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Abstract

We consider the convergence of viscous solutions to inviscid solutions with shocks as viscosity tends
to zero. Our analysis reveals rich structure of nonlinear wave interactions due to the presence of
shocks and initial layers. This interaction generates four different wave patterns, initial layer, shock
layers, diffusion waves and coupling waves. We study the propagation and interactions of the four wave
patterns by a pointwise analysis.

1 Introduction
Consider a system of conservation laws with small artificial viscosity
us + f(u)y —eus, =0, v*€R", t>0, ¢>0, (1.1)
and a system of hyperbolic conservation laws
ul + f(u®, =0, v’ R", t>0. (1.2)

The purpose of the present paper is to study the process of zero dissipation limit lim,_,o u® as the viscosity
€ tends to zero with a given fixed initial data

ue(x, 0) = uin(m)'

This problem can be solved by a regular method, when the corresponding inviscid solution v’ is smooth.
However, when shock waves occur in the underlying inviscid solution u®(x,t), the process for analyzing
the difference between the inviscid and the viscous solutions can not be done by regular methods. We
obtain a pointwise description for the difference in terms of the magnitude of the viscosity. For the
hyperbolic system (1.2), the initial shock waves remain a shock wave at least for a short time. On the
contrary, the shock wave in the viscous solution will evolve into a smooth profile in a time scale of order

viscosity/ ( strength of the shock )*. This smooth profile is called a shock layer, and its width is of the
order viscosity/ (strength of the shock). The transition from a shock wave in the initial data into a shock
layer in the viscous solution is called an initial layer. After a shock layer develops, the viscous solution also
produces relatively non-small diffusion waves moving away from the shock layer. Those diffusion waves
will cope with the shock layer through characteristic curves and move toward the shock again, and thus



cause the change of the wave fronts of the shock layer. In the mean time, the changes of the wave fronts
will affect the diffusion waves. These wave interactions exhibit rich nonlinear wave phenomena.

The analysis is carried in two steps:

For the initial layer the formation to a shock layer is a fully nonlinear effect. In general, one can not have
a direct method to analyze the formation of a shock layer. However, one can compare the compressive field
with solution of Burgers’ equation when the strength of the shock is sufficiently small. In this situation,
one can use the nonlinearity of Burgers’ equation to obtain a qualitative structure of the initial layer, since
the formation of the shock layer takes place almost in the compressive field.

After the formation of the shock layer, the linearized equation around the shock layer dominates the
essential wave pattern. However, this linearized equation is just neutral stable. Hence, there will be
problems in analyzing the nonlinear interaction between the shock layer and diffusion waves in a time scale
larger than wiscosity/ ( strength of shock )*. One thus needs to introduce coupling waves and phase shifts
due to the interaction between diffusion waves and shock layer. Combining the coupling wave and the
phase shift together with the diffusion wave, one can introduce an anti-derivative variable to factor out the
neutral stability. Finally, we can apply our pointwise estimates to establish the existence of the viscous
solution and obtain a pointwise estimate for the difference between the viscous solution and the inviscid
solution.

The existence of a piecewise smooth solution u°(z,t) of (1.2) is studied by [10]. The corresponding
zero viscosity problem has been studied by [2] and [1] for some special 2x2 isentropic gas dynamics by the
method of compensated compactness. When f(u) is a scalar equation, it is studied by [16] and [17]. In
[14], the zero dissipation limit of a compressible Navier-Stokes equation for isentropic solution with a shock
initial data is studied, and a qualitative behavior for an initial layer evolving into a shock layer is given in
details. The problem (1.1) had been studied by [5], but initial layer, diffusion waves and coupling waves are
not encountered. In [11], a pointwise estimate is used to study an asymptotic stability of a viscous shock
profile. In [6], [7], a reduction of an initial value problem on an infinite domain to one on finite domain is
devised for relaxing smallness assumption on strength of a shock of viscous conservation laws. In [12] and
[13] error waves generated at discontinuities by linear schemes approximating linear P.D.E. are found to
propagate into smooth regions and the effects are analyzed. In {3], a nonlinear scheme approximating the
same linear equation is used to remove the global error.

Let us briefly state the properties and mechanism of the initial layer, diffusion waves and coupling
waves:

¢ Initial layer.
Nonlinear wave patterns present in the time scale O(e) - ( Strength of the shock )~+*) for any
og € (0,1/8).

s Diffusion wave.
1t is generated by the L' norm of the difference between the shock layer and shock data in the non-
compressive fields. It is transversal to the shock front and of order \/iﬁ-(Strength of the shock) for

any given but small time ¢.

o Coupling wave.
It is generated by the interactions between diffusion waves and the shock layer.

The analysis in this paper contains a series of detailed pointwise estimates, which are motivated by
those in [11]. Qur analysis provides a detailed pointwise description for the difference between the inviscid
solution and the viscous solution within a given space-time domain. We now give a precise statement of



our result:
The basic hypothesis is that the system (1. 2) is strlctiy hyperbolic, that is, for each v € R™ the matrix
- < Aplu):

f'(u) has n real distinct eigenvalues A;(u) < Ap{u) <

Of (u) ri(u) = A;(u) r5(w),

du
b 28— L),
()1

( ()) = 5;7 i‘)j:l;za“':n

We also assume that each characteristic field is either genuinely nonlinear {g.nl.} or linearly degenerate

(l.dg.), (see [8]), i.e., for each ¢ € {1,2,---,n}, either

(gnl)  VAi(u) ri{u) # 0 forallu, or
(I.dg.) VAj(u) = 0 for all u.
For each genitinely nonlinear i-ficld there exists shock wave (u_,u,) for (1.2) which satisfies the jump
(Rankine-Hugoniot) condition and entropy condition, (see [8])

(R—H)  olu_—uy) = flu) = Fluy),

Alug) < o < A(u),
(E) { )\i—j“w) < o < Api{ug),

where o is the propagation speed of the shock wave {u_,u )
We also make assumptions on the solution u’(z,t) of the hyperbolic equation (1.2)

Hyp Assumption. There ezist positive constants C, T' and a curve = y(t} such that

I =+ Sup HB’“ e, )| < C, v(0) = 0.

Z Hat'}’

k= waﬁv(t)

Furthermore, the states (u®(y(t)—, 1), u’(v(t)+,t)) are shock waves in the i-field for t <T.

Set
5= sup | W (y()—,1) — )+ 1) .

Shock Wave Assumption. We also assume that for 0 <t < T the curve x = (t) satisfies

it l’(y(t) =, 8) - (yO+ D] > 5.

Main Theorem. Suppose that (1.2) is strictly hyperbolic and that the Hyp Assumplion and the Shock

Wave Assumption are true.



Then, there exist positive constants €y, 1o, Co, To(d) and Oy such that if & < ny then for each ¢ € (0, €}
the solution u®(x,t) of (1.1) satisfies that

5/ _(=-Ei)?
9 ¢ 9 _ Slz—(t) €e 40pet
sup jiu (2, 1) —u{z, D)) <Oy § 6°e Toe +e+

o > a )
N+ o1 ODVE =10 % [(m— Byt + et 4 2]

for 872 %e < t < Ty, where z = E;{(t) is j-characteristic curve starting from 0, and oy is a positive number
in (0,1/8).
Remark. The constants described in the theorem are required to satisfy

e < 8 and Ty = O(1) &

In section 2, we study the variation of viscous shock profiles with respect to the shock wave (u_, 1),
and use it to construct the leading order approximate solution whose approximation error is estimated
in terms of the viscosity. In section 3, the nonlinear scalar equation for the diffusion wave is given.
This nonlinear equation is transformed into an integral equation, and an approximate Green’s function is
introduced to study its qualitative behavior. In section 4, we study a system of linear evolution equation,
which is the nonlinear equation linearized around the approximate solution constructed in section 2 with
some modification in the compressed field. We construct approximate Green’s functions for this linear
system, and give basic estimates of the coupling of all linear waves. In section 5, we construct coupling
waves generated by the interaction between the diffusion waves and the shock layer, and find appropriate
phase shifts of the shock layer. In section 6, we consider the situation when the initial value is a shock
data. Burgers’ equation is introduced to study the transition of a shock data into a shock layer in an
intermediate time scale and the asymptotic stability of the viscous solution is obtained pointwise.

2 Viscous Shock Profiles and Leading Order Approximation

2.1 Structure of Shock Profile

We begin with the study of the structure of a shock layer connecting a given entropy condition satisfied
shock wave (u;, u,) whose speed s is given by

s(u — ur) = flwg) — f(ur). (2.1)

A shock profile for (1.1) is a travelling wave solution u®(z,t) = U(2=2%) of (1.1) connecting (uy, u,). For
the shock wave (uy,u,) and its speed s, we can treat u, as a function of u; and s. Therefore, there are
another two extra parameters in the travelling wave solution U(n; u;, s). By substituting U into (1.1) and
integrating it from x = —oo, we have that

Uy = f(U) — flu) — (U — w) with U(—o0;uy, 8) = u;. (2.2)
An auxiliary system is introduced to study (2.2), (see [15]),
0y =0,
Bnu, — 0, (23)

Uy = f(U) - f(w) — s(U = w),

4



Let wqy be a state whose ¢-characteristic speed is the same as the speed of the shock wave (u_,u,),

f’(’wo) ri(we) = s ri(wo)

with a normalization condition wy ~ u_ and u_ — u, are parallel. Hence, w, is uniquely determined since
i~characteristic field is genuinely nonlinear. Thus wy = wg(uy, 8) is a function of u; and s.

One can see directly that (s, wp, wg) is a fixed point of the dynamical system (2.3), and at this fixed point,
there is an n + 2-dimensional invariant manifold which is tangential to the plane spanned by

R*x0x0, 0xRx0, 0x0xr{w).
This invariant manifold is the center manifold .#. We can parameterize .#,
A R"xRxR: — R"xRxR"Y
Mu,on) = (u,0,#(u,0,7)),
where the function;’- A, (u, a,7) satisfies that

Oyt 1 (wy, 5,0) _ ri(wp)
|Op Aty (wo, 5, M| Hlrilwo) |l

(2.4)

From (23) any two states ¢ and u remain constant on an integral curve given on this center manifold .,
therefore the curve G(£) = ., (uy, 5,£) with £ € R contains the integral curve for (2.2} connecting (u, u,).
We re-parameterize this curve % by

| o)l - (o), 8" (m)) = 1. (25)
From (2.4) and (2.5) it yields that there exist constants Cy and 7o such that when {ju; — u.|| < no
llri(wo)ll - (2 (wo), €'(€)) < Cillug — uyl| for 7 # 1 and {¢] < 2 [y — . (2.6)

Then, this estimate implies that there exist 6. satisfying that

E(0) =w, €(6,)=u,
(2.7)
G =6+ 0(lu—wl*) = jllu—wll + OC|w—ul?).
Since this curve % is an invariant curve, two vectors
, F(B(E)) — flw) — s{€(£) —w)
4 d
() and () = Flw) = 5@ (&) —wl
~are parallel. Hence we can define a function c(£) as follows
— ot F(#(E) — flu) — s(Z(E) — w)
A0 =T 1@ ©) — flw) —s@© —wl (28)
From this definition of ¢(€) there exist positive constants Cy and 1 such that
L < —c(€) < Cy for €| < 4wy — u, |} for ||y — || < ng. (2.9)

Co



Let U(n; w, 5) = €(£(n)), and substitute (2.8) into (2.2). Then, we reduce the O.D.E. for U(n; 4, s) into
a scalar O.D.E. for £,

0y€ = e(§), (2.10)
5("00) =4, f(OO) = 61':
where
) — Fu) — s(9(E) — w)]
A= o(©) ‘
From (2.10) and (2.9) there exists Cy > 0 such that
Co (£—)(€—6,) <) < “C}'; (& = &) (& — 6;) for € € [6,, ). (2.11)

Since the O.D.E. (2.10) is independent of 7, there is a one-parameter family of solution. We normalize the
solution by requiring that

[ G-canin+ [~ 6.~ gnan=o, (212)

-

zzi(wa)( [ tu=ean+ = FEm)}an) = o

Proposition 2.1. Suppose that U(n;wy, s) = €(&(n)) is the solution of (2.2) normalized by (2.12).
Then, there exist constants Cy, Ky and 1y such that when ||u; — u,|| < 1,

| = U+ [ - Ut ) dn < Kl -

—0oQ

lleg = el
WU w,s) —wll <K luy—ulle % " forn<o,

_ flup—uedl
U@, 8) —urlf < K flwy —uplf € %" forn > 0.

Proof. From (2.11), (2.10) and (2.12) , there exists K > 0 and Cy > 0 such that

K _liwg=urll
60 = & < Tlu~ il e

_llzg=arl
€)= 6, <K |luy~u,] e % "forn>0.

" for n <0, (2.13)

From (2.7), (2.13) and mean value theorem, we have that there exists K > 0 such that

Li(wo) (€€ (m)) — w)
‘E( )_61 wp—augp
-/ T (o) - (0)dp (€ln) - &) < K Jlug— e 5 for <0, and G £4; (2.14)

1w0) (S(E() ~ )] < K s =l &5 for 7> 0, and j 5



From (2.5), it follows
Li{wo) - ((6:()‘5 (n) —w)
£(n
~ [ ' 0) dp = e () ) for <0,
Li{wo) - (ngf (m) — ur)
= Tl (€(m) —6,) for n > 0.

