choice of parameters chosen. As will be
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FIGURE 5. Shaded area corresponds to values of T" that makes the
discriminant in Eq. (20) non-negative. In order of increasing 3 and R.
(a) B = 0.06, R = 0.021, (b} 8 = 0.12, R = 0.085, and (c), § = 0.24,
R =0411.

shown momentarily, this range of N is sufficient to cover the numerical cases that have
been chosen for illustration.

Figure 7a, b, and ¢, show how the curves Ky f N and Z change with increasing R. The
curves were computed having fixed wy = 1.2, By = 1, and T’ = 1. Figure 7a corresponds
to # = 0.06 and R = 0.021. Figure 7b corresponds to 8 = 0.12 and R = 0.085, and Figure
Tc to f = 0.24 and R = 0.411, which shows only one intersection between the curves. In
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FIGURE 6. A? < 0 graph, with By =1, T = 1. (a) As a function of N
and §, with wy = 1.2 fixed. (b) as a function of N and w, with 8 = 0.08
fixed.

all cases, the intersections fall in the range —0.5 > N > 0.5. As R increases, the minima
of the curve moves in the positive N direction, hence the centers move in the positive N
direction with increasing R. The Z curve is convex, with a minimum value — Fo —§% /12K,
which happens when N* = §/6K5, whereas KoN f is odd. The effect of decreasing the
value of I'/ By places the centers further appart. If the value of R is small, the = curve will
have a small value below zero, and K; f(0, N) will be a fairly shallow curve that will then
decrease very rapidly when N is large.

To illustrate Eq. (21) and to demonstrate qualitatively that the parameter R remains
useful in characterizing the solutions to the equation the dynamical system was inserted
into the numerical code dstool [8]. All phase plane figures in this study were produced with
dstool. When R « 1, which corresponds more closely to the oceanic situation in which
bars presumably occur, the centers are given by the intersection of the curves K fN and
Z. The phase plane is quite similar to the case with a fixed bottom topography f = 0,
which was discussed in the previous section. When f(X,T) is fixed in time and equal
to zero, there are always two centers and two saddle points for R < 1. However, when
the bottom is allowed to adjust to its steady form, the bottom topography is never flat
and the nature of the critical points may be different from the fixed bottom case. The
bar morphology in this case will depend most crucially on how the curves Ko fN and =
intersect as well as the-data at X = 0, the latter determining which orbit in phase space
the system will take.

For the smaller R cases, the area of phase space occupied by solutions of one phase or
the other are nearly equal. As R increases, more combinations of initial conditions, which
fix the orbits, are likely to have the phase of the left-most center, i.e. the center with
negative N coordinate. Qualitatively, bedforms that are the result of data which trace
orbits that visit the neighborhood of the saddle points have steep troughs and smooth
peaks or vice versa, depending on which center the orbits trace. If the data chooses orbits
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Ficure 7. Eq. (22) with increasing # and R. = is the even and convex
curve and Ko N is the odd curve, The intersections of the 2 curves give
the location of the centers. In all plots wy = 1.2, By = 1, and T = 1,
(a) # = 0.06, R = 0.021, (b) # = 0.12, R = 0.085, and (c), 8 = 0.24,
R = 0.411.

that are always close to the centers the outcome will be bars that are nearly sinusoidal in
shape. When only a one center predominates, as is the case with the R = 0411 case, the
orbits share the same phase and are structurally more similar to each other. The steady
topographies, plotted as functions of X, with Fy = 1, wy = 1.2, and I' = 1 are shown in
Figure 9. They correspond to the phase portraits of Figure 8. The horizontal length scale
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5

FIGURE 8. Solutions of Eq. (19) with By = 1, w1 = 1.2, T =1. N
increases to the right. The centers are indicated by dots and the saddle
points by crosses. In order of increasing R: {a) 8 = 0.06, S = 41.67,
R =10.021; (b) f = 0.12, § = 10.42, R = 0.085; (c) 8 = 0.24, S = 2.4,
R =0.411.

