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ABSTRACT OF THE DISSERTATION

Multilevel Subspace Correction for

Large-Scale Optimization Problems
by

Ilya A. Sharapov
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1997

Professor Tony F. Chan, Chair

In this work we study the application of domain decomposition and multigrid
techniques to optimization. We illustrate the resulting algorithms by applying
them to optimization problems derived from discretizations of partial differential
equations, as well as to purely algebraic optimization problems arising in mathe-
matical finance. For the analysis of the presented algorithms we utilize the sub-
space correction framework (cf. Xu, 1992).

We discuss the cases of convex non-smooth and smooth non-convex optimiza-
tion, as well as constrained optimization, and present the convergence analysis for

the multiplicative Schwarz algorithms for these problems. For PDIS-based opti-



mization problems we also discuss the effect of coarse grid correction and analyze
the convergence rate of the corresponding multiplicative and additive Schwarz
methods.

We consider the application of the multiplicative subspace correction method
to the variational formulation of the elliptic eigenvalue problem and show that,
as in the linear case, if the coarse grid correction is used, the convergence rate is
independent of both the number of subdomains and the meshsize. We discuss the
generalization of this method for simultaneous computation of several eigenfunc-
tions and its applications to the problem of partitioning a graph based on spectral
bisection.

In the final chapter we consider the application of the subspace correction meth-
ods to some algebraic optimization problems arising in mathematical finance. We
restrict our attention to the minimization of the Frobenius distance used in covari-
ance matrix estimation, the factor analysis problem, and the gain-loss optimization
problem. Numerical results illustrating the convergence behavior of the subspace

correction methods applied to these problems are presented.
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CHAPTER 1

Introduction

In this introduction we provide the motivation for applying the subspace cor-
rection techniques to optimization problems. We also give a brief survey of recent

literature on subspace correction and domain decomposition methods.

1.1 Background and Motivation

Domain decomposition and multigrid methods are increasingly popular tech-
niques for handling problems arising form partial differential equations. These
iterative methods can be applied directly or in combination with other methods
such as the conjugate gradient method.

The idea behind the domain decomposition method is to represent the spatial
domain of the problem as a union of several subdomains. The subdomains are
usnally chosen in such a way that the restricted subproblems are easy to solve.
This approach allows to make use of parallel machine architecture and can exploit
certain geometrical properties of the original problem.

A two-level extension of the domain decomposition method uses a coarser dis-

cretization of the problem along with local subdomains. This approach dramati-



cally improves the convergence properties of the method since the use of a coarse
component allows the global propagation of data. The multigrid method exploits
different levels of coarsening of the problem and can be viewed as a recursive
application of a two-level domain decomposition method.

Both domain decomposition and the multigrid methods can be analyzed using
the subspace correction framework (c¢f. Xu [30]). To illustrate this approach we

consider a second order self-adjoint coercive elliptic problem

Lu=3%"¢ 9 (aa—u)mf in Q C R

ij=1 By \" Bx; (1.1)
=70 on 082,

which after discretization with n degrees of freedom yields a system
Az = b, (1.2)

where x € V' = R" and A is a sparse symmetric matrix.
Let Q = UZ_ (; be a given partition of the domain of the problem and let I;
be the set of indices of the nodes in the interior of subdomains €2;. This partition

induces decomposition

W+Vo+ -+ V=V,
where the subspaces V; are defined as

Tn the case of two-level or multigrid methods the set of subspaces can be appended

by one or more subspaces that contain functions corresponding to coarse grids.



For each subspace V; of dimension n, = card(l;) we define the corresponding

n X n; prolongation matrix P, which in the simplest case of subspaces given by

(1.3) is defined as
(“T’i)k f()l' k - I,a

(Fizs)x =
0 for keI -1, where I =U]_I.

Given an approximation z to the exact solution
zt= A1}
of (1.2) we can construct a new update using a correction from i-th subspace by
z' =z + Pyd; d; € V,. (1.4)

The errors corresponding to the iterates z and 2/
e = x—zx*
¢ = ' —x* = e+ Pd;

satisfy
ey = dTPTAPd; +2d7PTAe+e™ Ae

= dTPTAPd; + 247 PT(Az — b) + eT Ae

and therefore the maximal reduction in the A-norm of the error is achieved when

d; in (1.4) is
d; = (PTAP)~*PF(b— Ax). (1.5)
If we introduce the subspace restrictions of the matrix A



we get the iteration
z' = + PATPT(b — Az), (1.6)

which minimizes the A-norm of the error e’ over the i-th subdomain. The corre-
sponding equation is

e =e— PATPT Ae

or

where T; is given by
T, = B,A7'PTA, (1.7)

Applying the corrections (1.6) from all the subspaces sequentially or in parallel
results in well-known block Gauss-Seidel or Jacobi methods respectively. The

corresponding equations for the error are
J

ertt = (I ~ I;)en
]

and

Since the exact solution of (1.2} is given by z* = A~1b, the minimization of the

A-norm of the error

lle(z)|% = 2T Az — 27 + bTA-1b



is equivalent to minimizing the functional
f(z) = 2T Ax — 227b. (1.8)

Therefore, given z, the optimal step (1.4) of the form (1.5) can be also obtained

by performing a subspace search
., . . - 1 .
f(z') = f(z+ Pid;) Idlellvl’ilf(m + Pyd).

This subspace correction step for a general function f(z), not necessarily of
the quadratic form (1.8), can be performed sequentially or in parallel with the
corrections taken from subspaces V;. The resulting methods are generalizations of

the block Gauss-Seidel and Jacobi methods for optimization problems

min f(z). (L.9)

In this work we will consider these generalizations and their applications.

1.2 TRecent Literature

1.2.1 Domain Decomposition Methods

The convergence properties of the subspace correction methods applied to (1.2)

were analyzed by Bramble, Pasciak, Wang, and Xu {6]. They showed that the error



reduction operator for the multiplicative Schwarz algorithm

I (L

with 7; given by (1.7) satisfies

2

d
|EBv]2<|{1-0{=]]llv]|? forallveV ,
2

where d is a characteristic size of subdomains and n is the maximal number of
intersecting subdomains.
Xu [30] proved that if one of the subspaces contains the functions corresponding

to a quasi-uniform triangulation of €2 of size d the estimate becomes
|Ev||? < v|lv]2 forallveV

and the parameter v < 1 in the above expression is independent of the parameters
of discretization. 'The key role in the proof this estimate is played by the two

assumptions which in our notation can be written as

Assumption 1.1 For any x € V there ezists a decomposition x = 2;;1 x; such

that z; € V; and

J
>Nz, < Chll=l% (1.10)
i=1
and

Assumption 1.2

[STE

i=1 j=1 =]

7o J i/ ,
>0 (Pixy, Piyi)a < Gy (Z ”331”?41) (Zl “yj”ij)

for any choice of x; € V; and y; € V.



A comprehensive survey of the domain decomposition methods and the con-

vergence estimates is given by Chan and Mathew in [8].

1.2.2 Subspace Correction for Optimization Problems and Nonlinear

Problems

The multiplicative Schwarz algorithm applied to optimization problems was
proposed by Lions [18]. He proved the convergence of the method for the case of
a smooth convex objective function and two subspaces.

- This result was extended by Tai and Espedal [29] who generalized the theory
for subspace correction methods for linear problems ([30] and [6]) and applied it
to a more general class of optimization problems (1.9). They consider twice con-
tinuously differentiable convex objective functions f(z) satisfying generalizations

of Assumptions 1.1, 1.2 and

Assamption 1.3 There exist constants K > 0 and L < oo such that

(@)= f)z-y) = Klz—y?
1) ~ fll < Lllz -yl
for any z and y.

The convergence rate of Schwarz algorithms is estimated in terms of the constants

in Assumptions 1.1-1.3.



Subspace correction technique for constrained nonlinear optimization was an-

alyzed by Gelman and Mandel [13}. For the problem

gnéig f(z} (1.11)

they use subspace corrections to generate a sequence that stays within the feasible
set C' and monotonically decreases the objective function f(z). It is shown that
all the limit points of the generated sequence are in the solution set of (1.11). The
recursive application of this techniques results in a multilevel algorithm.
Application of the multilevel and multigrid techniques was considered in the
book by McCormick [24] who mostly focuses on linear problems but also discusses
multilevel techniques for solving the eigenvalue problem and the variational form
of the Riccati equation. In his book on multigrid methods Hackbusch [15] also
discusses nonlinear applications including applications to the eigenvalue problem.
Several domain decomposition-based methods for the eigenvalue problem were
proposed by Lui [19], in particular the method based on a nonoverlapping paz-
titioning with the interface problem solved either using a discrete analogue of a
Steklov-Poincare operator or using Schur complement-based techniques. The for-
mer approach is similar to the component mode synthesis method (c¢f. Bourquin
and Hennezel i5]) which is an approximation rather than iterative technigue for
solving eigenproblems also used by Farhat and Géradin [12]. Stathopoulos, Saad
and Fischer [28] considered iterations based on Schur complement of the block

corresponding to the interface variables.



The subspace correction methods for the eigenvalue problem were described by
Kaschiev [16] and Maliassov [21]. We will discuss this algorithms in more details

in Chapter 3.



CHAPTER 2

Subspace Correction Framework for Optimization Problems

In this chapter we analyze the multiplicative and additive Schwarz methods
applied to optimizatici»n problems. We present the convergence results for convex
unconstrained and constrained problems as well as for smooth but not convex prob-
lems. Comparing the general case with the quadratic optimization we discuss the
effect of coarse grid correction for the multiplicative and additive algorithms when
applied to the optimization problems arising from discretization of PDE-based
functionals. Finally, we exploit the recursion to formulate a more computationally

efficient multilevel algorithm.

2.1 Multiplicative Schwarz Method

2.1.1 Basic Method

First we consider a general unconstrained nonlinear optimization problem

min f{z), z € R™ (2.1)

10



Here f(z) can either be a purely algebraic function or can be a discrete represen-
tation of an integral-differential functional over some spatial domain in R¢. We
restrict our consideration to the latfer case in the next section of Lhis chapter
and in Chapter 3 while applications for purely algebraic problem are discussed in
Chapter 4.

