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Multilevel Elliptic Solvers on Unstructured Grids*

Tony F. Chan'

Abstract

An overview of multitevel methods on unstructured
grids for elliptic problems will be given. The advan-
tages which make such grids suitable for practical im-
plementations are flexible approximation of the bound-
aries of complicated physical domains and the ability to
adapt the mesh to resoive fine-scaled structures in the
solution. Multilevel methods, which include multigrid
methods and overlapping and non-overlapping domain
decomposition methods, depend on proper splittings
of appropriate finite element spaces: either by divid-
ing the original problem into subproblems defined on
smaller subdomains, or by generating a hierarchy of
coarse spaces. The standard splittings used in struc-
tured grid case cannot be directly extended for unstruc-
tured grids because they regunire a hierarchical grid
structure, which is not readily available in unstructured
grids.

We will discuss some of the issues which arise when
applying multilevel methods on unstructured grids,
such as how the coarse spaces and transfer operators
are defined, and how different types of boundary condi-
tions are treated. An obvious way to generate a coarse
mesh is to re-grid the physical domain several times.
We will propose and discuss different and possibly bet-
ter alternatives: node nested coarse spaces and agglom-
erated coarse spaces.

*This paper is an abridged version of the lecture notes which
were prepared for the lecture course “28th Computational Fluid
Dynamies”, 3-7 March, 1997, at the von Karman Institute for
Fluid Dynamics, Belgium [1].
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1 Introduction

In this article, multilevel methods applied to elliptic
problems on general unsfructured grids will be dis-
cussed. We will describe various approaches for deal-
ing with the solution of discrete equations arising from
unstructured grids, Cur interest will be in the perfor-
mance of multilevel methods, including mmltigrid and
domain decomposition methods,

The beauty of multilevel methods is that the conver-
gence speed can often be proven to be independent of
the problem size and they can be naturally parallelized.
This makes them the most powerful and useful tool for
a wide variety of applications, On the other hand, these
methods require a hierarchical grid structure, which is
not readily available in unstructured grids. In our con-
text, we use them not as solvers on their own, but
rather as preconditioners for Krylov subspace iterative
methods.

Various approaches for dealing with these issues and
their effect on the convergence properties of these
methods will be covered. This article is organized
as follows: Section 1 begins with an introduction to
Krylov subspace methods and multilevel methods, fol-
lowed by some two-level theory in Section 2. Specific
examples of how to deal with node-nested multilevel
methods are covered in Section 3. Section 4 concerns
agplomerated multigrid methods.

Many of the topics described here represent previous
and continuing joint work with Barry Smith and Jun
Zou [2, 3, 4, 5], (Section 3) and with Jinchao Xu [6]
(Section 4}

1.1 Eliptic problems

Elliptic problems are one of the most extensively in-
vestigated problems in applied mathematics. Their re-
lation to many physical models is well known and the
theoretical and numerical results obtained in this area
are very useful in practice. As a first approximation to
more complicated physical and mathematical models



{such as those in computational fluid dynamics), el-
liptic problems are sometimes the only ones for which
rigorous theoretical results are known. The design of
numerical methods for such model problems can often
be adapted and applied to more complicated situations.
Elliptic problems are also important in their own right,
for example in computational finid dynamics in the so-
lution of the pressure equation, implici} Lime integra-
tion schemes, etc.

In this section, we will state the model problems we
consider. Our goal is to design effective solvers for the
resulting systems of linear equations, and we will not
pay much attention to the discretization techniques.
Detailed discussions of the finite element element dis-
cretizations that we use can be found in {7, 8, 9, 10].

Let @ ¢ R® be a polygonal {polyhedral) domain,
d = 2,3. We consider the following variational (or
Galerkin) formulation of an elliptic problem: Find u €
HY(Q;Tp) such that:

a(u,v) = F(v) for all v € H}{(Q;Tp), (1.1)

where

alu,v) = [ a(z)VuVode,

Q (1.2)
F(v) = [y F(z)vde.

Here H}{9;Tp) denotes the Sobolev space which
contains functions which vanish on I'p with square in-
tegrable first derivatives. It is well known that (1.1)
is uniquely solvable if a(a) is a strictly positive scalar
function and F' is squaze integrable.

We will use the simplest finite element discretization
of the elliptic problem (1.1). First, we cover  with
simplicial finite elements (triangles in IR and tetrahe-
dra in IR?). Then the discrete problem can be formu-
lated as follows:

Find uy, € V4 such that:

a(uh, ’Uh) = F(’U},) for all vy € Vi, (13)

where Vh is the finite dimensional subspace of
H3(9;Tp) consisting of continuous functions linear on
each of the simplexes forming the partition.

The values of the discrete solution on the grid nodes
are then determined by solving the resulting system of

linear equations:

Au=f, (1.4)

where A is a symmetric and positive definite matrix,
f is the right hand side and the nodal values of the
discrete solution uj will be obtained in u after solving
the system (1.4). To obtain an accurate enough ap-
proximate solution of (1.1}, one often has to solve huge
discrete problems which are badly conditioned, with
condition number growing like O(h~?), where h is the
characteristic mesh size. Qur goal in the next sections
will be to construct robust and effective methods for
solving the discrete equations (1.4).

1.2 Unstructured grids

With the vast improvements in computational re-
sources today, the motivating reasons for using struc-
tured grids over unsiructured grids become less obvi-
ous. Cartesian or mapped Cartesian grids are popu-
lar because they are directional, so efficient methods
can be used, such as the alternating direction implicit
methods (ADI) and fast Fourier trapsforms (FFT).
Thig structure, however, imposes limitations on the
types of domains which can be considered. In addition,
local refinement cannot be easily done without affect-
ing large portions of the grid, so the ability to adapt
the grids for resolving steep gradients in the solution is
a source of difficulty.

One of the alternative approaches for dealing with
complicated geometries is the composite grid method
as proposed by Brown, Chesshire, Henshaw and Kreiss
[11} and Chesshire and Henshaw [12].

Unstructured grids provide the flexibility needed to
adapt to rapidly changing or dynamic solutions as well
as complex geometries. These grids have irregular con-
nectivity and so do not have to adhere to the strict
structure of Cartesian-based grids, see Figure 1.1, The
tradeoff is that, computations on unstructured grids
require more complicated data structures and possibly
modifications in some solvers, e.g. multilevel methods.
We will discuss some such modifications in multilevel
methods in this article.

1.3 Preconditioned iterative methods

As mentioned in the introduction, multilevel methods
will be used in owr framework as preconditioners in
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Figure 1.1: A structured grid (top) and unstructured
grid (bottom).

Krylov subspace iterative methods, the most popu-
lar of which are: the Conjugate Gradient (CG) and
the Generalized Minimum Residual (GMRES) method.
In addition, there are many other Krylov subspace
methods which can be used as alternatives, especially
for non-symmetric A’s. Some popular methods are
BiCGSTARB, CGS, QMR, TFQMR, BCG and their
many variants., At this point there is no widespread
agreement on the relative merits of these methods. For

more detalls concerning these methods we refer to the
recent book by Saad {13].

It is often beneficial, before applying any iterative
method, to write (1.4) in the following preconditioned
form:

M~ Au=M"'F (1.5)

where M is called the preconditioner for A. The choice
of M is very important because it can improve the con-
vergence rate of the iterative method. A good precon-
ditioner M for A should have the following properties:

o The action of M ~1v for a given vector v should be
less expensive to compute than A tv,

e The condition number x(M~1A) should be as
close to 1 as possible, preferably uniformly
bounded above (with respect to the mesh size h).

e If Ais SPD then M should be SPD.

When A and M are both SPD, it is more convenient
to work with the symmetrized version of (1.5):

(1.6)

Oftentimes, it is useful to apply different precondi-
tioners M; at each step (e.g. inner inexact solvers). In
this way, one obtains flexible solvers which can handle
a wider class of problems. The standard Krylov sub-
space methods must be modified to handle such non-

stationary preconditioners. One such method is known
as flezible GMRES (see Saad [13}).

In the next sections, our particular interest will be
focused on multilevel methods (such as domain decom-
position methods and multigrid methods) used as pre-
conditioners in PCG. The popularity of these methods
as preconditioners is based on the fact that they exactly
fit. in the applications where finite element or finite dif-
ference method is used. In other words, the design of
such preconditioners uses the properties of finite ele-
ment spaces which allow precise optimal constructions
and theoretical analysis to be done.

