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INTEGRAL EQUATION PRECONDITIONING FOR
THE SOLUTION OF POISSON’S EQUATION ON
GEOMETRICALLY COMPLEX REGIONS
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Abstract. This paper is concerned with the implementation and investigation of integral equation
based solvers as preconditioners for finite difference discretizations of Poisson equations in geometrically
complex domains.

The target discretizations are those associated with “cut-out” grids, We discuss such grids and
also describe a software structure which enables their rapid construction. Computational results are
presented.

1. Introduction. This paper deals with the creation of effective solvers for the so-
lution of linear systems of equations arising from the discretization of Poisson’s equation
in multiply connected, geometrically complex, domains. The focus is on discretizations
associated with “cut-out” grids (grids which result from excluding select points from a
uniform grid).

The solvers we describe are iterative procedures which use integral equation solu-
tions (such as those described in [9, 14, 15, 16, 17, 21]) as preconditioners. One may
question the need for such an approach; “If one is going to the trouble to implement an
integral equation solver, why bother with solving the discrete equations?”. The need
for such an approach arises in applications in which the solution of the linear system
is of primary importance and obtaining the solution of the partial differential equation
is a secondary matter. An application where this occurs (and the one which inspired
this work) is the implementation of the discrete projection operator associated with the
numerical solution of the incompressible Navier-Stokes equations [12]. Our selection
of the integral equation procedure as a preconditioner was motivated by its ability to
generate solutions for multiply connected domains possessing complex geometry.

With regard to the use of “cut-out” grids to discretize Poisson’s equation we are
re-visiting an old technique — the particular discretization procedure used is credited
to Collatz (1933)[8]. For Poisson’s equations, the concept behind the discretization
procedure is not complicated; but the actual construction of discrete equations for
general geometric configurations using this concept can be. As we will discuss, by
combining computer drawing tools with an intermediate software layer which exploits
polymorphism (a feature of object oriented languages) the construction of equations
can be simplified greatly.
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In the first section we briefly discuss the constituent components of the complete
procedure — the discretization agsociated with a “cut-out” grid, the iterative method
chosen to solve the discrete equations, and the integral equation based preconditioner.
In the second section we present numerical resuits, and in the appendix we discuss
details of the integral equation method.

While our solution procedure is developed for discretizations based on “cut-out”
grids, the results should be applicable to discretizations associated with other grids
(e.g. triangulations or mapped grids). Additionally, there has been active research
on discretization procedures for other equations using cut-out grids; e.g. equations for
compressible and incompressible flow {2, 4, 5, 7, 18, 25, 26, 27}. The method we describe
~ for constructing equations could be extended to those discretizations as well.

2. Preliminaries.

5.1. The Mathematical Problem. The target problem is the solution of Pois-
son’s equation on a multiply connected, geometrically complex domain. Let Q be a
bounded domain in the plane with a C? boundary consisting of M inner contours
80, - - - 8y, and one bounding contour I (852 = UMA 682, see Fig. 1). Given
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Fic. 1. A bounded domain.

boundary data g and forcing function f, we seek the solution to the following equation:

(1) Au(z) = f(x), € Q
Jim u(z) = g(z,), T, € 0L
Ten

In the unbounded case, {2 is the unbounded domain that lies exterior to M contours
Oy + - Oy (052 = Ukle A, see Fig. 2), and we seek a solution to

(2} Au(z) = flz), =€ Q
Jim u(w) = g(x,), =, € 9%
Eel

w(z) = O(1), (z— oo).
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Fic. 2. An unbounded domain.

2.2. The Spatial Discretization. Approximate solutions to (1) or (2) are ob-
tained as solutions of a linear system of equations arising from finite difference dis-
cretizations. The discretization procedure we used was a “cut-out” grid approach
2,4, 5,7, 18,25, 26, 27]. We selected this discretization procedure because the formula-
tion of the linear system of equations requires little information about the geometry; one
need only know if grid points are inside, outside, or on the boundary of the domain and
(for points nearest the boundary) the distance of grid points to the boundary along a
coordinate axis. Thus, a program can easily be created which automatically constructs
a discretization based on information available from minimal geometric descriptions
(e.g. descriptions output from a drawing or CAD package).