To apply the subspace correction methods to (2.1} we introduce J (possibly

overlapping) subspaces V; € R, that span the entire space

span{V;}/ . =V = R™.

i=1

In an important special case of this decomposition the subspaces V; correspond to
sets of indices

Lc{1,2,...n}, i=1,...,J

such that

U;:I:J.Ii = {1, 2, s n}

and

Vi={z € R |z =0ifk¢L}.

We can formulate a standard multiplicative Schwarz algorithm for solving (2.1)

(see for example [18]).

11



Alg. 2.1 - Basic Multiplicative Schwarz Algorithm
Starting with x° for k = 0 uniil convergence
fori=1:J

find xF+i/d guch that

J(ktilT) = ﬁlé%f(mkﬂi—l)ﬁ +dF) (2.2)

end
kil — Zk+Jd/T
end

end

In the next two sections we consider the convergence properties of this algorithm
applied to convex problems as well as to the problems with smooth locally convex

objective functions f(z).

2.1.2 Convex Problems

In this section we restrict our attention to the objective functions f(z) that

satisfy
Assumption 2.1 Function f(z) in (2.1) is sirictly convez.

To ensure the existence of the solution we also require

12



Assumption 2.2 Function f(z) in (2.1} is coercive: the set {z | f(z) < h} is

bounded for any h.

Assumptions 2.1 and 2.2 guarantee that the original problem (2.1) has a unique
solution. Tn this section we do not assume smoothness of f(z) which makes the
convergence analysis applicable to a more general class of problems than the class

of smooth convex problems considered by Lions [18] and Tai, Espedal [29].

Theorem 2.1 Under Assumptions 2.1 and 2.2 the Basic Multiplicative Schwarz
Algorithm applied to problem (2.1) generates a convergent sequence of iterates {z*}

and the limil & sotisfies

@) = minf@E+d),  i=1..J (2.3)

Proof. Since Assumption 2.2 implies that all the iterates z5+¢/7 are contained in
the compact set {z | f(z) < f(z°)} it suffices to show that z*+%// cannot have
more than one limit point. The contrary would imply that there exists a sequence

kj and an index ¢ such that

&) = lim zRtE-D/7 £ lim gh+9/7 = £, (2.4)
kj o0 kj—o0

Since f(z**+#7} is non-increasing we have

F(@) = [(5) < F(a++1) 2.5)

13



for any (k,7) and because f(z) is strictly convex the midpoint 24%2 satisfies

{2553 < s

Convexity of f also implies its continuity and therefore for some e > 0 we have

f (fl S +r) < (&) (2.6)

for any r, such that ||r|| < e. Here || - || denotes the Fuclidean norm on R™.
Condition (2.4) guarantees that there exists j* such that

. . ! ~ €
Hmkj;Jr(z -0/F _ $1|| < g_ and “wkj:—!-z i 332” < 5} (27)

but since the corresponding increment satisfies
d = gha ¥T _ gl 61T ¢y
and because of (2.2), (2.6) and (2.7) we have
o . d!
f(xkjrh /'J) < f (xlcjr+(z wl)/J+§z) < f(fl):

which contradicts (2.5).
This contradiction shows that there could be only one limit point of z5+4/7 and
therefore the iterates converge to some Z € V. To show that Z satisfies (2.3) we

assume that for some ¢ there exists d; € V; such that
F@+ds) < F(&).
From the continunity of f{z) it follows that for some € > 0

fE+r+d;) < f(Z)

14



for any r satisfying ||r|| < e. Therefore, if
[ ah 1T — F < ¢

we have
Fla*Hi7) < f(7)

and since f(z5t4/7) is decreasing
lim z* £ % O

k—o0

Corollary 2.1 If in addition to Assumptions 2.1 and 2.2 the objective function
f{z) is smooth then the Basic Multiplicative Schwarz Algorithm converges to the

minimum of f(z).
Proof. It f(z) is smooth condition (2.3) implies that the gradient of f satisfies
PIVF(#) =0 i=1,...,J,

where the PT are the projection operators corresponding to subspaces V;. Since
spanV; = V = R® we have V f(Z) = 0 which for convex f(z) means that % is the

minimum of f. O

2.1.3 Nonconvex Problems

Now we release the convexity assumption and replace it with the assumptions

on smoothness of f(z) and its convexity near its local minima.

15



Assumption 2.3 Function f(z) in (2.1) is continuously differentiable.
We can formulate the following result for the case of two subspaces.

Theorem 2.2 In case of two subdomains (J = 2) and under Assumptions 2.2 and
2.8 every convergent subsequence of {z*} generated by Algorithm 2.1 converges to

a critical point of f(z).

Proof. We will show that for any % which is not a critical point of f(z) there is
a neighborhood containing that point with the property that once the iterates get
in that neighborhood the next iterate will drive the objective below f(Z). That
will prove that the iterates cannot accumulate near .

Let |V f(Z)|| # 0 and let V,f(E) be the orthogonal projection of V f(Z) on V;,
with 4 = 1,2. Here and below || - || denotes the Euclidean norm. We assume that
i is chosen in such a way that V,f(%) is the larger projection (of the two) and

therefore

IVF@)| < V2V @)

Since V,f(%) # 0 and because of continuity of V,f{z) there exists § = 6(%) > 0

such that

VS <2V @) (2.8)

and

Vi @'Vif @) 1

IVar@i® 2

(2.9)

16



for all z € R» such that ||z — Z|| < é.

Let z be such that ||z — Z|| < £, then using (2.8) we have

@) -£@ = [ vrd

< AVI@

0 .
= SIVI@I (210
If we choose a search vector
_ V(@)
IV (@)l
then the point
= A §s
- 6

satisfies [la’ — Z{| < & and because of (2.9) we have

I

58
—/06 V., flz +ts)sdt

% r Vif (&)
W,fo Vil ) S

(o) — ()
dt

> 5 [P 1@

> SIVA@]| (2.11)

Comparing (2.10) and (2.11) we see that if ||V f(Z)|| # 0 and § defined by (2.8)

and (2.9) for any z in the &-neighborhood of £ there is a point
rex+V (2.12)

such that f(z/) < f(%). In (2.12) ¢ =1 or ¢ = 2 depending on the choice we made

in the beginning of the proof. If i = 1 then for 2 that satisfies ||z — Z|| < £ we

17



have
ey < f(2)
and since the sequence f(x*) is not increasing we have f(z*) < f(Z) for k > n and
7 is not a limit point of z#. On the other hand if in (2.12) i = 2 and {|z» — &{| < &
we have
f@r) < (&)
because otherwise 7" does not minimize f(z) over * % + ;. The same argument

applies and we conclude that £ cannot be a limit point of z*. 0

2.2 Coarse Grid Correction for Schwarz Methods

In this section we assume that f(z) in (2.1) comes from a discretization of an
integral-differential functional over some spatial region 2 € R? and z € V = R»
is an m-vector in a finite element space corresponding to this discretization. To
apply the domain decomposition technique to this problem we can represent {1 as

a union of J overlapping subdomains
Q = U;:]:]_Qi

and consider subspaces {V;}7_, that contain discretized functions whose support is
contained in corresponding subdomains.
We can modify the algorithm presented in the previous section by adding a

coarse grid correction step after a loop over subdomains is completed. By doing so

18



in the case of a linear problem with sufficient subdomain overlap the convergence
rate becomes independent of both meshsize and the number of subdomains [6],
[30].

Let the space of coarse grid functions be V, then a modified algorithm becomes:

Alg. 2.2 - Multiplicative Schwarz Algorithm with Coarse Grid
Correction
Starting with 0 for k = 0 until convergence
fori=1:J

find zF+i/7 guch that

fz*+7) = min f(zFt6E-D/7 4 dF)
kv ¢

end

find ¥ such that

f(mlcc) = min _f(a;k+('7”1)/-f + d}'cc)

ke,
ghtl — 7k
43
end

end

We will present the numerical exarples that illustrate the effect of adding the

coarse grid correction in Chapter 3.

19



2.2.1 Asymptotic Convergence Rate

For the local convergence rate analysis we can use the theory developed for the

minimization of quadratic functional
flz) =T Az + 207z (2.13)

with symmetric positive definite A.
It is known [6] that the iterates % generated by Algorithm 2.2 applied to (2.13)

converge to the exact solution z* = — A~ and satisfy

B+l _ |2
Hgaa, (2.14)
z* — x|y

where 8 is independent of the discretization parameters. Since f(z) is given by

(2.13) this condition can be also written as

f@) - 7(a)
- = (215

Now we consider the general minimization problem (2.1) and assume that the

iterates x* converge to the solution z*. In case of smooth and strictly locally

convex f(z) we have
Vf(z*)=0and H=V2f(z*) >0
and the local representation of f
flam+e) = f(@*)+ Vf{a*)e+ e He+of]|e]*)

= f(u*) + " He+ of[|e]]?)

20



shows that, up to the higher order terms, the problem can be viewed as a quadratic
minimization and the estimate (2.15) holds asymptotically.

The global convergence rate analysis for the minimization problem in the gen-
eral setting {2.1) is complicated because the local behavior of the function is not
related to the global distribution of its critical points. We can, however, give the
convergence rate estimate in a special case when the objective function f(z) in

(2.1} is a perturbation of a quadratic function.

Theorem 2.3 Let the objective function f(x) in (2.1) satisfy

0<A<V(z)<B (2.16)

for some symmetric positive definite matrices A and B and let z* be the solution
of (2.1) then the reduction of f(x) during one subspace iteration of Algorithm 2.2

satisfies

f@b+il7) — f(zx) i -
f($k+(z'ml)/J) — f(z*) < 62-(A,33k+( DITY x p(A1B),

where 6;(A,zF@D/TY is the corresponding reduction for the quadratic objective

function with Hessian A in one subiteration over V; initialized at z¥+0-D/7 and

p(-) denotes the spectral radius of @ matriz.

Proof. Without the loss of generality we assume that the objective function takes

its minimum at the origin

min f(2) = /0
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e

Figure 2.1: Theorem 2.3.

and for the sake of compactness we denote

= pktGE—1)/7

o = ghtifd

We consider two quadratic functionals on V

a{z) = 2T Az — v Au + f(u),

b(z) = z" Bz — u? Bu + f(u),

for which we have
a(u) = b(u) = f(u)

and the minimum of a{z) and b(z) is attained at z = 0 (see Figure 2.1). Besides,
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condition (2.16) implies

and

for any z € R™ .

