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Abstract

Standard conservative schemes have been shown to admit nonphysical
oscillations near some material interfaces. For example, the calorically
perfect Euler equations have been shown to admit these oscillations
when there is a jump in both temperature and gamma, across an inter-
face, but not when either temperature or gamma is constant [4].

For most problems, one can obtain adequate numerical results by
applying a fully conservative method to the mass fraction formulation
of the problem. Comparable results can also be obtained with the level
set formulation of the problem, as long as gamma is reconstructed in a
smooth way from the level set function. Occasionally, the conservative
method will admit nonphysical oscillations which can be avoided by
application of a nonconservative correction to the total energy on a
get of measure zero under grid refinement. We outline this correction
method, drawing heavily on the work in [5].

*Research sapported in part by ONR, N00014-97-1-0027, ARPA URI-ONR-N00014-92-
J-1890, NSF #DMS 94-04942, and ARO DAAH04-95-1-0155



1 Introduction

Standard conservative schemes have been shown to admit nonphysical os-
cillations near material interfaces, e.g. see Karni [5]. Jenny, Muller, and
Thomann [4] specifically consider the calorically perfect Euler equations and
show that these nonphysical oscillations are inherent to standard conserva-
tive schemes when there is a jump in both temperature and gamina across an
interface, but do not occur when either temperature or gamma is constant.
Both {5] and [4] propose schemes which modify the conservative formulation
of the equations in regions where difficulties may occur. These modifications
give rise to conservation errors in the total energy of the system, and thus
yield a locally nonconservative formulation.

In general, nonconservative formulations give the wrong shock speeds,
although the errors in shock speeds can be reduced significantly if a special
viscosity term is added [6]. Neither [5] nor [4] make use of this special
viscosity term. Their schemes are fully conservative, except on a set of
measure zero under grid refinement, and seem to give adequate shock speeds
for numerical purposes on real problems, see e.g. 8.

In [5], the examples seem to indicate that the mass fraction formulation
is nearly adequate in the fully conservative framework, while the level set for-
mulation (used carelessly) admits wild nonphysical oscillations on the same
problems. The cause of these oscillations for level set methods stems back
to [7], where the authors used the level set formulation in order to recon-
struct gamma as a Heaviside function (jump discontinuity), even though the
density was numerically smeared out. Sussman et. al. {9] solved a similar
problem where he found that construction of a Heaviside density function
from the level set function was inadequate for numerical purposes, and in-
stead imposed an artificial smearing of the density near the inferface in order
to mumerically well condition the problem. When this idea is applied to the
work in [5], one can easily see that a smeared out version of gamma will
behave better than a Heaviside function. In fact, the smoothing of gamma
could be chosen to approximate the numerical dissipation encountered when
solving the mass fraction equation. Thus, proper reconstruction of gamma
from the level set formulation will eliminate all of the large oscillations shown
in [5], leaving only small problems similar to those shown in the mass fraction
formulations. It should be noted that the level set function is not essential



in two phase problems where the interface can be captured (e.g. many com-
pressible flow problems) and a mass fraction formulation could be used, as
opposed to some incompressible two phase problems (e.g. [9]) where the
level set function is essential.

Tt would appear that the conservative formulation is almost good enough
and that there is no real need to use these nonconservative corrections. In
fact, we believe that this is the case for most problems. However, the mass
fraction formulation examples in [5] are misleading, since they only show
minor numerical difficulty, while examples do exist with large oscillations.

In summary, the conservative formulation of the problem will usually
give a solution with little to no difficulties for the mass fraction formulation
and the level set formulation, as long as gamma 18 reconstructed in a smooth
way. However, there will be occasions where both formulations admit large
nonphysical oscillations, and here a nonconservative correction method will
be applied locally. Thus, we follow along the lines of [4] by formulating
the problem in a conservative fashion and only applying the nonconserva-
tive method as a local correction to an existing conservative solver. Our
nonconservative correction method is based on the approach in [5].

It should be noted that the authors in [4] only consider the case of the
calorically perfect Fuler equations, when they show that simultaneous jumps
in both temperature and gamma are the cause of the oscillations. In fact,
we will present one case where large jumps in both temperature and gamma
admit no oscillations, and another case where much smaller jumps admit
wild oscillations (using the thermally perfect Euler equations). In general,
the cause of nonphysical oscillations at an interface will depend on the for-
mulation of the problem and could be dependent on many factors, e.g. mass
fractions, the level set function, gamma, temperature, and equations of state.