From this and the normalization condition (2.12), we have that
) ([ = teman+ [t~ eleman) =0
7>0 71<0
For § 5 1 from {2.14)
o) ( {ur — (e} o )|

lieg—uril
<2 K-l [ 5 dy <2 60 K fu -l
n=>0

{m~%mmn@+f

71>0 n<0

Hence, Proposition 2.1 follows. Q.E.D.

2.2 Leading Order Approximation and its Approximation Error

For the sake of convenience, let’s denote u(z,t) the viscous solution u®(x,t) in the rest of this paper, first.

Since we expect that viscosity will smear a shock into smooth shock layer with width of order ¢, we

introduce the slow variables
X(z,8) = z:g_(tl

T(z,t) = &,

to localize the microscopic structure around the shock front. Under this new coordinate (X, T") the systems
(1.2) and (1.1) become

A’ — s(T) Oxu® + Oxf(u®) = 0
dru — s(T) 8xu + Oxf(u) — O%u = 0, (2.15)

with the same given initial data
(X, 0) = u(X, 0} = u;, (X, 0),

where
s(T) = +/(eT).

For the convenience of our analysis , we will change the coordinate
z = X(z,t),
t = T(z,t)

7



in the rest of this paper.
In this new coordinate the Hyp Assumption implies that

sup sup (Iafuu(:c,tﬂ + {3};1;0(3:,15)]) = O(é’) for j =10,1,2,3, ' (2.16)

and the shock waves stay at z = 0.
Let U(n; u’(0—,1), s(t)) be the solution of (2.2) connecting (u®(0—,%),u*(0+,)) and normalized by (2.12).
We introduce a family of travelling waves ¢(z,t) given by

¢(n, 1) = U(n; v’ (0—,1), s(2)), (2.17)

and a partition of unit on the domain R x [0, T /€]
Let x_, Xo, X+ € C®(R x [0,00)) satisfy the following

xX-(2,1), xo(z,1), x4(z,t) 20,

X-(x,1) + xo(x,?) + X1 (2,8) = L;

supp(xo) € {(z,) : |z| <2}, and xo(z,t) =1 for |z <1,
supp(x-) C {(z,t) : z < -1}, and x_(z,%) =1 forz < -2,
supp(xy) C {(z,t) : 1 <=z}, and x4 (z,t) =1 for 2 < =.

A leading order approximation to u(z,t) is defined as follows.

al(x,t) = Xo(z,t) - #(z,1)
+ x-(2,0) - {[u’(2,8) — (0~ 1)] + $(=, 1) }
+ x4 (2,8) - {[0"(z,1) —u*(0+,1)] + Bz, 1)} .

From Proposition 2.1 and Assumption Hyp we have that there exist constants Ky and Gy for ¢ < Ty/e
0 0 0 B Tl (P
| 6(m,t) —uw’(0+,8) || < Kpllu (0—,t) —uw (0+,2)] e % for n > 0, (2.18)

fule—.t3—u0+,8)
| ¢(m,t) —u(0—,2) || < Kollu®(0—,t) —u’(0+,1)|| e % " for < 0.

Proposition 2.2 There exists constant Cy such that fort < Ty/e

Gi(,1) — B°(0+,t) = O() ¢ 2o M forg >,
Bu(n,2) ~ Bu®(0—,) = O(e) €™ 335 Il for gy <,

Proof: The situation for z < 0 and x > 0 are the same, therefore we consider the situation z < 0 only.
From the definition of ¢{x,7) and (2.10), the equation for ¢(x,t) is

F(gba t) f(¢) - f(fu’ﬂ(g“:t)) - S(t)(¢ - 'U,O(O—,t)), (2'20)

with a normalization condition

li(w(}(u’(o_at)as(t))) ‘ (/(;Do ¢(ﬂ,t) - U0(0+,t)d77 + ~[-oo @”(Tht) - UO(O—:t)dﬂ) = 0.

8



Take a partial ¢ derivative on (2.19). Then, we have that

8n¢t - F¢(¢, t)¢t + Ft(¢7 t):
From the definition of F(y, ) (2.20), we have that

F‘ty(y: t) = —Sr(t) = 0(6),
Fu(0—,1),t) =0fort e R.

Fy(u®(0—,1),)0,u°(0—, 1) + Fy(u’(0—,1),2) = 0,
From (2.21), (2.22) and (2.23) we have that
8y (¢ — 0’ (0, 1))

= 617¢’t
= quﬂ(qs:t) (Qst - 6tu0(0":t))

F(Fy($, 1) — Fy(u®(0—, 1), 8))8u’(0—, ) + (Fo(¢, 1) — F{u’(0-,1),1)).
On the other hand, from (2.22) we have that
Fy(¢,t) — Fy(8°(0—,1),1)
1
_ f Fin(6(6 — 0°(0—, 1)) + u°(0—, £),1) d8 |6 — u(0—, )|
0

= O(e)l¢ —u’(0-,1)]

= O eu(0—, &) — w0+, &) Yo T
Combine (2.24) and (2.25),

(f,bt e 3tu0(0—-,t)) + F¢ ¢, (th Btu —,t)) = -90(7]),

where (1) = O(e) (¢(n,1) — u(0-,1))
= O(ell(0-,) — WO, )] )™ B
By taking the 7-derivative on (2.19), it yields that V(n) = ¢,(n) is a solution of
Vo = Fy(6,0)V.
Hence, the general solution V' (n) of this O.D.E. is of the form
V(n) =k ¢y(n) for any k € R.
On the other hand, for the system (2.26) we have a particular solution bounded by
1 0 7
[ e [ Erz@dos [ 1700
© o —oo 7 e
k| (= " ) —u(0—,1
=00 ([ oMo, uto- 0 do+ [ 1y - 1P ap)
R o0 llén (o)l
= O(l)ee™ ~3m 0 I for g < 0,

(2.21)

(2.22)
(2.23)

(2.24)

(2.25)

(2.26)
(2.27)

(2.28)



where kg is a positive constant independent of ||u(0—,¢) — u(0+,¢)|]. Therefore, from this and (2.28) we
have that there is a constant By such that

X _E“( - J_ﬂg ) J
¢s(m, 1) ~ Ou’(0—,t) = By, + O(1)ee e bl gy n<0. (2.29)

Similar to (2.29), one could have that there is a constant B; such that

bu(m, ) — Bl (0+,8) = Bid, + O()e™ 2% for > 0. (2.30)

Now we match ¢;(n,t) in (2.29) and (2.30) at 5 = 0. From (2.29) and (2.30) we have that
(By — B1)#y(0,8) = O(e) + 8, (u®(0—, %) — u®(0+,1)) = O(e).

This yields that .
o= B =00 LG —weor o (25

Since wy is a smooth of u(0—,%) and s(t),

d
Eiwo(u(o“a t),s(t)) = O(1)e. (2.32)

Applying 8, to (2.12), it yields that

_m(u(0—,1) (9) ( [ b w00+ [ gan w0 i) @9

= l;(wo(u(0—,1), s(¥))) (f by, ) — ud(0—, t)dz + [c>o ¢z, t) — ut(0+,t)d3:) :

Substitute (2.32) and Proposition 2.1 into (2.33), then we can conclude that

0We = Iu(0-,1) ~ 0+, (52 4 00) Jul0=,) = u(o+, ] (5ol + B

€

0 o5 —wor 07 (234
(2.31) and (2.34) yield that ]
Bo 5= 00 oy —uior, o1 (2359
Substitute (2.35) and ¢y = O(1) |lu(0+,1) — u(0—, ) |? P e WY (2.29), (2.30), then Proposi-
tion 2.2 follows. Q.E.D.
We define the approximate error E;(x,t) of this leading approximation @',
E,(z,t) = 8,a* — s(t)8,a" + 8, f(a') — 2a'. (2.36)

Lemma 2.1 Fort < T,/e¢ the approzimation error E|(x,t) satisfies that
El("‘v? t) = O(I)(Ez + 62[ 108 E] Xi, +€ XI;,):

10



where

I,

|log €| T
tip] £ <
{0 1ol S sy tSC )

T;
I, = {(m,t):[m]SE, tgng},

the constant Cy is given in Proposition 2.1, and the functions x;, and Xy, are the characteristic functions
of the domains I, and I, respectively.

Proof.

When z > (< —) 4Cq|loge| / |[u®(0—,t) — u®(0+,2)||, from (2.18) we can expand @'(z,t) as u°(z,t) +
(¢(z,t) — uP(0£,t)). Hence we have that

| Jloge
[a(@=1) - w0+, O

' = u® 4 O for |z| > 4C,

This estimate implies that

|log €]

Ey(z,t) = —0yu’(z,t) + O(") = O(¢”) for |z| > 4G, (0=, &) — w(0+, )|

When 2 <z < AGy Gw,tl)ofi(ﬂ —oy We expand a'(z,t) as

a'(z,t) — ¢z, t) = u(z,t) — u(0+,1)

1
= ¢ [ WS(zp,t) dp = O(e || ).
[}

From this expansion, it yields that for 2 < z < 4Cy; u(o-,tlo_g:(o T

Ey(z,t) (2.37)
= 3, {d(z,t) + [u'(z,t) — u®(0+,1)]} — s(8)8, (u’(z, t) — u°(0+,1))
+8, {f (qb(a:,t) + u(z, 1) — u°(0+,t)) - f(¢)} — 82’ (x,1)
= (fu(z,t) ~ w)(0+,2) ) + [F'(@") = F'(P)]ga + [F'(@") — F(®)ug + O(c?)
= (gﬁt(m, £) — G,u’(0+, t))

+0(1) (e faf - (0, £) — (0, )26~ G

ol 4 g2 ]:B|+62).

From Proposition 2.1, Proposition 2.2 and (2.37), we have that 2 <z < 4Cgm_—,|t%m

Eyi(z,t) = 0(1) (e P R L |loge| € ) . (2.38)

When |z| < 2, we expand @!(z,t) as follows
8 (2, 1) = 6(3,2) + x_ (3, ) (3,1) — (0—,)) + x4 (5, ) (2, 2) — w(0+,1).
Substituting this into the definition of E1{z,t) we have that
E(z,t) = O(e) for jz| < 2. (2.39)

11



Hence, Lemma 2.1 follows. Q.E.D.

Note. Without loss of generality we may the constant Cj in Proposition 2.2 and Lemma 2.1 is one,
and replace the factor ||u(0—,¢) — u(0+,1)|| in the exponent by 4, that is,

_ N0, ) u (04, )l
T = _ 0(1)6"6 ||

€

in the rest of this paper.

3 Asymptotic Nonlinear Diffusion Waves

Though the system (2.15) is a parabolic system, there are hyperbolic type waves, which carry masses
of the difference between shock wave initial data and the shock layer away from the shock front along
characteristic curves. They are called the nonlinear diffusion waves. In this section our primary interest is
to construct those nonlinear diffusion waves.

First, we introduce a modified background profile ug from u® (z,t) for constructing the diffusion waves in
the j-characteristic field. For each j < i (j > ¢) the function 'L‘L? is a function satisfying that

ui(z,t) = u’(z,t) forz <0,(z>0) (3.1)
orud(z,t) = O(e*) for k=0,1,2,3.

We linearize the system (2.15) around the background profile %} to obtain a linear system for the variable
¥;, and then add a non-coupling nonlinear source term 9, 2;(%;) given in (3.3), to the LHS of this linear
system. The resulting nonlinear system is

0¥ —s(t) 0, %+ 8, f'(@ 2)7/3-—827/—1-3.9,(%) 0. (3.2)
Introduce the variables associated to ﬁj,

Mgl t) = M@z, 1)) — s(2),

Jk(m t) = @)z, 1)),

Lx(z,t) = L(@ (33 t)),

Yirlz,t) = Lg(z,t)¥(x,1),

Jpq( ) = J,m(x t)f”(u (:"w t))( ,IJ(:E t) TJ:Q("L' t))

Then, we decompose the vector #; and related variables in terms of the above variables,

%(:12) Z:’y/',k(mvt) Tj,k(xst);
k=1

f’(ﬁg(fﬂﬂ?)) Tik = (;jk(-'f:t) +5(t) Tigs
Lig(z,t) f'(@)(z,t)) = (f\j,k(w, t) + s(t)) ljx(2,1),
QJ(%) = 333(33 t) j,j(mat)z Tj,j(xzt)r (3'3)

Let #;(x,t) = 8;(x,t)r; ;(x,t) and substitute it into RHS of (3.2), then we consider the following initial
value problem,

Lii(@,t) - [at Oi(z, t)ri5 + O AjgbsTi5 — oz 07 + O 25(0;755) ] = 0, (3.4)
0;(z,0) = §;K(z,1),

12



where K (z,t) is the heat kernel

K(z,t) = \/i_E:vp( Z:)

and the constants §; are given by the following decomposition

> 8 (W(0=,0)) + Y 8;m;(u’(0+,0)) + 8;(u°(0+, 0) = u®(0—,0)) (3.5)

i<i i<j

fﬂm P(z,0) — G(0+,0)dx + /_ﬂ é(z,0) — 7(0—, 0)dz.

By adjusting a suitable wave fronts of ¢(n,0) one can assume that é; = 0, (see [11]); and from Proposition
2.1 we have that
| = O(1) (Ju(0—t) —u(0+,8)) = O(1) 4.