1.4 Multilevel methods

For many practical problems, the system of linear equa-
tions which arises from finite elernent or finite difference
discretizations might be huge. A challenge is how to
effectively solve such large systems of linear equations.
Direct methods face the problem of excessive memory
requirements and number of the floating point opera-
tions needed. In this connection, iterative methods,
and especially multilevel methods such as multigrid
and domain decomposition methods, are very attrac-
tive. These methods are popular because the amount
of work required o solve a problem is on the order of
the number of unknowns, the convergence rates are in-
dependent of the problem size and they can be easily
parallelized.

1.4.1 Multigrid methods.

In this section, we briefly describe the multigrid meth-
ods for solving linear systems of discrete equations.



We will consider the case where these systems are oh-
tained via finite element discrefization of an elliptic
partial differential equation. Detatled discussion on
multigrid methods can be found in standard references,
e.g. Briggs [14], Bramble [15], Hackbusch [16], and Xu
[17, 18].

The idea behind multigrid methods is based on the
fact that simple relaxation schemes such as Gaufi-
Seidel, Jacobi and Richardson possess a good smooth-
ing property: they reduce the highly oscillatory part
of the error very well in few iterations. This part of
the error lies in the subspace spanned by the eigenvec-
tors corresponding to large eigenvalues, i.e. the high
frequencies. The global error, or the low frequencies
unfortunately cannot be corrected well by such itera-
tive schemes and this is where multigrid helps, The
low frequencies from fine grid {say original one) are
transfered to the coarse grid, where they behave like
high frequencies, and are smoothed quickly by a sim-
ple relaxation scheme. Recursive application of this
idea leads to the multigrid method.

‘We will denote the space which contains the solution
u by V5. We assume that the coarse grids are given and
with each grid we associate a finite dimensional space
(like Vy for the fine grid). We denote these spaces by
Vo, ..., Vs—:. To unify the notation in this section we
define Ay := A. We assume that the operators Ag, k =
0,...J - 1, are given (these operators correspond to
different approximations of A on the coarse grids). We
also assume that the prolongation operator R} and
the smoothing operators Si are also given. One can
consider the action of the smoother on g € V} as a
fixed number of Gaufi-Seidel or Jacobi iterations with
right-hand side g and zero initial guess.

We view the multigrid method as a way of defining
a preconditioner My. We will describe in matrix no-
tation the action M;'g in the simplest case when one
pre- and post-smoothing steps are applied.

The action of M, ! is then obtained through the fol-

lowing steps:

ALGORITEM 1.1 (V-cycle multigrid
M g)

preconditioner

0. Ifk=0 then My'g= Aj'yg

1. Pre-smoothing: Apply one itransposed
smoothing tleration with indiel guess
2" = 0 and right hand side g, i.e.

zt =Sty

2. Coarse grid correction:

{a) Restrict the residual:

¢° = Ri(I — ApST)g.
(8} “Solve” on the coarse grid:
ql = Mj;}lqu
= JRVIEEIRk(I - AkS’,{}g

(¢} Interpolaie back and correct:

IL‘2 — $1 _;_Rg'qi
(ST + BEMZ Re(T — AxSE)] g

3. Post-smoothing: Apply one smoothing ilera-
tion with initial guess z° and right hand side

g, e

©? -+ S]g(g — Ak.?}z)
[Sk + ST — SpAgST
+(I — SpAp)RE MY Re(I — AyST)] .

Note that the above definition is recursive, the action
of M g is defined in terms of M,:jlg. Let us now
consider the simplest case: a two-level method (when
J = 1). For the sake of simplicity we omit the index
1 in the next equation. The preconditioner then is
defined as follows:

[S + 5T — 5AST
+(I ~ SAYRT AF'R(I — AST)] g.

M_lg =

1.4.2 Domain decomposition methods

Domain decomposition (DD} methods are divide-and-
conquer methods which take a large problem defined
on a physical domain, and appropriately decompose
it into many smaller problems defined on subdomains.
These smaller subdomain problems can then be solved
quickly and independently of each other and their so-
lution suitably combined, usually via an iterative pro-
cess to obtain the solution to the original problem.
Domain decomposition methods fall into two broad
categories: overlapping DD (Schwarz methods) and
nonoverlapping DD (substructuring or Schur comple-
ment metheds). Our description here follows that
in Chan-Mathew [19]; see also the recently published
book by Smith, Bjgrstad and Gropp [20]. We will
not discuss the nonoverlapping domain decomposition
methods here. For a detailed description and investi-
gation of these methods we refer to [19, 20].



1.4.2.1 Overlapping DD Tn overlapping DD meth-
ods, a set of p overlapping subdomains are formed by
taking a set of nonoverlapping subdomains {Q[}_,,
and extending them to larger subdomains, {€;}0_; by
some small distance, 8, see Fig. 1.2. The partition-
ing induced by such a decomposition amounts to an
ovetlapping block decomposition of the system (1.4).
Thus, the cverlapping DD methods can be thought of
as block iterative solvers, either overlapping block Ja-
cobi or block (GauB-Seidel, depending on whether or
not the the most updated iterates are used for bound-
ary conditions.

Figure 1.2: Generating a set of overlapping subdo-
mains.

The main ingredients required in all DD methods
are:

® Restriction matrices: Let R; be the n; x n restric-
tion matrix of 1’s and (’s which takes a full-length
vector in IR® and maps it to a restricted vector in
IR"™", where n; denotes the number of unknowns in
subdomain £;. The effect on an n-vector is injec-
tion onto the subdomain, £2;.

s Frtension matrices: Let BT be the n x n; exten-
sion matrix, which is defined as the transpose of
the restriction matrix, R;. The effect on an n;-
vector is identity on the subdomain, €;, and zero
extension outside the suhdomain, i.e. on £\ ;.

o Subdomain matrices; Define the local stiffness ma-
trix on ; to be 4; = R; ART, where A; € IR™#¥%™,
Because the restriction and interpolation matrices
consist only of 0°s and 1’s, the local stiffness ma-
trices are sitmply principal submatrices of A,

e Subdomain scolvers: Let Ai—l symbolically denote
the solver for the restricted operator. These can
be either exact or inexact solvers (see Sec. 1.4.2).

The additive Schwarz (block Jacobi) method on p
subdomains is given by:

ub il = B U L BT A7 Ry (f— Aub),

i=1..p

Ir: this form, it is seen that corrections are done si-
multaneously on p subdomains. Rewriting this as one
equation reveals the preconditioned iterative method:

wFtl = bk M;"sl(f - Auk)

where the preconditioner M, 1s given by:

Additive Schwarz preconditioner.
(block Jacobi on A)

r
M=) " RTAT'R,.

i=1

(1.7)

Instead of simultaneous corrections, the corrections
can also be done successively, to yield the multiplicative
Schwarz (block GauB-Seidel) method, for i = 1,...,p:

uk il — B HE-D/p 4 BT AL R (f — AuRt0E-1/P),

Because the most currently updated information is
used, this method will generally converge faster than
additive Schwarz, The drawback is that it is less par-
allel (but this can be remedied by appropriate coloring
of the subdormains).

For the multiplicative Schwarz method on p subdo-
maing, the preconditioner can be written as:

Multiplicative Schwarz preconditioner.
(block Gauf-Seidel on A)

M7l=I- fI(I — RTATIR;A)AY. (1.8)

=1

1.4.2.2 Coarse grid The domain of dependence for
elliptic problems is the entire domain, but because
Schwarz methods decompose the problem into smaller,
independent problems, information from one subdo-
main must travel large distances to reach another sub-
domain. To aveid deterioration of the convergence
rates of these methods, some sort of mechanism for the
global transfer of data is needed. This is achieved, to
some degree, by the overlapping of subdomains in the
Schwarz methods. More overlap leads to more coupling
between subdomains. However, this adds redundant
work and comnmunications overhead if too ruch over-
lap is introduced. Dryja and Widlund [21, 22] showed



that the condition number for additive Schwarz (1.7)
is given by:

w(MPA) =0 (H‘z (1 + (%) 2)) .

The condition number is independent of h. For suf-
ficient amount of overlap (choosing § = O(H)), the
condition number is O(H ~?) and so will increase as H
tends to zero. This means that the method will not be
scalable to a large number of processors.

