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IDENTIFICATION OF DISCONTINUOUS COEFFICIENTS FROM
ELLIPTIC PROBLEMS USING TOTAL VARIATION
REGULARIZATION

TONY F. CHAN * AND XUE-CHENG TAT

Abstract. We propose several formulations for recovering discontinous coefficient of elliptic prob-
lems by nsing total variation (T'V) regularization. The motivation for using TV is its well-established
ability to recover sharp discontinuities. We employ an augmented Lagrangian variational formulation
for solving the output-least-squares inverse problem. In addition to the basic cutput-least-squares for-
mulation, we introduce two new techniques to handle large observation errors. First, we use a filtering
step to remove as much of the observation error as possible. Second, we introduce two extensions of
the output-least-squares model; one model employs observations of the gradient of the state variable
while the other utilizes the lux. Numerical experiments indicate that the combination of these two
techniques enables us to successfully recover highly discontinous coefficient even under observation
errors as high as 100% in the L% norm.

1. Introduction. Consider the partial differential equations

{ —V (g(z)Vu) = f ingQ,

(1) =0 on dQ,

u=1{ on 84,
u(z,0) = up{x) in Q.

u — V- {g(x)Vu) = flz,t) in Qx[0,T],
(2)

We want to use observations of the solution u to recover the coefficient ¢(2}. We shall especially treat
the case that g(«) has discontinuities. This problem arises in many industrial applications, for example,
reservoir and underground water investigations, [8], [20], [2]. Such inverse problems are ill-posed. The
comrmon approach is to use output-least-squares method with certain regularization techniques. When
the coefficient g(z) is assumed to be smooth, successful numerical methods are available, see Ito and
Kunisch [11}, and Kunisch and Tai [16]. However, when the coefficients have discontinuities, the usnal
regularization methods will smear out the sharp jumps or introduce Gibbs oscillations at the locations
of the discontinuities and thus prevent us from getting accurate estimations; see Lin and Ramirez[17]
for some one dimensional numerical results with #1-norm regularizations.

In this work, we shall use a special regularization technique, namely, using the total variation (TV)
norms to regularize the coefficient. This will allow the coefficient to have jumps and at the same time
will discourage the oscillations that normally appear in the computations. We note that the TV-norm
regularization has been used successfully in image processing [1], [4], [19], [18], [21]. For recent works
that use TV-norm regularization techniques to identify discontinuous diffusion coefficient, we refer to
[22], [6], [10].

We shall consider three kinds of observation data for identifying the coefficient:

(1) Observation for the solution u is available at some points.
(2) Observations for the solution u and its gradient Vu are available at some points.
(3) Observations for the solution u and the velocity (or flux) ¢Vu are available at some points.

* Department of Mathematics, University of California, Los Angeles, 405 Hilgard Avenue, Los Ange-
les, CA 90095-1555, Email: chan@math.ucla.edu, URL: http://www.math.ucla.edu/chan. The work
of this author is partially supported by the Office of Naval Research under contract ONR N00014-96-
1-0277 and by the National Science Foundation under grant DMS-9626755.

t Department of Mathematics, University of Bergen, Alleg. 5b, N-b007 Bergen, Norway.
Email: Tai@mi.uibno. URL: http://www.mi.uib.no/tai. The work of this author is supported by
the Research Council of Norway, under contract SEP-115837/431.

1



Except for some special situations, see [12], we must have enough many points of observations in
order to have a good estimation for g(z). Therefore, we shall assume that we have observations at
sufficiently many points to recover all the detailed structures of the coefficient g(z). Otherwise, we can
only expect to recover some approximate structures of the coefficient ¢{z).

We employ an augmented Lagrangian variational formulation for solving the output-least-squares
inverse problem, by which the inverse problem is transformed into a nonlinear minimization problem
in both v and ¢. This approach has been quite successful in inverse parameter estimation problems
with smooth coeflicient; see for example [11}, [16]. In particular, the efficiency is usually much higher
than other optimization techniques such as Newton or Levenberg-Marquardt methods because the
augmented Lagrangian technique can exploit the special bilinear nature of the equation constraint.

