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Abstract

In this paper, we present a weighted ENO (essentially non-oscillatory) scheme to

approximate the viscosity solution of the Hamilton-Jacobi equation:

(zbt+H($1:"':md)t1¢v¢w1?“"qud):0'

This weighted ENO scheme is constructed upon and has the same stencil nodes as the
37 order ENO scheme but can be as high as 5" order accurate in the smooth part of
the solution. In addition to the accuracy improvement, numerical comparisons between

the two schemes also demonstrate that, the weighted ENO scheme is more robust than
the ENO scheme.

Key words. ENO, weighted ENO, Hamilton-Jacobi equation, shape from shading, level
set.

AMS(MOS) subject classification. 35L99, 65M06.

1 Introduction

The Hamilton-Jacobi equation:

¢+ H(z,t,0,D¢) =0,  ¢(z,0) = do() (1.1)

1 Research supported by ONR N00014-92-J-1890. Email: gsj@math.ucla.edu.
2Research supported by NSF DMS-94 04942. Email: dpeng@math.ucla.edu.
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where # € RY,{ > 0, arises in many applications such as variational calculus, optimal
control, differential games, geometric optics and image processing. It is well known that
the solutions to (1.1) typically are continuous but with discontinuous derivatives even when
the initial condition ¢y(x) is smooth, and such solutions are in general not unique. In the
celebrated work of Crandall and Lions {3], the notion of viscosity solution, which generalizes
the classical solution, was introduced. Under mild assumptions on the Hamiltonian H and
the initial function ¢, the authors proved the existence, uniqueness and stability of the
viscosity solution for (1.1). Since then, Hamilton-Jacobi equations have been intensively
studied. Interested readers can consult the review paper by Crandall et al. [2] for references
to recent developments. '

The study of numerical approximations to the viscosity solution of (1.1) was started also
by Crandall and Lions. In [4], they introduced an important class of monotone schemes for

a simplified form of equation (1.1):

¢+ H(DP) =0,  4(x,0) = ¢y(z) (1.2)

and proved that these schemes converge to the viscosity solution. Unfortunately monotone
schemes can be at most first order accurate, thus are too dissipative for most practical
applications. Nevertheless, they can serve as building blocks for high order schemes. In [10],
Osher and Sethian constructed a class of high order upwinding type schemes for equation
(1.2), mimicking high order ENO(essentially non-oscillatory) schemes developed by Harten
et al. [5, 15] for approximating conservation laws. Their construction was based on the
observation that Hamilton-Jacobi equations are closely related to conservation laws. To see
this, let ¢ be a solution to the 1D Hamilton-Jacobi equation ¢, + H(¢,) = 0, then u = ¢,
becomes a solution to the 1D conservation law u,-+ H{u), = 0. Although such a relation does
not exist in multi-dimensions, numerical schemes can be constructed through a dimension
by dimension extension of the one dimensional scheme. The above idea was pursued further
by Osher and Shu (11], where a general framework for constructing high order ENO schemes
for (1.2) was given, together with several “building blocks” or monotone fluxes such as the
global Lax-Friedrichs flux, the Godunov flux and the Roe flux with entropy fix. We want
to point out that all the schemes above can be generalized in a straight-forward manner to
solve the general equation (1.1). A little caution, however, needs to be taken due to the
presence of ¢ in the Hamiltonian H. See Souganidis [16] for details.

In this paper, we construct a high order accurate weighted ENO (WENOQ) scheme for
approximating the general Hamilton-Jacobi equation (1.1), following a similar approach
of [11}. WENO schemes were initiated by Liu et al. [8] and later improved by Jiang and



Shu [6], both for the approximation of hyperbolic conservation laws. Roughly speaking,
WENO schemes are central schemes in regions where the solution is smooth but emulate ENO
schemes near the singularities of the solution. This is achieved by weighting the substencils of
the base ENO scheme with the weights adapted to the relative smoothness of the solution on
these substencils. The weights vary smoothly with respect to some smoothness measurements
of the solution on each substencils, thus eliminate or alleviate the problems(e.g. linear
instability, accuracy degeneracy, see [13]) caused by abrupt stencil changes in ENO schemes.
Extensive shock calculations have demonstrated that WENO schemes are more accurate
and robust than the base ENO schemes and enjoy a compact stencil relative to the order of
accuracy, which may be very desirable for certain boundary treatments.

