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ABSTRACT

Total variation (T'V} minimizing irnage restoration is a fairly new approach to image restoration, and has been shown
both analytically and empirically to be quite effective. Qur primary concern here is to develop a spatially adaptive
TV minimizing restoration scheme. One way of accomnplishing this is to locally weight the measure or computation
of the total variation of the image. The weighting Tactor is chosen to be inversely proportional to the likelihood of
the presence of an edge at each discrete focation. This allows for less regularization where edges are present and
more regularization where there are no edges, which results in a spatially varying balance between noise removal
and detail preservation, leading to better overall image restoration. In this paper, the likelihood of edge presence is
determined from a partially restored image. The results are best for images with piecewise constant image features.
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1. INTRODUCTION

Total variation (TV) minimizing function regularization was recently introduced! for use in image restoration, The
approach is to find an approximation, u = u(&), to the true image, 4 ue = Uue(Z), given the degraded (e.g. noisy)
image, up = up(¥), where wg = upye + 7, where 5 = 3(#) vepresents the noise or other unwanted characteristics in
the image. The basic idea of Rudin, Osher and Fatemi' is lo minimize the total variation TV (u) in the image, where

TV(u) = fiVu(.T:)!da?, (1)

while preserving some fit to the original data we. The mathematical formulation of this problem which we consider
in this paper is the noise-consirained problem

min TV(u) subject to {lu— wul)? = o?, (2)
u

where the noise level ¢? is assumed to be known or fairly accurately estimated.

The main advantage that TV image restoration has over other image restoration techniques is that it penalizes
neither discontinuities {i.e. edges) nor smoothness in the restored image w. TV regularization has been shown, both
analytically®® and numerically’* to be quite effective in image restoration, especially for restoring images with piece-
wise constant features.? In particular, it preserves ezactly the location of edges, which is often extremely important
information. Still, because of the nature of the TV funciional (1), TV restoration does not prefer discontinuous
edges to smoothness. TV restoration looks for an approximation u to the original image up which has a smaller total
variation, but with no particular bias toward a discontinuous or smooth solution. In solving (2), it is the original
data, ug, as well as the estimated noise level, o?, which determine the sharpness or smoothness of the restored
image. We note that TV image restoration can be viewed as a special model case® of the recently introduced class of
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anisotropic diffusion schemes,® to which a forthcoming issue of IEEE Transactions on Image Processing is devoted
(scheduled for Spring, 1998).

At present, a primary concern in image restoration is to develop spatially adaptive restoration schemes. It is
often the case that where there is more detail in an image, it is desirable to apply relatively less noise-removing
restoration, in order to better retain the detail, and conversely where there is less detail in the image {e.g. within
a piecewise constant region), it is desirable to apply relatively more restoration. In solving (2) there is a certain
balance between noise removal and feature or detail preservation. This balance is determined primarily by the noise
level o2, and is constant throughout the image. For TV minimizing hmage restoration, the key to spatially adaptive
restoration is to allow this balance between noise removal and detall preservation to be spatially varying. Without
this spatial adaptivity, smaller-scaled features can be compromised or even lost comnpletely, as the effects of TV
minimizing image restoration are inversely proportional to the scale of individual irmage features.?

At present, the authors are aware of a single proposal for an adaptive T'V minimizing restoration scheme,” which
to date has not been published. In this paper, we propose a spatially adaptive TV minimizing image restoration
scheme where the adaptivity is realized by using a weighted TV functional

TV (u) = / ol @)|Vul@)| di. (3)

The corresponding minimization probler would then be

min TV, (u) subject to [Ju — up|}? = o (4)
u

A previous detailed analysis? of TV minimizing function regularization provides a theoretical justification for this
approach.

We choose w(#) based on the likelihood of the presence of an edge between any two neighboring discrete image
locations. The weighting factor is chosen to he inversely proportional to the likelihood of the presence of an edge.
This allows for less regularization where edges are present and more regularization where there are no edges, which
results in better overall noise removal and detail preservation. The results are generally good, particularly for images
with piecewise constant image features,

In the balance of the paper, we present cur hasic ideas in R' and give results for restoring noisy B! images, after
which we extend our scheme to R? and give results for restoring noisy R* images.