2 Euler Equations

Consider the two dimensional thermally perfect Euler Equations for multi-
species flow with a total of N species,

g, + [F(D), + GO, =0, (1)
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where £ is time, z and y are the spatial dimensions, p is the density, u and
v are the velocities, F is the energy per unit volume, Y, is the mass fraction
of species i, h; is the enthalpy per unit mass of species %, h{ is the heat of
formation of species 4 (enthalpy at 0K), ¢,, is the specific heat at constant
pressure of species ¢, and p 18 the pressure [2]. Note that Yy =1~ ?_'_51 Y;.

The pressure is a function of the density, internal energy per unit mass,
and the mass fractions, p = p(p, e, Y1, -+, Yn_1), and the corresponding par-
tial derivatives are denoted by p,,p. and py;. Note that £ = pe -+ m%ﬂﬁ,
expresses the the internal energy per unit mass in relation to the other vari-
ables.

The eigenvalues and eigenvectors for the Jacobian matrix of ﬁ’(ﬁ) , are
obtained by setting A = 1 and B =0 in the following formulas, while those
for the Jacobian matrix of G(U') use A=0and B=1.

The eigenvalues are

M=d—-c¢ M =d4+c (4)

N=-= AV =a (5)




Note the (N +1)-fold repeated eigenvalue. We will make use of this and apply
the Complementary Projection Method (CPM) for cigensystem treatment
(1]. In the CPM method, full upwinding is accomplished without use of the
eigenvectors in the repeated eigenvalue field. Thus, the necessary left and
right eigenvectors are:
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3 Pressure Evolution Equation

In order to apply a nonconservative correction to the conservative energy,
Karni [5] solves an extra partial differential equation for the pressure which
is derived from the equation of state. We will derive this equation for the

general equation of state p = p(p,e, Yy, -+, Yy_1) where the corresponding
partial derivatives are denoted by p,,p. and py,.
We have
Dy Dp  De Nl DY,
B =P pr TP DIt 2 (Pn“ﬁ?) (13)

as the convective derivative of the pressure from the chain rule. Simple
analysis of the two dimensional Euler Equations in the previous section shows
that

Py T upy FUPy = _p(um + U'y} (14)
_ Ps
Uy + U, + DUy = - (15)
_ Py
v, + uv, +vv, = —— (16)
r
ey + ue, +vey, = ——E(u;c + vy) (17)
(Yz)t + u(Yz)m + U(Yi)y = () (18)
and thus equation 13 can be rewritten as
_ PPe
Dyt ups + vpy = —pus +0y) {Po+ 75 (19)
which is equivalent to
, -+ up, + pctug + vp, + pcv, =0 (20)




using the definition of the sound speed ¢ given in the previous section.

In some formulations of the equation of state, the pressure can depend on
the level set function, ¢, or on gamma, . Since both the level set function
and gamima have a vanishing convective derivative,

th + u¢m + 'U¢y =0 (21)

7t + UYe + v'Yy = O (22)

they will both drop out of the pressure evolution equation, just as Y;, leaving

equation 20 unchanged.
Note that the pressure evolution equation reduces to the more familiar

form
Py + P, + YPU, + Upy + ¥PUy =0 (23)

when ¢ = 22 which occurs quite frequently, e.g. see [2].




4 TUpwinding the Pressure Evolution Equation

To get a sense of the upwind discretization of equation 20, we rewrite it as
the last equation of a quasilinear system,

U v 0 3 n v 0 0 m
v i+ 0 u 0 o |+ 0 v 3 v | =0 (24)
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where the eigenvalues and eigenvectors for the 3 by 3 matrix associated with
convection in the z-direction are
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and the eigenvalues and eigenvectors for the 3 by 3 matrix associated with
convection in the y-direction are
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A 3 i) 3 U
o | # L (MEL) | v | + (NEL)| v | =0 6D
p i=1 P i=1 P

) 0 ) 1 0
B=| 1 |, B=[0]|, By=| 1} (30)

i z




so that each of the 6 terms can be upwinded according to the sign of the
eigenvalue in that term.

The last equation in 31 is equivalent to equation 20, with p,, Uz, Py, and
v, replaced as follows,
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where the superscript on each spatial partial derivatives refers to the eigen-
value which determines the upwind direction for the discretization of that
spatial partial derivative. (For example, p§~° is the spatial derivative of the
pressure discretized using the eigenvalue u — ¢ to determine the upwind di-
rection.) A positive eigenvalue indicates that the characteristic information
comes {rom the left, while a negative eigenvalue indicates that the character-
istic information comes from the right. If an cigenvalue is identically zero,
then equation 31 shows that the spatial derivative does not contribute to
the solution, and can be assigned a zero value for practical numerical and
algorithmical purposes.