To form our “cut-out” grid we consider a rectangular region R that contains the
domain §) (for unbounded problems, R contains the portion of §) that we are interested
in). We discretize R with a uniform Cartesian grid, and separate the grid points into
three groups: regular, irregular, and boundary points. A regular point is a point whose
distance along a coordinate axis to any portion of the domain boundary O£2 is greater
than one mesh width. An irregular pomnt is one whose distance to a portion of the
boundary is less than or equal to one mesh width but greater than zero, and boundary
grid points lie on the boundary (see Fig. 3 ). Regular and irregular points are further
identified as being interior or exterior to the domain. We compute an approximate
Poisson solution by discretizing (1) or (2) using the regular and jrregular interior grid
points. These discrete equations are derived using centered differences and linear inter-
polation (described as “Procedure B” in [26], and based on ideas presented as far back
as [8]): If we introduce the standard five point discrete Laplacian (here, b denotes the
mesh width of the Cartesian grid)

i

W@y ;) + w(@i1,) + W Tyg11) T UL - — du(®m;
(3) Ahu(wi,_j) SEE LSE (hzﬁl) i) ( }J)’

then at each regular interior point an equation is given by

(4) Apulz ;) = flmig), Tij 2 regular interior point.
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Fig. 3. A “cut-out” grid: the regular points are marked by eircles, irregular points by crosses, and
boundary points by squares.

At each irregular interior point an equation is obtained by enforcing an interpolation
condition. Specifically, at an irregular point we specify that the solution value is a
linear combination of boundary values and solution values at other nearby points. For
example, for an irregular interior point x; ; with a regular interior point &;_; ; one mesh
width to its left, and a point on the boundary Zp at a distance dg to its right (see Fig.
4), a second order Lagrange interpolating polynomial (linear interpolation) can be used
to specify an equation at Z; ;:

3Q
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FiG. 4. Linear interpolation at an trregular interior point.

d h
(5) u(w; ;) — u(miﬂi’j)ﬁfﬂ = g{z R)'ﬁ—d;’ x;,; an irregular interior point.

If this linear interpolation procedure is used, ga,nd if the boundary and forcing functions
are sufficiently smooth, then the solution of the discrete equations yields values of second
order accuracy [26].




This discretization procedure produces a linear system of equations
(6) AZ =D,

where Z consists of the solution values at all interior grid points, and b involves both
the inhomogeneous forcing terms and the boundary values. Due to the interpolation
used, the matrix A is usually nonsymmetric.

2.3. Automated Construction of Discrete Equations. As previously remarked,
one benefit of using discretizations based upon cut-out grids is that their construction
requires a minimal amount of information from the geometry; thus one can create pro-
grams which take geometric information output from rather modest drawing tools and
automatically construct the required discretizations.

The process we employed going from geometric information to the discretization is
described by the functional diagram in Fig. 5.

Create software
object
representation

Tex1 description
of gaometry

e

Drawing tool

*cut-out grid

[

Grid parameters

[T

Fic. 5. Functional depiction of discretization process.

Key to this process is the introduction of an extra software layer between the
drawing tool and the program to create the discretization. In particular, we take a text
representation of the drawing and map this to a software representation in which each of
the entities that makes up the geometric description is represented as a distinct software
object. The program which creates the discretization uses only the functional interface
associated with these software objects. Hence, the discretization can be constructed
independently from any particular drawing tool output. (To accommodate output from
different drawing tools we are just required to construct code which maps the geometric
information to the software objects which represent it.)

The class description, using OMT notation [22], associated with the geometric
software objects is presented in Fig. 6. (While these classes were implemented as C+-+
classes, other languages which support class construction could be used).