The paper is organized as follows: In Section 2, we present the WENO schemes in
two steps: first, in Section 2.1, we compare the core idea of WENO schemes with that of
ENO schemes in the context of approximating the first derivative of a function in one space
dimension. Then in Section 2.2, we present the complete WENQ scheme for the Hamilton-
Jacobi equation in two space dimensions. The generalization to high space dimensions 1s
straight forward. In Section 3, we apply the WENO scheme on a set of model problems,
drawn from several areas of applications such as image processing, optimal control and recent

level set calculations. Some remarks are made in Section 4.

2 The WENO Schemes

2.1 The Core Idea

Let ¢ be a Lipschitz continuous function in B! with piecewise smooth derivatives. We assume
that the discontinuities of the derivatives of ¢, il any, are isolated. Let x; be a discretization

of B! with uniform spacing Az. We introduce

b = d(24), Atdp = ¢rpx — Gr N~ ¢ = ¢p — Ppo1- (2.1)

To approximate ¢, (z;) on a left-biased stencil {zy, k =1 —3, -+, 142}, the 374 order accurate

ENO scheme will choose one from the following

—0 _ £A+¢i—3_ZA+¢iw2+£A+¢i—l
T3 Ag 6 Az 6 Az
o 1AM, 5AY LAY, 5 9
=T 6 Az 6 Az 3 Az (2.2)
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where ¢} is the 37¢ order approximation to ¢,(z;) based on the s substencil {24,k =
148 =31+ s} for s = 0,1,2. See Figure 1(a). Which ¢.7 to choose is determined

Substencil 0 . \‘\. Substencil 2 Substencil 2 _ Substencil 0
o ) { R {
-9 -9 . > & a— - * bt el > —
i-3 i«2 i-1 i i+l 42 i-2 i-1 i i+1 i+2 i+3
} ) }
(a) Substencil 1 (b) Substencil

Figure 1: The three substencils. (a) The left-biased stencil; (b) The right-biased stencil.

by the relative “smoothness” of ¢ on the substencils. The 374 order ENO approximation to

¢,(z;) is given as follows:

ot A |ATATG | < |A At and |A-A- NG| < |AFA- ARG ;

Tt

Ori = bup A IACAFG | > (A AT and [AA- At | > |ATA- A+, (2.3)
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-1 .
¢. %  otherwise.

The WENO approximation of ¢,(z;) is instead a convex combination or weighted average
of ¢, (s =0,1,2):
o, = wobny +widyi +wydyt (2.4)
Here w, > 0 is the weight associated with the st* substencil and the weights satisfy the
consistency equality: wy 4+ w; + w,; = 1. We will define these weights shortly.
If we set wy = Cp = 0.1,w; = C} = 0.6,w, = €y = 0.3, we get
1 Aty 134N, 4TAYG, ;9 Atg, 1 Aty
30 Az 60 Ax 60 Az 20 Az 20 Az

which is the 5** order approximation to ¢,(z;) and is known to provide the smallest trun-

(2.5)

cation error on such a six-point stencil. If we set the weight for the ENO chosen stencil to
be unity and the remaining two weights to be zero, then (2.4) recovers the 3 order ENO
approximation to ¢,(z;). In case that there is a discontinuity inside the stencil, the ENO
scheme can effectively choose relatively the “smoothest” stencil for the approximation thus
avoid undue oscillations. To sustain both accuracy and essentially non-oscillatory property,

we define the weights according to the following two principles: (1) if ¢ is smooth on the
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whole stencil, then we require w, = C, + O(Az?), in which case the WENO approximation
(2.4) is uniformly 5t order accurate. (2) if the stencil contains a singularity of ¢, the weights
adaptively approach the ENO “digital” (1 or 0) weights to avoid oscillations.