As mentioned earlier, the identification problem is ill-posed and in numerical simulations, a small
observation error can produce a large computational error. Even in the case of very little observation
error, oscillations can appear in the estimated coefficient. Most of the works in the literature deal
with small observation errors or use very coarse mesh to reduce the instability and oscillatory effect
of the observation errors. In this work, we shall introduce several special techniques for treating large
observation errors. First, we use a filtering step to remove as much of the observation error as possible.
Second, we introduce two extensions of the output-least-squares model; one model employs observations
of the gradient of the state variable while the other utilizes the flux. Numerical experiments indicate
that the combination of these two techniques enables us to successfully recover highly discontinous
coefficient even under observation errors as high as 100% in the L* norm.

We remark that when the coefficient g(z) is not depending on time, the same kind of techniques
used to estimate ¢(z) from equation (1) can be used fo estimate g(z) from (2}, see [13]. So we shall
concentrate on the identification of ¢(z) from (1) in the rest of this work.

The organization of the paper is as follows. In the next section, we present the three variants of
the output-least-squares formulation of the inverse problem. In Section 3, we define the corresponding
augmented Lagrangian formulations. The noise removing techniques are introduced in Section 4.
Numerical results will be presented in Sections 5.

2. Formulation of the Identification Problems,

2.1. Output-Least-Squares Approach. In order to present our discussions in a more gen-
eral setting involving continuous functions, we interpolate the point observations to get distributed
observations. Correspondingly, we shall treat the following three cases:

(1) We have an observation ug € L2(Q) for the solutions u. We note that this condition is weaker
than required of the solution u.

(2) We have observations ug € L*(2), 1, € (L?(€2))* for the solution u and its gradient.

(3) We have observation ug € L*(R2), i, € (L*(2))* for the solution 1 and velocity ¢Vu.

As the observations may contain large random observation errors, and also due to the lack of proper
boundary conditions for the coefficient g(z), it is not preferable to use direct methods for solving the
inverse problems. Instead, we shall search for a coefficient ¢(2) which produces a solution u(z) that
has the smallest distance to the observations, subject to certain regularity conditions on g(z).

Let the set K denote the set of admissible coefficients. In the following, the set K is taken to be

K={q qeL®(8), 0<k <g(r)<ks<oo},

with k; and k; known a priori. Let e(g,u) = 0 represents the equation constraint (1) in a suitable
space; see §2.3. Finally, let u(g) be the solution to e(g, ) = 0 for a given g.
Corresponding to each of the three cases, we shall solve:

. 1
(F1) e(g )0, g€K —2—|§u(q) — wdllpa) + AR ,
(P2) IR §||U(Q) — uallzaqy + §T|§V”(9) — dg[|Fa(n) -+ BR(a} ,
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(P3) m 1

' 1
2 = (2
(.m0, geK gllu(®) = uallza) + g MleVule) =l +BR(q)

where R(g) is a regularization funetional used to control the regularity of ¢(z). In all our experiments,
we use v — 1 for simplicity. A judicious choice of 7, possibly depending on &, can potentially improve
the efficiency significantly.

- 2.2. Total Variation Regularization. If the coefficient is continuous, R{g) = |[q|]§p(m or

Hq%ifp{n) are commonly used as the regularization term. In {16], existence, uniqueness and convergence
have been proved for such kinds of regularization. However, if the coefficient has large jumps, the use
of H? or H'-regularization will smear out the sharp discontinuities or produce Gibbs oscillations. In
this work, we shall take as regularization functional the following:

TV(g) = ]ﬂ Vqldz,

where TV (q) is the total variation of g; see Ziemer [23] and Giusti [9] for definitions. When ¢ is not
differentiable, |V¢q] is understood as a measure, see p. 111 of {23].