As indicated in Fig. 6, there is a base class GeometricEntity which is used to
define a standard interface for all geometric entities. From this base class we derive
classes which implement the base class functionality for each particular type of geometric
entity. The types created were those which enabled a one-to-one mapping from typical
drawing tool output to software objects. Since a “drawing”, as output from a drawing
tool, is typically a collection of geometric entities; a class CombinedGeometricEntity
was created to manage collections of their software counterparts.




GeometricEntity

gethinX() . doubtle
getMaxX(} : double
getMinY() 1 double
gethaxy() : double
getTotalArcLength() : double
getXcoordinate(double s} : doubte
getYcoordinate(double s) : double
getP arametricCoordinate(doubled s, double X, double y) s int

getUnitNormal{double s, double& n_x, double& n_y)
getUnitTangent{double s double&t x, double& t_y}

getinteriorPolnt(double& x, double& y) s int
interiorExteriorTest{double x , double y} tint
geiSegmentlntersection(double& s, double x_a, double y_a, double x_b, double y_b) :int

[ CircleEntity | [ PolygonEntity | ["RectangleEntity _| [ EllipseEntity |

Fic. 6. Description of classes used to store and access geometric information.

In the program which creates the discretization, only functionality agsociated with
the base class GeometricEntity is used. Thus, this program doesn’t require modifica-
tion if the set of derived classes (i.e. classes implementing particular geometric entity
types) is changed or added to. The program will function with any new or changed
entity as long as that entity is derived from the base class and implements the base
class functionality. This class structure also enables the discretization program to use
procedures optimized for particular types of geometric entities. (For example, the in-
terior /exterior test for a circle is much more efficient than that for a general polygon.)
This occurs because polymorphism is supported; when a base class method is invoked
for a derived class, the derived class’ implementation is used.

The success of the intermediate software layer depends upon the functionality as-
sociated with the base classes. Ideally, the required functionality should be obtainable
with a sma)l number of methods which are easy'to implement. (The restriction on
the nmumber of methods is desirable because each method must be implemented for all
derived classes.) As indicated from the class description, the functionality required to
construct “cut-out” grid discretizations and integral equation pre-conditioners can be
implemented with a very modest set of methods. It is this latter fact that makes the use
of “cut-out” grids attractive; complicated procedures are not required to incorporate
geometric information into the construction of a grid and discretizations associated with
such a grid.




5.4. Solution Procedure. The discrete equations (4-5) are solved using precon-
ditioned simple iteration. As discussed in the next section, with appropriate precondi-
tioner implementation, more sophisticated iterative procedures are not required. If P
is used to denote the preconditioner, and = f — A#n represents the residual errot of
the nth iterate, then preconditioned simple iteration can be written as follows:

(7) gl = 0 4 PP

The general form of the preconditioner (or approximate inverse) is the solution
procedure (and its variants) described in (9, 14, 15, 17, 16, 21], coupled with a relaxation
step to improve its efficiency.

The procedure (without the relaxation step) begins by using a Fast Poisson solver
to obtain function values that approximately satisfy the Poisson equation at regular
interior points. These values do not satisfy the discrete equations at irregular interior
points nor do they satisfy the boundary condition; therefore, we correct them by adding
function values obtained from the solution of an integral equation. One challenge is to
determine the appropriate integral equation problem to supply this correction. This
task presents a challenge because we are mixing two types of discretization procedures,
finite difference and integral equation discretizations. Additionally, since we are using
the solution procedure as a preconditioner we wish to achieve reasonable results without
using a highly accurate (and thus more costly) integral equation solution.

The sohition component which is obtained with the Fast Poisson solver is con-
structed to satisfy

. o] lar interior point
A uFPS(z. ) = flz;4), x;; 158 reg.u
(8) a5 (@5 ) { 0, z;; otherwise.

’ILFPS(S[?,;,J') = 0, L g € OR.

The correction to uf'P5(z; ;) that satisfies the correct boundary conditions is a solution
of Laplace’s equation with boundary conditions g/&(z,) = g(x,) — vFF5(,):

(9) AuE(z) = 0, = ¢0Q
i IE = IE
:‘]-;,lzr:lnou (CC) = 9 (mo)! moeaﬂ
xrehn

(Note: the correction for the unbounded case is similar, see [17] for details.)