Let w/ be a solution of the subspace problem with respect to the functional

a{x):
a(ul) = 5’?&% a{u -+ d;).
We have
@)~ 1@ _ f0) - 0)
fw)=£0) — flw)-F0)
_ ba) ~b(D)
~ a(u) - a(0)
_aw)— o) H) b0
2() —af0) < a(el) = a0
= 6(Au) X ZTiz
< §(Au) x p(A1B). O

This theorem shows that if matrices A and B in (2.16) are close enough then
the reduction of the general objective function (2.1) produced by Algorithm 2.2
can be arbitrarily close to the corresponding reduction for the quadratic objective

(2.15).
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2.2.2 Convergence Rate for Additive Schwarz Methods

In this section we consider the additive Schwarz method for solving 2.1.

Alg. 2.3 - Additive Schwarz Algorithm

Choose initial approzimation z° and relazation parameters

7
a; > 0, such that >y =1 (2.17)
i=1
for k = 0 until convergence
fori=1:J
in parallel find d¥ € V; such that
flab + df) = min f(z* + ) (2.18)

end
ghtl = gh + 37 od
end

end

Remark 2.1 The additive Schwarz method was considered by Tai and Espedal [29]

with

o; >0 and > o <1 (2.19)
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In the above algorithm the condition E;;l o; = 1 1s not restrictive because if the
parameters o; satisfy (2.19) we can append the set of V; by a trivial subspace

Vi1 = 0 and choose the corresponding cy 1 =1 — Z’f_l Q.

We assume that the global error in the objective function can be bounded
in terms of local gains over the subspaces. Later in this section we will give an
equivalent form of this assumption that can be viewed as an analog of Assumption

1.1 (cf. [30]) for non-quadratic minimization.

Assumption 2.4 There is a constant C such that for any x € V there exist such

vectors d; € V, that the following estimate holds

fl@)—fz) < C; o;(f(z) — fz +d3)), (2.20)

where * s the minimizer of f(z).

Theorem 2.4 Under assumptions 2.1 and 2.4 the additive Schwarz algorithm con-

verges and the reduction of the objective function can be characterized as

) - f@) 1

fak) = f=*) = C

where C s given by (2.20).

Proof. The vectors d¥ defined by (2.18) provide the optimal reduction in f and

therefore

Fo®+ dF) < fzk +dy)
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for any d; € V;. This and (2.20) imply

J

F4) - 1) < O auF(e¥) - Fla + b)) (2.21)
From the convexity of f(z) and the conditions on the relaxation parameters (2.17)
it follows that

fla*+h) = f (3:’“ + ZJ: aidf)

i=1

< Yalf(et+ )

and form (2.21) we get

f@*) = f(z*) < O(f(2F) — f(z*1))

C(f(@*+1) — f(27) <(C = D(f(a*) — f(=*))
and
J(2F+) — f(z*) 1
e SO

As we pointed out Assumption 2.4 can be put in a different form. Using

condition (2.17) we can perform the following chain of transformations starting
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with (2.20)

f(z) — f(=*)

IA

Cfx) ‘““C;aif($+dz‘)

Ciaif($+di) < (C=-1f(x) + f(z%)

i=1

0 (Satrd)- 1)) < (©=DUE-IE)

C-1

Ses(flr+d) = 16) < “5m (@) - 1)

o

and therefore Assumption 2.4 is equivalent to

Assumption 2.5 There is a constant C' > 0 such that for any x € V there we

con find d; € V; such that

J

Sali+d) - o)< (1-5) 0@ - 1) @2

d=z]

We can compare this assumption with Assumption 1.1 we mentioned in Intro-
duction. In the case when f(z) is quadratic (2.13) the term (f(z) — f(z*)) in the
right hand side of the above inequality is equal to ||z —z*||3 and therefore coincides
with the right hand side term of (1.10) applied to the error vector z — z*. The
left hand side of {2.22) generalizes the decomposition of the error vector weighted

with the relaxation parameters o;.

Remark 2.2 An important distinction between our approach and the theory of Tai
and Espedal [29] is that in this section we assume the convezity of f(z) in (2.1)

but not its smoothness.

27



2.3 Constrained Optimization

In this section we allow constraints in the problem (2.1):

mip f(2), (2.23)

where C' C R" is a closed convex feasible set and the function f(z) satisfies the

following assumption on the level surfaces of f(z).
Assumption 2.6 The sets

fo=Az|flz) <h} (2.24)
are strictly convez for any h.

We will discuss examples of problems satisfying the assumptions of this section in

Chapter 4.

Remark 2.3 Assumption 2.6 is weaker than the requirement for f to be convez,

for example f(z) = ||z||? is not convex in R* but satisfies the above assumption.

Also, as we did in the first section of this chapter, to ensure that (2.23) has a

solution we require, that f is coercive on C

Assumption 2.7 The seis
fnC={zlzeC, f(z)<h} (2.25)

are bounded for all h.
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The following result is straightforward.

Lemma 2.1 Under Assumptions 2.6 and 2.7 the minimization problem (2.23) has

a untque solution.

Proof. First we chose h for which
Oh. - fh, M C
is nonempty. We can replace (2.23) with an equivalent restricted problem

;Iclég;l, flz). (2.26)

As an intersection of two closed sets the set C), is closed. Besides, the assumption
that f(z) is coercive implies that Cy, is bounded and therefore, since C), € R, it is

compact. That and continuity of f(z) imply that the restricted problem (2.26) has

a solution. To show uniqueness we assume that =, and z, are solutions of (2.23):

F(ex) = Flon) = min f(a) = H. (2.27)

Convexity of C' implies that the convex combination 1(z; + z,) is in C, but since

the set fg is strictly convex we have

1257 <

which violates (2.27). O

We can adjust the multiplicative algorithm for the constrained problem (2.23).
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Alg. 2.4 - Multiplicative Method for Constrained Optimization
Starting with 2% € C for k = 0 until convergence
fori=1:J

Jind gh+ild = ght@=1)/T 4 gk C C such that

Flahtitd) = ﬁﬂi‘f} FlaFH =D 4 d.) (2.28)
1€V;
mk+(i_1)/J+diCG

end
end

end

Remark 2.4 Since the restricted problem (2.28) satisfies the assumptions we made

for the original problem (2.28) its solution is well-defined (Lemma 2.1).

We can formulate the theorem that under the assumptions of the above lemma
the iterates generated by Algorithm 2.4 converge. Its proof is similar to the proof

of Theorem 2.1.

Theorem 2.5 Under the assumptions of Lemma 2.1 Algorithm 2.4 applied to the

problem (2.83) produces a convergent sequence of iterates and the limit

limaz*=Fec(C
k—o0
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satisfies

fE) = min fE@+d), i=1..J (2.29)

E4d; CC

Proof. Since all the iterates z*+i/7 are contained in the compact set

{z ] f(z) < fa)}nC

they have a limit point. To show that this limit point is unique we assume the
contrary. That would imply that there is a sequence of indices k; and an integer

¢ > 0 such that

£ = lim gh+@-D/ £ lim o8+ =g, (2.30)
kj--sco k;—oo
We have
7y — 43 = lim (ghiti'ld — ghit@-1/T) € V, (2.31)
o0

Since the sequence f(z*t¥/7) is non-increasing we must have

and since by assumption the set {z | f(z) < h} is strictly convex the midpoint

f(flgfz) <h

and, because f is continuous, there exists an € > 0 such that

satisfies

f (fi _; T2y r) <h (2.32)
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Figure 2.2: Theorem 2.5.

for any ||| < € (see figure).
Finally, since £, is a limit point of {z*H~1)/7} there should be some j/ such
that

I P+ ED) — g || = lrfi < e

and therefore because of (2.31) and (2.32)

P17y < f (mkj:—i—{i’—l)/J 4 Lo ; 5”1) =t (931‘;‘932 +T) <h

which violates (2.30) since the sequence {f(z%+/7)} is non-increasing. Therefore
z* has a unique limit point Z which is its limit.
To prove (2.29) we again assume the contrary which in this case implies that

there exists d; € V, for some ¢ such that £ +d; € C and

f(& +d;) < F(E)-
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Figure 2.3: Possible convergence to a non-solution.

Since C is convex and [ is continuous there exists d; € V; and € > 0 such that
FE 4 d; + 1) < F(7) (2.33)

and

i4+d;+reC
for any ||7|| < e. If % is the limit of {*+//} we have for some j
b7 ] < e
and therefore, because of (2.33)
Flaktitd) < fabt GO 4 dy) < £(3),

which is impossible since f(zF+#/7) is non-increasing and its limit is f(Z). O
We should point out here that condition (2.29) doesn’t imply that Z is the

solution of the problem (2.23). In Figure 2.3 the circles show the level curves for
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a function I : R? — R whose minimum over the region C is attained at the point
a. However, with the choice of two subspaces shown in the figure point b satisfies
the condition (2.29) as well as any other point on the line segment connecting a
and b. In the last section of Chapter 4 we will observe a similar situation in the

numerical examples for the {;-approximation problem.

2.4 Mulilevel Method

Each subspace step of the algorithms presented in this chapter results in a
minimization problem with fewer unknowns than there are in the original problem
(2.1). If this reduction in the number of unknowns results in a significant reduction
in computational work we can make the multiplicative algorithms more efficient if
we apply them recursively. In order to do that we have to represent each subdomain
and the coarse grid as a union of overlapping subdomains and add a coarse grid
for each of them. To apply an I[-level method we should perform [ nested steps
of the recursion. This recursion applied to the multiplicative method with coarse
grid correction can be viewed as a multilevel method and the iterations performed
on each level as the smoothing of the solution. The recursion can be stopped once
the dimensions of the subspace problems reach some small enough fixed size C,.