Substitute w; = 1 —wy — w, into (2.4), we get
b7, = wodnl + (1 —wy —w) gy +wydy
1 ~ _ - 1., - ~
S (627 + 6.0) +woldz) - bui )+ (s = ) = )

Notice that the first term does not depend on w,. Substitute ¢, in (2.2) into the last

equation, we obtain

+ b, + b, + . + b,
- (st )
A-Arg_, A-Arp,_, AArd; A-Atg;
PWENO( Aj 2 Aj L ~ e ’ Aj 1y (2.6)
where ! ] .
QWENO(q b, c,d) = —?;wo(a —2b4¢) + g(wz — 5)(:5 —2c+d) (2.7)
and the weights wy,w, ate defined as
g X

Wy = Wy =

g -+ ey Ay

1 6 3
(e + 150)?

3
g + iy + Oy

Gy =

I“__"‘

Ct 1502 27 (et IS

1Sy = 13(a — b)? + 3(a — 3b)?
1S, = 13(b—c)2+3(b+c)?
1S, = 13(c - d)? +3(3c — d)?

Here ¢ is used to prevent the denominators from becoming zero. In our computation, we
shall use € = 10-6. One can check that the above delinition of weights satisfies the two
principles we mentioned in the previous paragraph. See [6] for details.

We can put the 37¢ ENO approximation (2.3} in a similar form as (2.6) with @WENO

replaced by

D, +L(a—2b+c) if |b] < e and |a b < Jb—cl;
OENO (g, b ¢, d) = ¢ —Dy if |b] > |¢| and |6~ ¢| > |c —d]; (2.8}

&, otherwise.



where @, = —L(b— 2¢ + d).
By symmetry, the approximation of ¢(z;) on the right-biased stencil {zp, b =1i-2,---,i+

3} (see Figure 1(b)), is

- L A, AT, AT Atgy,

bui = 12(_ Ar A T TAr T Aw

A~At gy A AT, A Aty AAt,
TR o Tar A Ar ) (2.9)

where @ is either @#NO or ®WENO  corresponding to either ENO or WENQ approximation.
To illustrate the differences between ENO and WENO schemes, we compute the weights
in the approximation of ¢.(x;) by ¢, Where ¢ s given by

b(z) = +(1 — cos 27 z) fo<e<t,
w(z—2)+ (83 +cos2rz) ifl <z,

and z; = tAz,1 =0,1,---,40,Az = 313. Notice that all even derivatives of this function are
discontinuous at = = 0.5. In addition, ¢” = 0 at = = 0.25,0.75. The results are shown in
Figure 2. As we can see, the 37¢ order ENO switches stencil at the zeros of ¢” as well as the
discontinuity of the derivatives of ¢. On the other hand, the WENO scheme has the weights
w; close to the optimal values(0.1 for wy, 0.6 for w; and 0.3 for w,.), away from z = 0.5 (ie.
including at the points where ¢" = 0); At z = 0.5, the weights are essentially equal to the
ENO “digital” values.

Remark: Based on the 27 order ENO approximation, one can construct a 37¢ WENOQ
approximation. This WENO approximation has a much simpler form than the 5t order
WENO one defined above. Here we provide the corresponding formulas for approximating
é,(z;). Interested readers can follow the approach described in the next subsection to obtain
the 37¢ order WENQ scheme. The approximation to ¢,(z;) on the left-biased stencil {zp, ke =
P—2i—1,4,i41} is

b = I (A+¢ém1 N A+¢i) B W?— (A+¢i—2 2A+¢¢—1 N A+¢i) .