This problem can be solved and evaluated at the regular interior points by using the
integral equation approach of Appendix A. The approximate solution to the discrete
Poisson problem is formed by combining the Fast Poisson solver solution with the
integral correction terms.

(10) w(x;;) = uwFPS(z; ;) + w'E(z; ;)
Standard truncation error analysis reveals that if x;; is a regular interior point:

h2

- {4 IF IE
12(’U’mm + uyyyy)’

(11) Ayt ;) = flz; ;)
.




while if ¢; ; is an irregular interior point (for convenience we assume that the irregular
point is like the one shown in Fig. 4. Alternate cases will have analogous error terms):

h hdy

. 3 dg
(12) u(mi,j)“ﬂ(ﬂ%_l,j)m = Q(wa)m +lgg o

The solution procedure leads to a truncation error that is formally second order; there-
fore, we expect that it will make a good preconditioner. However, since the accuracy
at the irregular points depends on the magnitude of ., () (or Gy, (), there is a de-
pendence on the smoothness of u*” S(z). The smoothness of u"” 5(x) depends on the
discrete forcing values used in (8), and these forcing terms may not be smooth because
the specified terms f(;;) will be the residual errors of the iterative method (which
can be highly oscillatory) and because the zero extension used may result in forcing
values that are discontinuous across the boundary. To remedy this, we incorporate a
relaxation scheme as part of the preconditioning step. A common feature of relaxation
schemes is that they result in approximate solutions with smooth errors, even after only
a few iterations. Therefore, we apply our approximate Poisson solver to the smooth
error equation resulting from the relaxation step, and then combine these terms to form
the approximate solution.
That is, we first apply a few iterations of a relaxation scheme (point Jacobi).

20(z; ;) =0, x;;an interior point
for(n=0...3)

if (z;; aregular interior point )

V(@) T v™(@i41,4) T ””(mi,j_l) T

(13) v (2 ;) = A
V(@ j41) — hef(@;,)
4 )
if (a;; an irregular interior point )
dg h
4 n+1 Y =0 . i POV L. —— -
(1 ) G (:Et,j') v (ml_l,J)h"i"'dR +g($R)h+dR>
end

After the relaxation step, we compute the residual error: If x;; is a regular interior
point

(15) 6(mi,j) = f(mi,j) - Ahvé(mi,j)a

and if @; ; is an irregular interior point

(16) e(z;;) = 9(zgr) T da (v¥{zi;) — v4(ﬂ3i—1,j)-————h iRdRm)-




Next, the Fast Poisson solver is applied where the forcing consists of the residual error
of the relaxation iterate with zero extension.

[ ez ) ., an interior point
17 A uFPS It T w— AL %3 . p
(17) h (@) i 0, x;; otherwise.
uFPS(z, ;) = 0, =z;;€0R

Then, the integral equation approach is used to solve the correcting Laplace problem.
(Now, g'%(z,) = —ufP5(z,))

(18) AdlB(z) = 0, x & 0%
Jim w'#(x) = ¢'B(x,), T, €
Ten” '

Finally, the three terms are combined to form the approximate solution.
(19) Wwi;) = vimig) + uFPS(z; ;) +ulF (T )

A truncation error analysis shows that at regular interior points:

= h2
(20) Ahu(mi,j) = f(wi,j - 'l_z_(uifm + uigyy)’

while at irregular interior points (after making use of (14))

- . dp
21 iz ;) — Wil =
( ) ( :.7) ( 1:.7) h + d’R
hd
9@o)ygs T (e WEPS) = + (0% (i) = v*(@es))

The combined solution procedure (13-19) comprises the preconditioner for the iterative
solver. We expect that due to the smoother forcing values used in (17), u*? § will have
smaller second derivatives; therefore, % should satisfy the discrete equations better than
ii, hence the addition of smoothing to the solution procedure should result in a better
preconditioner.