2, ADAPTIVE RESTORATION IN R!

We first discuss the weighted TV norm (3) in B'. We next discuss how to choose the weighting factor, first by using
@ priori information and then antomatically. Results of restoring noisy R' images are then given.

2.1. Weighted TV Norm in R!

To accomplish adaptive 'I'V miniminizing image restoration, we replace (1) with the weighted TV norm (3). In R!,
the discrete version of (1) is

n—1 n--i
TV() = 3 lueli+ 3} = > hugr — wl; (5)
i=} i=1

. du(x . . . .
where uz {7+ 1) represents ( )|T:J. , - The weighted TV {unctional (3} is analogously

de 7 iy

n—i

TVa(u) = Z wi+iiu,-+1 — ;. (6)
i=1 2

+1 to be smaller where there is an edge between u; and u;44, and conversely to choose
2

w1 to be larger where there 1s no edge. The motivation is to better preserve edges by allowing the variation in the

The idea then is to choose w,

2
image which is due to the edges, and to better remove noise where edges are not present by penalizing the variation



in the image that is due to the noise, In regions of relatively moderate intensity change (i.e. smooth, non-piecewise
constant irnage features), the choice of w, ) would be somewhere in between. This relationship can be written
2
1
W 1 o~ T — - - - -
it3 Likelihood of an edge belween positions i and 4 | in Uirye

2.2. Adaptive Restoration Based on Likelihood of Presence of Edges
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(d) Adaptively restored, 5:1 ratio. {e} Adaplively restored, 10:1 ratio, (f} Adaptively restored, 100:1 ratio.

Figure 1. A comparison of non-adapiive TV restoration {2) to adapiive restoration (4}. We choose w44, the value
of w where edges are present in the noige-free image, to be smaller than wyr, the value of w where edges are not
present. The ratio of wyg t0 weage is L:1 {i.e. non-adaptive), 2:1, 5:1, 10:1, and 100:1 for finding the restored image
in (b), {c), (d), (e) and {f), respectively. The results are better for larger ratios of Wyt @ Wedge. Table 1 gives the
ISNR for each of the restored images.

In Figure 1 we give an example of adaptive restoration for a piecewise constant R! function, contaminated with
(Gaussian notse, SNR = 0 dB, where the edge locations are known e priori, to demonstrate the effectiveness of the
our idea for choosing w, 1. In finding each of the restored images shown in Figures 1(k) - (f), we have chosen

2

Wedge if there is an edge (discontinuity) between positions i and 1+ 1 in gy

W, 1= . . . . e . R .
+s wiiar  if there is not an edge (discontinuity) between positions ¢ and ¢ + 1 in Uy

where wegge < wjiler. We note that in solving the consirained problem (4), is is not the actual values of {wi+l} that
2

are important, but rather their relative values, that is, relative to each other. We solve (4) using different ratios for
Wilat | Wedge, Where TV, (u} is as in (6). We find, as expected, that the adaptive restoration scheme is more effective
for larger ratios of wyjar : Weqge. Because of the exact information which we had about edge location in this contrived

example, we have
Wilat

Wedge

— o, (7)

Wo— Uppye 28




Figure 1 Wlat * Wedge ISNR

(a) {Noisy Image) | (.00 dB
(b) 1:1 11.78 dB
{c) 2 16.09 dB
(d) hil 22.72 dB
(e) 10:1 28.21 dB
() 100:1 47.62 dB

Tahkle 1. The improved SNR for each of the adaptively restored lmages (shown in Figure 1) found by solving (4),
where the ratio of the weighting of (3) in the flat regions to the weighting at the edges is given by wiiat @ Wedge. We
note that the case in which wyies @ wedge = 1 @ 1 18 sitiply the standard (non-adaptive) case.

if the mean of the noise is 0 in each of the piecewise constant regions (which we artificially enforced for this example).
Figure 1 itlustrates (7).