However, the TV-norm funciional is not differentiable with respect to g. For numerical purpose,
we introduce

(3) R(q)=fn\/IVq|2+s dz.

This functional is well defined for ¢ € H1(2). However, for convenience, in our numerical simulations
we use piecewise constants to approximate ¢ and consequently ¢ is not in H(Q2) and R{g) is not well
defined. In Section §5, we shall show that there exists a modified version of R(g) that does approximate
TV(g) as € goes to zero.

2.3. The Equation Constraint. For any given ¢ € K and u € H}(Q2), we shall define the
linear operators: Ag : H3(S) — H™1(Q), By : K — H~H(R) by:
Aju = =V -{(¢Vu),
Byg = =V -(¢Vu).
For any ¢ € K, A, is a homomorphism from H}(?) to H~1(). Let C be any homomorphism from -
H=Y(Q) to H(fY), e.g. in our algorithms we use the inverse Laplacian operator with homogeneous
Dirichlet boundary conditions for C. Moreover, we assume that C is chosen such that (Cv, w}, which

is the dual action of w on Cv, defines an inner product for v, w € H~'(2). Correspondingly, the
operator C should satisfy:

(Cv,w) = (v,Cw), Vv, we HHQ),

(4) (’U, W)H—l(n) = (O‘U, w) . Y, w € HHI(Q) )

(5) Noll-ig) = V(Cov), Vv e HTHQ).
We now define the equation constraint as:
elgu) = C(=V-(gVu)-f)
= Cl4u-)
= C(Bug-f).

In the following sections, we use A*, B* and C* to denote the corresponding adjoint operators of 4,
B and C respectively. In the discrete approximations, A, B and (' are matrices and A*, B* and C*
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are the corresponding transposes. Let Pj, and Sy be the finite element spaces approximating g{z) and
u(z) respectively (see [5)). Then the matrix A, corresponds to the following standard discrete elliptic
operator:

(Aqu,v) = (¢Vu,Vv), Yu, vE€ Sy C HLHQ).
The matrix B, now corresponds to:
(Buq,v):(Vu-Vv,q), qupﬁ; VUESh)

which generally is not square nor symmetric. The matrix € is symmetric positive definite and cor-
responds to the homomorphism operator that maps H~1(Q) to H{(R2). The most straightforward
homomomorphism from H™1(Q) to H}(Q) is the inverse of the Laplace operator and this is what we
use in our implementation. More specifically, let D2 be the discrete Laplacian matrix corresponds to:

(Du,v) = (Vu, Vv), Yu, v € Sy C Hi(R),

then, we take C = D71,

2.4. Physical Settings in Industrial Applications. The estimation problems we consider
here arise in many industrial applications. Two most closely related applications are groundwater flow
simulations and oil reservoir simulations. If equations (1) and (2) are used to deseribe the groundwater
motion, then u represents the piezometrical head of ground water in £; the function f characterizes the
sources and sinks in §2. The filtration (transmissivity) coefficient g is, physically, positive and piecewise
gsmooth with possible discontinuities on some surfaces in £2.

Equations (1) and (2) can also be used to describe the fluid flow of a one phase oil reservoir. In
such a case, u is the pressure related to the flow in a heterogeneous reservoir; ¢ is called the absolute
permeability which is related to the permeability of the medium and other physical parameters such
as the viscosity of the fluid. For a one-phase reservoir, the estimation problem (P1) corresponds to
measuring the pressure to recover the absolute pemeability. The estimation problem (P2) corresponds
to measuring both the pressure and its gradient to recover g. For the estimation problem (P3), we
need to measure both the pressure and the velocity of the fluid to recover q.

3. The Augmented Lagrangian Methods. For the equations we consider in this work, the
equation constraint e(q, ) is in a bilinear form. The augmented Lagrangian approach posed in [16}
reduces the minimization problems to a system of coupled algebraic equations. Efficient iterative
methods can be used to solve these equations.

We shall treat each of the three variational formulations in turn.