=i 9\ Ag Az Az ° Az Az

where
1 e+ (AAtg, ;)2

©- = 1+ 2r%° "= €+ (AAtg)?
The approximation to ¢,(z;) on the right-biased stencil {zg, k=1 — 1,4,3 4+ 1,1 + 2} is

4t = 3 (A+¢i—1 A+¢é) 1 Wi (A+¢5i+1 B 2A+¢z' n A+¢5i—1)
zi 9 '

Ar | As 5 \ T Aw Az T Az
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Figure 2: {a) The function ¢; (b) The “weights” for ENO; (c) The weights for WENO. In
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where

! p— + (A" Atgy,)?
14272 € -+ (A~ A ;)2

W+:

2.2 The WENO scheme in 2D

In this subsection, we use the 21D Hamilton-Jacobi equation

Qﬁt +H($yy1t1 Cﬁ: qszm ¢y) =0 (210)

as an example to describe the WENQO scheme for multi-dimensional Hamilton-Jacobi equa-
tions. Let z;,y; be the (i,7) node of a 2D lattice grid with the uniform spacing Az in

x-direction and Ay in y-direction. Similar to the notations in (2.1), we introduce

<?5k,1 = ¢($k7yl)s A"{;Qﬁk,z - ¢k+1,z - ¢k,la &Z%,t = ¢k,z+1 - ¢‘k,z- (2‘11)
The semi-discrete form of the WENOQO scheme is
dd, .
#KL(Q‘,’))%’J: H( :ny_;nt ¢1j7¢m2]1¢$zjﬁqﬁyg‘?7¢y23) (212)

Here, qu ; are WENO approximations to %f(a:i,yj) similar to the 1D approximations (2.6)
and (2.9), i.e

i Agﬁ% . A+¢._1, +QS A¢+i-
+ 2y X - f J
is = B0 T8 TR A T A )
AT bipgs DSATGLy o ATATS . AN
WENO et i i iF1,d
+ & (—* Az ’ Ao T Ry An ) 2.13)
(2.14)
Similarly, ¢F vi; are WENO approximations to __sé( z,,y;) and are given by
¢t = i(mA;¢5’5—2 + 7A-::I;¢z‘,jm1 n 7Ajl‘¢i,j 3 /—\‘tﬁﬁi,jﬂ)
" 12 Ay Ay Ay Ay
£ PWEN O(A;A?‘tqﬁi’jﬂ Ay Gisaa A AV A;A?Séi,ﬁl) (2.15)
Ay , Ay ’ Ay ’ Ay
(2.16)

Remark 1: If we replace ®WENO by ENO zhove, we obtain the 37 order ENO scheme.

Remark 2: Hisa Lipschitz continuous monotone flux consistent with H:
ﬂ(ﬂ:? ! 7t3 ¢57 u? u’ v’ v) = H(mﬂ y! t’ (fiS? u’ U)
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Monotonicity here means that H is nonincreasing in its fifth and seventh arguments and
nondecreasing in its sixth and eighth arguments. There are many such fluxes. Here we take
a couple of the most useful ones from Osher-Shu [11]. In defining these fluzes, we omit the

dependence of H on z,y,t, ¢ for simplicily.

{1) The local Lax-Triedrichs(LLE) flux:

) +1y- pt Ly + gy + o g
HILE (gt g vt 0~) ::H(u ;u ,U —;U )~cx{u+,u”)u ! —ﬁ(qﬁ,v‘)v °
(2.17)
where
alut,u™) = max |Hy(u,v), B(vtv™) = max |Hy{u,v)|. (2.18)
wel{u—ut) vellv—vt)
welC,D} ug[4,B]

Here H,(H,) stands for the partial derivative of H with respect to ¢.{¢,}; [A, B]is the value
range for u* and [C, D] is the value range for v¥; I{a, b) = [min(a, b), max(a, b)]. 1f we change
I{u=,ut) to [A, B] and I(v-,v*) to [C, D] in (2.18), we obtain the global Lax-IFriedrichs(LF)
fAux HVF(u+, u=, vt v-).