Expanding _(3.4) directly, we have the nonlinear scalar equation

8,0, + A4, t) 8,0, — 820, = ——a ¢l (m,1) 02 + O(e) 0, (3.6)

8;(z,0) = § K(:r;,t).

3.1 Generalized Burgers’ Equation and Duhamel’s Principle

If € = 0, then A;; and C’ ; are constants because of their definition and (3.1). In this case, (3.6) is a
Burgers’ equation. Then, by Cole-Hopf transformation one can have the precise behavior of the solution.
However, in our case € is a nonzero positive constant, therefore the functions A;; and C’; ;; are almost
constant functions in the sense

Iai J;J{! |az 333' - ( ) fOI‘ Z = 172a3- (37)

Lemma 3.1 There ezist positive constants Ty and 1y such that for any 6; < ny the solution of (8.6) satisfies

that for t < Ty/e
Mz,
0(x,t) < ajK( J(Qx’ ),t).

Proof. We will proceed an iteration procedure to construct the solution and its qualitative behavior for
this generalized Burgers’ equation.
Let’s rewrite (3.6) in terms of the variables (y, s).

659j+Aj,j(y,S) 83,93-"8593- = ng(y, ) 8 Cgﬂﬂf( ) (38)
0,0} = &K(y1).

Next, we want to transform this equation into an integral equation for the 6;(z,t).
For any given (z,t) we multiply (3.8) by a function g{y, s), and integrate it over the domain R x [0, ).
Here, we make the basic assumption on g(y,t),

9(u,t) = 8(z — ). | (3.9)

13



Then, by integration by parts we have that
B(x, 1) = fR 9(y,0)8;(y, 0)dy (3.10)
+ f t / {950y, 8) + (g5 9)y(y, 8) + gy (4, 8) } - 0;(y, s)dyds
f / { (y,5) 0;(y,8) + 5 . 5 9, 9) Cl iy, 8) 63(y, s)} dyds.

For the first double integral in R.H.S. of (3.10), we introduce a function M,(y,s) to approximate the
solution of of dual equation (8, + 8, A;; + 82) g(y, s) = 0, first.
Let {&(t';2') : t € R} be integral curves given by

d

@19? (thz") = X\ (FE ), 1);

F(0,2") = o',
A real-valued function Mj(y,. s) is defined by the implicit function theorem,
Fi(s; My(y,8)) =y fory € R, seR™. (3.11)
From this definition (3.11) there exists a constant Tp such that for s € (0, Tp/¢)

aij(y: 3) + )\j,j(ya S) ayMj (yz‘ S) = 0 (312)
10, M5(,8)llo = O(1) and [[0sM; (-, 8) |0 HayyMj(')S)“oo = Ofe). (3.13)
For each given (z,t) set

gy, s;m,t) = K (Mj(y(;yz;ﬁ)(m’t),t - s) . (3.14)

Note. Without confusion, we simply use g(y, s) in stead of ¢g(vy, s; z,t) in the rest of this section.

From this definition (3.14) the function g{y,t) is a delta function at time s = ¢, therefore (3.9) the
~ basic assumption on g(y,s) is true.

Now we proceed to construct the iteration solutions { yy(z, t) }[21 for showing the existence of the nonlinear
solution 0;(z,1).
When [ =1,

Pi(z,t) = fR g9(y,0) 8;(y, 0)dy. (3.15a)

When > 2,
i(z,t) = /R 9(y,0) 8;(y,0)dy (8.15b)
" fatfR {9:(5,8) + (Nig 9)y (0, 8) + 94y (, 9)} - thia(y, 5)dyds
+/ﬂ‘* /R{e 9(v,5) Y11 (v, 5) +% 9y(v, 5) CLi(y, 5) 1/,,_1(1,,,5)2} dyds.
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It remains to show that {wl};zl is a Cauchy sequence for some given norm space. This is equivalent to
show that the sequence,

{/—\1/);}!22 = {¢' “Tj}l"l}tgz:

is a geometric sequence for some given norm space.

In order to find the suitable norm space, we need a good pointwise estimate of the function ¥, (x,1).
From (3.11) the definition of M;(y, s) we have that M;(y,0) = y and substitute this into the definition of
g(y,s). Then, (3.15a) becomes

ule,t) =6 [ K(My(s,8) ~3,8) Ky, Dy (3.16)
R
The estimate (3.16) suggests a priori assumption on ¢ for I > 2 and t € [0, Ty /€],

¢l($)t) < 53‘ ‘Ilﬂ(m:t): (317)
Uy(z,t) = 2K(Mj(;’t),t+1).

From this a priori estimate we introduce a pointwise norm || - ||y, r for functions in L=(R x [0,7'/¢]),

F(z,t)

T D) for # € L*(R. x [0,T/¢]).

”‘g“‘l'oﬁ' = supsup
tS%‘ zER

From this definition we rewrite (3.16) and the a priori assumption (3.17) as

Ilqpl”‘l’o,Tu < §6ja (318)
I[wj"‘l’g,T{) S 6_1 fOI'j 2 2. (319)

From this and (3.15b) it yields that
t
Sa(ot) = [ [ {0.0009)+, 30.5) 0, 6) + B0(y, )} iy s)dvds (3.200)

+/0t/1;{6 9(y, 8)tr(y, s) + % 9,(y, ) C’f’jj(y, s) 91 (y, 3)2} dyds

IA

1 14
5 0 fo fR 18590y, 5) + 8, X5y, 5) 9y, ) + B59(y, 5)| Lo(y, s)dyds
1 t
t5 0 € / / 9(y,5) Yo(y, s)dyds
6 JR

t
+01) 82 [ [ loyv,s) Woly, o)y
0
Similarly, for [ > 3
Ay (z, 1) (3.20b)

4
< Ay |leor fo fR |8sg(y, 8) + 8y Xji(w, 5) gy, 8) + Big(y, s)| Toly, s)dyds
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O(1) € Aty ]lgorr [ / o5, 5) Boly, ) dyds
+ O(1) 6; || Ath_1|lwo,r f f|gy(y,8)[‘llg(y,s)dyds.

Before we continue the above estimates (3.20), let’s introduce the functions,

f / gy, s)¥o(y, s)dyds,

Fifz,t) = f [ 191 %0l )dyds,
Awt) = [ [ 1001930, vas

t
Fy(z,t) = f f (83g+/\j,j3yg+3§g) Woly, s)dyds.
0 JR
Then, we can rewrite (3.20) as
Aa(m, )] = O) & (Flmt)+e Fm1) + 6 Fo1) ), | (3.21)
[Aty(z,t)] = O) |A%_1lleor (Fulz,t) + € Az, t) + 6;F(x,t) ) forl>3. (3.21b)

From this estimate we need to show that ||.#y]|w, 7 < 1, before showing that {|A¢!(z,?)|ly, }i>e is a
geometric sequence. Hence, from the definition of #; we need to evaluate the function d,9 + X, ; 8,9 + 35 g
first. Substitute the express (3.14) into this function, then it yields that

H1(2,1)

D9 + A ;0,9 + Bg (3.22)
— K, (Mj(y:é?) — My(z,t) 3) M (=, ) — My, 8)} (Mg (y: 5) + My (9, )
Oy M;(y, s) , M;y(y, s)?
i (M MDY (0560 30 )i
Oy M;(y, s) ’ Mjy(y, s)* y
M;(y, s) — M;(z, 1) M;(y, s) = M;(z,t) M;(y, s) — M;(z, )
+Kxx ( 0, M;(3, 5) ,t—s |- M, My, M, M,y (3, 5)° +11}.
Plugging the condition (3.13) into the RHS of (3.22), it follows
Bsg + X i0yg + Oig (3.23)

M;(y, s) — M;(=,1)
= 0l9) Kx ( aM;ls) S)

00 Kixx (P2 ED 1) - () - My (a,0) (324)

+0(@) Kxx (G2 1 ) (y,) - My (o,

Set
A = i 0,0 (3.25)
-
A = tg;f/ 10, M5, 1) oo
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From the structure of the characteristic curve (%, z) it follows

A =1+ 0().

Hence, we can choose T so small that

44| < g (3.26)
The definition of M;(y, s) (3.11) gives that M;(.#(t;0),t) = 0. This and (3.25) imply that
|M;(z, )] = |M;(s,t) — M;(F5(2,0),1)]
= / 0, M;(y, t)dy
Z5(,0)
< A o~ F(t,0)],
|M;(z,t)] = AL |z — F(,0)].
From the definition of g(y,s) (3.14) it yields that for t <1/e
1 Mj(z,t) — M;(y, 5)
|ayg(y: S)I = 0(1) \/mK ( %Ai t—s8], (3.27a)
M(y, s) — M;(z,1) O(1) M(z,t) — M; (y,s)
_ A — = 2
KYY ( ByMj(y,s) :t § (37 y) \/f_——-—,',:K 5AJ ) (3 7b)
M'(’Q’?'S)”“M'(m:t) ) 2 M‘(m,t)—M-(y,s)
K ] 2 t—s) {z— =0() K |—2 _J 4—s], (3.27c
w (P (@~ =0Q) T (3.27)
M(y,S)—M(IU,t) ) M(ﬂ},t)“M(y,S)
K ! ] t—s5) -(t-s)=0Q)K | —2 i t—s). (3.27d
YY ( 5yM:,(y,S) 8 ( S) ( ) %Aﬂ_ $ ( )
Substitﬁte (3.27) into (3.23), then we obtain that
05 + A ;0,9 + 339 (328)

_ 0 (1 N \/;T) K (Mj(m t)5AJ iw:9) ) |

Combining this, (3.17) and the definition of ¥g (3.17) we have that for ¢ < T'/e

/ | (0u00,9)+ i 8,8(0.5) + o0, ) Woly, )y
= 0(1)(T + VeT ) Wo(a,),
that is, || Filleer = O(1)(T + VeT ). (3.29)

For the function .#;
/ 9y, s)Wo(y, s)dy
R
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I}

1)f (M(y’ M(“)t-s)K(Mjg”s),s)dy

- oK (M(wt )
y L

“'ﬁl“\Po, = O(

(3.30a)

For the function %(z,t)

/R 19,9, 5)| To(y, 5)dy

:o(l)fR\/tl__sK( (y’s)sAjM(“), s)K(Mjg”S),s)dy

- 0(1)\/;__51{ (M"(;’t) ,t) :
.\/T

|-Zollwor = O (1) 7

(3.30b)

For the function % (z,t)

fl L9, 8)| oy, s)dy

:O(l)f}zm\/gff (MJ( LAJM (2, t)’ s) K(Mj(y;s),s) dy

_ 1 M;(z, 1)
= O(1) — S\/EK( - ,t),
75(2, )llwo,r = O(1). (3.30¢)

Substitute the estimates in (3.30) into (3.21), then we have that

|A%llwor = 0Q) (T + VeT +&) | A%illwor

Hence when both T and §; are sufficiently small, the sequence {1}, is a geometric sequence under the
norm || - {|g, 7. This concludes that there exists T and 7, such for any d; <, and T < T

0,(z,t) = O(6;) K (%-(;—t)t) fort< L.

€

Lemma 3.1 follows. Q.E.D.

4 Higher Order Linear Diffusion Waves, I

In the previous section, we have established the nonlinear diffusion wave §; in the non-compressive char-
acteristic fields, that is, the j-characteristic field with 7 # 4. From those nonlinear diffusion waves we
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introduce a diffusion wave system ©4(z,t),
Oi(z, 1) = > _0;(z, t)rs (2, b). (4.1)
i
This system is constructed from waves leaving the shock front without interacting with the the shock layer.

We want to use the diffusion system to study interaction of the nonlinear diffusion waves and the shock
layer.

First, we introduce a formal approximation error system Es(z,1),
1
Eg = Z {8t Bj 'f'j,j + 83; Aj,j 93' 'I‘j,j e 82 9_7' T'j,j + '2' 33, {C;JJ 92 Tj,j]} . (42)
J#i
From (3.4) we have that for each j # 4

0; 0 T+ O Mg 05 75— 05 05 1 +3 3 Cl45 0% ig
=Y {lj,fc' {515 0; 755+ 0 Ayj 0; 7y — 85 05 15 +3 3 Cl; 05 Tm'H Tik
oy
= > {lix - (OW)10e] + 16,7550 + OW)0; 736 + O(1)0; Tijaa) } T
ey
== ZO(G)( 93' + 9_]!0.’:) Tj,k'
oy

This yields that

y=> > [0 (x,1) + 0ia(z, 1) )] riulz,1). (4.3)
J#L k#j
Next, we want to analyze the interaction between E, and the structure of the shock layer, therefore we
introduce the functions around the leading order approximation %*(z, t),

Th(z,t) = 'f‘k(u (z,1)),

I(w,1) L (@' (z, 1)),

Az, ) Ae(@' (2, 1)) — 5(2),
C;fq(:zz, 1) = Lzt f" (@ (z,0)(Fplz, ), Fplz, 1)) for 1 < k,p,q < n.