This deterioration can be remedied by introducing a
coarse grid to achieve additional global coupling. In ad-
dition to the subdomain restriction, interpolation and
stiffness matrices used in the one-level Schwarz meth-
ods, we need coarse versions of them: Ry, Ry, Ax =
Ry AR, and A;. Here, Ry and R}} will instead
be the full weighting restziction and linear interpola-
tion matrices, respectively, which are commonly used
in multigrid methods. The two-level additive Schwarz
preconditioner can then be written as:

Additive Schwarz preconditioner with
coarse grid.

P
Mgt = REAR' Ry + > R AT'R;.

i=1

It can be shown that the condition number for this
two-Tevel method is (see Section 2):

K{(M7LA) = O(1 + (H/$)),

and the method can be made independent of H, h with
sufficient overlap by choosing 6§ = O(H).

1.4.2.3 Multilevel Schwarz Multilevel Schwarz is
an extension of two-level Schwarg with L different
coarse levels, each level being decomposed into py sub-
domains as previously described. We will denote the
i** subdomain on the I** level as: Q: Several different
variants of multilevel Schwarz can be created, depend-
ng on when the most currently updated information is
used:

e Fully additive multilevel methods would be addi-
tive among subdomains on the same level as well
as additive between levels.

o Multilevel methods which are multiplicative
among stbdomains on the same level, but additive
between levels can be viewed as “additive MG”,

¢ Classical V-cycle MG can be viewed as a multi-
level Schwarz method which is multiplicative both
among subdomains on the same level as well as
between levels.

The fully additive multilevel Schwarz preconditioner
can be written as:

Fully additive multilevel Schwarz
preconditioner.

I m

Mot =N (R)YT(AH (R,

=1 i=1

1.4.2.4 Inexact subdomain solves In all of the
domain decomposition methods described above, sub-
domain solves, A; !, are required, These can be done
either exactly or mexactly, Though the subdomain
and coarse problems are much smaller than the origi-
nal problem, it can still be quite expensive to attempt
exact solves on these problems.

in the two-level additive Schwarz methods, we can
simply replace the exact solves with inexact solves. Let
M; = A;, Mg =~ Ag represent the inexact solves. Then
the preconditioner is given by:

r
M7= R}}MIEIRH + Z R?Mi_lﬁi.

=l

1.5 Approaches for designing multi-
level methods on unstructured
grids

Multilevel methods require a hierarchical grid struc-
ture. For structured grids, the hierarchy can be re-
covered from the fine grid. For unstructured grids,
however, there is no natural grid hierarchy. In ad-
dition, their lack of structure prevents these meth-
ods from exploiting regularity and using fast solvers
as with structured grids. Difficulties exist in identify-
ing coarse grid problems/spaces/boundary conditions
which do not occur when using structured grids. The
algorithms which are based on unstructured grids must
be redesigned to handle these issues without sacrificing
too much in terms of complexity and performance.

There are several approaches for constructing the
coarse spaces for unstructured grids. One approach is



to simply apply algebraic versions of multigrid meth-
ods [23]. However ignoring the geometric and differ-
ential nature of the underlying problem may lead to
suboptimal performance.

Another approach (see Mavriplis [24]) is based on in-
dependently generated coarse grids and piecewise lin-
ear Interpolation hetween the grids. The advantage of
this approach is convenience: the coarse grids can be
generated by using the same grid generator which pro-
duced the original fine grid. The disadvantage is that
the interpolations can be expensive to apply since the
set of nodes in the coarse grids are not related in any
way to the nodes in the fine grid. Thus no fast search
routines can be applied and the implementation will be

0(n?).

An alternative approach is based on generating node-
nested coarse grids, which are created by selecting sub-
sets of a vertex set, retriangulating the subset, and
using piecewise linear interpolation between the grids
(see [25, 26]). This still provides an automatic way
of genevating coarse grids and now faster implementa-
tions of the interpolation (can be implemented in O(n)
time). The drawback is that in three dimensions, rete-
trahedralization can be problematic.

Anocther effective coarsening strategy proposed by
Bank and Xu [27] uses the geometrical coordinates of
the fine grid (which is available in most cases).

New coarsening strategles based on the algebraic
approach recently were published by Hackbusch [28],
Braess [29] and Reusken [30)].

In many of these approaches, problems may occur in
producing coarse grids which are valid and with bound-
aries which preserve the important features of the fine
domain. One of most popular and promising new coars-
ening techniques which avoids this problem is based on
the agglomeration technique (see Koobus, Lallemand
and Dervieux [31]). Instead of constructing a proper
coarse grid, neighboring fine grid elements are agglom-
erated together to form macroelements. Since these
agglomerated regions are not standard finite elements,
appropriate basis functions and interpolation operators
must be constructed on them. Such algorithms have
also been investigated by Mandel, Vangk, Brezina {32])
and Van&k, Kfizkové [33].

2 Introduction to convergence
theory

As mentioned in Section 1.3, the estimate of the con-
vergence rate of the PCG requires an estimate of the
upper bound of k(M ~1A). In particular, estimates on
the extreme eigenvalues of M~1A must be obtained.
In this section, we first give a general framework for
bounding x(M~1A) and then we show how such an
analysis can be carried out for the overlapping domain
decomposition method. Such an analysis can show (or
predict) the convergence rate and in most cases gives a
good guess as to how the parameters and approximate
operators should be chosen in order to get an optimal
iterative method. For a similar approach in analyzing
the convergence properties of iterative methods using
general subspace splittings for structured meshes, we
refer to [17].

We shall adopt a matrix approach for analyzing the
domain decomposition methods, in the hope that it is
more intuitive and easier to understand. In the analy-
sis, we state the important theoretical results omitting
their proofs. Detailed presentaiions of the analysis,
rigorous proofs of the results quoted here, and more
references can be found in [19], [20].

Although we will present the domain decomposi-
tion methods in matrix formulation, the use of Sobolev
norms and semi-norms in F*({2) cannot be avoided in
a few places, so we will denote them by the conven-
tional notation: |jullz (or |juliz,n} and |ulz (or |uls,q),
respectively (see [20]).

2.1 Subspace correction framework:
matrix formulation

Our initial setting in matrix form is as follows: Let
2 be covered by p overlapping subdomains £, i =
0,1,...,p. Each subdomain £; corresponds to a sub-
space V; C IR™. The subspaces are defined through the
restriction operators B; € IR*™" { = 0,1,...,p, and
we set V; = Range(R;) Note here that we will inter-
changeably use the notation for the coarse grid versions
denoted with subscript H in the previous section, with
the subscript (), when convenient. Here, Vj denotes the
coarse space.

We wish to construct a preconditioner for solving the
following linear algebra problem

Au=f, AecIR*" isSPD. (2.1)



Let us first explain the infuition behind the construc-
tion of a preconditioner based on this splitting of IR™.
It is natural to take the best approximation to the solu-
tion from each subspace, and then extend these differ-
ent approximations to the whole IR" somehow in order
to get a global solution, Thus the question i3 What is
the best correction to the k-th iterate u* from ;7

If we measured the error in the A-norm, {| +||4, then
this question can be reformulated as the following min-
trnization problem:

min [|(v* + B ) — A7 flla- (2.2)
¥i
The solution is given by:
vi = (RARTYIR(f— Aub) ©2.3)

= A;ﬂlR,_(f s A‘ML)

The next iterate is then obtained via the equation
(note that we correct here only in one subspace V})

wFt = ¥ 4+ RY AT R(F — Au®) (2.4)

Example. The Jacobi iteration (see Section 1.3) cor-
responds to the splitting V; = span{e;} where e; is the
t-th unit coordinate vector. The restrictions, R;, in
this case are defined as R;v = (v, e;)e;.

Performing these subspace corrections simuliane-
ously gives the additive subspace correction precondi-

tioner:
P

Mzh =" RTAT'R;.

i=0

Defining now the projections P; = RY A7 R; A, for
t = 0,...p, we get

P
MEA=) P
i=0

As we pointed out earlier, the convergence of the
PCG method depends on the condition number of
M~1A, Thus our goal is to find an upper bound for
k(M~*A) which amounts to finding an upper bound
for Amax(M;;LA) and a lower bound for Ayin(M;LA).

ase

The estimate on the upper bound for Apax(M L A4) is

[c1:24
eagier and it follows directly from the following simple

lemmas.

Lemma 2.1 P; is a projection in (-, )4, i.c.
AP;=PFlA, PP=P |PRla<l.

Lemma 2.2 The marimal eigenvalue of the precondi-
tioned matriz satisfies the following inequality:

)\ma.x(Ma_sch) <p+ 1L

ReMaRK. The bound given in the previous lemma
can be easily improved to:

Amax(MOLA) <ne+ 1= ey,

where n. is the number of colors to color §2;’s In such
a way that no two neighboring subdomains are colored
the same color.