3. Computational Results. The iterative procedure described above has been
implemented, and in this section we evaluate its effectiveness on two bounded domains.
For all domains and discretizations considered, we apply forcing values f (z,y) = 12z%+
gy? and boundary values g(z,y) = z* + 1/2y%

Erample 1: We first consider the domain (with smooth, C? boundary) depicted
in Fig. 7. For an 80x80 grid, we use simple iteration to solve the discrete equations
within a relative residual error of 10-1°, We apply the integral equation preconditioner
both with and without the relaxation step, and vary the number of boundary points
used to solve the integral equation. The resulting iteration counts are given in Table
1. We observe that the addition of the relaxation step increases the effectiveness of
the preconditioner (as expected), and that the number of iterations needed to achieve

9




our tolerance is quite low (5-7 iterations for Jli”%—‘_bﬂ < 10-19). Furthermore, we see that
the number of boundary points used in the integral equation step can be significantly
reduced while maintaining the effectiveness of the preconditioner. This illustrates that
integral equation preconditioning can be efficient since relatively few points are needed

to solve the integral equation.

Fig. 7. A domain with & smooth boundary.

Ezample 2: Our second example compares the effectiveness of the preconditioner
for two different iterative solvers (simple iteration and FGMRES [23]) and for different
grid refinements. Starting with the same smooth domain (Fig. 7), we formulate the
discrete equations for four grid refinements. In each case we solve the discrete equations
up to a tolerance of 10-1¢, Both iterative solvers are preconditioned using the integral
equation procedure with relaxation, and the results are listed in Table 2. We see that
with this preconditioner, simple iteration is just as effective a solver as FGMRES, and
this allows us to solve the discrete equations using less memory and fewer computations.
This example also demonstrates that the convergence of the preconditioned iterative
methods is independent of the grid refinement. This is expected since the preconditioner
is based on a solution procedure for the underlying equation.

Ezample 3; In this example, we test our method on a domain with corners (Fig.
8 ). This geometry represents the cross section of three traces in an integrated circuit
chip with deposited layers and undercutting, In this situation, the Poisson solver can be
used to extract electrical parameters such as the capacitance and inductance matrices.
We formulate the discrete equations for a 40x40 grid, and apply the integral equation
preconditioner with and without relaxation. Since we no longer have a C? boundary,
we do not meet the smoothness assumptions that our preconditioner requires. In fact,
for this problem in which sharp corners are present, the effectiveness of the integral
equation solver as a preconditioner deteriorates. One finds an increase in the required
number of iterations, an increase which is not reduced by improving the accuracy of the
integral equation solution component. This problem occurs because of the large dis-
crepancy which exists between integral equation solutions and finite difference solutions

10




TABLE 1
Iteration count: different boundary points used to solve integral equation, 80z80 grid (smooth boundary),

and stopping criterion U%%ﬁﬂl < 10™1°.

# of Preconditioner
Boundary pts || add relaxation | no relaxation
per object
30 4 22
40 6 11
80 5 9
160 5 8
320 ) 8
TABLE 2
Tteration count: 80 boundary points(per object) used to solve integral equation, different grids (smooth
boundary), end stopping criterion ll,él%ﬂl < 10710,
Tterative Method
Grid [ simple iteration | FGMRES
20x20 ) 6
40x40 3 6
80x80 5 6
160x160 6 7

11



for domains with corners. {The integral equation technique more rapidly captures the
singularities of the solution). To remedy this, we fitted a periodic cubic spline to the
boundary and passed this smoother boundary to the integral equation component. The
results are presented in Table 3. With these adjustments, we see essentially the saine
behavior (few iterations and boundary points required) as for the smooth domain, and
we conclude that integral equation preconditioning can be effective for domains with
corners as well.

Vo

/N LN

Fig. 8. The cross section of three traces on an IC chip with depositing and undercutting.