We rewrite the formal approximation error system Fs(z,t) in the terms of the functions around the

approximation solution @'

1
8,0, — s(t) 8,0, + 8, f'(@*) ©; — 820, + 5 s > CiLi T (4.4)
J#i
= Ey(z,t) + 9, {Zﬂj (F(@Y) = F@))ry iz, t) + +y ZC’;”B? F Tm)}
i FE

We need to find the coordinate of the vector Ey(z,%) with respect to the basis {7,(z,1),,7,(x, 1)}, that
is,

T, t) = ZE;‘(:I:,t) F{z, 1).
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First, we compare the vectors r;(z,t) and r, ;(z,t). They are the normalized right eigenvectors of f'(@!)
and f (@), The limit of their difference hmsgn(J —ijaooa T2, 1) — 1j;(z,%) = 0 with the same rate as
hmsgn@_z) m_,mu Ha,t) — uj 2(z,t)=0, because both r;(z,1) a.nd r;(z,t) are normalized eigenvector of the
matrices f'(@'(z,t)) and f'(u}). We obtain that

75 (z,8) = r;(2, )|
= 0()|u’(z,t) — a5(z, )|

= O(6) min (l,e_sg“(j_':) 6 Iﬁl) :
From this and (4.3) we have that for each j # 4

Bj(z,t) = O( € )(0; +0,,) min (1 ¢moEnli= & mi) +0(e) Y (=, 1). (4.5a)
" ki, f
From Lemma 3.1 we can replace 6;(z,t) to obtain that for j # ¢

Ei(z,t) = O(es))K (Mj(;’t),t) min (1 —sEni—i) § |m|) +0(e) ) 5kK( %Y) ) (4.5b)

ki, g

For j =1

Mk x, t)
Ei(z,t)=0(e8§) Y K ( 5 ) (4.5¢)
ki
Introduce a reaction wave system Oq(z,%) to correct the error vector F,(z,t) generated by the diffusion

wave system ©y(z,%). We need to express the equation for ©,(z, t) in terms of its coordinate with respect
to the basis {F(z,t}, -, 7.(z, 1)},

By(z,t) = Z O (z, )7, (x, 1).

The equation for the system is

at @2 - S(t) ax @2 + 8m f’(ﬁ. ) 62 - 3 @2 )\m; @2 7 = —Ez, (46)
62(3;:0)

IE
“

We rewrite (4.6) Component-wise.
For the transversal fields, 7 # 4,

8,0} +0, X; 6] - 820 =0 (526—5 e ) 102(z, )| — E{(z,1). (4.7a)
For thé compressive wave '
8,0i + X, 8,0, — 8201 = O ( 5% =0l 4 ¢ ) % O3 (4.7b)
+0 (8 e 1 ) > 6iz,t) - Bis, ).
g

Before we continue the estimates of ©,, we will introduce approximate Green’s functions for equations
(4.7) and their basic properties.
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4.1 Approximate Green’s Functions for Transversal Fields

Since we are interested in waves crossing the shock layer, we introduce a modified j-characteristic curve
{(ci(t,y),t) : t € R} related the leading approximation @'. For j # ¢

LD = Nett)) (48
Y.

C; (O) y) =

From this family of the characteristic curve we can define an implicit function m,(x,t) satisfies that

8, mi{y,8) + M(y,s) 8, m;(y,s) = 0; (4.9)
18, my5) oo = O() for 5 < e

Proposition 4.1. There ezist a function m;(z,t) satisfying (4.9) and o constant Ty > 0 such that for
i< TO/E

mjm(m}t) = O(l)$
Misa(z,8) = O(1)( € + %72 01,

Proof: Let’s assume that j > i; and define a shock zone &,

% = {(m,t) | < 2[1(;86], tSTO}.

Then, we separate the space-time domain into three regions, J;, J, and J3.

T, { (z,8) : ¢ € (—o0, ¢i{t,z) ], t€[0, §/e] },
T, { (z,t) + ze[ci(t,20), ¢;(t,—20) ], t€[0, d/e] },
Iy = {(zt) : z€[ct,—2), ), t€[0, 5/ }.

1l

We define the function m;(y, s). For (z,t) € Jy

m;(z,t) = y where y is given by ¢;(t,y) = =. (4.10)
For (z,t) € 3, the value of my(z,t) is given by the problem (4.9) with a restriction on
{z=~2,}N3 = {(0,s) :5€]0, s} }

where‘C(t) is a function defined on [0, s5] such that

o =
se[o,.slg]l?z?f—_o,l,zi s €(s)] ¢

C(sg) = 0, Ji€(0) = 0forg=0,1,2,

as well as m;(z,t) is C? for (z,t) € J;UT,. For (z,t) € J; one needs to consider a boundary value problem
(4.9) on the line {¢ = 0} N T3 with a boundary value of the form

—{z + z) 2o
. ’O = —_ ¢ ;
0) so Aj{—20,0) t &)
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where €,(z) is a function chosen such that

sup |9 & (z}] = O() ¢

5>—2z0,q4=0,1,2

as well as the function m;(z,t) is C% in J; U T, U TFs.
For this proposition we only need to consider the situation (z,%) € J;. For the other situations {z,t) €
Jo UJ; the proposition can be obtained by the same method.

Case 1. z < —2|loge]/8.

Since j > 1, the curve {(c;(7,m,(z,%)),7) : 0 < 7 < t} travels from left to right, and reaches z at time
7 == t. In the case the point z is in the left side of the shock zone 2, therefore the characteristic curve
{c;(7,m;(=,t)),7 : 0 < 7 <t} never intersects with the shock zone 2 for 7 < t. Hence we can assume
that

d -
Ecjy(Ta y) = Aja:(cj(Tﬁ y),'r) = 0(6), ij(o:y) =1 for ye [mj(t7 .’L'),:E] (4'12)
Hence it follows {
ciy(ry) =0() for 7 <t < - (4.13)
On the other hand from the implicit function (4.10) we have that
m‘a:(c'(tay)zt)azc'(t; y)
Mies(ci{t, y), 1) = -2 £J . 4.14
sea(cs(8),0) @160 w1

In this expression we have obtained the estimate of the term ¢, (t,y) in (4.13), ¢;,(¢,y) = O(1). This also
implies that
mjm(cj(t:y):t) = O(l)

It remains to estimate 82¢;(r,y) for 7 < t. By differentiating (4.8) twice

dC (T, < -
Lm0 5, ey, e (1) + a5, 7)) (4.15

Ciyy(0,y) = 0.
Substitute y = m(z, 1), Age(c;(1,¥),7) = O(€?) and (4.13) into (4.15), we have that
iyt mi(z,1)) = O(1) t €.
From this and (4.14) there exists a constant T;, such
My (,8) = O(1) € for t < Ty/e.

Case 2. m;(z,t) < —zp and z € 2. |
Let 75 be the time at which characteristic curve {(¢;(r,m;(z,t)),7) : 7 € R} interacts the shock zone Z,
that is,

Cj(‘?‘[),mj(x,t)) =20, (416)
|log e]

5 {z5,—z} xR = 9Z.

ZQ.E—Q
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Clearly, from this implicit relationship 7 is function of z, and denote it 75(z). Since this characteristic
curve travels with a positive speed, it will spend O(|loge|/é) time to travel from 8% to the point z € Z.

Hence,

1t — 7o(a) =0(1)“°6g€[.

Consider the comparison equation for studying this characteristic curve in the shock zone,

1 d C;(r,z) -
A(Cmo(z)y  dr ’

Cylrol(),a) = 7.

We integrate this to obtain that

H(Cj(r),3) = 'r-'ra( ))

From this we introduce a more accurate equation to approximate the characteristic curve,

d —

Cj('rﬂa :E) = CJ'(TU’ mj(ma t))

Since we have uniform bounds on X;(y,t) and A;,(y,t), we may assume that for 7 € [7y(z), ]

Cy(r,3) — Cjro,3) = O()(r—m) = 0(1)“0%6'.

From (4.17) and (4.18) we may make a hypothesis that for 7 € [y, 1]

H(Oj(T:x):w) = O(1) 52

On the other hand we can write (4.20) as

L0 s H({C;, x
/_\jéiéj,.?m) =1 +O(1) A(j is )
=1+0(1) ¢ %4
Integfating this equation we have that
[log ¢|?

H(Ci(r,z},z) =17 — 15+ 0(1) €

for 7 € [, ).
Comparing Cy(7, z) and ¢;(1,m;(x, 1)), set
ACy(1) = Cylr,2) — ¢5(rymy(z,1)).

Let’s make a hypothesis for AC;
|AC;(r,z})| <2 for T € [r,1].
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The equation for AC; is
d

-AC; = X(Chymo+ H(Cjym)) = Ailes,7) (4.25)
- fo 3(PAC; + 63, plr = 1) +10) dp- AC
+ _/01 Ajs(PAC; + ¢, p(7 = 70) + o)dp - (H — (T — 7))
ACy{rp,z) = 0.

From this and (4.21) there is a constant 7* such that

d _ ~L5lr—m| | 2| log €]
E;ch = 0(1) ( AC; + € 5 .

Then it yields the estimate for 7 € [ry, ]

Jlog ¢f* |
ACy(r,z) = O(1)€® —5F (4.26)
This justifies the hypothesis (4.24).

Applying the 9, and 82 to (4.25), then we need estimate that H,(7,z) and H,,(7,z) for 7 € [1y,#]. From
(4.19), the uniform L* bounds of ¢;, and my, in the shock zone %, and Proposition 2.2 we have that for
te {Tg, t]

1
Hy(r,z), Hy(r,z) = O(1) ¢ I__%gﬂ.
Similarly, under the same hypothesis as AC; we have that for 7 € [y, t]
2 |loge[?
O, AC; (T, z) = O(1)e 5 (4.27)
1
RAC,(r,7) = O(1)¢? | OgEI . (4.28)

It remains to estimate 85C;(r, ) for i = 0,1, 2.
The solution C;(z,7) can be represented as

C; 1
/ = dp=171—T.
g Aj(T?H(pT "E) +TO)
Applying 8, and 82 to this identity, we obtain that for the functions C;(7,z) and H(C;(r,z),T)

_ ij _ ij 'th(p;* H(_{),.’B) +TD) ) (Hw(psm) + TOw) dp = —8,7;
Aj(cj’ H+ TU) 2o ’\j(p: H(p, $) + Tﬂ)2 '
_ ijm B ij ij;,;_-l- )_\ﬁ [H.,- Cjw + Hw]
A (Cy, H + 79) X(Cy H 4 19)?
_a, f i A, H(r SE)+T@) (Hy(r, 93)+7'0m)d?_ _ &
i(r, H{r,z) + 19)? =0
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From this and that H,, 75, = O(1) we have that

Clea(T, ) = O} (|Ajz(C, 7)] + | X35 (C, )| Cia| + O(L)|Tomal (4.29)
= 08¢ + O(rizs).
We need to estimate Ty, and Ty, Applying 82 to (4.16) it yields that

CipMMjy + CirTor = O, (4.30&)

2 2
Ciza™Miz + 2CjarTosMje + Cjz * Myza + CirrTow T CirToga = 0. (430b)

Since the curve {(c;(7,m;(%,t)),7) : 0 < 7 < 7y} is completely outside the shock zone Z, from Case 1 we
have that |
|¢jzz (70, 4 (2, 2))] = Ofe).

Similarly, we can have that
B e; (o, m;(x, 1)), DLOmy(z0,70) = Ofe) for i +j =2, 4,5 > 0.
Applying this and the uniform L upper bounds ¢;;, ¢jg, My, My = O(1) to (4.30b) we have that
Toez = O{€). (4.31)
This and (4.29) yield that for 7 € {7, ¢}
Cizz = O(1) (526"6103" + e) .
Combine this and (4.28) it yields that
Orc;i(r,my(z,t)) = OQ) (e+ e~%172 Y for T € [y, 1],
Myge(,t) = O(1) (e + 7 ¥/ 2,

and by using this estimate one show that the hypothesis (4.22) and (4.24) are true.

Hence, in this case Proposition 4.1 is true.

Case 3: m;(z,1) < —z and —z < z.

Similar to Case 2, we define 7, () be the leaving time at which the characteristic curve {{c;(r, m;(=,t)),7) :
T € R} leaves the shock zone 2, that is,

¢j(r1(z), m;(z,1)) = —2. (4.32)

Since this curve is not in the shock zone & for for 7 € {7y, 1}, it is true that for 7 € [y, ]

Njaa(03(7,m5(2,1)),7) = O(€");

Aig(ei(Tymy(z, 1), 7) = O(e); cipl(r,myi(z, 1)) = O(1). (4.33)

In Case 2 we have estimated that ¢z, (m;(r, m;(z,t)) = O(e). Therefore, substituting this and (4.33) into
the O.D.E. (4.15) we have that

Cioa(T,mi(7,1)) = Ofe) for 7 € [1y,1],
Mjze(€,t) = O(1)e.
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Case 4. m;(z,t) > 2.
This characteristic curve {(c;(r,m;(z,t)),7) : 7 € R} never intersects with the shock zone, therefore the
method for Case 1 can be applied. Thus, we have that
Mjge(, 1) = O(€).
Q.E.D.

Now, we define the approximate Green’s function for the transversal fields in terms of the function m;(y, s),

gily, s;z.t) = K (mj(y;}ij;y’rrsbﬂ(w,t)} t— s) ) (4.34)

From Proposition 4.1 we have that

6393' -+ 3y§\jgj + ngj (4-35)
=0(1) (e + %718 ) - Imy(,8) — my(y, )| !KXX (mﬁ(y;ij(‘yﬁ;(m’ B, s) I
+0(1) (e + 6%‘51%1)2 my (e, ) — my(y, ) - |[Kx (mj(y;:jy(—ijg(ms B, S)

+0(1) (e + 8% )

o (Tl omte) )|

mjy(?f: 3)

Since we have uniform bound m,,(y,s) = O(1) for s < T'/e, we can have two constants B, of order O(1),

j froml - . .
B = sSlr'Il'f/e My (- 83l oo (4.36)
B, = sup [[my(:8)llcos
Tole

B., = 1+0Q0) (6+T).