(2) Roe with entropy fix (RF} flux:

H{ur,v%) it Hy(u,v) and Hy(u,
change sign in v € I(u~,u™)
and v € I(v= vt);

H(ﬁz“:,v*) - a(u+,u‘)"‘+;“_ else if f1,{u,v) does not change
sign inu € [A, B], v e I(v-,vt);

H(ur, vt < ﬁ(v“i‘,v“)”—“”—i else if H,{u,v) does not change

2
sign in v € [C, D], u &€ INu,ut);

v) do not

HEF (y+ y= ot o) =

| fILLF(qu, u-, vt ) otherwise.
(2.19)
where u*,v* are defined by upwinding
o ut %f Hi{u,v) <0 - — vt %f Hy(u,v) € 0; (2.20)
u if Hy(u,v) > 0. v~ if Hy{u,v) > 0.

Remark 3: For time discretization, we use the Runge-Kutta schemes of Shu-Osher [14].
For the ODE
do

— = L{e)



the third order TVD(total variation non-increasing) Runge-Kutta is simply:

gt = 0+ AtL(4)

89 = 604 231(60) + L(w)
B = g 2L L(0) - L(30) 4 SL(42))

with ¢ = ¢ and ¢7*+1 = ¢{3). The fourth order non-TVD Runge-Kutta scheme is:

G0 = ¢(o>+%L(¢(o))

B = 0+ S L(60) 1 L(g)
#9 = g0+ S Lg) 4 21(9)
#0 = 404 2L(00) 4 20(60) ~ 4L(4O) + L))

with ¢ = ¢n and ¢n+l = $4),

3 Numerical Results

In this section, we apply the 5t order WENO scheme to a set of model problems. We
also compare the results with those obtained by the base 37¢ order ENO scheme. We use
WENO-x to refer to the 5% order WENO scheme and similarly ENO-x to refer to the 374
order base ENO scheme, where “x” could be “LF” (global Lax-Friedrichs flux), “LLF” (local
Lax-Friedrichs flux) and “RF” (Roe’s flux with entropy fix). Unless stated otherwise, we
shall use the 34 order Runge-Kutta scheme for the ENO schemes and the 4% order Runge-
Kutta scheme for the WENQ schemes. For all compuations, the CFL number is taken as
0.6.

Ezample 1 (Accuracy test) We solve
¢+ H{d,) =0, ¢(z,0) = —cosme, -1<z<l. (3.1)

with a convex H (Burgers’ equation):

(3.2)




and a nonconvex flux H:
H(u) = ~ cos(u + &) (3.3)

We take o = 1 in our calculation. In both cases, the solution is smooth at t = ¢; = 0.5/72
and has discontinuous first order derivatives at ¢t = t, = 1.5/#2. In Table 1 and 2, we list
the L, and L_ errors of the schemes WENO-RF and ENO-RF. At { = i), the errors are
computed at a distance of 0.1 away from any discontinuities in the derivatives of the solution.
We note that the exact solution can be obtained using characteristic methods for both cases.
For both schemes, we use the 3t order Runge-Kutta scheme in time. To realize 5™ order
in time, we take At & Az5/3 in the case of WENO-RF. Such restrictive time step is only
used for accuracy test purpose and will not be used in later examples. From Table 1 and 2,
we can see that for both the convex and nonconvex flux, the ENO scheme achieves about
374 order accuracy while the WENO scheme achieves about 5% order accuracy. WENO-LLF
(ENO-LLF) obtains similar accuracy as WENO-RF (ENO-RF) for both cases. WENO-
LF (ENO-LF) is slightly less accurate than WENO-RF (ENO-RF). Similar accuracy was
observed for the two dimensional model problems in Example 2 of [11].