is arbitrary but the same in all plots. The amplitude of the bars is arbitrary and relative
only to each graph. The initial data, that is (N, M) at X = 0, not only chooses an orbit
to follow, an orbit which is homoclinic for all physically-relevant stable situations, but it
also determines the horizontal mean “height” of the function f, representing the bottom
topography. The graphs are arranged in order of increasing B. Figure 9a, corresponds
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FIGURE 9. Steady bedforms, given by the orbits in Figure 8. With
Ey =1, w; = 1.2, and T = 1, fixed. The horizontal length scale is
arbitrary but the same in all plots. The amplitude is arbitrary and
relative to each graph. Clockwise, in order of increasing R: (a) 8 = 0.06,
S = 41.67, R = 0.021. The largest bars are the result of orbits with data
(N,M) at X =0, (M,N) = (0.142,0.695); the next largest bars result
from data (0.0,0.142), the smallest bars correspond to (0.0, —0.142).
(b) 8 =0.12, S = 10.42, R = 0.085. The largest bars correspond to
(0.299,0.651). Next in size, are bars generated with (0.164,0.0); the
smallest with data (—0.1640.0). (¢} 8 = 0.24, S = 2.4, R = 0.411;
the largest bars correspond to (0.619,0.0), the next two correspond to
(0.525,0.0) and (0.299,0.0), respectively.

to 8 = 0.06. The computed Stokes number for this case is S = 41.67, and R = 0.021.
The largest bar structure in the figure corresponds to the orbit in Figure 8a that circles
the right center and that visits the neighborhood of the saddle points. The topography is
characterized by sharp troughs and long peaks. The next largest stable bar configuration
in Figure 9a corresponds to an orbit around the right center and it shows sharp peaks
and shoother troughs, The smallest bar configuration corresponds to an orbit around the
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left center with small data. The orbits produce smoother and more symmetric bars, the
closer the data is to a center and farther away from the saddle points. Figure 9b shows
the stable bars for the # = 0.12, S = 10.42, and R = 0.085 case. The largest steady
bars correspond to an orbit near that visits the neighborhood of the saddle points and
encircles the right center. The trough to peak assymetry is more pronounced. Next in size
are the bars generated by a trajectory that orbits the left center, which has sharp peaks
and smooth toughs; the smallest bars correspond to a trajectory that orbits the left center
critical point. Figure 9¢ corresponds to the 8 = 0.24, § = 2.4, and R = 0.411 case. The
largest bars and most unusual bars correspond to the largest trajectory in Figure 8c. The
next two correspond to orbits in Figure 8c that have smaller trajectories. Figure 8¢ shows
most clearly that the amplitude of the bars and their interbar spacing are not in direct
proportion to each other. This is characteristic of the predictions of this model. The bars
in this case are more apt to have a more sinusoidal profile.

When R > 1, instead of a pair of stationary solutions, only one is possible, and the
energy is concentrated mainly in the lower mode. The two wave packets interact weakly,
and the spatial beats get smaller and shallower, as the detuning paramenter is increased,
or the energy in the data is decreased. The topology of the phase plane orbits for high R is
very similar if f is fixed in time and constant to the case when bedform is included in the
dynamics, provided the bedform has the same bias. Prior to considering the steady bedform
issue, i} is instructive to examine the behavior of the wave packets, as they propagate over
a temporally-fixed, constant topography as well as over a sloped bottom topography. In
the R > 1 regime, |A1|* &~ |A;1]*. Suppose, for simplicity, that A3(0) ~ 0. Then the last
expression of Eq. (9) may be integrated so that the phase would be, approximately,

(24) Q= ~8X + KoF(X) + 2,
where F(X) = [ X f(3)ds, having assumed that f(0) = 0. Substituting Eq. (24) into
Eq. (9), one can show that

X
Ay = Ag + K5|A1|2/ cos(bs — Ko F(s))ds.

Supposing that f(X) = —v, where v is a positive constant,

K

Ay = Ay + —28
2 A2+5—|—ng

|41 |? sin(§ + Kov)X.