Set
_ m-(y,s) - m(m:t)
'5;JtEK z ‘J :t_ . 4.37
9;(y, 5;2,1) ( 2B s (4.37)
Hence
9y, 55,8 < giy, 53,0). (4.38)

Substitute this into (4.35), then it follows

- _slely G5lz, by, 8
Bsg; + By Ai9; + O2g; = O(1) (6+526 62)95(\/—15—%~—1.

4.2 Approximate Green’s Function for the Compressive Field

(4.39)

We continue to construct the approximate Green’s function for the compressive field. This approach is
adopted from [11].
We consider the case z > 0, only.
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The approximate Green’s function g;(y, 7; z,t) for the compressive field is still of the same form as that
for the transversal waves,

Aly,T) (N(y,’r) “N@1) |, T) , (4.40)

i\ : :t =
9y, 120 = oy N7

but it has an extra factor A{y,7)/A(z,t) to correct the compressive effect, where the functions N(y,7)
and A{y,7) will be given in the following.
When y > z;, the equations for A(y,7) and m;(y, ) are

8, {M(p(y, 7)) — s(n)Aly, 1)} + Ay, 7) = 0, (4.41a)
3}1&10 Aly,7)=1; (yii)r_nooA(y,T) =1 for the case z < 0) ;

Bgmi + (j\j(qé(y,f)) + %) d,m; = 0; (4.41b)
m{~zy,7) = 0. (4.41¢)

By (4.11), (4.12) and (4.13) in [11] or a direct calculation, we have that

Alz,t) = 141 01)se % for z > 0;  (4.42a)
Alz,t) = (A(Z’ ! + 2|)i\_—i) (1+e**)+0(1) (@ — %*?') (1+e*7)
+0(1)é (1 — 8—51335) er7 for z < 0; (4.42b)

where Ay = A;(u(0%, 1)) — s(t); and

—L 1+ 0(1)se™®)  for x <0,
aymy(z,t) = (4.43a)
a (1+0(1)6e™®=)  forz >0
omi(z,t) = 0(8)e~%!, (4.43b)
We define the function N(y, s) on the domain |y| < —z, in terms of the function my(y, s),
N{y,s) =m;(y,s) —s. (4.44)

Introduce a modified i-characteristic field A;(y, s) on the domain y > —z,
Xy, ) = Ay, s) — (j\i(ﬂa s} — Ai(—2, 3)) . (4.45)

We extend the function N{y,s) to the domain y > —z; by considering the boundary value problem on
Y 2 —Zp,

Ny(y,8) + Xily, s)Ny(y,8) = 0; (4.46)
N{—#,8) = —s.

From the definition (4.45), we have that
Kxi(—20,8) = O[OS Nille = O(1)e"
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Therefore, from this and (4.46) it yields that
N, (y, 5) = O(e/8%). (4.47)

Now, we have constructed N(z,t) and A(y, s) on the domain y > z,. Substitute those functions into (4.40)
to evaluate the approximate error (8, + 8, A; + 82) gi(y, s) for y > 2.

Case 1. |y] < —z.

From a direct calculation shown in (4.19) of {11], it shows that for the compressive field A\;(¢(z)) the

approximation error the function g;(y, s) is

(9 = 5(8) 8, + 8, X(9(y,5)) +8}) 6y, 5) = O(5") (6 + \/—%—1;—_3) 2 (4.482)

We use this estimate to obtain the approximate error for the compressive field X;(y, s) for |y| < —z

(8, + 8, 2:(y,5) + 8}) 0:(v, 8) (4.48b)
= (33 - S(t)ay + ay}‘z'(d"(ya 3)) + (9;) gi(ys S) + ay {(j\i(y: S) - p\%(qb(y: 3)) - S(t)])g'é}

= O(6%) (5+ \/tl—_g) e g +0 (i‘/tof_z') 3+ 0(€) g;.

where®

Case 2. y > —z,.

The level set of N(y,s) defines the i-characteristic curve. Hence, N(y,s) shares this property with the
function M;(y, s), which is used to define the approximate green’s function g(y, s; z,t) in (3.14). Besides,
we still have the estimate Ny (y,s) = O(1)e/d%, (4.47). Thus, the estimate (3.28) for g(y, s;z,t) is still
valid for g;(z,;y, s) with a modification,

(0 +9,%+8) 6ily,5) = O(1) 55 Gi(w,9) (4.49)

Case 3. y < z,.
In this case we will alternate the form the approximate green’s function, (4.40).
Let’s begin the construction of the approximate green’s function for y < z; from introducing a pseudo-
image.
For any given (z,t) and s with z > 0 and s € [0,#], a pseudo-image Z(s) of the point z is defined by the
implicit function,
m;(Z(s),s) = N(x,t) +t. (4.50)

From the definition of N(z,t) (4.44), we have that
E(t) = x for |z| < —z.
When z > —z,, we may assume that
1
z(s) > —5% for s € [0,1]. (4.51)

Then, we use an uniformly lower bound of |m,(y, s)| for y > —1z, s < §/e in (4.43a), and implicit function
theorem,
f’(s) miy(j(m)as) + mis(fé(m): 3) = Oa
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to obtain that
3,Z(s) = O(e). (4.52)
- Let’s rewrite N(x,t) = m;(Z(s), s) — s and substitute it into g;(z, s;z,t) in (4.40).
Then, use (4.42b), (4.43a) with a straightforward calculation to expand it. Then, we have that, (see
estimates for (4.16) in [11}), for w € [2, 0]

Alw, s) mi(w, 8) — m;(%,s) +t -5
: iz, ) = K t—
gi(w, 5,2, ) Az, t) My (w, s) A
1 A(Zo, 3) ~{mi(,9}~m;(0,s))+m,; (@, 8)—m;(0,s} m[mi(ZOaS)—mi(ils)—{t—a)Ez

miy("”#ﬂ)z € 4miy(”0|3)2(t“‘3)

B Var(t— sy Alz, s) ‘

oyt (Mm99 )

my(w, 5)

This form suggests the boundary value problem for y < zy,

asjv:i(y: S) + ’_X;(y: 55 IL') a:nlvi(y: S) = Ov (453)
Ni(z0,8) _ my{z0,8) — m(&,8) — (£ ~ )
Ny (z0,8) My (20, 5) ’

and use it to construct the approximate green function in the domain y < z by matching the value
gz(ys 5T, t) at (Zo, S)?

.A(Zg S) —{my(2g,8)—m; (0,9 +m; (Z,8)—m;(0,3) _
Gy ami) = A(:c,S) ¢ o g9; (y,82,1) (4.54)
. ) ) |

= O@1) e ¥V g (y, 5,3, 1),

N
g (y,82,t) = K( ’](—\%”S),t—S);

iy

where the function A; is given by

0, (n;(z, 8) — my(E(s),8) — (t — 9) )

M (Wsi2) = Ay, s) — Ailzo,8) — Bymi(20, 5)
yrimATD

Then, by the equation (4.53) we have that

N(z,8) (s N{z,5)
N(z,8) A (70, 9) N,(z,5)
_ 8, (mi(zg, 8) — my(Z(s),s) — (t—s) ) N(z,5)
Bymz-(zg, 3) Ns (Z{}, 3)
i) = m3,9)— (1= 5)

miy(zﬂa 3)

From this we have match g;(y, s;z,t) at the point y = z,.
Next, we turn to evaluate the approximate error of g;{y, s; z,t) for y < z.
From the definition of m;(y, s) we have that

|6fm;|| = O(e*) for k € Z.
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Therefore, from this and the regularity of X;(u”) (2.16) there exists a function N;(y, s) solves (4.53) and

satisfies that for s <t < O(1)4°
sup LA (y,8) = O(1)¢ fori=1,2.

y<zp
Figy(y,5) = O(1)5 for y < 2.
This implies that
0,97 + Oyhigr +g;
8.9; + BN g + 859 + 8, (N —X) g
€ 1 o € i
—ow (5 +dwe@l) = + 54).

where

g (y,s;3,t) = K N, ¢ )
4\ 8 %, - 2]\7:@ H st.
From this, (4.48b), and (4.49) we have Proposition 4.2.

Proposition 4.2. There exists positive constant Ty such that for x > 0 and 0 <t < T'/e

( 0(1)§ gi(yis;a:!t)y fOT’y > —Zp,

(8, + 3, .1“3;)%(%3;33,]5) ={ 0(1) (52(5 + v(%_s) e~z 4 o4 ﬂ\}%—fl) G:(y, s;x, 1) for |y| < -2,

\ 0(1) [e+e_5 12| (ﬂ\}:—f—:l—ke)] g; (y,82,t) fory < z,.

4.3 Basic Properties on convolutions with Approximate Green’s Functions

We continue to estimate the convolutions of the approximate Green’s functions with element waves.

First, set A;(t) is j-characteristic curve starting at z =0,
A = Sj(t,O) for 7 #£1,
AF(®) = X(0+,0),
Az(t) = 0,

where the curve {(c;(t,0),t) : £ € R} is given in (4.8).

I

Part 1. Dissipation of Diffusion Waves.
Diffusion waves of algebraic types.

(e—a; (14+1))2

o%(z,t;A;,D) = (t+41)7%2% " Do
Clastiy) = (o Ayt + 1) ¢+ 17,
ot Ay) = [(lo - A+ D)+ (E+ 1)
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#
I“’ﬂ(w,t; k,A;, D) Ef /(|t ~ s} + 1)_’5/2 (gk(y,s;m,t) (t— s)%) <0%(y, s; Ay, D)dyds;
0 Jr
¢
J%8(z, b k, As, D) = f / (1t = o1+ 1) (g0, 2, 1) - (¢ — 5)? ) -*(9, Ay, D) dyds.
o JR
Set

() = fo t(s +1)7%2ds

1 for a > 2,
= 0(1)< log(t+1) for a =2,
(t+ 1) for @ < 2,

In the rest of this paper the constant D is assumed to be a positive constant such that

D > §
and the constants T and § are also assumed small enough that for £ < %
1
[ 18erme(st)lloo =11 < 155 (4.57)
Set
e Hy =1+ -
¢ T 100

Lemma 4.1. For o, 3 > 0 and k # i there exists a .constant T > 0 such that for t <T'/e

I%F(z,t;k, Ay, D) (4.58)
= 0(1) [t + DEPIETE N 4 1) 4 (4 D)0 (¢ 11)] o, 5 A, D).
In particular,

O(1) o{z,t; A, D) fora > 3,8 =1,
0(1) o%?(z,t; Ay, D), for a > 2.5, B=2.

Proof: Similar to the estimates in (3.30) we need to compare the two functions z — Ag(t) and my(z, t).
From (4.36) there exists a constant 7' such that for t < T/e

I%P(z,t; k, Ay; D) = {

(z—-Alt)) < Hymyla,t),

18 (2, 8)l|oo < Ho.

From this and (4.34), it follows that

I%P(z, t:k, Ay, D)

my (z,0)°
TTD %

¢
e
= 0(1 f t— g) (e DR~ B-W2g "
(1) 0 ( ) Vi+1
_ (w21

0(1) /tﬂ t (t — 5)~e-D2g-0-Df2gs & D7
= 1 +f t—S_a_ § v G b m——
0 £/2 Vi1
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Q.E.D.

Lemma 4.2.A. Suppose that ( &, > 1), (k < j), and ( k,5 # i ). Then, for any given constant
E > Hy" D there exists a positive constant T > 0 such that for t € [0, L]

Ia,ﬂ(m';t;k)Aj:D) (459)
= O(1)(t + 1) (A D)o (x, 8 Ak, B) + O(1) (¢ + 1) 02081 i Yo (2, 5 Ay, B)

0 for x < Ap(t+1)+Vt+1, orz> At +1) v/t +1

O)[(t+ )PP — Ap(B)o(x, 8; Ay, B) + (4;(1) — 2) D2 (2 — Ay(2)) oo/
+(t + 1)V (A (1) - 3)o (3, t; A4, E)]

for Ay +1)+vi+1 <z <Aj(E+1) -+ 1.

In particular,

+

O(l)(ljz(m,t; Ag), fora=2, f=1,

O(L)[¢*2(z, t; Ag) + C(z, t; Ap)l, fora=3, f=2. (4.60)

%%z, t;k,Aj, D) = {

Proof: We separate this problem into the following five cases.

Casel. (z<A(t+1)) = (my(z,t) <0).

Case 2. (0<SA(+1D) <z <A(E+D+vVE) = (mu(z, )] < OWWVEHL+0(8) ).

Case 3. (A(t+1)+VEi<az <A{t+1)—vVi)= (my(z,t+1) < -OQ)VE, O(WE < my(a,1) ).
Cased. (A;{t+1)—VE<o<A{t+1)+vVE) = (|Im(z,t)] <ODWVE ).

Case 5. (A;{(t+1)++vt<az) = (OQ)VE< |mi(z, )] ).