Ezample 2 (Linear equation) We solve the linear equation
¢+ ¢, =0, #(z,0) = g(z — 0.5), 1<z <1 (3.4)

with periodic boundary condition. Here we choose

2cos(3rz2/2) — /3 -l<e <-4
3/2 4 3cos 2wz Lz <l
) = —(V/3/2+9/2427/3)(z+1)+ s ’
g(o) (V3/229/24 2 [3){w +1) 15/2 — 3cos2nz O<e <
(28 + 47 + cos 3mz)/3 + Omcos3rz £ <z < L
(3.5)

This function is the integral of the function used by Harten et al. [3] modulo some linear
function chosen so that g(—1) = g(1). We shift the function to position the singular points
of ¢ inside the interval. The results at ¢ = 2,8, 16,32 are displayed in Figure 3. We observe
that, as the time increases, both the ENO scheme and the WENO scheme smooth out the
corners in the graph of g. However, the WENO scheme performs much better at the smooth
part of g. In fact even at the corners, the smoothing by the WENO scheme is less severe
than that by the ENO scheme.
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Table 1: Ly and L, errors for Example 1: Burgers’ equation H(u) = (u +1)2/2.

Scheme N | L, error | L, order | L error | L; order
t=0.5/n2
10 | 0.17TE-01 - 0.60E-02 -

20 | 0.39E-02 2.07 0.90E-03 2.73
ENO-RF 40 | 0.67-03 2.55 0.13E-03 2.78
80 | 0.86E-04 2.97 0.18E-04 2.87
160 | 0.18E-04 2.25 0.26E-05 2.76
10 | 0.59E-02 - 0.20E-02
20 | 0.41E-03 3.86 0.84E-04 4.57
WENO-RF | 40 | 0.39E-04 3.41 0.52E-05 4.02
80 | 0.16E-05 4.58 0.22E-06 4.56
160 | 0.61K-07 4,72 0.85K-08 4.69
t=15/x2
10 | 0.24E-01 - 0.84E-02 -

20 | 0.61E-02 1.97 0.11E-02 2.93
ENO-RF 40 | 0.10E-02 2.60 0.13E-03 3.04
&0 | 0.11E-03 3.24 0.15E-04 3.14
160 | 0.11E-04 3.30 0.19E-05 3.03
10 | 0.83E-02 - 0.23E-02 -

20 | 0.21E-02 1.98 0.20E-03 3.51
WENO-RF | 40 | 0.17E-03 3.59 0.62E-05 5.02
80 | 0.30E-05 5.86 0.11E-06 5.84
160 | 0.80E-Q7 5.23 0.36E-08 4.94

12



Table 2: L, and L, errors for Example 1: Nonconvex H(u) = — cos(u + 1).

Scheme N | L error | L, order | L; error | L, order
t=10.5/r?
10 | 0.31E-02 - 0.11E-02 -

20 | 0.12E-02 1.34 0.33E-03 1.7
ENO-RF | 40 | 0.28E-03 2.16 0.61-04 2.42
80 | 0.49I5-04 2.51 0.90E-05 2.76
160 | 0.67E-05 2.86 0.12E-05 2.88
10 | 0.28E-02 - 0.15E-02 -
20 | 0.45E-03 2.65 0.12E-03 3.67
WENO-RF | 40 | 0.52E-04 3.09 0.73E-05 4.04
80 | 0.44E-05 3.58 0.33E-06 4.45
160 | 0.22E-06 4.28 0.141-07 4.58
i =1.5/x?
10 | 0.16E-01 - 0.64E-02 -

20 | 0.28E-02 2.50 0.69K-03 3.21
ENO-RF | 40 | 0.45E-03 2.63 0.11E-03 2.66
80 | 0.70E-04 2.66 0.16E-04 2.80
160 | 0.12E-04 2.55 0.22E-05 2.84

10 | 0.68E-02 - 0.30E-02 -

20 | 0.15E-D2 2.22 0.35E-03 3.07
WENO-RF | 40 | 0.32E-03 2.20 0.28E-04 3.66
80 | 0.26E-04 3.60 0.15E-05 4.17
160 | 0.85E-06 4.96 0.38E-07 5.35

13



Figure 3: Linear equation. Solid line is the exact solution; “4” is by WENO-RF and “o” is
by ENO-RF. (a) t = 2; (b) t = 8; (c) t = 16; (d) t = 32.
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Fzample 3 (2D nonconvex Riemann problem) We solve a two-dimensional nonconvex
Riemann problem{Example 3 of [11]):

¢t+sin(¢m+¢y) =0, ¢>(:c,y,{)) mﬂ*(ib"“ J:El) (36)

using ENO-RF and WENO-RF. The results are displayed in Figure 4. We can see that
both schemes capture the viscosity solution of the Riemann problem. For this problem,

the advantage of the high accuracy of the WENO scheme is less obvious due to the almost

piecewise linear structure of the solution.