We next give an estimate on the lower bound for
Amin(M1A). This estimate is based on the following
Pertition Lemma which plays a crucial role in the con-
vergence analysis of the domain decomposition meth-
ods.

Lemma 2.3 (Partition Lemma). (Matsokin-
Nepomnyaschikh [34], Lions [85] and Dryje- Widlund
[86, 21]}. Assume that there exisis a constant cq such
that

P
min Z lusll4 < eallulld

u = Wi o
uy & Vi

(2.5)

then

Amin{ M EA) > ml_.

GSC Cg

The assumption made in the partition lemma (equa-
tion (2.5)) means that for any given u, a stable decom-
position must exist in the sense that the sum of the
“energy” of all the pieces u; lying in Vi is bounded by
the global energy norm of the decomposed vector. This
assurmnption can be viewed as a condition on the Vi’s,
i.e. the subspaces must not introduce oscillations (high
energy components) in u;.

Combining lemmas 2.1- 2.3, we get our main theo-
rem:

Theorem 2.1 If assumption (2.5) holds, then the con-
dition number k(ML A) can be bounded by:

ase

w(M2A4) < cren.

S¢

(2.6)



This result suggests how to construct the decompo-
sitions in order to obtaln opiimal preconditioners: we
want the constants ¢, ¢ to be independent of the prob-
lem parameters such as the number of subdomains, the
characteristic mesh sizes A and H, jumps in the coeffi-
clents of the underlying PDE, etc. It 18 also desirable
to make ¢; and ¢y as small as possible in order to get
a condition number close to 1. But ¢; and ¢; depend
on the size of overlaps in the subspaces V;. More over-
lap will decrease ¢g, but the number of colors ¢ will
increase. On the other hand, small overlap will lead
to large ¢p and small ¢y. Thus the space decomposi-
tions have to be made in such a way to ensure that the
product e1¢9 18 as small as possible,

2.2 Application to two-level overlap-

ping domain decomposition meth-
ods

As an example of the application of the above theory,
we will present a detailed estimate for the condition
number of the two-level Schwarz method.

2.2.1 The intuitive idea

As in the previous section, we first present the basic
intuitive idea using a simple 1D version of (1.1).

We want a splitting which satisfies the partition as-
sumption (2.5). Take Q to be a fixed open interval on
the real line and cover 2 with p overlapping subdo-
mains {4, i = 1,...,p (see fig 2.1). Consider the par-
tition of unity &; corresponding to this covering. By
construction the functions 8; satisfy

0<6: <1, |8l <670 (27)

where § is the size of the overlap and 6|, « denoctes the
maximum norm, 1.e. the maximum of the s-th deriva-
tive of ;. We define u; = f;u, so we have u = X7_ u,.

Figure 2.1: The partitioned wu;’s without coarse grid.

Since A corresponds to a discretization of the second
order elliptic operator, fga(m)a%, it is easy to see that
the A-norm and the H'-seminorm are equivalent in this
case: |jullq = |ldu/dzll,. Our goal is to bound ||u|a
by ||z||4. Locking at Fig. 2.1, we see that the function
u; changes from [|ullp to 0 over a distance § and we get:

We still need to bound [Jullo by ||u||4. But the func-
tion u, satisfying homogeneous Dirichlet boundary con-
ditions, cannot change rapidly over the interval € if
there is no significant change in the derivative, The
well-known Poincaré inequality estimates the norm of
the function with the norm of derivatives and its ap-
plication leads to the following:

CORIC}

After summing over all subdomains, we get:

;iluua& <0 () Il

Therefore,

@ = o@)=o (D) 7)

From these inequalities, one may conclude that if the
overlap is of size O(H), then k(M ~1A) = O(H™?),
which is an improvement over O(h™?%), but is still un-
satisfactory. We can see that the overlapping subdo-
mains alone cannot provide a stable partition of u.

Tt turns out that this dependence on H can be elimi-
nated by using a global coarse space, Vi, which couples
all the subdomains. The idea is to construct a coarse
grid approximation uy to w satisfying the following two
important properties:

(2.8)
(2.9)

lusla

< ellulla
lu — ugllo <

cH ||lufla

Define w = u — ug and the following partition of w:

2
g = O (u — upy), U;UIJ+EU§. (2.10)
i=1



Figure 2.2: The partitioned u;’s with coarse grid.

Proceeding as before and taking into account that
now the u;’s change from 0 to O(H}, we have

ot < (FI08) "< () g,

If we make the natural assumption that § = O(H), the
bound for ¢s now reads

@:o(<§Y)=om.

Thus, we can see that the role of the coarse grid Vi i3
to make {|u — ugl| small enough {O(H))}, so that it can
be partitioned in a stable manner.

<

We would like to comment on the choice of uy. As
it can be seen, uy is a purely theoretical construction
and there is no need of its use in the algorithm. One
possible choice is uy = R pu, where Ry is a kind of in-
terpolation or projection operator. Of course, R g must
satisfy properties similar to (2.8) and (2.9} namely:

|Rmuls
llu — Reullo

cluly  (stability)
eI uly.

(2.11)
(approx.) (2.12)

AN VAN

A natural candidate for such an operator is the nodal
value interpolant on the coarse grid, ug = Igu. A
drawback of such a choice is that in 3D this interpola-
tion does not satisfy the stability property (2.11). To
see this, we take w to be the basis function ¥} associ-
ated with the grid node z;. Then we have

|wli

[ Tgwl}

The last estimate shows that the stability requirement
is violated.

If the grid is structured, then a good and stable
coarse grid approximation to the elements of ¥}, is the
Lo-projection Qg from V), — Vy and we can define
R = Q, ie. ug = Quu. It is known that this
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upr satisfies the stability and approximation properties
(2.11}) and (2.12) (see Xu [17] or Dryja and Widlund
[36}).

‘We now state the main result of this section.

Theorem 2.2 Under the above assumptions (2.11)
and (2.12) for the condilion number k(M1 A), the fol-
lowing estimate holds

W(MzLA) = O(1 + (H/6)?). (2.13)

2.2.2 Some extensions

Inexact subdomain solves can easily be accommodated
by using || - ||a; satisfying:

lulla < wilulla,  Yu eV

Then the constant w in the above inequality will be
absorbed in the resulting bound for k(M ~14).

The extension to mulfilevel Schwarz method is
straightforward. An additional assumption, however
is needed in this case:

(uisui)a < egllwillalluglla Vo € Vi, Vuy €75,

Such inequalities measure the abstract angles between
the subspaces and are known in the lLiterature as
“strengthened Cauchy Schwarz inequalities”. For a de-
tailed discussion of the issues concerning multilevel the-
ory we refer to Xu [17, 18], Chan-Mathew [19]. Note
that p({e;}) will enter in the bound for k(M ~1A).

We now briefly comment on the convergence of the
mulitplicative Schwarz method which was described in
Section 1.4.2. From (1.8), for the error e*t1, we have:

el = (T PBy). (I - P)et.

Since each (I — F;) is a projection in the A-norm, it
immediately follows that |je®*+!]|4 < |le*]la. The fol-
lowing result gives a bound for the damping factor of
the multiplicative iteration.

Theorem 2.3 (Bramble, Pasciak, Wang, Xu [37];
and Xu [17]} Let Vi’s satisfy the assumptions of the
Partition Lemma. Then the following estimaie is true:

[+
1= BT = Pl < 1= 2.

where ¢ depends on the number of colors for coloring
the §; s but is independent of p.



2.3 Convergence of multigrid methods

The convergence properties of multigrid methods (see
Section 1.4.1) depend on many parameters. One can
vary the number of smoothing steps, the smooth-
ing operators, the interpolation and restriction oper-
ators, coarse grid operators, etc. There are two main
approaches in constructing multigrid preconditioners.
One of them uses nested subspace splittings of Vj, and
the other one uses non-nested spaces or specially in-
terpolated bilinear forms (coarse grid matrices)., The
discussion of the convergence in both these cases is
given m [15, 37, 17, 18]. Here we give the simplest
convergence result in the case of nesied spaces (ie.
Vo CVi C...Vyy CVy =V,). and so-called full
elliptic regularity assumption:

lll2 < ell o,

where u 1s the solution, # is the right hand side of

(1.1).