Note that in the case where the eigenvalues agree on the upwind direction
(supersonic flow), the two separate spatial derivatives in each set of paren-
thesis coalesce to a single value. Thus, the second term in each equation
vanishes, and equations 32 to 35 merely dictate upwind differencing in the
obvious direction.




5 Discretizing the Pressure Evolution Equation
We wish to solve the pressure evolution equation,
p, + upy + pctu, +up, + pcv, =0 (36)

where the following substitutions are made

pe = 5 (5 4 087) - 5 (w7 — k™) (37
Uy = % (™ + ™) — 3pe (D3~ — P& (38)
b= 3 B4R~ e ) (39)
b= 5 (05 Hop*) = 5 01 - 91) (o)

in order properly upwind the equation. For each grid point 4, we need to
discretize each of the spatial derivatives on the right hand side of equations
37 to 40 according to the upwind direction determined by the superscript
eigenvalue. Once this is done we can evaluate the rest of the terms at 4 and
advance in time.

We will consider the z-direction spatial derivatives (after which the y-
direction spatial derivatives become obvious). Consider a variable V with
upwind direction determined by an eigenvalue A. We use polynomial inter-
polation to find V* and then differentiate to get V.

The zeroth order divided differences, D?, and all higher order even di-
vided differences of V exist at the grid points and will have the subscript 1.
The first order divided differences, Dit_ Iy and all higher order odd divided
differences of V exist at the cell walls and will have the subscript % & 3.

Consider a specific grid point 4. If A;; = 0, then setting (V22);, = 0 will
be algorithmically correct as previously discussed, otherwise A; determines

. the upwind direction. Tf Ay, >0, then k = i — 1. If A;, <0, then k = 1.
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Define
Qu(@) = (Dhy3 V)& — o). (41)

If |D2V]| < | D}, V|, then s = DiV and B =k — 1. Otherwise, s = D%,V
and k* = k. Define

Q2 (z) = s(z — @ )(z — The1)- (42)

I |DE._,V] < [Df,4 V], then s* = Di._,V. Otherwise, s* = Dy V.
Define

Qs(z) = s*{z —~ @4 )z — Lo 41) (T — Tpo ya)- (43)
And then (V3));, is
Di+%V + 5 (2ig — k) — 1) Az + 8 (3(ép — E*)® — 6ty — k™) + 2) (Ax)?. (44)

This is a third order upwind spatial discretization. For a second order
upwind spatial discretization, only keep the first two terms in equation 44.
For a first order upwind spatial discretization, only keep the first term in
equation 44 (standard upwinding).

(Note that we do not use the special viscosity discussed in [6], although
it could be added to the quasilinear system, and the modified system could
discretized in a fashion similar to the one outlined above.)
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6 Modification of the Conservative Solver

In order to solve the two dimensional Euler equations, we utilize a fully con-
servative high order algorithm as outlined in [2] and [3]. While adequate for
many problems, the conservative solver will occasionally yield large nonphys-
ical oscillations and we will need to locally apply a nonconservative correction
to the total energy in these regions.

Suppose that we have an acceptable smooth solution for the conserved
variables and the pressure (from the equation of state) and that we wish to
advance to a new time level (or sublevel in the case of Runge-Kutta methods).
The conservative scheme will give us new values for the conserved variables
and these in turn give us a new pressure (from the equation of state). It is
this pressure that initiates the oscillations in regions where the interface is
numerically ill-conditioned. An alternative pressure can be constructed from
the pressure evolution equation, and this new pressure can be used to define
a monconservative energy using the equation of state. Then in regions where
the interface is numerically ill-conditioned, we replace the energy computed
from the conservative scheme with the nonconserved energy computed from
the pressure evolution equation.

There are many way to locate potential problem interfaces. In [5], Karni
looks for jumps in the mass fraction or for sign changes in the level set func-
tion. In [4], the authors look for regions where both temperature and gamma
change sign. In general, this procedure is dependent on the formulation of
the problem, and one may want t0 consider many things, e.g. mass fractions,
level sets, gamma, temperature, and equations of state. The conservative so-
lution can be compared to the solution obtained with the nonconservative
correction method in order to determine which flow features are physically
authentic.
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7 Examples

We will use the thermally perfect Euler equations for our examples. These
will be solved with the standard conservative methods outlined in f2] and
[3], along with the CPM [1] which gives an efficient method for eigensys-
tem treatment with no loss of accuracy. When the standard conservative
method admits nonphysical oscillations at an interface, we will make a local,
nonconservative correction to the total energy. This will be done by solving
the pressure evolution equation and applying the equation of state to the
resultant pressure to obtain a new energy.