3.1. Augmented Lagrangian for (P1). In this case, only L?-observations are available. The
angmented Lagrangian method is used to enforce the equation constraint:

e(g,u) = 0.

For any + > 0, let us define the augmented Lagrangian functional as:

1 r
Li(g,u, A) = 5llu - uallZany + AR(D) + 5 llelg, Wl + O e, v ra)-

When the equation constraint takes the specific structures as in §2.3, the existence of a saddie point
for L, is known, see [16]. Moreover, if {§, 4, A} is a saddle point for L,, then (§, ) is a minimizer for
(P1). We shall use the following algorithm to search for a saddle point for L, over K x Hj{(Q)x H{(Q)
in an iterative way. The main idea is to alternatively solve the minimization problem in one of the two
variables # and ¢ assuming the other is known. A few steps of this alternating minimization procedure
is then followed by an updating step on the Lagrange multiplier A,



Algorithm 1.
Step 1 Choose ug € HY{(2), Ao € HE(2) and # > 0.
Step 2 Set ul = up-1. For k=1,2,...,knqs, do:
Step 2.1 Solve ¢f = argmingex L.(g, u¥~t, An_1) which gives [7]:

©) (R + rBunCB gtk =)
+ B:t-x}\n—ls ¢ “qﬁ) 20, VeekK.

Step 2.2 Solve uf = argmin, ¢ g1 (qy Le(g¥, 4, An—1), which gives:

(N uf —ug 4+ rAgkC(Aqﬁuﬁ -5
+ ApAa_1=0.

Step 3 Set u, = u*, ¢, = ¢f, and update A, as

(8) An = Apet -t re(Qn; un)‘

It is easy to see that the above algorithm is the Uzawa gradient method for searching for a saddle
point for L, which satisfies:

dLr dLr 8Ly
—_—= —_— =0, — =10.
du 0, . Oq ’

oA
We shall use u = 0 for the boundary condition of (7). The variational form of (6) implies a Neumann

boundary conditionn for ¢F.

If we use finite element approximations in our computations, A, is a matrix that depends on
¢, B is a matrix that depends on u¥. Tf the finite elements are quasi-uniform, we can use inverse
inequalities to show that total variation norm is equivalent to the Sobolev norms H k (), k=1,2. The
equivalent constant depends on the mesh size h. Ma.kmg use of this equivalence, we can employ the
same techniques as in [16] to show that there is a unique saddle point for L, if the observation error
is sufficiently small, i.e. || — ugf| << 1. Moreover, the iterative solution of Algorithm 1 converges to
the saddle point with a linear convergence rate. However, if the cbservation error is large, we can only
show as in [5] that a subsequence of {{gn,#n, An)} converges to a saddle point.

In our simulations, we use a simple projection method to handle the variational inequality (6), i.e.
we find ¢¥ which is the solution of

(9) BR(gh) + rBiuiC(By-ra;—f)
+ B:h—l /\n—l = 0:

and then set
gk = max(ky, min(gy,, k2)).

In our simulations, the constant ky is taken to be very small and kg is taken to be very large. In
most of our tests, the solution of (9) is in the interior of the admissible coefficient set K. This same
technique is used to solve the variational inequalities of the algorithms that will be proposed later.

3.2. Augmented Lagrangian for (P2). When we have H'-observations, we shall enforce the
equation constraint —V . (¢Vu) = f in the H '.norm that we introduced earlier in (4) and (5). The
augmented Lagrangian functional is defined as:

1
LP(Q:U:)‘) = '2'!|u_ud“.%?(ﬂ)

1 S
+ 7lVe- gll7 2y + R(2)
)



,
+ 5“ —V (qVu) = fllh-s(e
+ (X =V (gVu) = Na-1@)

forge K, uwe H}(Q), »e H ().