We present the resulting method with m smoothing steps.
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Alg. 2.5 - Multilevel method
Starting with z° for k= 0,1,...
fori=1:J
if the size of subproblem is smaller than C, solve or

otherwise apply m steps of Alg. 2.5 to find £/ such that

Flakti17) = min F(a#H6/7 4 d

end
if the size of the coarse subproblem is smaller than C, solve or

otherwise apply m steps of Alg. 2.5 to find z* such that

(o) = min f(H0 D +d,)

C
end

end

If we choose m to be large, the subspace problems will be solved with high accu-
racy and the algorithm above becomes equivalent to Algorithm 2.2. On the other
hand we can make m relatively small. In this case we don’t solve the subproblems

exactly but perform few smoothening steps reducing f(z).
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CHAPTER 3

Applications to PDE-Based Optimization Problems

In this chapter we apply the subspace correction methods to the variational
formulation of a symmetric PDE-based eigenvalue problem and present theoretical
and numerical results that support the conclusions of Chapter 2. We generalize
this methods to accommodate the problem of finding several lowest eigenmodes
also presented in a variational form. We also apply the domain decomposition
methods for eigenvalue problem to the graph partitioning using spectral bisection.

An important feature of the problems considered in this chapter is that the
application of subspace correction methods results in subspace problems that are of
the same type as the original problem. This feature allows the recursive application

resulting in multilevel methods.

3.1 Domain Decomposition Methods for Elliptic Eigenvalue Problems

In this section we analyze the application of the multiplicative Schwarz methods
to the eigenvalue problem. The idea to use the coordinate relaxation applied di-
rectly to a matrix eigenvalue problem goes back to the book by Fadeev and Fadeeva

[11] (1963) where they applied a technique similar to the Gauss-Seidel method for
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minimizing the Rayleigh Quotient. This idea was generalized by Kaschiev [16]
and Maliassov [21] who considered the subspace correction method for eigenvalue
problems. We will extend the results of [16} and [21] for the multiplicative Schwarz
method by considering a two-level scheme. We prove the convergence of the algo-
rithm and present the convergence rate analysis. We also describe the recursive
implementation of the method which results in a multilevel algorithm. Finally,
we discuss an alternative variational formulation of the eigenvalue problem which
is mathematically equivalent to the minimization of the Rayleigh Quotient but is

more suitable for theoretical considerations.

3.1.1 Subspace Correction for Eigenvalue Problems

Let us consider the problem of finding the smallest eigenvalue A and the corre-

sponding eigenvector u of

LIS ou
Lu=— g s+ D(T)U = A 3.1
) i,jZ:1 0z; a dz; Pl = A 31
IEQ’, ’lL|3‘QﬁU a’i,j>0:

where (1 is a bounded region in R? and a;;(Z) = a;,(%), p(T) > 0 are piecewise
smooth real functions.
To discretize the problem, we can perform a triangulation of 2 with triangles

of quasi-uniform size h and use the standard finite element approach to represent
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(3.1) as

Az = AMz, (3.2)

where z is the unknown n-vector and A = AT > 0, M = M7 > 0 are the stiffness

and the mass matrices respectively that satisfy

Assumption 3.1 The discretized stiffness matriz A is an M-matriz and the mass

matriz M is nonnegative componentwise.

We will also need an assumption of the irreducibility of matrices A and M which

follows from

Assumption 3.2 The triangulotion of 0 that gives rise to matrices A and M

forms a connected graph in R2,
We have

Lemma 3.1 Under Assumptions 8.1 and 8.2 the smallest eigenvalue of (8.2) M\

18 simple and the associated eigenvector x; can be faken componentwise positive.

Proof. We can rewrite (3.2) as

A 1Mz = A1z, (3.3)

From Assumption 3.1 it follows that all the entries of A-1 and M are nonnegative
and Assumption 3.2 implies that these matrices are irreducible. Therefore the

product A-1M is nonnegative and irreducible. The Perron-Frobenius theorem
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(see for example [25]) guarantees that (3.3) has a simple largest eigenvalue p,,,
and the corresponding eigenvector z; can be chosen componentwise positive. The
original eigenvalue problem has the smallest eigenvalue A\; = p~1 with the same
eigenvector T 1.

This lemma provides a discrete version of the corresponding result for the
continuous problem (3.1) [14].

We will compute the smallest eigenvalue of (3.2) minimizing the Rayleigh quo-

tient

T Az
oTMx

A =minp(z) = min (3.4)

z#0

To apply the domain decomposition technique to this problem we represent
Q as a union of overlapping subdomains: Q = U/ Q,. Let {V;}7 be the finite
element subspaces corresponding to this partition and let P’ denote the orthogonal
projection into the subspace V;, its transpose F; is the prolongation operator from
V. to V = R". We also introduce the M-norm of a vector ||z]|y = (2T Mz)/2,

The multiplicative Schwarz algorithm for solving (3.4) analogous to Algorithm 2.1
of Chapter 2 was proposed Kaschiev [16] and Maliassov [21]. They showed that

the subspace minimization (2.2) for problem (3.4)

p(ak+ilTy = 511613 p(aF 0T + Pid,) (3.5)

results in an eigenvalue problem of size (n;+1) x (n;+1), where n; is the dimension

of the subspace V.
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To gee that we introduce the notation

. dk
=] (3.6)
1
Pt = ( P, LhEE ) (3.7)

and represent the subsequent iterate
o F = R 4 P.dk

as

We can rewrite (3.5) as

- Pkdk\T A( Pkdk

IIl}np(szdk) o m}n ( k3 ....?') ( 3 1)

a U (RrTM(PYY)
dr" Ak gk

= min jT bt

d gk MFdh

(3.8)

where

As = PFTAPE

A (3.9)
MF = P¥'MPE
The form of (3.8) suggests that the subspace problem (3.5) is the eigenvalue prob-

lem with matrices Ai.c and M f

Akl = p(aPt ) Mbdk. (3.10)
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The matrices A¥ and M} preserve the sparsity of the original matrices A and M
except for the last row and column, therefore the minimization subproblem can be
efficiently solved by standard methods such as inverse iteration.

Algorithm 2.1 of Chapter 2 applied to the eigenvalue problem (3.4) becomes

Alg. 3.1 - Multiplicative Algorithm for Figenvalue Problem
Starting with x° for k = 0 until convergence
Jori=1:J

using zFHE-D/Y construct matrices A% and MF and solve (8.10)

. dk
for min. eigenvector df = * |, then update and normailize
1
ghtT = ghHi-D/7 1 Pk (3.11)
o

okt

e

——— 3.12
R .

end

end

end

The normalization step (3.12) can be performed either after each subspace
iteration or after a loop over all the subspaces is completed. The convergence of

this algorithm was proven in [16] and [21] with the assumption that the initial
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guess ¥ satisfies
A < p(zY) < Ay (3.13)

Lui {20] pointed out that the algorithm can break down in certain degenerate
cases when it faces the problem of not being able to find the required correction
from a current subspace (3.5). This happens when the solution to the eigenvalue

problem (3.10) has a zero component corresponding to the previous iterate

dk _ ¥
AR | = platti)ME T (3.14)

0 0

and therefore cannot be scaled to match (3.6). Lui proved convergence to the
smallest eigenvalue A, for a modified algorithm in the case of two subdomains
under condition {3.13).

Before we proceed we formulate a lemma that guarantees that once initial-
ized with a componentwise positive vector the iterates produced by Algorithm 3.1

cannot have components of mixed signs.

Lemma 3.2 Under Assumptions 8.1 and 3.2 if Algorithm 3.1 is initialized with
a componentwise positive £° and if the subsequent iterotes H+7 are defined, they

are also componentwise positive.

Proof. We will argue by contradiction. Suppose x is the first iterate of Algorithm

3.1 that has a non-positive component. First we assume that z does not have zero

x
P
components and therefore can be represented as xz = , where components

_mn
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of x, and =, are positive. Let

A A Apn M= My My
Ag‘n A Mg; M,
Lp
be the corresponding partitionings of A and M. For the vector z, = we
xﬂ,
have
oAz, = zlAym, + 20T A2, + 2l Ay,
< :ngAppas.p — ng’Apnmn +aT A,
= zTAz.

The inequality is strict because Assumption 3.2 implies that A and M are not

block diagonal and th.erefore the block A, cannot be zero. Similarly
Mz, > 1T Mz
and
plzy) < p(z).
Since we assumed that z is produced from a positive vector by changing some of
its components we conclude that =z, can be formed the same way and therefore z
cannot correspond to the optimal choice of the subspace correction.

If  has zero components then for =, that is again formed of the absolute values

of the components of z the above inequalities are not necessarily strict

plzy) < pl).
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In this case the representation of z, is

Ty o= , (3.15)
Ty

where z, > 0 and z; is a zero block. Then the vector

. Ly

Ty = ,
_ A=l gT
Ao Apomp

where Ag, and Ay, are the blocks of A corresponding to the partition (3.15), is

componentwise positive. We have

ST Az — T _ 4T —1 AT
PLAT, = ziAzy — 2 A Ayl AL,
T
< ziAz,
< ¥ Az

and

=T M5 T
Mz, > ziMz,

> ' Mz,

For the same reasons as above the vector z cannot result from the optimal sub-
space correction of a positive vector because the vector £, can be produced by a
correction from the same subspace and results in a greater reduction of p. O

The breakdown of the algorithm (3.14) occurs if the eigenvector corresponding

to the minimum eigenvalue is contained in one of the subspaces V;. To prevent
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this we can formulate a natural assumption that this eigenvector is not contained
in any of the subspaces V;, which means that the Rayleigh Quotient over each of
the subspaces V; should exceed the minimum eigenvalue A;.