Again, the stability and approximation proper-
ties (2.11) and (2.12) are crucial in the convergence
theory. The stability property (2.11) is automatically
satisfied when the spaces are nested. It turns out that
from the regularity assumption the following approxi-
mation property follows (see Xu [17, 18]):

There exists a constant, ¢;, independent of the mesh
parameters (i.e. of the mesh size k) such that

(T = Pe_yvl]3 < ¢y —— §|Awg|2 Yo € Vi, (2.14)

1
p(Ar

where P denctes the elliptic projection defined by
(APyu,v) = (Au,v) Yv € V.

The other cperator involved in the definition of M;*
is the smoother and we make the following assumption
on it:

w0, 0) < (Soymm s, v) < (A7 v, v}, (2.15)

p(A )

The smoother Sgymm i 1s the symmetric version of
Sy and is defined as: Syymmp = ST + 5 8STAS.
Inequalities of the type {2.15) are satisfied by the Gauf-
Seidel method.

An important thing to mention for the choice of
the smoother is that we are trying to choose smoother
which will quickly capture the high frequency compo-
nents of the error, and we are not going to use it as a
soiver. For example if the matrix Ay corresponds to
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the five point finite difference stencil, it can be seen
that the Jacobi method (with w = 1) is not good for
a smoother, One must use the damped Jacobi method
with w < 1.

The subspace correction framework applies to multi-
grid methods as well. As long as the stability and ap-
proximation properties are verified, the following con-
vergence result holds:

Theorem 2.4 Under the assumplions (2.1{} and
(2.15), the following estimate is frue:

- M7 A <12

- (2.16)

We want to point out that a convergence result sim-
ilar to Theorem 2.4 is also true in the non-nested
case. We refer to work by Bramble et.al. [37] or Chan-~
Zou [38, 39] for unstructured grids. The construction
of interpolation operators satisfying the stability prop-
erty might be an issue. Some possible stable definitions
can be found in [38) and [39] and in Section 3.2.

In the next sections, we will define subspaces satis-
fying the above assumptions or directly satisfying the
approximation property similar to (2.14). The verifi-
cation of these assumptions is easy for structured grids
and can be found in many papers. On unstructured
grids, however, this might be rather complicated and
tricky. Special attention should be paid to the con-
struction of the spaces themselves, rather than using
standard spaces and verifying the above inequalities.

3 Node-nested coarse spaces

Unstructured multilevel methods for solving linear sys-
tems like (1.4) require a hierarchy of coarse grids. Grids
which are node-nested have the advantage that they
can be antomatically generated and that efficient meth-
ods can be used to create the inferpolation and restric-
tion operators needed to transfer information from one
level to the other. Disadvantages are that for com-
plicated geometries, particularly in three dimensions,
gpecial care must be taken to ensure that the coarse
grids which are produced are valid and preserve the
important geometric features of the fine domain. With
unstractured meshes, the grid hierarchy can allow gen-
eral grids which are non-quasiuniform and coarse grids
whose boundaries may be non-matching to the bound-
ary of the fine grid, so care must be applied when con-
structing intergrid transfer operators for various types



of boundary conditions, In this section, we will discuss
some possibilities,

3.1 Maximal independent set (MIS)
coarsening

A maximal independent set of vertices in a graph is a
subsef of vertices which is independent in the sense that
no two vertices in the subset are connected by an edge,
and mazimal if the addition of a vertex results in a de-
pendent subset. An automatic approach to generating
node-nested coarse grids is to take a maximal indepen-
dent set (MIS) of the vertices and call this set, the set
of coarse grid niodes, and then retriangulate it [25, 26].
A sequence of coarse grids can thus be created by re-
peated application of this technigue.

A simple technique for finding a MIS of vertices is to
first choose a MIS of the boundary vertices by choos-
ing every other boundary vertex and eliminating all its
nearest neighbors, and then find a MIS of the interior
vertices by selecting a random interior vertex and elim-
inating all its nearest neighbors, and repeating the pro-
cess until all vertices are either eliminated or selected.
The resulting vertex subset is then retriangulated us-
ing for example, the same triangulation routine which
generated the original fine grid.

3.2 Coarse-to-fine interpolations

In general, the resulting coarse grid domain will have
boundaries which will not match the boundaries of the
fine grid so the coarse space Vg is usually not a sub-
space of the fine space V3. Indeed, even if Qg = O,
Vg may still not be a subspace of V}, since the coarse
elements are generally not the unions of some fine ele-
ments in unstructured grids. To construct a coarse-to-
fine transfer operater, one can use the standard nodal
value interpolant associated with the fine space, Vj.

ArcorrreM 3.1 (Stendard nodal value interpolation)

1. For each fine grid node,
2. Search through all coarse grid elements un-
til one which conlains it 15 found.

3. If the fine grid node is o coerse grid
node, then
4. Set the interpolant to be equal to that
nodal value,
& Else
. Set it o be a linear inlerpolaiion of

the & nodal values making up that
coarse grid element {see Fig. 8.1).
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Figure 3.1: Barycentric (natural) coordinates: A;(x) =
arir:(ﬁi;)’ for i = 1,2,3, where Aoz is the simplex
with vertices z1, %4, £s. The value of a function f at a
point @ is given by: f{z) = A (&) f(z1) + Xolz) fz2) +
As(z)f(zs)-

Standard interpolations here

Figure 3.2: Use standard interpolation for fine grid
nodes interior to a coarse element. What should be
done for fine grid nodes which are not interior to any
coarse grid element? One way 1s simply with extension
by zero.

A naive implementation of this routine requires
O(n*) time, but exploiting the node-nested property of
the grids, one can implement this in O{n) time, since
only nearest coarse grid elements of a fine node need
to be searched.

3.3 Interpolations
boundaries

on non-matching

Notice, however, that the standard nodal value inter-
palant is only well defined for those fine nodes lying also
in the coarse domain Q, but undefined for those fine
nodes lying outside (3. That is, in Step 2 of the stan-
dard nodal value interpolation {Algorithm 3.1}, there
is no provision for what to do if all the coarse grid



elements have been searched, and none contains the
fine grid node. A simple and natural way to remove
this bartier is to assign those fine node values by zero.
‘We denote this interpolant as the coarse-to-fine inter-
polant, Z}). This zero extension interpolant works well
for Dirichlet boundary conditions [26, 2] but will not
be accurate nor stable for other boundary conditions.

We provide a simple one dimensional example to
illustrate why better interpolants are needed at non-
matching boundaries. This example has a Dirichlet
boundary condition at the left boundary point and
a homogeneous Neurnann boundary condition at the
right boundary point. The fine grid function, u, and
the coarse grid approximation to 1, Ug are shown. For
Neumann boundary conditions, the elements from V),
which have to be interpolated are generally not zero at
the Neumnann part of the boundary. Recall from Sec-
tion 1.1 that V} is a subspace of H} (2, T'p), whose ele-
ments are restricted to vanish only on Dirichlet bound-
ary, Thus using a zero extension interpolant at a Neu-
mann boundary will not be accurate enongh and intro-
duces a correction with high energy (J|u — ugl| is no
longer O(H)), (see Fig. 3.3).

Figure 3.3: Non-matching boundaries: Zero extension
interpolation is not accurate at the right end of the
coarse domain.

To achieve better efficiency, we need to modify this
intergrid operator to account for the Neumann condi-
tion. Two general ways to freat such boundaries are:

1. Modify the coarse grid domain to cover any fine
grid houndaries of Neumann type and use stan-
dard nodal value interpolation.

2. Increase the accuracy of the interpolants by ac-
counting for the Neumann condition for those fine
nodes in Q\QF.

The first approach is motivated by the fact that stan-
dard nodal value interpolants can still be used with ef-
ficiency, provided the coarse grid covers the Neumann
boundary part of the fine grid (see Fig. 3.4). This was
first proposed and justified in {2]. We shall denote this
operator as the coarse-to-fine interpolant, Z1. Let us
still denote the modified coarse grid domain by Qp.
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Then for all v € V| the interpolant T} is defined as:

{ gH(m)

for:reﬂﬂg—lﬂ,
for x € 0\ Qg.

Tiw® ()

Figure 3.4: More accurate interpolation with 7} done
at Neumann boundary.