Hence, the wave packets vary sinusoidally in X, with a repetition length L ~ 7 /(Kyv + §),
which is inversely proportional to the detuning parameter and to the bottom topography
bias v. The above expression suggests that the dynamics of the water waves depend
crucially on the depth of the water column. Moreover reasonable answers are obtained
only if the basic assumption about the size of the fluctuations of the bottom topography
is enforced. If the bottom is gently sloping, f(X) = —v X, then

T )C(e) —sin5p5(2)]

_ Ko /7 2
Ag—Az-l-m;lAﬂ COS(2KUV
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where

_ 1
TV 2Kywr

z (6 + KovX)

and C and S are the Fresnel integral functions. Hence, as the waves shoal over a sloped

bottom, the water waves will have a decreasing interaction length and less of the energy

will be shared among the fundamental wave packet and its first harmonic wave-packet.
Returning to the issue of steady bottom configurations, the constraint on the bottom

reads approximately

(1 — A A2 + (1~ eh®)|Aq || = T,

for R > 1. Without solving explicitly for the bottom topography, it is seen from the above
expression that the steady bottom configurations are very mildly sinusoidal with zero mean
slope. The waviness is imparted by the influence of the second wave packet oscillations
and the bottom reacts very mildly to the water waves.

In conclusion, the stable bottom configurations predicted by this model are periodic
and have a zero mean slope. Initially-sloped bedforms develop bars with increasing inter-
bar spacing and amplitude, as the distance from the shore increases. Furthermore, the
bed tends to adjust to a zero average slope, particularly in shallow waters. Increasing the
total energy Ey, holding other parameters constant, will decrease R and hence the water
wave packets will share more equally the available energy. The result is that the bottom
topography has the potential of being very far from sinusoidal in appearance, particu-
larly, if the solution has initial data which generates a homoclinic orbit that traverses the
neighborhood of the saddle points.

The other key morphological features of bars are their height and their spacing. Height
is unfortunately beyond our analysis of stable bedform configuration, since there is a free
parameter I', which affects the height predictions in a very crucial way. However, it is
possible to make an assessment of the relative importance of dispersive versus nonlinear
effects in controlling the inter-bar spacing. With repeated experimentation, data was
collected that shows the dependence of the interaction length for the resulting steady bars
on the parameters that determine the water waves.

Figure 11 illustrates the dependence of the interaction length, normalized by the wave-
length of the fundamental frequency, on the nonlinear parameter @ and the dispersion
parameter f in the regime R < 1. An estimate of the size of the parameters a and 7 in
the geophysical context i1s, o < 0.15, and 0.005 < 8 < 0.20. Not surprisingly, dispersive
effects play a more important role in the determination of the interbar spacing than the
nonlinearity of the water waves, especially for higher frequencies. Nevertheless, nonlinear
effects participate in the determination of the inter bar spacing in ways that are signifi-
cant: when both parameters are large, as is evident in the graphs, the interaction length
are unlike any predictions derived from linear theory.

To conclude this section, we consider two interrelated question relevant to the dynamics
of the bedforms: to determine the direction in which bars tend to move, and secondly, to
determine why some of the time-dependent solutions reported in {14] exhibit little or no
stabilizing trend in bar amplitude. In terms of the reduced model, these questions translate
into finding whether sediment fluxes are shoreward or seaward, as given by Eq (7) and (8).
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{a} Interaction Length with cmega = 0.5 (b} Interaction Length with omega = 1.5

0.095

0.1
beta

alpha 0.05 alpha 005  peta

(c) Interaction Length with omega = 5.0

0.1
oA 0.15
alpha 0.05  peta

FIGURE 10. Interaction length L dependence on « and § for different
frequencies, with B < 1. The interaction length is normalized by the
wavenumber of the fundamental, k1. (a) w1 = 0.5, (b) wy = 1.5, (¢)
Wy = 5.0.

First, Eq (8) is recast as

K\7'9h  0U ok Zavaat *\ 8U dal
po) OT 8k 9x T 2484, 0% — Oa} 0X’

assuming that U is smooth enough to permit differentiation. The quantitity % is set to
unity in what follows, since this constant just scales 7'. Some headway can be made by
computing explicitly the terms in the above equation. The equation may be recast as

(25) g—; - ﬁ{k% + (k2Ks — B2K5)(M? + N} (1 + Doy 3f

— (K6 — Ks)— 214 2f) (k2 K5 — k2 Ks),

The term in front of 8f /90X, which will be denoted v, is the speed at which the disturbance
F(X — vT) in the initial bedform F(X) propagates. The speed v is approximately

2
~ 2 - Q% + ),

where @ = k? K5 — k2Ks. Evaluation of the expression in curly brackets shows that the
speed is positive. Hence it can be concluded that the disturbance will travel primarily
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towards the shore. That is, sediment will flux primarily in the shoreward direction, and
its speed will increase quadratically with the dispersiveness of the waves and linearly with

the energy in the wave. Since the quantity v oscillates between %E.L:{k% Ey — Q(M? + N%)}
and %{k%ﬁg — (5%}, where 5? is the smallest value attained by either N* or M?*, for
any X, the characteristics emanating from the solution will focus and spread, as time goes
on, making the flux oscillate mildly. Moreover, fluxes may attain a shocklike structure, if
T is large enough.