Assumption 3.3 For oll subspaces V; the constants

: dT PTAP.d,
AW = min p(d,) = . .

qEv, &evi dF PTM Py, (8.16)

satisfy ,\?) > Al

Lemma 3.3 Let Assumptions 8.1, 8.2 and 3.3 hold and let Algorithm 3.1 be ini-
tialized with a componentwise positive vector 0. Then for alli and k the eigenvec-

tor d} corresponding to the lowest eigenwalue of (3.10) has a nonzero last component

and therefore the update step (3.11) of Algorithm 3.1 is well-defined.
Proof. Assuming the contrary we can rewrite (3.14) using (3.7) and (3.9) as

PTAPd} = p(P,d¥)PY M Pyt

oFH0T (AP dE — p(P,dF)MPd¥) = 0. (3.17)

From the first condition it follows that (p(Pd;),d;) is the lowest eigenpair of the
problem with matrices PTAP; and PYMP;. These matrices satisfy Assumption
3.1, and because of Lemma 3.1 the eigenvector df can be taken componentwise

positive. The residual vector

rh = AP, d} — p(P,dF)M P,d¥
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satisfies Plr® < 0 componentwise since, as an M-mafrix, A has non-positive off-
diagonal block P1AP; and the corresponding block of M is nonnegative. Besides,
Pyrk == 0 and therefore, 7 < 0 componentwise. Since z#+i~1)/7 is componentwise
positive (Lemma 3.2} from (3.17) it follows that r¥ = 0 which in turn implies
that P,d; is an eigenvector of the unrestricted problem (3.2). Since Pd; has all
its components of the same sign we have p(Fd;) = A; which violates Assumption
3.3. |

This lemma shows that the subspace correction update (3.11) is always well-

defined. Now we can formulate the convergence result.

Theorem 3.1 Let Assumptions 8.1, 8.2 and 3.3 hold then vectors z* and the
corresponding Rayleigh quotients p(z*) produced by Algorithm 3.1 converge to the

lowest eigenpair of discretized problem (8.2) if z° is chosen componentwise positive.

Proof. Since the sequence p(x#+i/7) is non-increasing and bounded from below by
Ay it converges. We will show that its limit 5 is an eigenvalue of (3.2) and that the
sequence z* converges to the corresponding eigenvector . Then using Lemmas
3.1 and 3.2 we will show that p= A,

First we point out that for any & and ¢ we have
plat+) < AP, (3.18)

where ,\?) is given by (3.16). To show that we notice that choosing z = Pd;,

where d; is the optimal vector for (3.16) we have p(z) = A but, as it follows from
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Lemma 3.3, the optimal z%*7 is of the form zF*+7 + P,dk and since the lowest
eigenvalue of the restricted problem is simple we have (3.18).

From (3.10} it follows that

PT (A — p(a"*3)M) Pt = PT (p(a*+7)M — A) +7 (3.19)

and

LT (A _ p($k+—}'—)M) Pt = 2T o krist (p(a:"‘*l&) _ p(aht S )) _

Combining the two equations above we get

f f i1 T i i i

¥ pr (A ~ p(m’“*T)M) Pk = g5 Mab+T (,o(:r:’“r ) — p(a;“?)) :
(3.20)

Since p(z*+i/7) converges as k — oo and because of normalization (3.12) the right

hand side of the above expression converges to zero as & — oo for every ¢ therefore

the left hand side converges to zero. Using (3.18) and (3.16) we can estimate the

left hand side of (3.20)
AT PT(A ~ p(a* M) > (M) — p(a*7)) dbT PTM P}
> (A = p(z"*7)) dF" PT M P.d}
> adt PYMP,d¥,

where

J . ;
o= IIEP (Agz) _ p(m""‘ﬂ) >0
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and since the left hand side of (3.20) converges to zero and M is positive definite
we conclude that the vectors P,d¥ converge to zero componentwise as k — oo for
every 4 and the iterates z*¥/7 converge to an M-normalized limit Z.

If we take the limit of (3.19) we get
PT(pM — A)Z =0
and since the prolongation operators P, span the entire space we have
(A~ pM)E =0

which shows that (7, %) is an eigenpair of (3.2). From Lemma 3.2 it follows that
7 is componentwise positive and since the eigenvectors are M-orthogonal and the
smallest eigenvalue is simple and the corresponding eigenvector is componentwise

positive we conclude that (p, %) is the lowest eigenmode of (3.2). O

3.1.2 Coarse Grid Correction and Multilevel Method

We can modify Algorithm 3.1 to include the coarse grid correction after a loop
over the subdomains is completed as we did for Algorithm 2.2. The effect of the
this correction for a model problem of 2-D Laplacian in a unit square is shown in
Figures 3.1 and 3.2. We can see that without the coarse grid the convergence rate is
dependent on both the meshsize and the number of subdomains whereas after the
coarse grid correction has been added the convergence rate becomes independent

of both fine and coarse meshsizes h and H.
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h=1M2; H=1/4,1/6 h=1/16; H=1/4,1/8

lterations Herations
h=1/24;, H=1/4,1/8,1/8,1/12 h=1/32; H=1/4,1/8,1/16

lterations lterations

Figure 3.1: Algorithm 3.1 for 2D Laplacian without the coarse grid correction.
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h=1/12; H=1/4,1/5 h=1/186; H=1/4,1/8

0 2 4 6 0 2 4 8
Hetations Eerations

h=1/24; H=1/4,1/6,1/8,1112 h=1/32; H=1/4,1/8,1116

Error

lterations lterations

Figure 3.2: Algorithm 3.1 for 2D Laplacian with the coarse grid correction.
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Since the subspace problem is of the same type as the original one i.e. a gener-
alized eigenvalue problem, we can make the algorithm more efficient by applying
it recursively. Instead of solving the eigenvalue subprobiem over a subdomain by
some other method we can apply several iterations of the same algorithm. Apply-
ing that recursion to the multiplicative method with coarse grid correction we can
view the resulting scheme as a multilevel method and the iterations performed on
each level as the smoothing of the solution. As we pointed out in section 2.4, the
recursion can be stopped once the subproblems we are solving reached some small
enough fixed size C, and traditional inverse iteration can be applied.

We should remark that at each successive level the subproblem matrices get
appended by a deunse row and column. We may think of the corresponding com-
ponent as of a fictitious gridpoint for a subdomain at the current level. At the
coarsest level the subproblem matrices will be appended by rows and columns
coming from the previous levels.

Though the presented algorithms are sequential we can add some degree of

parallelism using multicoloring technique (see for example [8]).

3.1.3 Alternative Variational Characterization of the Smallest Eigen-

value

A different variational formulation for the symmetric positive definite eigen-

value problem (3.2) was described by Mathew and Reddy (94) [23]. They pointed
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out that the minimal eigenpair (z1, A;) can be characterized as:

o(z)) = mino(z) = min (27 Az + p(1 - a7 Mx)?)

with
Ay =20 — /4t — dpo(z,)
and
At
iz l3, =1 %
for any

(3.21)

(3.22)

(3.23)

Unlike the Rayleigh Quotient minimization, formulation (3.21) is unconstrained.

The p-term in o(z) serves ag a barrier to pull z away from the trivial solution 0.

Using

Pz'k = ( P’i k-1 /T )

we can write the minimizaition step (2.2) of the multiplicative algorithm as

kil Ty — ; k.
o(zhl7) = min J(Fid,)

= min [(Prd;)TA(PE;) + p(1 — (P M(PFd;))?]

d;

d
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with
A} = PﬂszAP ;
MF = P¥ M P,

We can see that the subspace problem is again of the same type as the original
problem (3.21). To make it the eigenvalue problem with matrices (A, MF) we
should make a restriction on p similar to (3.23) replacing A; by the current value
of the Rayleigh quotient p(z#t#/7). Since the sequence of the Rayleigh Quotients

is non-increasing we can choose u satisfying

1> p{)/2 = po/2. (3.24)

Similarly condition (3.22) becomes

i kifJ
|zhtitd|2 = 1— plz)
M o (3.25)
> 1 £

2 TR
Remark 3.1 For any choice of p satisfying (8.24), one subspace correction step
for formulations (3.4) and (3.21) results in the same reduced generalized eigen-
value problem with matrices (8.9). The application of the multiplicative Schwarz
algorithm to both formulations results in the same approzimations to the lowest

etgenvalue and the approzimations to the eigenvector are the same up to normal-

ization.

The following lemma estimates the Hessian matrix of o(x)

H{z) = V2o(z) (3.26)

= 2(A —2uM) + 8uM (zzT)M + 4p(zTMz)M.
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in terms of A near the solution of (3.21). This estimate will allow us to use the
theory of Multiplicative Schwarz methods for minimization problems developed by

Tal and Espedal {29].

Lemma 3.4 Lei

plz) < py < 21E (327)
and
1- 22 < a2, < 1. (3.28)
24 !
Then if = 2p, the Hessian (8.26) satisfies
A < H(z) < cyA, (3.29)

where the constants ¢; and ¢y can be chosen independently of the discretization

parameters.

Remark 3.2 Conditions (5.27) and (3.28) provide the directional and the radial
restrictions on z. The equivalence of the minimization of o(z) and p(z) (Remark
3.1) implies that that if condition (8.27) is satisfied for the initial approzimation
T it 48 satisfied for all the subsequent iterates x*. The radial estimate (8.28) is
not restrictive because even if it is not satisfied by x, condition (3.25) enforces it

for all the subsequent iterates.

Proof. Given z satisfying (3.27) and (3.28) we can represent any y € R" as

Y=Yy T+ YL,
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where y, is the M-orthogonal projection of y on span(z).

Condition (3.27) implies that there is a € (0, ;) such that
p(z) < po = (1 = a)A; + adg (3-30)
and since y, is M-orthogonal to z we have
ply) > ol + (1 —a)ly. (3.31)

Using the lower bound for [|z||2, from (3.28) we get

SHy, > o (2<A — D)+ SysM (zaTYM + 4p(1 — %)M) "

=yl (2(4 — poM) + 8uM (zzT)M)y,

> 2yT Ay, — poyt My,)

Lo
= 211— T Aq
( p(yJ,))yJ“ -

~ 2(1 - 204)@2 - )\1)
- AL+ Ay

yT Ay, (3.32)
where the last inequality follows from (3.30) and (3.31). We also have

yTHy, = 247 Ay, (3.33)
and with our chose of = 3p,

yFHy, > 24T Ay, — syl My,) + 8u(a™ Mz)(yT My, )

o
> 2y, Ays — poyl My,) + 8 (1 - ﬁ) (yT My,)
= 2yl Ay, + (4p — 3po )y My,,)
= 2y, Ayo. (3.34)
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Since for o € (0, 2)
2(1 — 2a)(Ay — Ay)

<2
Ayt Ay

from (3.32), (3.33) and (3.34) it follows that
yTHy 2 cy” Ay

for any c; satisfying

¢, < 2(1 — 2@)()\2 - /\1)‘
At Ay

(3.35)
To find an upper bound for H we use the upper bound for ||z[|3, in (3.28).

y'Hy = 297 Ay — dpuy” My + 8u(y" Mz)? + 4uy” My) (2" Mz)

< 2y Ay + 8ulyT My) (2T M)
4
< 2 (1 + —M) yT Ay
p(y)
p(y)
S 2(4: — 301))1 + (l’)\zyTAy
A
and if ¢, satisfies
4 — 3a) A A
¢, > g 3N F ok (3.36)

M
we have the upper inequality in (3.29). The values of the parameters ¢, and

¢y satisfying (3.35) and (3.36) can be chosen independently of the discrefization

parameters of the problem. O
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Remark 3.3 The specific choice for yu = %pg was made for the analysis purpose
only. The algorithm results in the same iterates and therefore provides the same

convergence rate for oll values of y satisfying (5.24).