This is a natural extension of vy by zero outside
the Dirichlet boundary part of the coarse grid do-
main. Similar zero extensions were used in Kornhuber-
Yserentant [40] to embed an arbitrarily complicated
domain into a square or cube in constructing multi-
level methods on nested and quasi-uniform meshes for
second order elliptic problems with purely Dirichlet
boundary conditions,

Although the coarse-to-fine operator I} works well
for mixed boundary conditions, one has to modify the
original coarse grid so that it covers the Neumann
boundary part of the fine grid domain (see [4] for a de-
seription for modifying boundaries). This can be very
difficult to do for complicated domains. To avoid modi-
fying the original coarse grid, we now consider standard
finite element interpolants which are modified only near
Neumann boundaries. The idea is as follows: Let us
consider a fine grid point, z, which lies ouiside the
coarse grid domain. Find a nearby coarse grid trian-
gle to z (say, Ty with vertices 1, 29, za), and extrapo-
late u{z) using the values u(wy), ule;) and u(zs). Note
that such an extrapolation should depend on the type
of boundary condition at =.

We define the inferpolant at z by using the nodes of
the coarse boundary edge closest to a:

Zi™ ()

Az)o (211) + (1= M) (),

where the coarse edge has endpoints :c{f and zf and
A is the ratio of the lengths of two segments of this
edge cut off by the normal line passing through z to
the edge. This kind of interpolation was also used by
Banl and Xu [41] in their construction of a hierarchical
basis on a unstructured mesh.

We can alsc use a non-zerc extension by extrapola-
tion using barycentric functions:

(@) = M (@) + da(zp™ 2f)



+hg (@) (25),

where Aq, Ag, Az are the three barycentric coordinate
functions correspending to 7y (see Figure 3.1). Note
that the functions Ay, Az and Az used in the definition
of I} satisfies A1, A9, A3 > 0 for & € 7z, but not so
for £ & 7g. The barycentric coordinates may still be
defined, provided we consider the area of a simplex
to be orientation-dependent. That is, area iz > 0 for
“right-handed” triangles (clockwise) and area is < 0
for “left-handed” triangles (counter-clockwise).

We summarize the various interpclants:

T): Zero extension with unmodified coarse boundaries,

Zero extension with medified coarse Neumann
boundaries,

I}

T7#: Nearest edge interpolation, and

I,?: Nearest element interpolation.

3.4 Stability and approximation of the
non-nested interpolation

The convergence theory for overlapping multitevel do-
main decomposition and multigrid methods require the
coarse-to-fine grid transfer operator to possess the lo-
cal optimal L%-approximation and local H!-stability
properties as introduced in Sec. 2. The locality of these
properties is essential to the effectiveness of these meth-
ods on highly non-quasi-uniform unstructured meshes.

Because the spaces are non-nested (they are node-
nested, but still non-nested, as coarse grid elements are
not unions of fine grid elements), in the theory dis-
cussed in Section 2, the ug coarse space approximation
to u should be defined as:

uy = Ly Rpru.

Since Ry € Vi ¢ Vi, we need to use the interpolation
operator Zp, to map Ryu back to ¥V}, The convergence
theory now requires both 7, and R g to possess the sta-
bility and approximation properties. When the mesh
is quasi-uniform, the usual L%-projection, Qgr, can be
used for Ry. But when the mesh is highly non-quasi-
uniform, the constant in the approximation property
(2.12) can deteriorate if we use Qg . The frick then is
to use a localized version of the LZ-projection, i.e. the
so-called Clément’s projection. It is known that this
projection provides local stable and good approxima-
tions. We refer to Clément [42] for its definition and
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Chan-Zou [38] and Chan-Smith-Zou {2] for its use in
domain decomposition contexts.

For 7y, we can take the coarse-to-fine interpolants
introduced in Sec. 3.3 The key step then is proving
the stability and approximation properties for Z;. The
proof that the non-nested standard interpolation used
in the interior is stable and accurate can be found in
Cai [43] and Chan-Smith-Zou [2]. The proof for the
boundary-specific interpolations can be found in [5].

3.5 Numerical results

In this section, we provide some numerical results of
domain decomposition and mulbigrid methods for el-
liptic problems on an unstructured airfoil mesh: see
Figure 3.5. The well-known NASA airfoil mesh was
provided by T. Barth and D. Jesperson of NASA Ames.
Coarse grids were generated by the MIS approach as
described above, All numerical experiments were per-
formed using the Portable, Extensible ‘Toolkit for Sci-
entific Computation (PETSc¢) [44], running on a Sun
SPARC 20. Piecewise linear finite elements were used
for the discretizations and the resulting linear system
was solved using either multilevel overlapping Schwarz
or V-cycle multigrid as a preconditioner with full GM-
RES as an outer accelerator. In the experiments, the
initial iterate is set to be zero and the iteration is
stopped when the discrete norm of the residual is re-
duced by a factor of 1075,
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Figure 3.5: Unstruetured NASA airfoil with 4253

nodes.

For partitioning, all the domains (except the coars-
est) were partitioned using the recursive spectral bisec-
tion method [45], with exact solves for both the subdo-
main problems and the coarse grid problem. To gener-
ate overlapping subdomains, we first partition the do-
main into nonoverlapping subdomains and then extend
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Figure 3.6: Asrfor! grid hierarchy with unmodified
boundaries {left) and modified boundaries (right).

each subdomain by some number of elements.

‘We solve a mildly varying coefficient problem on the
airfoil:

¢ Hu J . Hu
g (L+ay)a) + @((Sm@y))é@) = F(z,y),
where

F(z,y) = (dey + 2) sin(3y) + 92 cos(8y),

with either a purely Dirichlet boundary condition or a
mixed boundary condition: Dirichlet for # < 0.2 and
homogeneous Neumann for z > 0.2. For this problem,
the non-homogeneous Dirichlet condition is 4 = 2 -
% sin(3y).

Fig. 3.7 shows results when a hybrid 4-level
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multiplicative-additive Schwarz method is used {mul-
tiplicative between levels but additive among subdo-
maing on the same level). As can be seen, deteriora-
tion of the method occurs with interpolant I} when
mixed boundary conditions are present. The next
figure (Fig. 3.8) shows results for the multiplicative
Schwarz method (both on the subdomains and between
levels). This method behaves much like multigrid (see
Table 1). In fact, this is nothing more than standard
V-cycle multigrid with a block smoother used as a pre-
conditioner. A V-cycle multigrid method with point-
wise (Gauss-Setdel smoothing and 2 pre- and 2 post-
smoothings per level was used to produce the results
in Table 1.

Hybrid muitavael Schwarz on Dirlchiet 8G
T T

— Interpolant @
----- Intarpalant 1

—— Interpalant 2
- - Interpatant 3

5 1
Pracondifoned GMRES lterations
Hybrid mutiitevel Schwarz on mixed BG

— Intarpalant &
AL w0+ Intarpotant 1
13 =~ Interpolant 2
% -—-- Intarpolant 3

10 18 20 25 30 35
Frecondilionad GMRES ileralions

Figure 3.7: Hybrid multiplicative-additive 4-level
Schwarz. Convergence history with purely Divichet
boundary conditions (top) or mixed boundary condi-
tions (bottom).
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25 3 3.5
Praconditioned GMRES llaralions
Muttiplicativa multilevat Schwarz on Dlrichlal BG
T T T T 3 T T

o [ ==n Interpolant O
interpolant 1
-~ Intarpolant 2
==+ Interpolant 3

i3 15 2 25 2 a5 4 45
Pracondilioned GMRES iterations

Figure 3.8: Multiplicative 4-level Schwarz. Con-
vergence history with purely Dirichet boundary con-
ditions (top) or mixed boundary conditions (bottom).

Table 1: Multigrid. Tables show the number of GM-
RES iterations to convergence with Dirichet or mixed
boundary conditions.

Dirichlet boundary conditions

F# of fine MG | # of coarse || Interpolant Used
grid nodes | levels | gridnodes || 77 | Zp | 27 | T3
2 1170 41414 4

4253 3 340 4 | 4| 4 4

4 101 4 1441} 4

Mixed Dirichlet/Neumann boundary conditions

# of fine MG | # of coarse || Interpolant Used
grid nodes | levels | grid nodes || 7, [ Z; | Z; | Zj
2 1170 6 5 4 | 4

4253 3 340 6 | 4 b b

4 101 718 5 b

4 Agglomerated coarse spaces

4.1 Agglomerated multigrid methods
on unstructured grids

In this section, we will consider a general agglomer-
ation approach for constructing nested coarse spaces
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and transfer operators. The difference between this
technique and the node-nested coarse spaces from the
previous section is that here, we want to produce a
nested sequence of spaces to be used in the multigrid
method. The common point will he that our construc-
tion must satisfy the approximation and stability prop-
erties mentioned in the subspace correction framework
in Section 2.