3
7
7
2 P 2 e i
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. R . R
'7: 7
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HEGTH : HHET 1
-1~ ] IR LA
HEH 1 L
LHH FL 0.8
2 H 3
7
-3 7“*—%‘\*7‘_\_ -7
1 0k 1
] -0.5 -1 X

-1

Figure 4: 2D nonconvex Riemann problem. 40 x 40. t = 1. (a) ENO-RF; (b) WENO-RF.

FEzample 4 (Optimal control) We solve the following problems related to control optimal

cost determination [9, 11]:

¢, — (siny)¢, + (sinz + sign(¢,))¢, — Lsin’y — (1 — cosz) = 0, (3.7)
¢(z,y,0) = 0. '

in (z,y) € [-m, 7] x [—x, 7] with periodic boundary condition. The results at ¢ = 1 are
displayed in Figure 5. The difference between two schemes is hard to tell from the plots.
The is partly because of the limitation of the graphical presentation and partly because of

the short evolution time.

Ezample 5 {Shape from shading) We solve the following shape from shading problem:

bt Hzy) JTF ST FE-1=0,  (z,y)€(0,1)x(0,1), (3.8)
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Figure 5: Optimal control. 40 x 40. ¢ = 1. (a) ENO-RF; (b) WENO-RF.

Here I(z,y) is the brightness value at (z,5), 0 < I(z,y) < 1. In our problem, we take

I{z,y) = 1/\/1 + (2 cos(2mz ) sin(2my))? + (27 sin(27mx) cos(2my))? (3.9)

and ¢(z,y,1) = 0 at the boundary of the unit square. The steady state solution of (3.8) is
the shape function, which has the brightness I under vertical lighting. See [12]. According to
Lions et al. 7], there are multiple solutions to (3.8) and (3.9) and all satisfy the homogeneous
boundary condition. In our problem, we need to prescribe additional “boundary conditions”
at points where I(z,y) = 1.

We consider two such boundary conditions {12]:

For case (a), the exact solution is ¢(z,y) = sin(2rz) sin(27y); We initialize the evolution by
¢(z,y,0) = (4096/9)zy(1 —2)(1—y)(z - 1/2)(y — 1/2). The results are displayed in Figure 6.
For case (b), the exact solution is

max (| sin(2rz) sin(2ry)|, L + cos(2mz) cos(2my)) if jz+y—1] <1
Hz,y) = and |z —y| < %3
| sin(27 ) sin{27y)| otherwise.

We 1nitialize the evolution by ¢(z,y,0) = 4 * min(min(z,1 — z), min(y, 1 — y)). The results
are displayed in Figure 7.
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We observe that for case (a), where the solution is smooth, WENO-LI' converges to
steady state rapidly and the steady state solution is more accurate than that obtained by
ENO-LF. ENO-LF can not converge to steady state even in this smooth case. For case (h),
the exact solution is no longer smooth. WENO-LF is slightly more accurate than ENO-LF.
However, neither scheme converges in this case. We believe this is due to the interesting
extra boundary condition inside the domain. Special techniques may be needed to achieve
convergence to the steady solution. We will investigate this issue elsewhere. Nevertheless,
the numerical solution for both cases look smooth with no noticeable kinks, when compared
to the results in [12].