Condition (3.29) allows us to use the theory of Multiplicative Schwarz methods
for minimization problems (Tai, Espedal, 96) [29]. The convergence rate parameter
6 {2.14) for Algorithm 2.2 can bounded in terms of ¢; and ¢, and therefore is inde-
pendent of the meshsize and the number of subdomains. Besides the equivalence

- of the formulations (3.4) and (3.21) stated in Remark 3.1 gives the following

Theorem 3.2 The iterates produced by Algorithm 3.1 with coarse grid correction
applied to (3.4) and initialized with zq such that p(zy) < 21522 produces iterates

that satisfy
_ kL2
bl
o — 2%
where (x1,\) s the minimum eigenpair of (8.2) with ||z1||p = 1 and the value of

& s independent of the meshsize h and the number of subdomains J.

This theorem also provides an alternative proof of the convergence of Algorithm

3.1 in case of

AL+ Ay

plzy) < 5

3.2 Simultaneous Computation of Several Eigenvalues
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3.2.1 Generalization of the Rayleigh Quotient Minimization

In this section we consider the problem of finding m lowest eigenmodes of (3.1)
which in the discretized form corresponds to finding m lowest eigenvalues and the

corresponding eigenvectors of (3.2). This problem can be formulated as
AX = MXA,

where A is a diagonal matrix of m lowest eigenvalues of (3.2) and X is an n x m
matrix whose columns are the corresponding eigenvectors.
In order to generalize the definition of the Rayleigh Quotient to the case of

several eigenvalues we consider a matrix
R(X) = (XTMX)Y(XTAX) (3.37)

and use its trace as a generalized Rayleigh Quotient of the m-dimensional subspace

spanned by columns of X
Py (X) = tr(R(X)) = r((XTMX)H(XTAX)). (3.38)

. The subscript (m) is introduced to distinguish the generalized Rayleigh Quotient
from the standard one in case of m = 1.

The following lemma shows that the p(,)(X) defined by (3.38) is invariant with
respect to linear transformations and therefore characterizes the column space of

X.
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Lemma 3.5 For any n X m matriz X of full column rank and any nonsingular

m X m matriz U we have

Py (XU) = prmy(X).

Proof. We have

i

RXU) = (XU)YTMXU)((XU)TAXU)
= U Y XTMX)\WU-TUT(XTAX)U

= U-'R(X)U,

and therefore, since matrices R(XU) and R(X) are similar, they have the same
gpectrum and trace. O

We shonld also point out that the order of multiplication in R(X) (3.37) which
is somewhat arbitrary does not affect pi(X).

Now we are ready to give the problem of finding m lowest eigenpairs (A, €;)1—1..m

of (3.2} a minimization formulation.

Theorem 3.3 If X* is a solution of

then
pem(X*) =" N
=1

and the columns of X form a basis for the space spanned by m lowest eigenvectors

of (8.2).
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Proof. Since we can transform (3.2) to the equivalent problem with identity mass

matrix

M3 AM 3 (M2z) = A(Miz)

and the generalized Rayleigh Quotient is invariant with respect to this transforma-
tion it suffices to show that the statement is true for the case when the matrix M is
identity. Besides, the lemma shows that without loss of generality we can assume
that the columns of X are orthonormal. We can append X by n —m columns such
that the resulting matrix X is unitary.

The Rayleigh Quotient p,,(X) is equal to the trace of the m x m block of
A = XTAX. Since the eigenvalues of this block when in increasing order are not
smaller than the corresponding eigenvalues of A (see for example section 10.1 of

Parlett’s book [26]) and since the spectrum of A matches that of A we have

p(m)(X) > Z)\l
=1

If X* is formed by the eigenvectors corresponding to the lowest m eigenvalues the

above inequality becomes eqguality. O

3.2.2 Subspace Correction for Simultaneous Computation of Several

Eigenvalues

In this section we adjust the subspace correction algorithms presented is section

3.1 to the case of finding several lowest eigenmodes at once. Let X k5 e the
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current approximation to the solution of (3.39), then the next iterate is of the form

i—1

Xk—i-}; — Xk+ 7 + Pina
where DF is the n; X m matrix of full column rank that solves the subspace problem

Py (XY = min poy (XM 4+ BD)). (3.40)

D;ERMi*m
As we did in Chapter 3 we introduce auxiliary matrices

~ Dk
D:F = i Pz'k — ( P, b G ) (3.41)
I

and since we can write the new iterate as
Xk+F = PkDk
1 1

the minimization problem (3.40) becomes

Py (XF5) = mintr (((PEDHTMPEDE) ™ ((PEDRTAPEDY) )
Dy

— mintr ((ﬁfTMfﬁf)“l(ﬁfTAfﬁf)) (3.42)

with
Ak = P" APF and M} = PFT MPF.
The final expression in (3.42) is just the generalized Rayleigh Quotient for the pair

(A, M*) and therefore the columns of Dmf that minimize (3.42) are eigenvectors

corresponding to m lowest eigenvectors of the corresponding restricted problem.
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Remark 3.4 Since pgy, (X) is snwariant with respect to linear transformations of
X the identity block I, in the definition of ﬁf (8.41) is chosen just for the sake
of stmplicity and can be replaced by any nonsingular m X m mairiz. Therefore the
minimization (8.42) can be carried over all n x (n;+m) matrices D, of full column

rank.

We conclude this section pointing out that the alternative minimization for-
mulation for the eigenvalue problem (3.21) also has a natural generalization for

finding several lowest eigenmodes.

- - T _xT 2
o(X) = Xgl{lﬁ:;mtr (XTAX + (I, — XTMX)?)
= i T - XTMX|2 4
Xg{lﬂl}(m (t'r(X AXY + plll, HF), (3.43)
where || - || is the Frobenius matrix norm.

3.2.3 Numerical Examples on Unstructured Grids

As an example of applications discussed in the previous section we apply
the Multiplicative Schwarz method for simultaneous computation of four lowest
eigenmodes of 2-D Laplacian over a region whose fine and coarse triangulations
are shown in Figure 3.3. These triangulations are produced by Susie Go! using

SIMPLEX2D [4] package.

lsgo@math.ucla.edu
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We perform iterations using the multiplicative Schwarz algorithm with subspace
correction discussed in the previous section. We used a greedy algorithm deseribed
iu [7] to generate overlapping subdomains that generate subspaces V. The error
reduction for all four eigenmodes for the cases of 35 and 78 overlapping subdomains
(maximum number of nodes per subdomain is 31 and 21 respectively) is shown in
Figures 3.4 and 3.5. We can see that the effect of coarse grid correction is the
same as it is in the experiments of Section 3.1, it eliminates the dependence of the
convergence rate on the number of subdomains. To demonstrate independence of
the meshsize we perform the same computation using the next level of coarsening.
The grid containing 264 nodes is partitioned into 14 overlapping subdomains with
the largest subdomain containing 24 nodes. The error reduction per iteration is
shown in Figure 3.6. Comparing this example with the previous ones we observe
that the convergence rate of the algorithm is independent of the meshsize when
the coarse grid correction is added. Finally, the computed solution is shown in

Figure 3.7.

3.3 Graph Partitioning Using Spectral Bisection

As an application of the eigenvalue problem we consider the spectral bisection
graph partitioning method. This heuristic approach is designed to approximate

the solution of the problem of bisecting the connected graph into two parts with
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Figure 3.3: Airfoil grids for simultaneous computation of several eigenmodes.
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Figure 3.4: Simultaneous computation of four eigenmodes
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Figure 3.5: Simultaneous computation of four eigenmodes. 1067 nodes, 78 subdo-

mains.
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Figure 3.6: Coarser discretization of the problem. 264 nodes, 14 subdomains.
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Figure 3.7: Four eigenmodes of the Laplacian on the airfoil grid.
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the same number of vertices minimizing the number of cut edges. The spectral
bisection method relates this problem to the second eigenvector x4 of the Laplacian

of the graph defined as @ = (g;;) with

—1, if vertices 7 and j are connected
%5 = { degre of vertex 4, if i = j

0 otherwise

\

After the eigenvector z, is computed its entries are sorted by magnitude and the
median induces the partition. Futher details and motivation behind the spectral
bisection graph partitioning method can be found in [9].

To illustrate the method we apply it to the airfoil grids used in the previous
section. Since the first eigenvector of the graph Laplacian ¢} is a constant vector
we can find z, as the lowest eigenvector of () restricted to the space orthogonal
to constants using Algorithm 3.1. As in the previous section the subdomains are
chosen using a greedy algorithm described in {7].

The resulting bisection and the reduction in the number of cut edges are shown

in Figures 3.8 and 3.9.
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Figure 3.8: Bisection of the airfoil grid with 1067 nodes.
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Figure 3.9: Bisection of the airfoil grid with 264 nodes.
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CHAPTER 4

Applications to Optimization Problems Arising in Mathematical

Finance

In this chapter we consider applications of the subspace correction methods
to constrained optimization problems. As we did in the previous chapters, we
expect the resulting subspace problems to be computationally manageable even
if the original problem is big. Besides, as we will see in the first two examples,
the subspace problem can be conceptually simpler than the reduced version of the
original problem, which provides another advantage of using these methods.