Using (4) and (5), it is easy to calculate that:

8L "
Sy = PR@+7BICBug— 1)
+ BICA,
%LTT = u—uqg—yV - (Vu—iy),
+ rA;C(Agu~ f)
+ ACX
dLr
Wé':i— = —V * (qV‘u) - f.
We shall sclve:
dLr
10 = 0,
(10) 6q
aLr
(11) B_u - Oa
8Lr
(12) o 0.

by an iterative procedure similar to that for (P1}).

Homogeneous Dirichlet boundary condition is used for (11). The boundary condition of (10) is
implicitly contained in the variational form for 85‘:;* = (. For example, if we take R(g) as in (3), then
8;;;" = 0 can be written as:

B(R(g),¢) + r(B,C(Bug—f)¢)
+ (BCM¢)=0, Vo€ P,

which implies 2 Neumann boundary condition for ¢. Onee the matrices B, and C have been fixed, we
only need to get the matrix corresponding to (R/(g), ¢) and solve the nonlinear equation:

(13) BR/(a) + rByC(Bug — f) + B1CA = 0
to get g. After solving (13), we project ¢ into sct K as described before for (P1). The matrix

corresponds to R/(g) depends on g. We use a similar technique to [4] to solve the nonlinear equation.

Algorithm 2.
Step 1 Choose ug € H}{), o € H~1(Q) and r > 0.
Step 2 Set ul = u,_1. For k = 1,2,..., kmag, do:
Step 2.1 Solve ¢f € K from

in the discrete setting, the equation

@H@)+rﬁbﬂmﬁﬁ—ﬂ
+ Bzﬁ—lc)‘n——l; ¢ - q,]:) 2 0) V¢ € K.

Step 2.2 Solve uX € H(Q) from
up =g — YV (Vug — )
b ordn Oyt — )
+ A Chaoy = 0.
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Step 3 Set u, = uf, ¢, = ¢* and update the multiplier as
An = Aoy H (A un — f)

By assuming the observation error is sufficiently small, we can prove that there exists a unique
saddle point for L, and the iterative solution of Algorithm 2 converges to the saddle of L, see [16]. If
the observation errors are large, we can only prove that there is convergent subsequence, see [5].

3.3. Augmented Lagrangian for (P3). Similar to (P2), we shall use the same H~l-norm to
enforce the equation constraint. The augmented Lagrangian functional is now:

i
L, (q: U, ’\) = —”H - ud“%“(ﬂ}
2
1 -
§7§|q\7u — @y |32y + BR(2)

r
gl =V - (qVu) — i1
+ (A, »V . (un) — f)H—i(n),
for ¢ € K,u € HY{Q), A€ H~1(Q).

In a similar way as for (P2), we can calculate that:

dLr "
B_q = 7(qVu— i) Vu+ BR'(q)
+ rBLC(Bug - f)
+ B.C),
&L .
B_ur = u—ug—yV (¢*Vu— qii,)

+ rA;C(Au—f)
+ ACA

In the discrete setting, the variational equation for % = 0 is:
1(qVu ~ iy, $Vu) + B (R'(q), ¢)

+ r(BiC(Bug— 1) ¢)
+ (BiCM¢)=10, VY€ P

We use the following analogous algorithm to search for a saddle point for L,:

Algorithm 3.
Step 1 Choose ug € H}(Q), Ao € H~1(Q) and r > 0.
Step 2 Set ul = up—1. For k=1,2,..., knax, do:
Step 2.1 Solve ¢f € K from

('r(q,’f.Vuﬁ"l — iy} - Vuh =l + R (gf)
+ rB:ﬁ“}'C(But_l qﬁ - f) + B:ﬁ_l C)cn_.l, ¢ - qﬁ) 2 0, V¢ c K.