The foregoing discussion, however, does not convey the whole picture on the evolution
of the bottom topography, as given by the model. This is because the bottom topography
is the result of solving the time-dependent model by the iterative procedure summarized
in the introduction. It can be recast algorithmically as

(f'n,p 'n,+1 n—i—l)

aU(fn, n+1 121+1)
GX

fn—!—l = fn +AT
= F(X),

where T' = nAT is the long-time variable, n = 0,1,2,...,ns. Posed this way, it is cer-
tainly possible that either this iterative procedure may diverge, unless certain fixed point
conditions are met, or at the very least, produce answers that depend on AT. That is,
it is possible that the model for the mass transport equation is not consistent with our
expectations, or that the model fails even for in a single iteration. To investigate these
possibilities, the mass transport equation is examined over a single AT interval of the
iterative process.
First, the current bottom topography is expanded as

f=dfitefit.. .,

where € < 1, that is, a very gently sloping bottom. This expression is then substituted
into Eq. (26). After collecting terms to lowest order,

, df1 . 2B%Q af B
el 57+ K. ox +282Q2f1 = Q1 — B*Q2

_ Of:  28°Q0f . 2p%°Q , Ofu
€ or t &, ax T = hgy

where ( = K5 — K, and (2 = k¥ K5 — k2 K. The solution to the lowest order equation
is
Q- 5Q: ( _2ﬂzQ2T) 20°Q . _op
= X — LT 287Q:T,
fi= 9520, —€ + F{ e Je

It 15 then possible to assertain the direction and rate of propagation of the the bottom from
the above expression. It shows that the flux travels shoreward and that it has patches of
converging sediment flux. However, since the argument in front of T in the exponents above
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are small but negative, it means that the model predictions are sensitive to the iteration
time step AT. From the modeling standpoint, this is a troubling issue, since it says
that even in its simplest guize, the mass transport must include a dissipative mechanism.
This is not an unsurmountable problem, since it is likely that the actual physical process
is dissipative in nature anyway. In the numerical solution of the model [12], a dissipative
numerical scheme was purposely used to solve the mass transport equation. This dissipative
mechanism was sufficient to counteract the sensitivity of the solutions to the size of the
time step, and hence made the solutions less sensitive to the size of the time step. For low
resolution studies, this worked adequately, however, when the resolution was increased,
the sensitivity of the solutions to the discretization became a problem. In the future,
this issue will be revisited and a loss mechanism will be incorporated in newer versions of
the model. To summarize, then, the fluxes tend to have a net shoreward direction in the
reduced model. Secondly, the model requires the inclusion of a dissipative mechanism in the
mass transport equation that would more properly convey the process of slow and smooth
buildup of sedimentary structures by a two-time process. The inclusion of dissipation in
the mass transport model would be best accompanied by the inclusion of losses in the
surface wave model due to drag forces. The wave packet equations would then look similar

to Eq. (18).

4, CONCLUSIONS

The most important finding from this study on the dynamics of a model for the for-
mation and evolution of sand ridges on the continental shelf is that steady bottom con-
figurations have the following characteristics: zero mean slope, smooth features, and are
spatially periodic. Hence, if this crude model is a fair representation of the actual geo-
physical setting, in which the mean slope of the continental shelf over distances of tens of
wavelengths, is very seldomly zero, it must be said that most sandbar configurations are
non-steady and hence prone to move or change over time. In particular, initially-sloped
bedforms develop bars with increasing interbar spacing and amplitude, as the distance
from shore increases. Furthermore, the bed tends to be driven to zero mean slope condi-
tions, particularly in shallow waters. The periodic nature of the bars is a direct result of
the structure inherent in the nonlinear interaction of the wave packets that represent the
water waves, which exchange energy in a repeating pattern. The distance over which these
energetic exchanges occur is called the interaction length. The interaction length depends
in a non-trivial way on the frequency of the water waves, as well as their energy, their
nonlinearity and dispersiveness.