Unlike the examples of the PDE-based optimization we considered, the prob-
lems addressed in this chapter are purely algebraic. Therefore, to handle this
problems using the subspace correction framework we, instead of partitioning a
continuous physical domain, group together the unknowns and perform the opti-
mization steps over these groups keeping the remaining unknowns fixed. In this
case Algorithm 2.1 becomes analogous to the block Gauss-Seidel method.

In this chapter we numerically analyze the application of this algorithm to the

following problems:

e Minimization of the Frobenius norm.
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(Given a symmetric indefinite matrix A with positive diagonal entries, find
the symmetric positive semi-definite M that coincides with A on the diagonal

and minimizes the Frobenius distance from A:

min  ||A— M.
M=MT3q
diag(M)=diag(A)

e Factor analysis problem.
Given a symmetric positive definite matrix A, find its best Frobenius ap-
proximation by a sum of a symmetric low rank and a diagonal positive semi-
definite matrices:

min [fA— M — Dl|p.
rank(M)<m
M=MT >0
D=diag(d)>0

¢ Constrained /,-norm minimization,

Given n X m matrix B and an n-vector f, find x that solves

min 1Bz — .
me RM

D{Bz)j=p

E(m)jzl

4.1 Frobenius Norm Minimization for Multivariate GARCH Estima-

tion

72



4.1.1 Problem Formulation and Numerical Solution

In this section we consider a problem that is related to the estimation of the
covariance matrix for the stock data using the multivariate version of the popular
GARCH! model. If the estimation of different entries is based on different observa-
tions then the resulting approximation to the covariance matrix can be indefinite
with positive diagonal entries that correspond to the observed individual variances
[17]. We will be looking for the positive semi-definite matrix that is the closest to
the observed one and preserves its diagonal.

Given an indefinite symmetric n X n matrix A with the property diag(A) > 0

we are looking for M that solves

min  ||A— M|z (4.1)
M=MT >0
diag(M)=diag(A)

We will attempt to solve this problem iteratively. At each step we will be
altering one column and the corresponding row of a feasible approximation M to
the solution of (4.1). Let the block representation of A and the current feasible

approximation to the solution of the problem above be

T T
Gy Oy Qqy My

A= M= ,
Gy Agy Moy Moy

where ay, and ms are (n — 1)-vectors.

1Generalized Autoregressive Conditional Heteroskedasticity
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Using a matrix of the form

p o
pP= ,

0 In—l }
where I,_; is the identity block and z is an (n — 1)-vector, we can introduce the

next iterate by

. pPoyy + 2paTmg) + 2T Myyz pml + 27 My,
M = PMPT = . (4.2)
pMgy + My Ma,

If we enforce the condition
prayy + 2pxTmg) + 2T Moyx = oy (4.3)

then the new approximation M satisfies the constraints of the problem: M =

MT > 0 and diag(M) = diag(A) and we have
14 = M3 — |4 = M3 = 2llag, = (g + Mygz) I} — 2llan — madi3-

Therefore, choosing = and p that minimize |la — (pmy + Mypx)||2 , we get the
optimal M of the form (4.2). It minimizes the objective function of (4.1) over
the matrices obtained form the previous approximation M by changing its first
row and column (4.2) and satisfies the constraints of the problem. This procedure
can be naturally generalized to changing the i-th column and row of the current

1terate.

Remark 4.1 The converity of the problem implies that the solution matriz M 1s

on the boundary of the feasible region, i.e. is singular. Since det(M) = p2det(M)
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we can make the iterates stay within the interior of the feasible region by initializing
the process with a nonsingular matriz and choosing p to be bounded away from zero.
Later on we treai p as a chosen constant between zero and one, in this case the

iterates approach a singular matriz not faster than exponentially.

One step of the iterative procedure becomes
mg}n”am — (pmg) + Myyz)|3
subject to (4.3), or introducing
b=ay — pmy
we can formulate the subspace problem
min (| Mypz — b3 (4.4)

still subject to (4.3).

The Lagrangian of this problem is
Lz, X) = || My — V|2 + AM(pPony + 2037 myy + 2T Mz — ayy)
and the optimality conditions are
F(x) = p*ayy + 2p2Tmy + 27 Mz — 0y =0 (4.5)

and

ViL(z,A) =0,
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which can be written as

M2z — Mb+ Apmy; + AMz = 0.

For any A (4.6) can be solved for z

£(0) = (M2 + AM)~L{(Mb — Apmay)

and

F(X\)=F(z(\) =0
can be solved using the Newton’s method

F(\)

A= — )
Fy(N)

To obtain the analytic expression for I}, (A) we can differentiate (4.5)

F\(A) = V F(x) - 3y = 2(pmy + Ma)T5,

and differentiate (4.6) in A

M?zy + pmg, + Mz + Mz, =0,

to get

Ty = —‘(M2 + AM)_l(pmzl -+ M.’,U),

which we substitute in (4.9)

Fy(A) = =2(pmay + Mz)" (M? + AM)~* (pmy + Mx).
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We can sumimarize the solution of the subproblem:

Alg. 4.1 - Newton’s Method for solving (4.4}, (4.3)
Initialize X (say A =0)
Compute = by (4.7)
Compute F(X) and F\(X) using (4.5) and (4.10)
Update X using Newton's step (4.8)
Repeat the Newton’s procedure

end

Remark 4.2 The ezpressions (4.7) and {4.10) involve the inverse of M? + AM
which is singular if M is. Reslricting p to be a nonzero constant and choosing the
initial guess to be positive definite we prevent M from being singular. A natural

choice for the initial guess might be the diagonal of A.

Now we can formulate the entire procedure.
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Alg. 4.2 - Block Gauss-Seidel method. Frobenius minimization
Choose p € (0,1) and initialize M = diag(A)
for k = 0 until convergence
fori=1:n
Use Newton’s Method to find x that solves subproblem
(4.4),(4.8) for the i-th row/column of MF+E-1/n,

Update the iterate:

p zr
Mt MEHGE=1)/n
L R
end

end

end

4.1.2 Numerical Examples

We illustrate the above algorithm with 20 x 20 and 50 x 50 examples. In both

cases we initialize M with the diagonal of A and continue the procedure until

the convergence is suspected. In Figure 4.1 we see that the convergence is slower

for higher values of p. It happens because the solution M is singular and large

values of p limit the rate at which the iterates approach a singular matrix. If p is
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cosen to be small the convergence is faster but this choise can be disadvantageous
because, as the iterates become ill-conditioned, the numerical errors that arise in

the solution of equations (4.7) and (4.10) can become significant.

4.2 Factor Analysis Problem

In this section we consider a problem of approximating a symmetric positive
definite matrix by a sum of a low-rank and a diagonal positive semi-definite matri-
ces. Usually this problem is applied to the covariance matrix of a system of random
variables, for example stock returns. The low-rank part can be represented as the
product of factors that capture the common sources of variation, while the diago-
nal corrections correspond to the residuals and represent the individual sources of
variation.

Given a symmetric positive definite n X n matrix A we are looking for the

solution of
win A — M — Dl|, (4.11)

where M is symmetric positive semi-definite matrix of rank at most m < n and D

is non-negative diagonal.
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Figure 4.1: Reduction in Frobenius distance for n = 20 and n = 50 with different

values of p.
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4.2.1 Numerical Solution
We can represent M and D as
M = BBY (4.12)
and
D = diag{d)?, (4.13)

where B is an n X m matrix and d is an n-vector. Representation (4.12) is unique
up to similarity transformations B «— BU and (4.13) is unique up to the signs of
the components of d.

Similarly to the approach we chose in the previous section we will be looking
for M and D iteratively by altering the ¢-th row and column of M and the i-th
component of 1D during each step. In terms of B and d it amounts to changing the

i-th row of B and i-th component of d. For ¢ =1 let

bT )
B = and d=

B, dy

and let the corresponding representation of A be

T
Q1 Gy

A=
Ay Ap

With B, and d, being held fixed the original minimization problem (4.11) results

in

min (s — B7b — 62)2 + 2fjazy — Byb|3)- (4.14)
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We can solve this problem by first solving the least squares problem

mbin llag — szll’é
to find

b= (Bj By)ay
and if 6Tb < v then this b and

62 = ay; — b
solve (4.14). Alternatively, if b defined by (4.16) satisfies
bTh > oy

then § = 0 and b that solves (4.14) also solves

mbin ((an — bTh)? + 2||ag, — szlli)-

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Since the objective function in (4.19) is smooth, its gradient should be equal to

zero at the solution

4:(bTb - ali)b + 4(Bngb e Bgam) = O

or

((bTb —_ Ol]_l)I - B;Bz)b - Bgazl.

(4.20)

This problem can be solved using the Newton’s method. For o > 0 we consider

bo. = (O'I + Bng)mlB;agl
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Figure 4.2: Monotonicity of f{c) for the factor analysis problem.

and
flo) =0T, —oyy — 0. (4.22)

It is easy to see that if f(o) = O then the corresponding b, solves (4.20). This
solution exists because (4.18) implies f(0) > 0 and lim,_, , = —co. Uniqueness

follows from the monotonicity of f(o) that is shown below. From (4.21) we obtain

b,

E == —(O'I—i- Bng)_lbg
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and therefore

of ob

A 1 g Ay |

do g .
= _—2bg’(crI + B;FBQ)“IE)[T —1
< 0.

A typical example of f(o) is shown on Figure 4.2.

We can apply the Newton’s method for solving f(b{c)} = 0:

Alg. 4.3 - Newton’s Method for solving (4.21), (4.22)
Instialize o (say o =0)
Compute b, by ({.21)
Compute f(o) and Q%%”—rl from (4.22) and (4.23).
Update o using Newton’s step ¢ « o — f(cr)(‘r"“tf_)—{;l)*1
Repeat the Newton’s procedure

end

The entire procedure for solving the problem (4.11) becomes:
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Alg. 4.4 - Block Gauss-Seidel method. Factor Analysis Problem
Initialize M® = BB and DV = diag(d®)?
for k = 0 until convergence
fori=1:n
Update i-th row B of BF+-0/m gnd § = d-FED solying
(4.14) either by (4.16)-(4.17) or using Newton’s Method

to get BF+i/n gnd dk+i/n. Update the iterates:
MFEVin = BhtifaktiinT D = digg(dhti/m)®

end
end

end

The reduction in the objective function for problems of sizes 20 x 20 and 40 x 40

are shown in Figure 4.3.