For Case 1 and Case 2 we need to compare y — A;(s) to my(y, s) — mp(A;(s),s). From (4.57) there exist
positive constants T' > 0 and Dy > 0 such that for ¢t < T'/e

16,5, )llo < Ho,
Hy™ [y, ) — mi(Ay(5),9)] < Iy — A5()] < Ho Ima(y, s) — ma(Ay(s), 9)), (4.61)
Dos< Hy™ (Aj(s) — Au(s) < milAy(s), s) — mie(Au(s), 9
= mi(A(s), ).

From this we have that

(mpwa)—my (e, ))?  (y—Az(an2 () ~my (,8))2 (e lve)—mp(Ay().s))®
e 4my(.e)? (t-s) 6VT(Jt—T) d d e_b&inoﬁEh;T e HoZ D (tis) dud
s < 3
e Vi3 gz v = | T =, /5 v
(g (.8)—mp (A;(s),0))°
e H02D L3
<
Vi
From a straight calculation, (see [11]),
I%F(z,t; k, Ay, Hy' D) (4.62)
. _(mk(z,ﬂ—?km,-(a),m’
- e Hp* Dt
= f O(1)(t — 5)~ B D21 4 g)~la-V/2. ds
0 Vi
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t ™ &y 2 2 32
—0(1) f (t — 8)(~BHD/2 (a2~ HTEr ¢~ BT B dg
0
= 0(1) {(t + 1) TAIRPL T (4 1)(_“_25%)/4} o(z,t; Ay, Hy' D)
pE 2

+0(1) (¢ + 1Yo B2 HDED o(p t; A, Hy* D).

The Lemma is true for Case 1.
Case 2. From the condition for Case 2 o(z,t; Ax) = O(1)v/t + 1 we have that

_ (oD (D1 (s) 8)?
HD Dt

t
1%P(z t;k,A;, D) = O(1 / t — 5)F+D/2g—(a-1)/2E d 4.63
(@,15k,45,D) = O(1) | (= 5) P40 N (4.63)
= 0(1) {(t 4 1) FD2Pe (T 4 (14 1)(-a—2ﬁ+3)f4} o(z, t; Ay, Hy? D) (4.64)

Dy 2¢2
)(—a—ﬁ+4)/2e_- 4HZ D (t41) o(

+0(1) (t+1 z,t; Ay, Hy* D), (4.65)

where D, (s) is a positive bounded function with a lower bound Dy and upper bound D,.
Thus, the Lemma is true for Case 2.

Case 3. In this case we need to separate the integration of the time domain [0,¢] into three regions,
[0, mg(z,t)], [me(z,t),t + mi(z,t)] and [t + m{z,t),t]. For s in the first two domains, (that is, 0 <
s < t+m;(z,t)), from (4.61) we can replace |y — Ax(s)| by O(1)|m;(y, s) — m;(Ax(s), s)|. Similarly, for
s € [t + m;(z,t),t] we replace my(y, s) by

m (Y, 5) = [mi(y, 5) — mi(A;(s), 5)] + mu(A;(5), 5)- (4.66)

Then, we replace my(y, s) — my(A;(s), s) and my(A;(s), s) by by O(1)(y — A;(s)) and Dy(s) s where Dy(s)
is the uniformly bounded positive used in Case 2.
When s € [t +m;(z,t),t], we need to introduce a new variable

Yi(y, s) = myly, s) — mp(Ay(s), 5). (4.67)
Then, for s <t < Ty/e
my(z, 1) —me(y,8) = Yi(2,1) — Yi(y, s) + my(A;(8), 1) — mi(A;(s), 5)

= Yj(z,t) = Yj(y,s) + Ds(s) (t - s),
Hy ™l ly—Ai(s)] < [Yy9)] < Hy ly—A;(9)l,

where r"_393(3) is a uniformly bounded positive function. Hence

-

- )2 (¥ (@.5)=Y; (3.8)+Da(s) (t—s) )2 ¥ (y.5)2

_ [mple,t)my (y,9)) (y—A; (s LS i _ Yl
e é"']".it:y(ll'us) (t—a) e_y_ﬁ'?_ia_)')_'d O(l) e 4H§ (t—s) € Hp% D a

y = dy
R V=5 Vs R Vi—s Vs
_ (Y3(=t)+Dala) (t-s) ) _(mi@.0+D4(e) (t-2) )
HED ¢t HAD ¢
e 0 e L+

vi vt
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the positive function D,(s) share the same property as D;(s). Then, we have that

I (x4, k, Aj) (4.68)
(o) _ (my(@:t)=Dy(a) 9)?
) H, Dt
: Vi+1
(my(=.8)~Dy(s) )®
t+m; (z,t) e Hl bt
N / t — §)~(B-V/2g—(a-1)/2 ds
mk(mat) ( ) t + 1
, _mj(:c,t)‘l‘ D;; (s) {*“3))2
e HO Dt
+ f t — )~ (B-D/2g(a-1)/2 ds.
t+myj (:z:,t)( Vi+1

From a straight calculation one can evaluate the above three integrals and get
I%P (3,1, k, Az)
= O()[(t+1)P*VPr N my (2, 8))o (2,85 Ay, Hy D) + (1+ [my(x, ) P21 + [my(a, £)]) )
+HO)[(t + 1)L L + (@, 8)]) o5 (z, 85 Ay, Hy D)),
From this and (4.61) the Lemma is true for Case 3.
For Case 4 and Case 5 we need to use the variable Y;(y,s) again. Similarly to the integral for s €
[t +my(z,t),t] in Case 3, by using this variable ¥;(y, s} Case 4 becomes
0 < Y(z,t) <O(1) V4,
I%P(z,1; k, A,)

1 _{¥jl=t)—my u(xj (t),t);mkmj(s).an?
— e A1FO0(8))E
= 0(1) f (t = 5)~B-D/2g—(a=D/2 s,
1 Vi+1

By evaluate this integral we have obtained the Lemma for Case 4.

The same argument works for Case 5.
Q.E.D.

Remark: The evaluation of the integrals in (4.62), (4.63), and (4.68) is quite lengthy and straight,
therefore we refer it Lemma 2 of {11].

Lemma 4.2.B. For o, > 1 and j # i there exist positive constants Ty and 7y such that for any given
constant E > H§ D for 6 <ny and t < Ty/e
Case 1. j>i,2>0
1%#(z, 44, A;, D)
= 0(1)(t+ 1)L (W Do (e, 1 AT, E) + O()e (¢ + 1) P20 (V3T Do (a, £ AT, E)
+O)(t + 1)t Do (2, 8 Ay, D)
(0
for 0 < z < max(v/t + A(t),0);
O()[(t -+ DAL (5 AFB))o(m, & AF, B) + (Ay(t) ~ )P (5 — A (1))t
+{ HE+DTHIEDI AL (2) - 2)o(z, 8 A, B)]
Jor max(0,Af(2) + V1) <z < Aj(E+1) — VT +T;
0
( Jor A;(E+1) —Vt+ 1< g
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O(1) e 2VE (5 — A;(£))PHI2 (¢ 4 1)t D/ o=8UE for 51/ F < 1 < Ay(t)/E,

0 for z < 6t/ E,
_|._
0 for z > A;(2)/E.

In particulor

Oz, t; A)), fora=2, B=1,

a,B eqi AL —
I ($,t5?«;A_7,D) - { 0(1)[C3/2(w’t; A:—) +E3/2($,t;Aj)]’ for a =3, 6 =

(4.69)

Case 2. j <i,z>0.

I“"B(:c,t;'é,Aj,D)
= 0Q)(t+ 1)AIRT (T To(w, AT, B) + O)( + )T 0 (Vi Do (z, 15 A, B)
+0(1)e (1 + )" EDre L E r TYo(x, 8 A, E)
0 for z > Edt, ,
' { e MBE (5~ A (£))~ D12 (¢4 1)(-otD/4e=FUYE for < g < ESE.

Proof. For both Cases 1 and 2 we need to separate this problem into three situations.
Case A. 0 <z < max(0, V& + A} (2)).
Case B. max(0,vt+ Af () <z < Ajt) — vt

Case C. A;(t)—Vt< .

For the Cases A, B, and C we need to separate the domain of the double integration into two com-
ponents ¥y < 0 and y > 0, since our approximate green function is defined differently for y > 0 and
y < 25 = 2log(e) / 8, where zp is given in (4.16).

We consider the integral over y > 0 first.
According to (4.40) and (4.42a) for y > 0 the approximate green function for the compressive field satisfies

that
gy, s;3,t) = O(1)K (N(y’]frz:é,j;f)(m’t),t—s) \

where the function N(y, s) is defined on y > 2z, by (4.44) and (4.46).

For Case A we need to compare m;(y, s) with ((N(y,s) — N(A;(s),s)) /Ny(y, s), where the function
N(y, s) is given in (4.48) for defining the approximate green’s function g;(y, s; z,¢). From the definition of
the N(y,s) (4.46) one can have that

N{y,s)—N(Aj(s),8)
Nll (yls)

o, RIS 470
v y2>z0, t<L lm; (y, s)| 100 (4.70)
N, 1
op  Nelrnl 1
y>m, t<E | Ny (0, )] 100
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by assuming that 7" and ¢ are small enough. From this, (4.57) and (4.40) we have that for ¢ > 1

_ (B{ysa)=N(z,t)? sl __(N{z,)—N(y,s))? _(J\T(y,a)—l\’(x’\j€a)|~=1))2
e ¢ Nv(y,.s)g'(t—s} e—“’—,}—@» p 0(1) e 4 HE Ny(0,5)2(t—s) e DHENy(0,5)2 s g
Yy = Y
y>0  Vt—$s Vs y>0 V-3 Vs
_ (V=)= N (A ()0 _@-Af(H)-Ds(e) 5 )2

3 7 7

e D HJ Ny(oa)%t e D HEt
= 0(1) = 0(1)

VE+1 VEIF1 ’

where Ds(s) = X;(0,0) — X;(0+,0) + O(6 + T) is a uniformly bounded positive real-valued function.
Similar to (4.62) we have that

t (y—-Ajten?
f (|t — 5| + 1) BV 2g.(y, s; 2, 8)e” D=3 (14 5)"**dyds (4.71)
9 Jy>0

_(e—AF ()—Dg() 5 )2
O(I) ft e D Hit p
= S
0 Vit+1

= O(1)(Jt — 5| + 1)“("“1)/2({3[ + 1)—(a—1)/ze

—(e—a} (#)~Dg(s) s )2
Ho2 D (1)

vi+1

For Case B we need to introduce different auxiliary variable for the space integral
Iy = f 9:(y, 8;7,1) 0%y, 83 Ay, D)dly.
Sy>0

First, we need to Separate‘ the time domain into four regions,
L 1<s<+/1

IL Vi<s<t—+t
I t—+vt<s<t—1
IV. t—-1<s.

When s €I, the evaluation for #, is identical to Case A.
When s € II UIIIUIV, we introduce a new auxiliary variable ¥;(y, s) on domain y > 0. This variable is
similar to Y;(y, s) in (4.67), and it is given by
Yi(y,s) = N(y, s) — N(A;(s), 5);
N(y,s) — N(z,t) = Yi(y, s) — Yi(z,t) + N(A;(s),s) — N(A;(2),1).

Hence, by the restricted condition for (4.57) and the definition of N we have that

Yi(y, s) |
ol = g NG )T
Hence there is a constant F such that
w0 o T i L &
o Vs | iss s
_ (XN (A (1) =N (A (),0))2 )2 ( iy (w,)+Dg(8) (i-9) )2 )2
e DHy? Ny(0)%t e Et

=0()

= o)

vt vt ’
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where D5(s) and 1/Ds(s) are uniformly bounded functions. Similarly Lemma 4.2.A, by this estimate we
have that

topoo (A ()2
fﬂ fo (It = s| + 1)~V g(y, 5,2, £)e” w08 5~/ 2dyds (4.72)
¢ N e_( mj (& 0D (@) (t-) ) ¥
= 0(1) / ([t — 5| + 1) D25 = ds.
0

The above integral can be handled the same way as Lemma 4.2.A.

Fy = 0+ 1) PRI (et Do(w, A, B) + O(L)e (¢ + DI (Vi 4 Da(e, A7 E)
+O1) (¢ + NI (V1 1Yo (z, 5 A4, D)
(0
for 0 < z < max(vt+ A,;(t),O);
O(W)[(t+ )AL @ — AF (D))o (2,8 AT, B) + (A1) — o) T2 (0 — AF (1)) oD/
+4 (it + D)DETEYA () — Yo (, 5 Ay, E))
for max(0, A () + Vi) <z < Aj(t+1)—Vi+T;
0
( for Aj(t+1)—vi+ 1<

Next, we turn to the evaluation for #_.