2.3. Automatically Defining {w; 1} in R
2

In defining {wi+i} in the preceeding example we knew « priori the location of the edges. In general we do not have
2

to this information a prieri (otherwise the problem is often already solved). Here our approach in determining the
likelihcod of an edge at any given location is based on examining the size of the jump between neighboring pixels of
a partially or fully (non-adaptively) restored image. The reason for this is that a partially restored image can give
us valuable information which can be used to determine the weighting factor w, which we can then use to restore the
noisy image with a spatially varying balance between noise removal and it to the original data. Strong and Chan?
found that the effects of TV minimizing irnage restoration are inversely proportional to scale, so that smaller-scaled
features are sometimes cormpromised or completely lost in our attempt to remove noise from the image. Thus partial
noise removal (i.e. a partially restored image) can potentially give us better information about the more detailed
or smaller-scaled features than could a completely restored hinage, in which the levels of both noise and detail arve

v

decreased. The algorithm for implementing this approach is given in Table 2.

Algorithm for Adaptive TV Restoration in R?

1. Find & by sclving
min TV () subject to  ||T — ugl}* = &7,
u

where 0 < 5% < o2,

2. For 1 <i<n—1, define
1
W, I .
i+3 {igpr — ]+ €

where ¢ > 0.

3. TFind the adaptively restored image u by solving

min TV, {u) subject to ||u— ugl|* = o*.
u

Table 2. Adaptive TV minimizing image restoration scheme in R,



The first step is to solve the standard minimization problem (2) using a (possibly) smaller estimated noise level

&% < o, Thus by solving (2) using 5% we expect to remnove much of the noise while preserving the image features,

particularly if the lmage is detailed. This information can then be used to define {wH__l_} in Step 2. In Step 2, the
2

parameter ¢ is chosen both to stabilize the numerical problem and to give us more control over how adaptive the
scheme will be. The larger ¢ is, the less variation there is in the weighting factor w(Z) in (3). For ¢ very large,
the adaptive scheme essentially becomes the standard scheme. On the other hand, if ¢ is chosen to be extremely
small, the weighting factor w(#) may be too adaptive, resulting in an image where discontinuous edges are artificially
introduced, due to the corruption of the image from the noise. The choice of ¢ will be directly related to the range
of the grayscale values in the image. Appropriate choices of ¢ will be brielly addressed in our subsequent analysis of
our results in k%, With {e; ik } defined, in Step 3 we again solve the constrained minimization problem, this time

using the weighted TV functional.

‘We briefly comment about the extra computational cost of the adaptive scheme. In the standard TV minimizing
restoration scheme, we solve the constrained minimization problem a single time, In the adaptive scheme we solve
a constrained minimization problem twice, Thus the adaptive schemne could be about twice as expensive to apply
as the standard scheme. However, we note that the partially restored image & found in Step 1 can be used as a
good initial guess for the iterative scheme used to find u in Step 3. Because of this good initial guess for solving
the minimization problem in Step 3, the computational worl of the adaptive scheme as compared to the standard
scheme is actually increased by less than a lactor of 2.

2.4, Resulis in R!

To illustrate the effects of this scheme, we again consider the noisy image from the previous example. We use the
trie and noisy images from the previous example, as shown in Figure [{a), and we can compare the results of our
scheme to the results of standard (i.e. non-adaptive) TV restoration, found in the previous example and shown in
. » . - g 3 52
Figure 1{b}. In Figure 2 are the adaptively restored images found by using the values 7z = 0.50,0.75,0.90, 1.00, and
;

¢ = 1.00,0.10,0.01. For this example the results are better for larger values of U—z and smaller values of €.