4.2 Coarse points and construction of
macroelements

The agglomeration technique is based on the construc-
tion of a coarse grid with “macro-elernents” consisting
of unions of fine grid clements (triangles). An example
of such a coarse grid is given on Fig. 4.1. Then, as in
the standard finite element method, the basis fanctions
in each coarse grid macroelement are appropriately de-
fined. The coarse space Vi is then determined as the
space spanned by these functions. If the coarse grid ba-
sis functions are defined as linear combinations of fine
grid basis (i.e. the nsual finite element basis), then Vi
is a proper subspace of V3, i.e. we obtain nested spaces
by construction.

The construction of a basis in Vg is equivalent to
the definition of the restriction matrix Ry, because the
coordinates of these basis functions with respect to the
fine grid basis form the rows of the restriction matrix.
Thus, once the basis functions are defined, we have the
restriction Rp, the interpolation (or prolongation) R%;,
the coarse grid operator Ry AR, and we can apply the
Vecycle algorithm from section 1.4.1.

Figure 4.1: An exampie of macroelements



Although the nestedness is assured by construction,
there are some important rules which should be fol-
lowed in order to ensure good convergence rate of the
resulting multilevel methods:

e Smoothness: The basis functions have to be
smooth encugh. This requirement is needed be-
cause the elements from Vi have to satisfy the sta-
bility property (2.11), which invelves the A-norm
of the coarse grid function.

Approzimaetion: The functions in Vi have to sat-
isfy the approximation property (2.12). An impli-
cation of this is that the individual basis function
in Vg cannot be independently chosen, and there
must he some global relation which couples the
basis functions.

Small suppoeris: The functions in Vg must have
compact support. This requirement is based on
the fact that once the basis {®;} in Vi is given,
then the coarse grid matrix elements are defined
to be a(®;, ®;) (see (1.3)). Thus, if the basis func-
tions have large supporis, the coarse grid matrix
will be dense, and the coarse grid problem is ex-
pensive to solve.

Conformity: For finite element discretizations, it
is desirable that the resulting coarse grid is formed
by conformal macroelements, an analogue of con-
forming triangulations in finite element methods.
This facilitates the analysis and construction of
the algorithms.

o Recursion: The coarse grid should allow the re-
cursive application of the algorithm to construct a
multilevel method.

A careful look at these rules shows that it is difficult
{even impossible) to satisfy all of them simultaneously,
Usually some of them have to be weakened in order
to satisfy others. For example, to have conforming
macroelements of size & 2h on an unstructured grid
(which is a desirable choice in multigrid) is almost im-
possible. Taking smoother basis functions will increase
the supports, and make the coarse grid operator denser.

ot
~

A recent paper by Koobus, Lallemand and
Dervieux [31] deals with agglomeration with the finite
volume discretizations. The basis functions are piece-
wise constant on each cell, and the coarse grid cells are
formed as unions of fine grid cells. A drawback of this
algorithm 1s that the stability of the coarse grid basis
funections is not easy to control.

An algebraic agglomeration algorithm can be found
in the recent papers by Mandel, Vanék, Brezina (see

17

[39]) and Vanék, Kfizkovd [33]. Their approach uses an
algebratcally smoothed basis functions, and the coarse
grid nodes arve not explicitly defined. This allows the
process of the basis construction to be more automatic,
but it is more difficult to control the sparsity of the
coarse grid operators.

Our approach is based first on the definition of the
coarse grid points (using the MIS described in Sec-
tion 3.1) and then using them to define the macroele-
ments, The difference between the algorithm presented
here and the agglomeration algorithms quoted above
is in the more “geometrical” nature of our coarsening
strategy. We will define our coarse grid space using
macroelement edges and macroelement vertices (coarse
points). In the numerical examples presented here,
the definition the macroelement edges and coarse grid
points is done using the dual graph of a given trian-
gulation. Such an algorithm does not pretend to be
computationally the best one, and we do not describe
here this algorithm in detail. Our main concern will be
the definition of a proper coarse space.

4.3 Coarse space basis functions.

Given the set of macroelements, we will now introduce
three different ways to define the coarse grid basis fune-
tions. Let us first focus on meeting the first two rules
given in the previous section: we need to define smooth
basis functions so that the coarse space satisfy the ap-
proximation and stability properties.

To assure the approximation property, we should
take a basis which preserves at least the constant func-
tion, i.e. the constant function must be always in
the coarse space Vg. To do this, we first define basis
functions possessing this property on the the macroele-
ment boundaries, and after that we extend them into
the interior of the macroelerment as discrete harmonic
functions. This extension obvicusly will not destroy
the constant preserving property, because the constant
function is harmonic.

We define the coarse basis functions on these edges as
linear functions minimizing some guadratic functional.
The H/? norm on the boundary is one good-choice for
the quadratic functional, as it is the interface analogue
of the A-norm.

Let the macroelement boundary be formed by £
edges from the fine grid, (see Fig 4.2) connecting two
coarse grid points, zg and z,, and let this path contains
the vertices zg,...,%s. We define the basis function
corresponding to the coarse grid node z; as follows:



®y is a linear function in IR?:
o= al +b+¢, (£, R

We want : $g(zo) = 1, Po(ze) = 0. These are only two
conditions and we have three parameters: a, b and c.
To complete the set of conditions, we require that the
function ®p minimizes the functional (discrete H1/?
normy}:

£ £

F1/2((I’0) = Z Z

=1 je=idl

hfig.j (Ro(z:) —Bo(x1))* (4.1)

where h; is the length of the edge (g, £:44) and hy; =
lz; — ¢j|. After using the first two conditions, this
minimization is equivalent to minimization of a simple
quadratic function of one variable which can be easily
done analytically.

In the interior of the macroelements, we extend the
basis functions by solving the equation:

a(Pg,4) =0, for any ¢ € V. (4.2)

In this way, we define the basis in Vg and thus also
defining the restriction operator Hpy.

ArGgorITHM 4.1 {Geomeiric
extension I)

coarsening-Harmonic

1. The boundary wvelues minimize the H'/2.
discreie norm.
2, For the nodes tniernal t¢ the macroelements,

the values of the basis funclions are obiained
via the harmonic exiension, see Fig. 4.2

We will now give two simpler variants of this al-
gorithm. The first one uses stimpler boundary condi-
tiong: The function is defined on the boundary using
the graph distance (see Fig 4.3). The graph distance
dist(i, 7) is equal to the number of edges forming the
shortest path connecting the vertices ¢ and j, (in the
case we consider these vertices are zg and ;).

ALGoRITHM 4.2 (Geometric
extension II)

coarsening-Harmonic

1. The boundary values are taken using the graph
distance interpolation, see Fig. 4.5.
2.  For the nodes inlernal to the muacroelements,

the walues of the basis functions are obiained
via the harmonic extension, see Fig. 4.3.
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coarse /.
A
node

O=0
0

Figure 4.2: Minimize H'/? on the boundary and har-
moni¢ extension in the interior.

coarse /.
T ol
node

Figure 4.3: Graph distance on the boundary and
smooth extension in the interior.

The second variant, which does not include harmonic
extension is asg follows:

ALGORITHM 4.3 [Geometric coarsening)

1. On the macroelement boundaries the graph dis-
tance interpolation is used.
2.  For the nodes internal to the macroelements

and fictitious faces (see Step 4), the values
of all basis functions whose supporis form the
macroelement 1ake one and the same value: the
reciprocal of the number of coarse points form-
ing the macroelement, see Fig. 4.4.

The approximation and stability properties of the
agglomerated spaces given above are assured by the
next lemma. A detailed proof will be included in the

paper [6].



Figure 4.4; Graph distance on the boundary and in the
interior.

Given a triangulation T, and the corresponding lin-
ear finite element space V3 C H1(R). Let Vg C V;
be obtained by any of the three agglomeration algo-
rithms described above. Let Qg : HY{Q) — Vi be the
L2-projection.

Lemma 4.1 Assume that the construcled basis pre-
serves the constant function. Then the following stubil-
iy and approzimation properiies hold for the agglom-
erated subspaces:

1Qzvll1,0

v — Quvllo,a

(4.3)
Yo € HYQ). (4.4)

ellvllzq;
eH|vh g,
4.4 Numerical examples

We consider an elliptic equation of following type:

(wen)

Oz
wz,y) = 1 on 98,

4
Oz

where 2 ¢ R®.