Step 2.2 Solve uf € H}{Q) from
uy—ua — AV - (lghVup — gl
+ rARC(Agul - f)
+ A;ﬁC)\"_l =1.
Step 3 Set up = uf,q, = g¥ and update the multiplier as
An = Aa1 +r(Ag.un — f).
7



4. Noise Removal Preprocessing. In many practical applications, observations contain ran-
dom noises. Let « be a function and wug be its observation with random noises. From the observation
ug, we try to recover a more accurate function for u. In order to preserve the shape of the function and
at the same time filter out the highly oscillatory noises, we use a total variation denoising procedure
which solves:

1
min TV v — ugll? )
vEW, () (a @)+ 3l iz

If we replace TV (v) by its approximation R(v), this is equivalent to solving:

Vu
—aV | ——mm——— | +u—ug=0 in§2,
o ( [Vut—ks) U — g in

=10 on &4 .

(14)

Efficient numerical methods have been developed in [4] for solving this problem.

The choice of ¢ is important in removing the noises from the observations. If « is chosen too big,
then the recovered function will be very smooth and far from the true u. If « is chosen too small, then
the random noisies cannot be removed from the observations. In our simunlations, we delermine o such
that the recovered function u satisfies

”'u — udHLﬂ{ﬂ.} =0,

where o is the L2-noise level which we assume to know a priori. For this, we use an implicit projection
technique derived from one used in [19]. In [3], further techniques have been developed to solve this
problem efficiently. Numerical evidence shows that it is not necessary to know o exactly.

4.1. Noise Removing for (P1). Before we use Algorithm 1 to solve the inverse prablem (P1),
we shall first use the above noise removing technique for ug to get a denoised solution u of (14). Then,
we use u as the observation data and also as the initial value for ug in Algorithm 1.

We remark that other regularizations, e.g. the H! norm, can also be used to denoise ug, but our
experience is that the 'TV technique works better in our experiments.

4.2. Noise Removing for (P2). As observations for both v and Vu are available, we shall
solve:

| 1 )
vei (“R('”) + gl vallz)

1 .
(15) + geliVe - “9”%2(9))

to get a denoised u. The choice of the parameter w is not very important. In all our experiments, we
use w = 1. Minimization (15) is equivalent to solving:

Vu
eV | —— ] -V - (Vu—t)tu—uz=0 inQ,
(16) * ( |Vuiz+£) (Ve i) o =

u=10 on 0%,

After solving (16), we can use three different ways to get a denoised gradient Vu:
1. Solve (14) for each component of 4, and this removes the noises from #, directly.
2. Using numerical differentiation to get the gradient of the solution of (16). When the coeffi-
cient has large jumps, this turns out to be a very bad choice.
3. The third approach is to find the minimizer for:

. . 1 2
semi o eTV(W) + llF — Vuallpaa)

1., .
(17) + 5”“’—“9”%2@)
8



In the above, we have:
TV(’JJ') = TV('HH) + TV('LUQ).

If we replace TV (w;) by R(w;), then minimizing (17) is equivalent to solving some partial differential
equations. In our simulations, both the first and the third approaches have been used.

4.3. Noise Removing for (P3). For the inverse problem (P3), we shall again solve (14) to
remove the noises from ug. To remove the noises from i, we observe that:

~V-{(qVu)=f, and ¢Vuwmi, .

Therefore, we shall find a minimizer for:

. — 1 — - HZ
JEVI}}H}(Q)“TV(W) + SlE—hllgs

1 "
+ v -V -3 - fllfsqy »

which removes the noises from @, and at the same time enforces the equation constraint.

5. Numerical Experiments. We first describe the discretization issues. Let @ C R*, n =
1,2,3 be a bounded domain. We first divide Q into finite elements 7, = {e;}. In all the simulations,
a uniform mesh is used. The domain is discretised by simplicial elements, namely intervals, triangles
and tetrahedrals in 1D, 2D and 3D respectively. Let Sj denote the piecewise linear finite element
space over 75 with zero Dirichlet boundary value on 8§2. Let P, denote the piecewise constant finite
element space over T;,. The space Sy will be used to approximate u and the space P will be used to
approximate g. Let e; and e; be any two elernents of the finite element division 7, and [&; N&;| be the
(n — 1)-dimensional measure of the interface between & and &;. For a given ¢ € Py, we define ¢; to be
gle;. Then it is easy to calculate that:

V(@) = [ 1Valde = Y lac— gllei 051
o i<j
Correspondingly, we define the discrete functional R(q) as:
lg: — g;* -
R(q):%( Sogttellangl b

In all our simulations, the value of £ is taken to be 0.01. With R(q) thus defined, it is easy to form the
matrix R'(g).