Ezample 6 (Level set reinitialization) Consider

{ qﬁt + Sig”(%)(u Qﬁ + (:bz m 1) =0 1n R?X R'*‘ (310)
¢>($1 Y, U) = qﬁ{}(:?:, y)

This equation first appeared in Sussman et al. [17], and since then, it has become very useful
in reinitializing the level set function ¢y, Notice that the solution ¢ to {3.10) has the same
zero level curve as that of ¢, at all time, and it converges to the distance function to the
zero level curve of ¢, as t goes to infinity. In the level set formulation, ¢, itself is governed
by some evolution equation and its zero level curve is of critical importance. To accurately
detect the zero level curve, it is necessary to keep ¢, from being too flat or too steep. To
compute the curvature of the level curves {¢ = constant} from ¢y, which is often needed in
physical applications, it is also important to keep ¢, from being polluted by numerical noise.
Ideally one would like to have é, being the distance function to its zero level curve all the
time. However, this is usually not gnaranteed by the evolution equation for ¢3. Thus one
periodically solves equation (3.10) and reset @y to the steady state solution.

In our computation, we choose ¢, to be the distance function to the circle centered at

1

the origin with radius &,

plus some small perturbation in both radial and angular directions

near the circle:

d+ ;g;rvsin(4w_ﬂdii“59) if id| < ¢

po(z,y) = { (3.11)

d otherwise.

where d = /2% + % — 0.5,0 = tan~(y/z) and € = 0.2. We use the following Godunov flux:

HE(ut, u=,v¥, 07} 7

S\/[max((u+)+, {(u=)7))? + [max({(vt)t,{v-)"}]* otherwise.
(3.12)

{ sy/lmax((ut)=, (u=)F)]2 + [max((vF)~, (7)) if ¢, > 0;
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where ¢ = ¢q(2;,y;), (@)t = max(a,0) and (@)~ = —min(a,0). We also used s = po/+/ P2+ 6
to approximate sign(¢g) with é comparable to the spatial step size. It is worth point-
ing out that the Godunov flux is usually complicated for general Hamilton-Jacobi equa-
tions(see [1, 11]), but it has the above simple form for equation (3.10).

For both the ENO and WENO scheme, we use the 3¢ order Runge-Kutta scheme in time.
We plot the level set function ¢ in Figure 8. To demonstrate the difference between the ENO
and WENO scheme, we compute the curvature x = V%ﬁq of the level curve {¢ = costant}
by central difference. The results are shown in Figure 9. From the numerical results, we

observe the following:

o There is no distinguishable difference in ¢ before and after the reinitialization using
either ENO or WENO scheme. However,

o There is significant difference between the curvature before and after the reinitializa-
tion. The latter is considerably smoother than the former for both ENO and WENO

schemes,

¢ The curvature computed from the reinitialized data of ¢ by the WENO scheme is
less noisy than that by the ENO scheme. Moreover, the WENO scheme does not
deteriorate the level curves, which happens to the ENO scheme, as we continue the
iteration further. We believe this is due to fact that WENO scheme smoothly weights
the candidate stencils in contrast to the ENO scheme which jumps from one stencil to

another abruptly even in the smooth part of the solution.

Although the WENO scheme does not remove the noise completely in the curvature, it is
superior in this case than the ENO scheme. For problems sensitive to the curvature, the

WENO scheme seems to be a better one to use.

4 Conclusion

We have presented a WENO scheme which is constructed upon the 3¢ order ENO scheme.
This WENO scheme is uniformly 5% order accurate in smooth regions but has the same
stencil as the 374 order ENO scheme. Near singularities of the solution, the two schemes
function similarly. The numerical experiments demonstrate that the gain of this accuracy
does help long time integration. Moreover, the smooth weighting of the substencils in the
WENO scheme helps prohibiting noises to be created in the solution. We believe that this
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Figure 9: Level set reinitialization. 100 x 100. The contour plot of the curvature x. Left
column: ENO; Right column: WENO.
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smooth weighting accounts most for the better performance of the WENO scheme over its
base ENO scheme.

Based on the 27 order ENO scheme, one can also construct a 37 order WENO scheme.

See the remark alter Section 2.1.
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