Z

It

>\ el 100 0.10 0. 01
0.50 | 13.63 di3 | 15.58 dB | 15.93 dB
0.75 | 13.55 dB | 15.96 dB | 16.45 dB
0.90 | 13.66 dB | 16.86 dB | 18.20 dB
1.00 | 1356 dB | 16.72dB | 18.23 dB

=]

Table 3. The improved SNR for the adaptively restored images, using various ratios of g; and various values of e.
The ISNR for the standard (nou-adaptive) restored image is 11.78 dB, as shown in Table 1, row (b). The restored
images, shown in Figure 2, were found using the scheme given in Table 2.

3. ADAPTIVE RESTORATION IN R?
3.1. Weighted TV Norm in /2?

We now extend our discussion to images in B2, For a discrete £% image {u;;}, | <14,7 < n, the most natural way

of discretizing (1) is

n—1 n n n-1|

TV() = 3 3 S afleali+ 5 P + [+ 5D + 30 3 Jlusind + D2+ fug (i + 112 }

f=1 je=1 i=1 j=1

*The numerical problem that arises [rom solving the TV minimizing restoration problem (2) or (4) is nonlinear, and hence must be
solved with an iterative solver, for which an initial estimate or guess is needed.
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Figure 2. The adaptively restored images, found using our scheme given in Table 2. Compare these results to the
non-adaptive) restored image given in Figure {{b). Table 3 gives the ISNR for each of the restored images.



where

, . dulx,
{4+ ?15,.?) “aly)l(w,y)I(I#L,y;‘)'
T2

. 1 — Julae,y)
uy(i+4,7) = e (ey)=(z RO
t 5 8
u.‘z!(i:j + ‘;‘) = du(l.’.")!‘", yi=lr,u i ( )
i+5
()u(l Y ?

Lo )
uy (i, J + é’) I(J W) l?an L)'
+3
It is easy to see that the first and fourth terms in (8) should be discretized as

Um(i + %,J) = Ui,y — Ui,
uy (4,7 + %)

Ui o1 M
One natural approach to discretizing the second and third terms in (8) would be

N 1 4 — P r
uy(i 5.7) = F(uiggn g g0 = w1 = wignj-1)s
N 1 o 5 F .
ue (4,7 4+ 3) = fltie g b g = Wi T Wi i)
In this paper we use the minmod schemne! in order to better preserve boundaries of image features:
P Lo — : 1 ‘ . CeY L L iy o
uy(i-+§,5) = minmod| §{uijqr + virrien — Uiy — Gieng) 7{G + g~ i1 — Wig 1) ]
SN R : 1 A " Lo Ny s L
ug (8, 7+ 3) = minmod] Huipr; + Wit g+ — i~ Uiga1), (g b Uijer — Wit — Ui1,i+1) ]

where
sign(a) + stgn{b)

2

manmod(a, b) = min(ie|, 5]).

The discrete weighted TV functional in B2 is analogous to the discrete weighted TV functional (6) in R:

n—1 n o on—1
TVa(w) = H 3wy losli+ B D+ [k 50+ D0 S,y lutiod + DI+ [wy (6,5 + 1))* )
i=1 j=1 i=! j=I h

Our adaptive restoration scheme for RB? is given in Table 4. Tt is analogous to the adaptive restoration scheme for
R} given in Table 2.

We point out that as in the B! case, the partially restored image found in Step 1 can be used as a first guess in
the iterative numerical scheme used to find the adaptively restored lmage in Step 3, so that the extra computational
cost of the adaptive scheme is not significant,

3.2. Results in R?

We apply our adaptive TV minimizing restoration scheme, as well as the standard scheme for comparison, to five
noisy test images: a cross, a triangle, a circle, a square and a hemisphere. The resulting images are found in Figures
3, 4, and 5. Errors between the true image and each of the original (noisy) e, standard restored wsendard, and
adaptively restored togapiive 1tnages are given in Table 5.

As demonstrated in Figures 3 and 4 and Table 5, our scheme is superior to standard TV minimizing image
restoration for denoising plecewise constant irnages. At the same thme, our adaptive scheme has similar effects as
standard TV restoration for denoising smooth images, as demonstrated in Figure 5.