The observations for our simulations are generated as follows. Let f(z) be a given function. For
any given g € Py, let u € S} be the solution of:

(qvu}vv)ﬂ = (fs U)ﬂ) Yo & Sh~
The observation ug is obtained from
Uqg = U+ 61 * Hg* ”u“Lzr(g),

where §; is a constant controlling the noise level and Ry is a vector with dim(Rg) = dim{ug) of
uniformly distributed random numbers in [—1/2,1/2] with zero mean. The observations i, and 4, are
generated similarly by adding random noisies to their true finite element values, i.e.

ﬁg =Vu+éby*xRax §|VU”L2(Q),

iy = qVu + bg % Bg * “qvullL’{ﬂ)‘
9



Our implementation is in Matlab with a machine precision about 10~'®. The random vectors Rq are
generated by the Matlab function rand.m and their values change at every call. In all our experiments,
we take & = 83 = 8.

In identifying the coefficient g(x), the proposed algorithms are very sensitive to the value of the
regularization parameter J. This is true especially when the observation errors are large. In our
simulations, we adjust the value of 8 so that the algorithms produce the best numerical solutions. In
using Algorithm 1-3, it is not necessary to do many inner iterations between Step 2.1 and Step 2.2;
we use only 3 iterations (i.e. kmae = 3). The initial value of the Lagrange multiplier A is always taken
to be Ap = 0. '

5.1. One Dimensional Experiments. We begin with several experiments in 1D. The more
modest computational demands of the 1D setting allows us to explore in more details several algorithmic
variations.

Example 1. In this example, we try to identify a one dimensional piecewise constant ¢ with several
jump discontinuities from a L?-observation by using the (P1) formulation. We take f(z) = 1. The
true coefficient g(z) is chosen as: ( see Figure 1)

[ 05, zel0,1/51U12/5,3/5]U [4/5,1],
a(=) “{ 3, e [1/5,2/5U[3/5,4/5]

The interval [0,1] is divided into 200 elements, i.e. b = 1/200. The identified ¢(z) for different noise
levels are shown in Figure 1, Different values for # and » are used for each subfigure; see Table 1. We
solve (14) to smooth the observation #4. Then we use the smoothed ugz as the observation and also as
the initial value for u in Algorithm 1. Since the TV functional R(g) is nonlinear in g, we need an initial
guess for g for the iterative solution of the equation in Step 2.1. The results in Figure 1 is computed
with the initial value ¢ = 1. Our experience is that the algorithm is very robust with respect to the
choice of the initial value for g.

Table 1. The values of # and v for Figure 1

6=02%% [6=2% | 6=10% | 6=20% | 6 =60% | 6 =100%
B= le-4 de-4 3e-4 Je-4 Be-3 He-3
r= le2 le2 le2 1le2 le2 1e2

We have run simulations for this example many times to see the identified ¢ with different random
observation errors. The conclusion is that if the observation error is more than 10%, then the location
of the discontinuity cannot be recovered reliably. On the other hand, if the observation error is less
than 1%, then we can always get a rather good estimation of ¢(z), by which we mean that both the
location of the discontinuity and the value of g(z) is identified with an accuracy of less than 1% error.

Example 2. We identify the same coefficient ¢(z) as in Example 1 by observing both the value of
u and the gradient of u using formulation (P2). The observation data with different noise levels are
given in Figure 2. The identified ¢ is shown in Figure 3. The values of 8 and r for different observation
errors are sumnmarized in Table 2.