We use three types of coefficients for the equation
(4.5) on three different grids. As a standard example
we take @ = b = 1, 1.e. the Laplace operator.

In Ezample I, the coefficients are mildly varying:
a{z,y) = (2% + ¥* + 1 + sin{z + v)) and b(z,y) =
(22 + 4% + 1+ cos(z + ). In Ezample 2, the coeffi-
cients are varying in the range [1073,30]. For the grid

du
(m,y)éu;> =0 (4.5)
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Figure 4.5: Surface plot of the coefficients for Exam-
ple 2 — rapidly varying coeficients, a(z, y) on the left,
b(z,y) on the right.

given in Fig. 4.6, the surface plot of the coeflicients for
FEzample 2 are given in Fig. 4.5. For all the grids, the
coeflicients vary within the same range. In these ex-
periments, we use the standard V-cycle preconditioner
and the outer acceleration is done by the C'G method.
In the V-cycle , we use I pre- and 1 post-smoothing
steps. The smoothing operator is forward Gaufi-Seidel.
The PC( iterations are terminated when the relative
restdual is less then 107¢,

e

R

Gh s
ISR

:
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s Ry 2
KR S
Wb S v
e
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Figure 4.6: Macroelements for an unstructured grid
level= 4 Ny = 3422; level= 3 N} = 938; level= 2
NE = 268; level= 1 N}, = 77; level= 0 N} = 21.

In Figures 4.6-4.8, the macroelements are shown for
different unstructured grids and different number of
levels, Figure 4.9 shows the convergence histories for



Figure 4.7; Macroelements for one element airfoil:

level= 5 Np = 12065; level= 4 N} = 3404; level=
3 NZ = 028; level= 2 N§ = 257; level= 1 Nj = 74;
level= 0 Nj; = 24.

the different types of coeflicients and different grids.
All these experiments were done using the simplest
interpolation algorithm, Alg. 4.3. Figure 4.10 shows
the convergence histories for a varying number of un-
knowns on two different grids: a one-element airfoil
with one internal boundary, and a four-clement airfoil
with four internal boundaries. The numerical experi-
ments were done using Algorithm 4.2.

These computational results show that the conver-
gence is uniform with respect to the mesh size h. The
convergence in the experiments shown in Figure 4.10
is a little better because the aspect ratio of the grids
is better and Algorithm 4.2 was used instead of Al-
gorithm 4.3. The behavior for roughly varying coefli-
cients 1s not as good, as seen in Fig. 4.9, The airfoil
grids used for the experiments in this section were pro-
duced using Barth’s SIMPLEX2D mesh generator. We
note here that these grids were generated at random,
with no special attention being paid fo the quality of
the meshes, and does not reflect any deficiencies in the
mesh generator.
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Figure 4.8: Macroelements for four element airfoil:
level= 5 N = 12850; level= 4 N} = 3444; level=
3 NZ = 949; level= 2 Nj; = 270; level= 1 N} = 80;
level= 0 N5 = 26.

4.5 Extensions

Other interpolations can also be constructed in an al-
gebraic way. They are known as matrix-dependent
prolongations (see M. Griebel in [46]). In this
case, the prolongation operator is defined by R
(A7} A12, 7. Here, Ayr and Ajp are the the blocks
in Ay formed by the natural splitting. of the unknowns
into two non-overlapping subsets corresponding to fine
and coarse grid unknowns respectively:

A A

Az (4.6)

A21 AEZ

The block A1; corresponds to the contributions fine—
fine. Then it is straightforward to see that the coarse
grid matrix is equal to the Schur complement of A:
S = Ay 1 = Agy — AglAfllAlz. Unfortunately, Al_l1
is generally a dense matrix, which is a serious draw-
back of using this approach. There are ways of defin-
ing approximations to this type of matrix-dependent
prolongations as proposed by A. Reusken [30] and M.




Grid-Fig. 4.6 Grid-Fig. 4.7

Example Reduction FExample Reduction

factor factor
Laplace 0.11754 Laplace 0.20701
Example 1 0.12298 Example 1 06.20724
Example 2 0.24887 Example 2 0.42600

Grid-Fig. 4.8
Example Reduction
factor

Laplace 0.21144

Example 1 0.21454

Exampile 2 0.46994
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Figure 4.9: Convergence history and average reduction
per iteration for Laplace equation, Example 1 and Ex-
ample 2 on the different grids

Griebel in [46]. The agglomeration coarsening algo-
rithm presented here and the aggregation given in {32
also might be viewed as ways of approximating the first
entry Aj7 Aiq in the prolongation with a sparse matrix.

4.5.1 Anisotropic problems

Another class of problems we have studied are the
anisotropic problems. The problem in applying multi-
grid methods for such problems is that the smoother
does not smooth the proper range of the high frequen-
cies. A semi-coarsening (i.e. coarsening only in one
direction) is often used to remedy this.

For anisotropic problems, the relevant changes in the
agglomeration algorithm are straightforward. A drop-
ping strategy can be used for the small off-diagonal
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4-element airfoil

nades Reduction noedes Reduction
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Figure 4.10: Convergence history and average reduc-
tion per tteration for varying number of unknowns

elements in Ay on each level. A new coarse grid opera-
tor Ay is then obtained and this matrix corresponds to
a new graph which is disconnected. Different dropping
strategies can be applied (see [13]}). Here we apply a

simple one:
It
Si%4E < 40001
@iitti; ~ ’
then set

Qi = i b Gy G55 = gy b gy agg =05 ag; =0,

Once this is done, we apply the usual algebraic coarsen-
ing algorithm [23]. In the next example, the algorithm
which uses the dropping strategy is called reduced graph
algorithm. Similar approaches for handling anisotropic
problems can be found in [32].

The last numerical example in this section solves the
Laplace equation with anisotropy introduced by the
grid (see Fig. 4.11). The geometrical aspect ratio is of
order 10%. It can be seen that the algorithm which uses
the anisotropic agglomeration is faster than the others.

4.6 Remarks

The agglomeration algorithms can provide a good ap-
proach for developing multilevel methods on unstruc-
tured grids. We have presented here a general tech-
nique for constructing basis for the coarse gpace satis-
fying stability and approximation properties. We have
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Figure 4.11: Macroelements (geometrical algorithm),
second level geometric coarsening, zoomed 200 times
near the airfoil. Convergence history for the
stretehed mesh: Geometrical coarsening; Geometrical
coarsening-harmonic extension I; Algebraic coarsen-
ing; Reduced graph coarsening (anisotropy).

to point out that the general theory for the construe-
tion of agglomerated spaces on unstructured grids is
still not fully developed. On the other hand, nume:r-
ically these methods have good performance and can
be applied to a large set of problems, including elliptic,
anisotropic and convection dominated problems. For
such experiments, we refer to Koobus, Lallemand and
Dervieux [31], Mandel, Vangk, Brezina (see [32]) and
the experiments presented in this section,

We presented three different types of basis construc-
tion over agglomerated macroelements: Algorithm 4.1,
Algorithm 4.2, Algorithm 4.3. We prefer to use Algo-
rithm 4.3 for isotropic problems, because the conver-
gence rate is as good as with the other two algorithms
and this algorithm is simpler. The last numerical ex-
periment we performed shows that for more compli-
cated problems, such as anisotropic problems, the in-
terpolation must be done depending of the direction
of the anisotropy. In this case, the algorithms for con-
gtructing the coarse grid also need {o be done very care-
fully, following the anisotropy direction.

5 Conclusions

There is no doubt that unstructured grids will be in-
creasingly popular and the development of robust mul-
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tilevel solvers on unstructured grids is important. We
have presented two different approaches for construct-
ing such solvers and they have their own areas of
strength and weakness:

1. In some sense, the retriangulation algorithm is
more natural and interfaces well with existing soft-
ware (reusability). Bui problems may occeur when
solving 3D discrete equations because the retrian-
gulation is not an easy task. The treatment of dif-
ferent types of boundary conditions must be done
very carefully if one wishes to obtain a uniformly
convergent iterative method.

The agglomeration algorithms offer many advan-
tages: they are more algebraic, they produce
nested coarse spaces, and are very robust. We have
presented a framework for the design of agglomera-
tion multilevel methods based on the stability and
approximation properties of the underlying sub-
spaces. Some of these methods have straightfor-
ward extension to 31> problems. The convergence
of these types of methods is still not completely
understood from a theoretical point of view.

Most importantly, we have shown that it is possible to
design robust multilevel methods on unstructured grids
which perform as efficiently as for structured grids.
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