According to (4.54) the green function is of the form e~ K (N;(y, s)/ Ny, (y, 8), ¢ — s) for y < z. First, we
need to extend to domain of the function N;(y,s) into R. For each given (z,t) with z > 0 we can simply
define N;(y, s) as follows

Ni(y, s) = mily, s) —my(T(s),s) — (t —s) fory > z, (4.73)

where m;(y, s) is a globally defined function given in (4.41). Similar to the estimate (4.70), under the same
hypothesis for (4.70) we have that

l Ni(y,5)—Ni(A;(s),8)

Niy(yas} ].
- 1| € —; 4,74
oy 3, 5] < 100 (4.742)
_'i j(s):s)
Ny@s) | = Hy | Aj(s) —z(s) + 6 Da(s) (£—s) [, (4.74b)

where D3(s) = 1+0O(8+7T) is an uniformly bounded positive function. Substitute (4.74) into the following
integral, then there exists a constant Ey such that

0 Az (a))? /2
/ g.,;(y,s;a:,t)e DE=s) (1 +8)” /dy

e

—ou e [k (glp-e) x (MR ) e
O(1)e "“miK(g(g((o % )
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This yields that

(B~A {s)—8 Dyis) (t—a))%

ot - Ty (D)
S =0(1) e fo (It — 5] +1)~F=D03(|s] 4 1)~(@-Dr22 NS ds. (4.75)

From (4.51) and by modifying the proof of Lemma 2 of [11] it yield that there exist constant F such that

S < E.F,

0 for x < 0t/ F,
+ O(1) e=fal/E (5 — A;(£))TPHV2 (¢ o 1) (ot l/4 o~ 8T for 5t/ B < & < A;(£)/E,
0 for z > A;(t)/E.

Hence Case 1 is true.

Remark. One just need to make change of variables, then the integration in (4.75) can be bounded
an integral of the standard form

(X4 !2
4T

T —_
) |X{/Ef 7 _ r)f-1,0-18 d
e ) 7.
0 ( ) vT

The procedure for proving is Case 2 is identical to Case 1. Therefore, we omit it. Q.E.D.

From similar calculations as those in Lemma 4.2 one can conclude Lemma 4.3, Lemma 4.4. However,
the calculation is quite lengthy and massive. One can also refer to the calculations for Lemma 3 and
Lemma 4 in [11] with our modification given in Lemma 4.2.A and Lemma 4.2.B.

Lemr.ha 4.3. Suppose 0 < < 3. Then for any positive constant E > D and k # 4
T (3,8, k, Ay, D) = O(1)[(t + 1)TPIPTYE 4 1)o(x, 8 Ay, B) + P71+ 1) (2, 1 AR)l. (4.76)
Forz >0
T4 (z,t;1, AF, D) = O(L)[(t + 1)PHIET 4 4 Doz, ; AT, E) + T4t 4 1)¢% (2, £ AF)).
In particular,
O)CY(x, t;Ay), fora > 25, B=1,

J2P (g tik, Ay, D) = { O(1)((m,E;Ay), fora>3, g=1,
Oz, t; Ay), fora > 2.5, =2

Lemma 4.4.A. Suppose that « > 1, 3 > 8> 1 and k < 4, k, 7 # i. Then for any given constant
E>D

TP (g, t;k,Aj, D) = O(D)[(t 4+ 1)PI20e-YT) + (¢ + 1) TPt + D]o(z, 6 A, B} (4.77)
+O(1)(t + )TN (VE+ D)o (e, 5 A4, E)
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( [+ D2 — A @)D+ (U + ) ™ T e + 1)
AT9 e+ Do = Ay + {(¢+ DT 1 1

+(t + HEPIAP T + (¢ + 1) 4 Yo (z, 8 A, B)]
forz < Ag(t) — vt +1;
O (14 EBD2r  Ay (0)o(a, A, B)

4}(1\#)6 w)i"/“f“‘”’ (= N é\:)c(t))\‘;““’/ 24 (z = A(®)) TPt + 1)

or Ag(t) + Vi <z < A{t) — Vi,

| (z— A (t))“‘l“‘ﬁ‘l(ﬁ—)—(tﬂ)(“’jf”(tn) for 1> Ay(t) + vE.

o—Ax(t

In particular,

O 2(z, t;Ag) fora>2, B=1,
J (18,0, D) = § O, 1Ay D) + V(a5 A)] for o> 4,6 =1, (4.78)
O(I)[C3/2(m t;Ag) + 3z, 6 )], fora >3, B=2.

Lemma 4.4.B. Assume thata>1,3> 8> 1 andz > 0 and j # 1.
Case 1. 7 > i.
For any given constant E > D

T*(z,1;4, Ay, D) = O()[(t + )TPHIPLHVEFT) + (¢ + 1) 7T (¢ + D]o(a, 1, A, B)
+O(1)(t + D)2 (1 Do (w, 15 A4, B) (4.79)
(¢ + D)TAHDETE 5 — A (t))o(z, 1, AF, B)
+(AF(t) - 2) Oz — AF ()2 4 (2 — A ()T (E+ 1)
+0(1) for max(A}(t) + v1,0) <z < A;(t) — V4,
(& — A; ()T~ 1(@2%%@) for z > A;(t) + V4,
-l-{ e Oll/E (A;(t) ~ g)TAHD2(1 4 )t /A e~ for z < B,

Case 2. j <.

Ja’ﬁ(m, t;4, Ay, D)
= Ot + DAL + @+ D0t + Do (z, t; AF, E)
+O(1)(t + )R Yo (2,1 A, B)

(g-1)/2
4| t foro=2,
+O(elely { AT (4.80)

Part 2 Dissipation of Damping Waves
In this part, we introduce the propagation of damping waves:

_ ly—athp () -Ay ()]
K*P(x,t; Ay, D f /t—s+1) Bt~ B (s +1)"% %~ P dyds
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Lemma 4.5. Suppose that o, > 0 and Ay s positive constant. Then there exists a positive constant C
such that for any fired constant E > D + O(1)é and a bound O(1) independent of §

K*#(z,t; Ay, D) (4.81)
([ [(t + D)EAAIETA(L 4 1)e=C% 4 (¢4 1) #2081 (5] e~9/P for ¢ < 0,

(z + 1)PD2NL ) — )21 + /T + 2) "L + D161 + 1) 0 2e=Cl2
+T*( ) (¢ + 1) A 2e=CoM—2l | for 0 < 3 < Ap(t+1) — VEF1T,

(t+1)(_’8'{“1)/2[1"“(154—1)6_05t»}~1‘“( /—t+1)(1+5\/i—5)“1] +(t+1)_"‘/21—"6_1(t+1)6_05t,
= O) S for |z — Ayt +1)| < VEFT,

(a—Ap())? o
(t + )AL ETT(L + eyB)le™ DO 4 (£ 1) 02 7

+(z — Ay (t))(—a~2ﬂ+3)/2 o~ Coa—Aw(t)
+(t 4+ 1) DAL ) 4 TF1(g 4 1)]eClte—C8 o e hu ) ,
[ forz > At 4+ 1)+ i+ 1

Proof. We use A;(s) to replace the time coordinate s. It follows

}K""ﬂ(a:, t; Ay, D)
Ax(2) (y—e+Ay ()~ Ay (5)1?

=0 [ [ (08 - Aulo) + ) e TERERT (4, (0) + 1)V F o).
0 R

By a straight calculation given in Lemma 5 in [11], one can evaluate the above integral.
Hence, Lemma 4.5 follows. Q.E.D.

Set

L*(x,t; 6, D)

t 0 o—y—b(t—s
e_%ﬁf/ (t—s—l—l)"ﬂp(s-{—l)'“/ze_[ %ffi)) e’ dyds,
M*(z,4,6,D) = // (t— 5+ 1)P/2(s 4 1)~/2e~ =BG =t g g

[e—y—d(—s 4
N*PY(2,t,6,D) = f f e B (t — s+ 1) (s + 1)y + 8(s + 1) 2™ BT dyds
0 J—o0

14 oo o—y+(f—s) 2
—I—f / e“igl(t — s+ D)+ 1)y 4+ 8(s + 1)) Bse dyds.
0 Jo

By a similar transformation of the time variables from a similar calculation for Lemma 4.5, we concludes
Lemma 4.6, Lemma 4.7 and Lemma 4.8.

Lemma 4.6. Suppose that o, > 0 and x > 0. Then

z 2 22
L% (5, 4,6, D) = O(1)[(t + YAHI2re(s + 1)6-%6—%6* 5D (4.82)

A

(1) 25 (1 - e 58)e” m].
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Lermma 4.7.5uppose that o, 3 > 0 and £ > 0. Then
M* (z,1;8, D) = O(1)[(t + 1) P20 (4 4 1)@+ 4 (14 1)~/2DF~1(572)e~C0e], (4.83)

Lemma 4.8. Suppose that x > 0, 2> a > 0, 3> f > 0. Then there exists a positive constant C such
that
N*#7(g,1; D,8) = O(1)(t + 1) 72 (@ + 8(t + 1)) /25 P30 (4.84)

where the term ¢ P43 can be replaced by (t+ 1)(*~ﬂ+3)/2‘

4.4 Construction of the Reaction Wave System

We continue to establish the reaction wave system O,(z,t) for the system (4.7) due to the source term
Soi_y E; 7, which is estimated in (4.5).

Proposition 4.3. For the of solution ({.7) ©y(x,t) there exists a positive constant T > 0 such that for
t€[0,7/¢
sup [|8,(:,%)]leo = O(1)de

1<§% fe

Proof. We need to rewrite the differential equation for ©,(x,t) as integral equations in terms our
approximate green’s functions. Then, we introduce a sequence of iterated functions {keg}kzo to construct
the reaction wave system ©,(z,t). The integral equations for ©y(x,t) as follows:

For j #1

] t — .
@’z(x,t)=fn ]R_(as'i"ay}‘j+83)9j(y?5;$:t)'@2(%3)3
4
+O(1)/ fgj(y,s;a:,t) (526_6ly]+e) 192 (y, s)||dyds
1] I
t .
- f /R 09,5 3,t) By, s) dyds.
4]

For j =1
. i _ .
Oiwt) = [ [ = (030, +%) glv.5,0) Oy, o)
0 R
t
+ o) [ [ st sy (% +) 9] 00 9)dyds
0 JR
i
+ O(l)f fg,,;(y,s;m,t) (526“‘””'—#6)2 ~r0I(y, s)dyds
0 JR
J#i
i
-/ /gi(y,S;m,t) E3(y, s) dyds.
0 VR

By modifying this integral representation we introduce an sequence of iterated functions {¥©,(z,1)} by
the following recursive relationship.
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For k = 1 the initial recursive condition is

. t 3
1@‘%(3:,1;) = —/ fgj(yas;m:t) E%(y:t) dy fOI'j ‘"_“:1:23" 2 12
0 R
'0y(z,t) = ) 'Ok(z, 1) Tulz, t).
k=1

For k> 2 and j #
kO (2, 1) = /f (B, + 8,3, + 82)9;(y, 553,1) - 'O (y, s)
+00) [ [ aitusizn ) (5% + €) 100, 9) s
-/ t | swsiz,0) Bi,5) duds,
Fork>2and j =i
kO, t) = / / 3 + A6, +32) gy, s;2,t) *1Ok(y, s)dyds
+ 0(1)f fgi (v, s; 2, 1) (528“5'y'+6) iy, 8)] - F71O4(y, s)dyds
+- //gz y,sxt) 62 ‘Fly!—ke)zk 1©4(y, s)dyds

F#
_f Lgi(yas;mat) Eé(y,s) dyd37
0

[

*O,(x,t) = Z’“@g(m,t) 7 (x,1).

i=1

(4.85a)

(4.85b)

{4.85¢)

Let’s briefly state how this iterated functions converge. The function obtained from the convolutions
(4.85a) yields a sharper estimate for the solution *©(z, ) for £ € N. One can use this function to define
a priori bound for all the iterated functions and to shows the convergence of the sequence of solutions
{’“Gz}keN. However, we need to point out that if one does not add —\;;0% 7; to (4.6) then the iterated

function {¥©,}; may not converge.

Substituting (4.5b) and (4.38) into (4.85a) we have that for § # &

./tfgj(y’s;x’t) Ej(y, s)dyds
oo L[t e o

(4.86a)

+O(1) € §° f f ( m; (%, t2BJ J(y’s): S) min(1, e~* *#"I-97) K(“Mjg;,s—),S) dyds
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EIl + IZJ

t
[o fR 9:{y, s, , 1) B3 (y, s)dyds (4.86h)
¢
=ZO(1)E5 / /gz-(y,s;:c,t)K (W,s) dyds
pary o JR
(4.86¢)

In fact we can replace |My(y, s)| by Hy |(y — Ax(s))| and Apply Lemma 4.2.A with f=1landa=1to I}
given in (4.86a). Then, we have that
L = O()ed (4.87a)

One also has the estimate
- 8 K((y — Ayls))/(2Hy), s) min(L, e 07D ¥) = O(1)(1 + s) ' K ((y — A;(s))/(4Hy), 5),

and then substitute this into I, given in (4.86a). Thus, applying Lemma 4.1 with § =1 and a =3 to I,
we have that

12 = O(l) €d
Applying Lemma 4.2.B to (4.86b)} it yields that
¢
/ / gi{y, 8; 2, t) B;(z, t)dyds = O(1) € 6. (4.87b)
o JR
From the estimates in (4.87) we conclude that
102 t)lle = O(1) € 6. (4.88)

Now we proceed to show the convergence of the sequence {¥©,};. Set
AP, (z,1) =10, (2, t) — FO,(z, ).
First, we make a priori assumption on A¥@,(x,t) for t < 6*/e and k € N

Jup 1A%0,(:, 1)l = O(1) € 6"+, (4.89)

For k =1 from (4.85) and (4.88) we have that for j # i

t
A0, (z, 8 (x, 1) = fﬂ /R (8 + 8,3, + 8)g;(y, 53, 8)] <8 dyds (4.908)
t
+O(1)/ fgj(y, 8;z,1) (526_‘3”' + e) € & dyds
1] R
Ejl + 32;
t
A0, (z, 1)} (z, 1) = / f (8 + 0,3 + P)gily, 5:3,8) ¢ § dyds (4.90D)
0 R

L
+0(1)/ fgi(y,sw,t) (l%(’y,SNJ%_J '3’5+€) - e dyds
WJo R
=%, + By, ' (4.90c)
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From (4.39), Lemma 4.5 with & = 0 and 8 = 2, and the estimates

fR l9;(y, s;2,)} dy = O(1) (4.91)

we have that for t < §%/e
| 3(z,8) | = O(1) e 62

Similar to this and from Lemma 4.5 with & = 0 and 8 = 1 we have that we have that for ¢ < §%/e
| F5(z,8) | = O(1) € 8°.