7.1 Example 1

Consider an isolated contact discontinuity separating oxygen and argon. Ini-
tially, we set velocity, pressure, and temperature to constant values, forcing a
jump in density. Figure 1 shows that the contact moves to the right with no
numerical difficulties, even though both gamma and the mass fraction have
jumps. However, if we initially set the density to a constant value, forcing
a jump in temperature, the conservative scheme admits nonphysical oscilla-
tions as shown in figure 2. Application of a local nonconservative correction
to the total energy alleviates these oscillations as shown in figure 3. The
local correction was applied to about 3 to 5 grid points in the vicinity of the
contact.

7.2 Example 2

Clonsider a one dimensional shock tube problem with argon on the left and
oxygen on the right. Both gases are initially at rest, with a jump in both
pressure and temperature across the interface that initiates the formation
of three waves: a shock wave, a confact discontinuity, and a rarefaction
wave. Figure 4 shows that the conservative method works quite well, even
though there are jumps in temperature, gamma, and the mass fraction at the
interface. The results for the nonconservative correction method are shown
in figure 5. The pressure and velocity are somewhat flatter near the contact,
but the density and temperature have nonphysical overshoots caused by the
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artificial peak in the energy that was introduced by the nonconservative
correction.

Figures 6 and 7 show the results on a fine grid. The fully conserva-
tive method works fine on this problem and the nonconservative correction
method is not needed. In fact, the nonconservative correction method intro-
duces an error near the rarefaction corner, even though it was only applied
on a few grid points near the center of the domain.

This example points out that the nonconservative correction method
should only be used as a back-up scheme when the fully conservative method
breaks down, and that the results obtained should be carefully scrutinized.
Tn addition, since the shock location is fairly accurate, this example serves
as a warning to those who perceive the shock location as the only indication
of the validity of a nonconservative solution, or as the only reason to use a
congervative method.

7.3 Example 3

Consider another shock tube problem, with glightly different initial condi-
tions. The fully conservative method admits small nonphysical oscillations
in figure 8 which are fixed by the nonconservative correction method in fig-
ure 9. Note that the nonconservative correction method has trouble with the
rarefaction corner. Also note that both schemes give a small energy spike
near the interface.

Figures 10 and 11 show the two schemes on a fine grid. The conservative
scheme is adequate, although the nonconservative correction method gives
smoother results near the contact discontinuity. Note that both schemes
have a little trouble with the rarefaction corner. More importantly, note
that the spike in energy is present in both schemes, and that it appears
4o be an authentic feature under grid refinement for the fully conservative
scheme. However, this spike in total energy seems to lack physical relevance
since the temperature is monotone in the region and pressure and velocity
are congtant,

7.4 Example 4

In this example, we only have one gas: oxygen (initially at rest). Atz = 4,
we have a pressure and temperature jump that will evolve into 3 waves, one
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being a shock headed to the right. At z = .6, we have an interface across
which the temperature jumps (causing a jump in gamma, since the oxygen
is thermally perfect). Figure 12 shows the shock traveling to the right before
it hits the interface, while figure 13 shows the solution after the shock passes
through the interface. Both figures were obtained with a fully conservative
method. Note that the large jump in both temperature and gamma do
not cause much difficulty when hit by the shock, possibly because the mass
fraction is constant. The nonconservative correction method only slightly
improves the solution as shown in figure 14.

7.5 Example 5

Similar to the last example, we set up a shock tube at z = 4 and a temper-
ature jump at = = .6. In addition, we have argon to the right of z = .6 with
oxygen to the left. Figure 15 shows the shock traveling to the right before it
hits the interface, while figure 16 shows the solution after the shock passes
through the interface. Both figures were obtained with a fully conservative
method. Figure 17 shows the solution after the shock passes through the
interface for the nonconservative correction method. Comparison of figures
16 and 17 indicate that the conservative method admits large nonphysical
oscillations. Note that these occurred even though gamma was nearly con-
stant.

Figure 18 and 19 show the solutions obtained on a fine grid. Note that
the conservative method still admits nonphysical oscillations which pollute
the solution. The nonconservative correction method performs much better,
although there are still some minute imperfections in the solution.

7.6 Example 6

Similar to the last example, a shock hits an interface. Figures 20, 21, 22,
and 23 show the results.
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Figure 6: Example 2 - conservative method - shock tube - 400 points
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Figure 10: Example 3 - conservative method - shock tube - 400 points
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Figure 13: Example 4 - conservative method - after collision
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Figure 14: Example 4 - nonconservative correction - after collision
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Figure 18: Example 5 - conservative method - after collision - 400 points
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Figure 20: Example 6 - conservative method - after collision - 100 points
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Figure 22: Example 6 - conservative method - after collision -~ 400 points
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