TABLE 3
Tteration count: different boundary points used to solve integral equation, 40z40 grid (boundary with

Laz=8|| . yp-10,

several corners), and stopping criterion T

# of Preconditioner
Boundary pts || add relaxation | no relaxation
per object
15 13 INF
20 8 19
30 6 11
40 5 10
60 5 7
80 5 7

12




4. Conclusion. In this paper we've shown that integral equation solvers can be
used as effective preconditioners for equations artsing from spatial discretizations of
Poisson’s equation. In fact, they are so effective as preconditioners that simple iteration
can be used; more sophisticated iterative procedures like GMRES 124] are not required.
However, the difference in discretization procedures leads to large residuals near the
boundaries; and we found that the addition of a relaxation step is an effective mechanism
for alleviating this problemni. Additionally, the use of a relaxation step allows one to
coarsen the discretization of the integral equation without significantly increasing the
number of iterations. |

Another aspect of this paper is the use of a “cut-out” grid discretization. We’ve
found that with the addition of an intermediate software layer which exploits polymor-
phism, the task of constructing the equations can be greatly simplified. Our construction
method works particularly well with “cut-out” grid discretizations because only modest
functionality of the intermediate software layer is required. The key primitive functions
being a test if a point is inside or outside a given domain and the determination of the
intersection point of a segment with an object boundary.

Both aspects of this paper have applications to other equations; in particular their
use in the context of solving the incompressible Navier-Stokes equation is discussed in
[12]. While we have concentrated on two dimensional problems, in principle, the ideas
apply to three dimensional problems as well.

Acknowledgment. The authors would like to thank Dr. Anita Mayo for her
generous assistance with the rapid integral equation evaluation techniques used in this

paper.
A. Integral equation details:. The first step in constructing the solution of (18)
is the formulation of an appropriate integral equation, and for this we use the results of

[9, 19]. Given one bounding contour and M inner contours (where M>0), a solution is
sought in the following form (here 7 is the outward pointing normal, as shown in Fig.

1):
_8
on(y)

We add M constraints to specify the M log coefficients:

1

(27r

(@) wE(@)= [ o) log | 2 —y D ds(w) + 3 Aslos | @ 2

(23) fmkcﬁ:(y)ds(y) —0, k=1,...,M

Applying the boundary conditions leads to a uniquely solvable integral equation [19].

1 .
(24) 5¢’($o)4’ Jon 9(¥) oy (52 108 | T — ¥ ) ds(y)+
211:;1 Ak 10g I T, - 2 ‘: gIE(mo)
faﬂk ¢(y) dS('y) = 01 k = 13 DI M

The equations for the unbounded case (Fig. 2) are similar, see [9, 19] for details.
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The integral equation is solved numerically using the Nystrém method [11, 20] (in
engineering terms, this amounts to a collocation approach where delta functions are
used to represent the unknown charge density ¢). We discretize this integral equation
using the Trapezoidal rule (because of it’s stmplicity and spectral accuracy when use
with closed smooth contours). If we sample n;, boundary points on the kth contour
({xk}, i=1,... ,ny), then the discretized integral can be written as a simple sum.
(Here h; represents the average arclength of the two boundary intervals that have xk
as an endpoint.)

(25 [, $6) (= o | 2~y Dslo)
~ }iqﬁ(mf)%%g(%log |, — 2 Dh

Next, we enforce the integral equation at each of the sampled boundary points and
apply the quadrature rule. When the integration point coincides with the evaluation
point (@, = x*) the kernel has a well defined limit. (Here x(x,) is the curvature of the
contour at x,)

a 1 i
26 lim ——(—loglz,—x |} = —KZT
(26) i s log | @y =2 ) = (e
Teofly .

These approximations reduce the integral equation (and constraints) to a finite
dimensional matrix equation which can be solved for the log coefficients and the charge
densities at the sampled boundary points.

1+ Dyper L ¢ 1B
P cnir cnir — g
2 (g2 S ) [2]-(%5)
where
e PR O
(28) ¢ = : A= 0 |9 = :
Pz ) Ay g'B(z} )

D,,., represents the discrete contribution of the double layer potentials, L ¢ the
effects of the log terms, Do, holds the discrete density constraints, L.o, has the
constraints on the log terms (a zero matrix for the case of a bounded domain), and I
is the identity matrix.