The stable bars can be broadly classified qualitatively in shape and in their capacity
to interact with the water wave field, by the size of the parameter R = —5 /V12Ks Fya,
which is the ratio of the detuning parameter (a negative quantity) to the square root of
the energy of the wave packets Ey times the nonlinear dimensionless parameter «. When
R is small the wave packets will resemble Jacobi elliptic functions in shape, whereas when
R is very large, they will resemble sinusoidal functions. The bars will then be functions of
elliptic and sinusoidal functions, respectively, When R is small, which corresponds more
closely to the geophysical setting in which bars occur, the ocean surface and the underlying
topography will interact strongly, leading to more significant temporal adjustments of both
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of these bodies. This is not the case when R is large, wherein the ocean and the bottom
interact weakly.

Dispersive effects in the water waves tend to be more important than nonlinear effects in
determining the spacing of the bars. Dispersive effects are also significant in determining
the rate at which bars move on the bottom of the ocean. Since the reflected component
of the water wave field was absent in this presentation, it is not surprising that the drift
velocity generated by wave action was directed shoreward, in the direction of the incident
waves.

The above conclusions regarding the sand ridge model apply only to a system with no
spanwise dependence, yet the model which originally inspired this study is fully three-
dimensional [14], and presumably capable of more interesting stable solutions. The key to
understanding the full model is to have a good grasp of the solutions of Eq. (5). A separate
study is underway to study this system of equations, which has fairly rich mathematical
structure [10], and some relevance to nonlinear optics [15]. Nevertheless, the above findings
are still valuable in interpreting the results of the full model and also serve as a check to
the general behavior of the full model when the waves are nearly normal to the beach.
In particular, this study suggests that the mass transport model should incorporate a
dissipative mechanism, if the basic assumption on the smooth and slow buildup of sediment
structures is to be retained in the theory.

Perhaps the three most interesting questions to be addressed at some point in the
future are: (1) to investigate whether our educated guess on the relative unimportance of
the boundary layer dynamics in the process of sand ridge generation in waters deeper than
the break zone is really valid; (2) to investigate how the present models’ results are affected
by the incorporation of current-induced sediment motion; (3) to determine if the process
of sand ridge motion is really controlled almost entirely by meteorological forcing, rather
than by possible instabilities in the flow, as seems to be the case in sedimentary processes
such as vortex ripple and cusp ripple formation. Preliminary numerical results which
address the first question are encouraging. Currents in the ocean are important agents
of motion for the sediment in the boundary layer. The present model is unable to take
into account current effects, nevertheless, these would necessarily need to be accounted for
when comparing model results to geophysical data. Incorporating current-driven effects
into the model is not a simple process. However, Grant and Madsen [7] provide the
framework. They suggest that the boundary layer of the bottom of the ocean be divided
into a usually thinner wave-dominated boundary layer, hugging the bottom, and a larger
current-dominated boundary layer. The second and third questions seem best answered
by direct observation. However, the difficulties encountered in making such observations
means that modeling and computing continue to be viable techniques in the pursuit of
knowledge on this question.




BEHAVIOR OF A SAND RIDGE MODEL 25

APPENDIX

Ficgure 11. (a) Plot of Ky versus the fundamental frequency wy, and
8 for the water wave problem. (b) Plot of K¢ versus the fundamental
frequency wy, and § for the water wave problem.

The following are constants associated with Eq. (5):

Ki=F
K, =F,
Ky = Dy By
Ky = Do Ey
Ky =Dy 5
K¢ = D35

with

W
D =[2(1 - ﬁgg’)] !

Ej = ki(1— gﬁgw?)

Fy = 1/2k;
by — kb

=

2
Sy = = (k? + 20%).
W

51

Wi o
{k2 — k4 -l-&h(k1 + T )}

The constants K5 and Ky are illustrated in Figures 11a and 11b, respectively. Note that
D; can become singular at w; = V3 /8. However, for small values of 8, corresponding to
the oceanic situation, this frequency is not reached under normal circumstances without
violating the underlying model assumptions.
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