Table 2. The values of # and » for Figure 3

6=02%[6=2%[6=10% [ 6=20% | 6 =60% | 6 =100%
f= le-4 Je-4 3e-4 3e-4 5e-3 He-3
r= 1e2 le2 le2 le2 le2 le2

Tests with different observation errors show that the identified coefficient is rather accurate (less
than 1% of error) when the observation error is less than 20%. The location of the discontinuities can
be identified even with observation error up to 100% for ihe example considered here. Iowever, the
values of g(z) is not accurately identified when the observation error is bigger than 20%.

10
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Figure 1. The identified coefficient with different noise levels by L?-observation.

If the houndary conditon is known exactly, we have also done tests that show the observation for u
is unnecessary, i.e. we can get the same accuracy for the identified coefficient only from the observation
of the gradient of u.

Example 3. We now present results for formulation (P3); i.e. we identify ¢(z) by observing both u
and gVu. The identified ¢ is shown in Figure 4. The values of § and r for different observation errors
are given in Table 3.

Table 3. The values of # and r for Figure 4

6=02% | 6=20%16=10%16=20% | 6§ =60% | ¢ = 100%
B= le-4 Je-4 Je-4 Je-4 be-3 5e-3
r= 1e2 1le2 ie2 le2 le2 1e2

The performance does not seem to be as good as for formulation (P2). In particular, in order to
identify the location of discontinuity of g(z) with an accuracy of 1%, we need the observation error to
be much less than 2%.

Summarizing our numerical experience, we can see that the observation for the gradient Vu is
preferable in situations that the observation errors are big. When the observation errors are small, all
three formulations (P1)—(P3) can give accurate solutions. For a given level of observation errors, the
identified coefficient by (P2) is more accurate than that of the other two formulations.

5.2. Two Dimensional Experiments. In two dimensions, the computational cost is increased
dramatically and the efficient solution of the nonlinear equations becomes a more critical issue. There-
fore, we only present a few examples with large observation errors. We will not dwell into the details
of the numerical procedures in the present paper. We use a modified version of the method used by
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Figure 2. The observations with 60% and 100% noises.

Kunisch and Tai [15, 14] where the augmented Lagrangian method is combined with a nonoverlapping
domain decomposition method. We emphasize that in this method, the domain decomposition method
is not nsed as a preconditioner for the linearized elliptic operators that arise in our algorithms. In-
stead, the full inverse problem is solved on each subdomain simultaneously. We remark that in using
the algorithm of [14], it is necessary to use Neumann boundary conditions on some part of 8Q, see [14].

The specific values of the parameters used in our experiments are summarized in subfigure c) of
Figures 5-7. In the figure, m is the number of subdomains used in each of the z— and y— directions,
and n is the number of elements used in each of the z— and y— directions. The paramters ¢ and rho
correspond to the parameter r used in Algorithms 1-3.

Example 1. We identify a piecewise smooth coefficient from an observation of u with random errors
using formulation (P1). The true coefficient is g(z,y) = c1(z, y)e® where ci{z,y) is a discontinuous
piecewise constant function with values ¢; = 10 or ¢; = 1, see Figure 5. Similar to the one-dimensional
problems, the maximum tolerable observation error for L?-observations is about 1%. The observation
error for Figure 5 is § = 1%.

Example 2. We identify the same ¢ as in Example 1 by observations of » and Vu using formulation
(P2). 100% observation errors are added, i.e. § = 1 = 100%. The computed functions are given in
Figure 6. The maximum tolerable observation error is about 100%.

Example 3. We identify the same ¢ by observations of u and ¢Vu by using formulation (P3). 1%
observation errors are added, i.e. § = 0.01. The computed Tunctions are given in Figure 7. The
maximum tolerable observation error is about 1%.

The conclusions that we can draw from the 2D experiments are similar to that of the 1D tests,
namely that formulation (P2) can tolerate more observation errors than (P1) and (P3).

12
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Figure 3. The identified coeflicient with different noise levels by H 1_observation.
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