The linear systems (27) associated with the integral equation correction are solved
using Gaussian elimination. This direct matrix solver was employed for simplicity of
development and because, for the test problems, the total time of the Gaussian elimina-
tion procedure was a small fraction of the total computing time. (Hence, increasing it’s
efficiency would have little impact). For problems with a large number of sub-domains
the operation count of direct Gaussian elimination is highly unfavorable and procedures
such as the Fast Multipole Method (FMM) [6, 9, 10, 21] should be used.

14




A.1. Evaluation of integral representation:. After solving for the charge den-
sities and log coefficients, the function given by (22) must be evaluated at the nodes of
a Cartesian “cut-out” grid. The simplest approach is to apply a quadrature method to
(22) and evaluate the resulting finite sum; however, this procedure is computationally
expensive since this sum must be evaluated for each interior grid point. One way of
accelerating the evaluation process is to apply the FMM, which can be used to evaluate
our integral representation at a collection of points in an asymptotically optimal way.
However, because of the large asymptotic constant involved, using the FMM can still
be fairly expensive. Therefore we choose to use a method [3, 14, 15, 16] that relies on
o standard fast Poisson solver to do the bulk of the computations. As reported in 1,
this approach is (in practice) faster than using the FMM.

The key idea in this method is to construct a discrete forcing function and discrete
boundary conditions so that the solution of

(29) Ah'U:IE(SU._,:,j) = f%, mi,j & R
uB(w ;) = g5 i € OR

provides the desired function values at the nodes of the rectangular Cartesian grid. (In
our procedure we take R to be the rectangular domain used in the construction of the
Cartesian “cut-out” grid.) Efficiency is obtained through the use of a Fast Poisson solver
(e.g. we used HWSCRT from FISHPAK [1]) and the use of computationally inexpensive
procedures to construct the requisite discrete boundary and forcing functions.

The boundary values, g, are obtained by applying the trapezoid rule to (22). This
is computationally acceptable because it is only done for those points that lie on dR.
(Multipole expansions can be used to make this computation more efficient. )

For the construction of the forcing terms, ffj, one notes that the Laplacian of
the function (22) is identically zero {both log sources and double layer potentials are
harmonic) away from the boundary, so the discrete Laplacian at points away from the
boundary will be approximately zero. In particular, at the regular points a standard
truncation error analysis yields the following result:

R2
1B — AulE - IE IE
(30) Aul® = Au 75 (Uszaa +ulr )

h2
— (1B IE
0- 12 Ypraz + uyyyy)'

If the fourth derivatives of the function are bounded, zero is a second order approxima-
tion to the discrete Laplacian. The function (22) is the sum of a double layer potential
and isolated log sources. Under rather mild assumptions concerning the contours and
charge densities, double layer potentials have bounded fourth derivatives and so one is
justified in approximating the contribution to the discrete Laplacian from that com-
ponent by zero. Therefore, the double layer potential contributions to the discrete
Laplacian only have to be calculated at the irregular grid points. The log terms do
not have globally bounded fourth derivatives, and the calculation of their contribution
requires separate treatment (which will be discussed below).
15




As discussed in [14], at irregular points the task of creating an accurate discrete
Laplacian of a double layer potential requires accounting for jumps in the golution values
which occur across the boundary of the domain. If the east, west, south, north, and
center stencil points are denoted by e, Tws &g, Tn, and x, respectively, we decompose
the discrete Laplacian into four components.

WIE(z.) — u/B(z wIE(z) — uIB(x
(31) Ah'UJIE(:BC) — ( n.) = ( c) + ( s) = ( c) +
WIB(z,) — uiB(z,) | wB(my) —u'B(z)
h2 + hZ

If none of the stencil arms intersect the boundary, then the standard error series analysis
produces (30). At an irregular point, ;;, the discrete Laplacian stencil will intersect
the boundary along one or more of its stencil arms, and thus the exact Laplacian will
not be an accurate approximation to the discrete Laplacian. In order to improve the
approximation, a careful Taylor series analysis (one which accounts for the jump in
solution values across the interface) is constructed to determine how to compensate for
errors introduced by these jumps.