We found that relatively conservative values of ¢ were appropriate in restoring these R test images. For most of
the examples we used a value of ¢ = 1.0, except for the case of denoising the cross, in which for this example e = 0.1
gave better results. We conclude that for an lmage with grayscale values ranging between 0 and i, a good range
would be 0.1 < ¢ < 1.0, with ¢ being closer to [ to be more conservative, Of course, if the grayscale range of the
image is greater than 0 to 1, € could be chosen larger, in a linearly dependent way. We note that larger values of ¢
also result in a more stable numerical probliem.



Algorithm for Adaptive TV Restorvation in K?

t.  Find # by solving

min TV (@) subject to ||i — ugl]* = &%,
t°

=2

where 0 < 25 < 1

2. For 1 <i<n~1,1<j<n, deline
l
W, ] . = e - )
gl gy 5 — gl €
and for § <i<n, 1<j<n-—1, define
1
W, ., 1§ = — -
BikE i — gl e
wheare ¢ > ().

3. Find the adaptively restored image u by solving

min TV, (u) subject to  [u— uol)* = o*.
u

Table 4. Adaptive TV minimizing image restoration scheme in R%.

Image ISNR, terandara | ISNR, tadaptive ¢
Cross 8.00 ¢B 25.80 dB 0.1
Triangle 12.75 dB3 19.17 dB 1.0
Circle 13.75 dB 17.35 dB 1.0
Square 9.73 dB 17.12 dB 1.0
Hemisphere 0.39 dB 0.34 dB 1.0

Table 5. The improved SNR for both the standard (non-adaptive) weandara and adaptively restored uadeptive
images, which are shown in Figures 3, 4 and 5.
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(a) True Image. {b} Noisy image, 3NR = 0 dB.

(¢} Non-adaptively restored. (d) Adaptively restored using
g;_ = 1.0, ¢ = 0.1.
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(g) Non-adaptively restored. (h) Adaptively restored using
2 =10,¢=1.0.

Figure 3. The results of our adaptive restoration scheme (Table 4) are given in (d) and (h), and can be compared
to the results of the non-adaptive scheme in (c) and (g). Table b gives the ISNR for each of the restored images.
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(e} True Image. (£} Noisy image, SNR = 0 dB.

{g) Non-adaptively restored.

(h) Adaptively restored using
Z =10,¢=10.

Figure 4. The results of our adaptive restoration scheme (Table 4) are given in (d) and (h), and can be compared
to the results of the non-adaptive scheme in (¢} and (g). Table 5 gives the ISNR for each of the restored images.
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(c) Non-adaptively restored. (d) Adaptively restored using
2 = 1.0, =10,

Figure 5. The results of our adaptive restoration scheme (Table 4) are given in (d), and can be compared to the
results of the non-adaptive scheme in (¢). For smooth images our scheme is quite similar to the non-adaptive scheme
for appropriate choices of €. Table 5 gives the ISNR for each of the restored images.

4, SUMMARY

We have given a spatially adaptive total variation (TV) minimizing image restoration scheme, where the adaptivity
is realized by weighting the measure of total variation of the image. A spatially varying weighting factor is chosen
to be inversely proportional to the likelihood of there being an edge (i.e. discontinuity) between two neighboring
pixels. In this paper, the original image is partially restored, then the weighting factor is determined by the size of
the jumps between neighboring pixels of this partially restored image. To control the effect of the weighting factor,
as well as to improve the stability of the resulting numerical problem, a parameter is chosen (which herein is labelled
€). We found that the appropriate value of € should be approximately equal or slightly less than the grayscale range
of the image. Our adaptive TV minimzing image restoration scheme proved to be quite effective and superior to
standard (non-adaptive) TV minimizing restoration in restoring piecewise constant image features. The adaptive
and standard schemes were quite similar in restoring smooth image features. The extra numerical cost of solving the
adaptive restoration problem is not great relative to the cost of solving the standard restoring problem.
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