4.3 Gain-Loss Optimization
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20 by 20 problem

Error

lterations

40 by 40 problem

Iterations

Figure 4.3: Error reduction for the factor analysis problem with n = 20 and n = 40.
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4.3.1 Problem Formulation

The gain-loss optimization constitutes an alternative to the mean-variance op-
timization for portfolio selection [22|. Let B be an n X m matrix B each of whose
columns contain returns for a particular stock and whose rows correspond to differ-
ent, times when this returns are computed. For any m-vector x whose components
represent the weights of the stocks in a portfolio the components of the product
r; = (Bz); give the returns for the portfolio at different times. The positive part
7 and the negative part r;” of the return components correspond to the gain and
the loss respectively.

We consider the gain-loss optimization problem of finding a portfolio z that
minimizes the loss 327, 7, while the gain 37, r is kept fixed.

Because of the relations

o = (Be (4.24)
i+ = |(Bz)

and consequently

|(Bz);| + (Bx);

rt =
t 2

_ _ @) - (Ba),
i 2

the gain-loss optimization problem can be put in an equivalent form of minimizing

the sum of the gain and the loss

min f(z) = min || Bl (4.25)
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subject to the overall return 37" r; being held fixed

n

S (Bs); = p (4.26)

i=]
We assume that the portfolio z is normalized, i.e. the weights (which can be

negative) add up to one

il(a;)j — 1, (4.27)

Remark 4.3 To avoid multiple solutions of the problem (4.25)-(4.27) we assume
that the dimensions of B satisfy m < n+2 and that the columns of B are linearly

independent. For many practical problems we have m <€ n.

In order to allow the future derivation of the block Gauss-Seidel method for

this problem we generalize the objective function (4.25)
min P(z) = min | Bz — fll, (4.28)

where f is a given n-vector. We will also normalize the condition (4.26) replacing

B by pB:

3 (Ba); = 1. (4.29)

i=1
Introducing an m-vector ¢ of ones and an m~vector b, of column-sums of B we can

represent the constrains (4.27) and (4.29) as

efz=1 and blz=1 (4.30)
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The problem (4.28), (4.30) can be transformed to a linear programming for-

mulation (cf. [10]). Representing the residual vector as a difference of two vectors

with nonnegative components { Bz — f); = rj —r; we can formulate the equivalen
problem as
F (2 k£

min rF4+ Y ro
Subject to

Br Art—r— = f

ely =1

bl = 1

[+

7 > 0

Several algorithms based on the simplex method were proposed for this problem
(|21, 13]), but in this work we will apply an interior point method analogous to the

one discussed in [31].

+
i Xy

We can represent z as z; =z and put the problem in canonical form

n n
piy (; i+ ; r;) : (4.31)

subject to
Bzt — Bz~ +4rt—r- = f
elyt — elTg— = 1
(4.32)
bret — blp— =1
< [
ij, T = 0.
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The matrix of the constraints for this problem is

(B -B I —-I

Ay=1¢er —e 0 0 |- (4.33)

BT —bT 0 0

4.3.2 Dual Problem and Interior Point Algorithm

The dual for the problem (4.31), (4.32) is

max ffy+a+f

yeR™ o, 8
subject to

O

Y
U

Agl (8 g H

eﬂ.

g
eTL

which can be written as

min  —fTy—a—

yER™ 0,8
with
BTy-+efa+b'6 =0,
-1<y; <1 j=1...n.
Changing

yitl—y,
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and adding slack variables z; , § = 1...n we get the problem in canonical form.

m' —_ T pa—" + -+ - -
e P o S BT

subject to
BTy +eTat + 0T+ —eTa~ — b3~ =
¥tz =2 j=1...mn
?lj:zjaﬂfi;ﬁi >0
The constraint matrix of this problem is

BT C 0
Adﬂ 5

I o0 1

where the block C is given by

Cz(e b, —e —bc)-

We can rewrite this problem in a more compact form

min &7
i
subject to
Agi=b,  §20,
where
ot
Y —f
g y be 3
Y= a y &= 3 b= ; €= c
(s 2e,,
z On
ﬁ_
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(4.35)

(4.36)

(4.37)




Since this problem is equivalent to the dual of of (4.25)-(4.26), its dual is quivalent
to the original problem and it is easy to verify that the solution to the dual of

(4.36)-(4.37) is

To recover the solution z of the original problem (4.28), (4.30), we can apply

the iterior point algorithm (see for example [1] p.84) to (4.25)-(4.26):
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Alg. 4.5 - Interior Point Algorithm for solving LP-problem

(4-36)-(4.37)

1. Set k =0, start with o feasible interior §° (i.e. Agf® =b, i° > 0)

2. Define
D = Dk = diag(y, vk, ... yF)
ok
3. Find the primal estimate % = — by solving
ptk
(AgD? ATk = A, D% (4.38)

4. Find 2* = ¢ — ATT* and the step direction
d?j’“ = 2k
5. Update the dual estimate by

gL = §* + podi®, where O0<p<l and

~k
o = min —ﬂ}—: for dy® >0
i dyf i

6. Terminate if stopping criteria ore satisfied, otherwise go to 2.

end
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Remark 4.4 The structure of ({.86)-(4.37) allows to initialize the method with a

(2n + 4)-vector of ones
’y”(} = Contda

which is feasible for this problem.

The only computationally involved stage of Algorithm 4.5 is step 3 which re-
quires forming the matrix A;D2AT and solving a linear system (4.38) with it. The
advantage of the dual formulation described in this section is that for the matrix

Ay given by (4.34) we have

BTD?B + CD2CT D;BT
AdD2Ar£ = v 3
BD; D; + D?
where D,, D, are the blocks of D corresponding to y, z variables and D, to a, I5}

respectively. Since this matrix has a big diagonal block D-.j + D? we can use its

Schur complement
S = B(D; — D;(D; + Dﬁ)“lD;)BT + CDXCT (4.39)

to compute the action of its inverse.

The matrix (4.39) is easily computable and the cost of computation for a dense
matrix B is O(nm?). Direct computation of the inverse of S which is of the size
m X m requires O(m3) < O(nm?2) operations. Therefore, we can conclude that the
cost one iteration of the algorithm is O(mn?). This makes it more advantageous

to use the dual formulation of the linear programming problem with the matrix
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of constraints A; (4.34) rather than the primal one with the matrix A, (4.33)
whose structure doesn’t allow to use fewer than O(n®) operations per iteration

when applying the interior point iferation.

4.3.3 Subspace Correction and Gauss-Seidel Method

As we did in previous sections we can apply the subspace correction approach
to the problem (4.28), (4.30). Let z be the current feasible approximation to the
solution and P be an m X n; prolongation matrix (n; < m). The best correction

z < z + Pd, where d is a n;-vector satisfies

fIllgiRnk |1BPd+ Bz — flh (4.40)
subject to
i(BPd)i =1- i(Bx)i =0 (4.41)
i=1 i=1
and

i(d)j - é(Pd)j 1 é(x)j —0. (4.42)

=1 =

The problem (4.40)-(4.42) is of the same type as (4.28), (4.30) and therefore
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can be solved by the same interior point procedure with the following adjustments:

z — d

B — BP (4.43)
¢ —- CP (4.44)
f = f-Bz

c — 04

We can see that because of (4.43) and (4.44) the Schur complement (4.39) for

the subspace problem is related to the original one as
5 — PSPT,

Therefore, performing one iteration of the interior point algorithm applied to a
subspace problem corresponds to performing one step of the Gauss-Seidel method
for the linear problem (4.38) of Algorithm 4.5 applied directly to (4.36)-(4.37).

As we pointed out in Section 2.3, Algorithm 2.4 can converge to a bound-
ary point of the feagible set which is not the solution of the problem but further
improvement over the subspaces V; is not possible.

This situation is illustrated in Figure 4.4. We consider two examples with
matrices B of sizes 128 x 32 and 1000 x 10 that contain actual stock data. In both
cases we represent the unknown variables as three overlapping groups and apply
Algorithm 2.4 to the corresponding problems (4.28), (4.30) using one iteration

of Algorithm 4.5 to approximate the solution of the subspace problems. From
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the plots we can see that if we choose the value of the parameter p in step b of
Algorithm 4.5 large the iterates converge to a point that does not optimize the
objective function. To explain this we should point ouf that the parameter p < 1
controls the rate with which the iterates approach the boundary of the feasible
region. Small values of p postpone hitting the boundary at the point where further
improvement in the objective along the chosen subspaces is not possible.

Nevertheless, the subspace correction method that produces the iterates that
converge to the true solution can still be applied to (4.28), {4.30). Rather than
using Algorithm 4.5 as a method for solving the subspace problems of Algorithm
2.4 we can use it directly to solve (4.28), (4.30) but apply the subspace correction
method (in this case Gauss-Seidel} to its crucial step (4.38).

We conclude this chapter illustrating the solution of (4.25)-(4.27) for different
values of p and generating the efficient frontier shown in Figure 4.5. The point on

the frontier that maximizes the ratio

lIBzl,

can be found by solving (4.25) using just one normalization constraint (4.27).
Finally, the efficient frontier in terms of gain-loss variables Y7, ri" and 37, vy

can be found using the transformation (4.24) and is shown in Figure 4.6.
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Figure 4.4: Error reduction for the /;-norm minimization problem with 3 subdo-

mains and different values of p.

98



sum(Bx)

sum(B*x}

128 by 32

0.5+

G Tangency portfolio
~ — Multiples of Tangency porifolio
— Efficlent Frontler

1 L i i 1 1 I

1.8

16

1.4

1.2

0.8

0.6

0.4

0.2

0.5 1 1.5 2 2.5 3 3.5
sum{abs(B*x})

1000 by 10

T T H T T

o Tangency portiolio
— — Multiples of Tangency portfolio
—— Efficlent Frontier

! 1 1 1 ¢

3]
sum(abs(B*x))

iz

Figure 4.5: Efficient frontier for the minimization of the {;-norm.
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Figure 4.6: Gain-loss efficient frontier.
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