Specifically, when considering a stencil arm that intersects the boundary, we will
refer to the two grid points that comprise the stencil arm as . and x,;, (where &,
still refers to the center point, while &, will represent any of the four remaining sten-
cil points (e, Ty, &5y OF z,)). & will denote the axis direction along x, and T, (i.e.
x for horizontal stencil arms, or ¥ for vertical arms), and x, Tepresents the bound-
ary intersection point (see Fig. 9). We introduce the notation [ ], to represent the
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Xnbr

e
L¢)
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Fic. 9. Generic description of a stencil arm intersecting the boundery. (here £ =z and Tnpr = Te )

jump across the boundary from the side containing ®pp, to the side containing =, (i.e.
[U'IE(:E*)]O = UIE(:B* + E(mnbr - CB*)) - uIE(m* - e(mnbr - w*)); e>0,eKL 1)

With this notation, the contributions of the boundary intersection to the discrete
Laplacian at @, can be given as follows {the derivation follows from the procedure
presented in [14}):

(32) 'H'IE(wnbr) - 'U‘IE(mc) =
16




o + (e — 2 P@ ), + P )+

(SB nbr

z.)® 1p 3
21 ugg (mﬂ) + O(mnbr - mc) .

{mnbr - xc}uéE(Tc) +
This formula can be applied to all four stencil arms (with £ = = and Ty, = T O Ly,
or £ =y and a,, = T, or ). When we substitute (32) into (31), we obtain a first
order approximation to the discrete Laplacian given in terms of the jump values of the
solution and the jumps in its first and second partial derivatives. For a double layer
potential, these jump terms can be accurately computed directly from the charge density
and its derivatives. Following the analysis presented in [14], we collect the needed jump
equations, If we assume that the boundary is parameterized by a parameter s, then
the boundary intersection point can be written as &, = z,(s) = (,(s),4.(s)) and the
charge density at that point as ¢, = ¢(z,(s)). Furthermore, we introduce another
jump notation [ ] to represent the jump across the boundary from a point just outside
the domain to a point just inside the domain (ie. [u!B(z,)] = wB(x.(s) + ef(s)) —
ulE(z,(s) — efi(s)), where € > O < 1, and % points out of the domain). In this
notation, the parameterized jump terms are given by the following formulas:

[uIE] = *"Qb*

[qu] e IE*QS* )

’ &5+ 9

IE _ @*gb.*

WE = — (4 — G806, + (B (=53 + 36,92) + 5, (53 — 320,))6,
i (2 +92)°

P = —fulfl -

In order to relate the [ ] jump definition (from exterior to interior) to the [ ], notation
(from the neighbor side to the center side), we check to see whether the center point is
interior or exterior to the domain.

(34) z, €Q = [lo=1]
mcEQC = _[]o -H

By using (32-34), we can approximately compute the discrete forcing terms at the
irregular points without having to do any solution evaluations at all. This increases
the speed of this approach since only local information 1s used (we avoid summing over
all boundary points), and furthermore, this approach does not lose accuracy for grid
points near the boundary (as direct summation approaches tend to).

In the computation of the discrete Laplacian of the function component associated
with log terms, there are no boundary intersections to interfere with the Taylor series
analysis, and no jump terms are needed. However, the derivatives of log sources are
unbounded as you approach the source point, so zero is not an accurate approximation
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to the discrete Laplacian for points near the log source. The discrete Laplacian is
therefore explicitly computed for points which are within a radius of d o< h/4 about the
log source, and set to be zero outside of this radius. (For a point outside this radius,
zero is a first order approximation to the discrete Laplacian)

Therefore, for both the log terms and the double layer potential, we can approximate
the discrete Laplacian at all grid points by only doing some local calculations near the
boundary and the log sources. Once the discrete forcing terms ffj and the boundary
values g¢. are known, a standard fast Poisson solver will rapidly produce the solution

values at all of the Cartesian grid points. This approach produces a second order
approximation to u/F(z; ;).
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