From Proposition 4.2, Lemma 4.6 and 4.7 with the cases (@, 8) = (0,1) and (e, 8) = (0,2), and (4.91)
for t < §%/e
B, = 0(1)(52 €.

Similarly from Lemma 4.7 and 4.7 with {a, §) = (0,1), (4.91), and condition
Ai(z,t) = O0(8) for |z] < —2

we have that for t < 6%/¢
By, = 0(1)6 52.

From the above estimates about 3, Jp, 3; and 2, we have that for t < §%/¢
|AYOy (s, 1)|| = O(1) 6%

Therefore, (4.89) is true for k = 1.
Suppose that (4.89) is true for some k € N,

‘The representation of the function A**10,(z,t) is the following.
Case_j #1.

t
A0, (z,t) = “/f (8 + 9, +82)gj(y,s;a:,t)] AFO,(y, ) dyds
+001) [ [108 00 1 €Yoy, 552,10 140500, 1]y
_ oQ) fo fR (8, + 8, + B)g;(y, 57, 1)) *+ ¢ dyds

:
O(l)[ /{( 82 e M2 e Vgi(y, 51,1)] 8F € dyds
o JRr

Case j=1.

&
86,0000 = = [ [ 10+, + Bty 512,01 A¥6s(y, 0 dyds
0 JE . ‘
+0(1) [ [18.(8* 2 Yoy, 550,8)) [A"Ou(y 1) dyds

oS f / 2 1 ¢ Ygu(y, 5;5,1)] | A*@aly, i)™ dyds

m;éz
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= O(1) fot/R[(Bs + 9, + Bj)gi(y, s:z,t)] ¥ € dyds
“+0(1) /at /};{6 ( 6 e Wli2 4 ¢ Voi(y, s;,8)] 61 € dyds
+0(1) ZfotfR[( 6% e 4 e Vgi(y, 813, 1)] 65 € dyds.
m
By applying the procedure for obtaining the estimates for 3,, 75, 3; and %, we have that for ¢ < §%/e
¥ 0y(z, )] = O(1)* .

Hence, (4.89) is true for k + 1. Therefore, the sequence {A*0,(z,%)} is a geometric sequence for ¢ < §%/e.
The limit Hmy_,o ¥y (z,t) exists for ¢t € [0,6%/¢] and it satisfies that

sup  [F0,(,1)]lo = O(1)  sup_ {['5(:,8)lloo = O(1)de for k € N.
£€]0,¢/62) t€[0,e/07]

Thus, this limit solves ©,(x,t) for ¢ € [0,6%/€] and
sup [|€:(t)||ee = O(1) d e

t€[0,¢/62)

Q.E.D.

5 Shock Fronts and Higher Order Diffusion Waves, 11

In Section 4 we have constructed a reaction wave system ©,(z,t) to correct the approximation error
Ey(z,t). This correction is still not good enough for our nonlinear analysis, because it does not reveal
the interaction between nonlinear diffusion waves and shock locations. It is still necessary to explore the
interactions between the nonlinear diffusion waves and shock fronts of in order to find a good correction
to the approximation error Fo(z,1).

Since the reaction wave system ©,(z,t) is obtained from a modified linear system in stead of the original
linearized system ar(_)und #'. Hence, when we substitute ©4(z,t) into the original system, it will produce
an extra error A;; 0% 7;,

O — 5(t) Ooz + (f,(ﬂl)eg)m ~ Ogey + By = Xy O 7.

Next we will introduce a sequence of functions {E,,(z, ) }m>3 to correct the approximation i ©% 7; and
B\, which is the approximation error due to @' given in (2.37).
Set

Es = X O3 7i+ By (5.1)
=[O — s(t} Ogp + (f'(8")03), — Oge + B2 + Ei.

From Proposition 4.3 we have that for ¢ < 6*/e

1% ©2 Fll(z,1) = O(1) § € (e+ 8% %W,
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From this and Lemma 2.1 we have that
Ey(z,t) = —Ey(z,t)+0(1) e8 (e + o) (5.2a)
0(1)é?, for jz| > |loge|/49;
= O(1)(e?| log e| + 82ee~0l),  for 1 < |z| < |loge|/48;
O(1)e for |z| < 1.
For m > 3 the function E,,(x,t) will be constructed by an iteration scheme such that for ¢ < §*/e
Ep(z,t) =0(1) 6™ % e( e + e70l), (5.2b)

We will construct the iteration scheme for {E,,},>3 and verify (5.2b) in the next section.

5.1 The Iteration Scheme for Correcting Approximation Error, I

Let Ep,(z,t) be a function satisfying (5.2b). We decompose E,,(z,t) into E2 + EY, where EZ is wave
around the shock front and EY,(z,t) is wave away from shock

Ep(z,t) = E,(z,t) for |z| < 3|loge|/d,
En(z,t) = 0for |z| > 3|loge|/d,
El(2,t) = E,(z,t) — E%(x,1).

Decompose the mass in the wave Ej,(z,t) with the same rule as (3.5).

[ Ba@ods = 0@ -a-0)+ L dhn@ 0) + D dbn@0) 6
where i_(t) = u'(0—,1), a.(t)=u(0+,1).
From (5.2b) we have that
el (t) = O(1)6™ ¢ for j # 4 and €, (t) = O(1)6™° e, (5.3b)

Similar to the construction of §;(z,t) we define the reaction wave system ¥, (z,t) generated by the source
B (x,t),

b j (at('l)m T34) + 0z(Xs5 Wi Tjg) — 3:%(¢£n Tj,j)) = "ef;z(t) Ko(x) for j # 1, (5.4a)
P (2,0) =0,
lI!m = Ej#i ’l/).,'?n Tj,j (54]1))

where Ky(z) is a non-negative C™ function satisfying that
Ko: Rr— [0: 2]} supp(Kg) C [—272]:\

Lm@@z
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By Proposition 5.1, which is given in the end of this subsection, we can obtain the solutions for {5.4a).
Hence it follows

s [ (-, B)lleo = O(E™ ). (5.5)
Set
Massy(z,t) = (Z el (t)r;(0—,t) + Ze%(t)rj((}-l—,t)) Ky(z);

< P>
This function Mass,,{z,t) will take the masses, which not in the compressive field, from ¥, (z,¢). Let
D, (x,t) be the resulting function,

D = OV, + 0, (Z Ajg 'qbf;lrj,j) —~ 0%, + Mass,y,,
Ji#i

./RE,‘T;,,(:E, t) — Mass,,(z,t) dz = el (t) - (w(0+,1) — u(0—,1)). (5.6)

From Proposition 5.1 the function Dy, satisfies that for ¢t < [0,6/¢]
" D, t) = O(1) §™ 42, (5.7)

Next, we consider another function ¥,, to correct %, (x,t) as well as E2,(x, t) subject to the approximation
around @!,
6t‘i.’m - S(t) Bm\ilm -+ amf'(ﬂl)@m - 82@,“ - Xia: \if:n 'f'_i == _gm - Eg“
(5.8)
.. (z,0) = 0.

Similar to solving the system (4.7), one can decompose this system into n scalar equations with source
terms of the order O(8™ *¢?). Then, we convolute the source terms with the approximate Green’s function
in domain R x [0, ?/¢]. Since a convolution with the approximate Green’s function in space is a bounded
operator in || - |lo. One can have that

5% /e
sup ([ (1) [loo = O(fi)f0 1, oo + 1B, 8)lloo ds = O(1) 6™ 2. (5.9)

t<d?/e
By using this function ¥,, we can define the function E,,,;(z,t) as follows

Bpsi” = 8,9, — s(1)0,%,, + 0, (@) ¥,, - 82¥,, + D, + E-, (5.10)
= g .. (5.11)

Hence, we have that for £ € [0,6%/]
B = O(1) Pl - [Tmlloo = O(1) 82 ¢ e+ 8271 (5.12)

Thus, we have defined an recursive relationship between E,, and E, ., and the sequence {E,, }cn
satisfying (5.2b) for m > 3. In the meantime our procedure also shows that {¥,,} ., {¥ }m, {Massy,
and {Z, }, are all geometric sequences.

From ¥,, and ¥,, we define a reaction wave ©,,(z, 1),

Oz, t) = V(3 t) + Upn(z, t).
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Next, we need to compare the function ©,,(z,t) to a system of conservation laws with inhomogeneous term
Em+1 - Em;
form >3

8; O — 5(t) 0,0 + 0, f' (@) O, — 820, = —Ep + By (5.13)
‘5'( E;ln - Ma"gsm) + aaz {E"Mn(«f’(ﬂl) - f,(a;?)) Tj,j}?

J#i
fR ( B® — Mass,, ) (z,1) do = (2) - (02(0+,1) — w2(0—,1)).

By combining ©,,(z,t) for m > 1 we define a modified diffusion wave I1;(x,t) for our nonlinear system
(3.2) as follows:

Oi(z,t) = Y Oulz,t), (5.14)
Gat) = 3 Onla )
Net(z,t) = Z (Er, — Massy,) (z,t),

where ¢(z,1) a higher correction function to the nonlinear diffusion waves and Net(z,t) a shock location
correction function. From (4.4), (5.1) and (5.13) this correction diffusion wave II; (z, t) satisfies the following
equation

ATy +a@') — s(t) 9,(Ty + &) + &, (F(@); + f(@))— (I, +a') (5.15)
= — _;.amz Ci 0% r;; + Net[Ey] + 8, (ZZ% "(@t) - (1)) rj,,)
J#i m=3 j#i

+0; {Zgj (f'(u°) — f'(@})) "’j,j} -

i#

Furthermore [, Net(y,t) dy and u®(0—,¢) —u°(0+,t) are parallel. Therefore, we can define a new function
net(t),

net(l) = / Net(a,t) dz | (u®(0-+2) —u0(0—,8) ). (5.16)
R

Since for ¢t < §%/e the sequence {ey,(t)}, is a geometric sequence with ratio O(1)4, from (5.3b) for ¢t < 6%/e

net{Bs)(t) = O(1) ei(t) = O(1)6 e (5.17)

Remark I: From Proposition 5.1 there is a directional effect on the solution ¢{*(x, )

[34(0,0) |

Yz, t) = 0(1)0™ *ce” Fo forz-(j—i) <0
By combining this and |u® — @] = O(1)6 min(1, e~ =} jt yields
Pl (1) - (W’ —al) = 0(1)d™ 3 e e o, (5.18)
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Remark II: The functions ¥(z,t), Net(z,t), net(t) and 357 .3 ., Wi, - (f'(@") — f(a))) r;;(z,t) are
uniquely determined by the function Fs(z,t). Thus, we can write #(z,t) and Net(z,t) as

G Es)(z,t) = ¥(z,1) (5.19)
Net[Es|(z,t) = Net(z,t),
net|B)(t) = net(t), (5.20)
U[Es)(z,t) = D Y - (@) - F(@)) riile.?)
m=3 j#i

to keep their dependence on Es(x,t). The function net[F;] will measure the influence of the nonlinear
diffusion ©,(z,t) on the shock location.

Following the procedure for constructing ©,,, Mass,, and et (t) from E,, we have the corollary.
Corollary 5.1. The functions @{e~*1"|(x,t), Nety[e _'5|"“|](m t), and netle” mi](:1: t) satisfy that fort < §/c

G e |(z,1) = O(1) %
Net[ e—6|sr| ](.’ﬂ,t) — 0(1) ( — bz 4 KO(S(LU)) :
net e (1) = O(1) %

Next we prepare for Proposition 5.1. Introduce a model equation for solving Y, (z,t),

Lig(@,8) - (8o (2, 8)r50) + BaNigpyrig) — Oalpirsg)) = —Sy(a,t) for j # 4, (5.21)
¥(z,0) = 0, where S;(z,t) = O(1 )Ko(:r).

Proposition 5.1. The solution p;(z,t) of this model equation satisfies that for t < §/e

SUP<4/e “pj(,t’)“oo = 0(1) 4, (522)
”Ej# (at Pi Tig + O Nig P Tig = O3 PiTig+ Xy S5 7 j,j) =0 (5.23)
p;(z) = O(1) min(1, e&"0 =)0 2/4) (5.24)

where the positive constant Qg = min,; [A;(0,0) |/Hp.
Proof: Use the approximate Green’s function given in (3.14), then we have the following representation

for p;(z,1).
| p;i(z,t) = Ole) /t/. (1 + tl_ s) K (Mj(m’t)zzf/fj(y’s),t ~ s) p;(y, s)dyds (5.25)

/ f ( 2A+M ), 3) Ky(y)dyds

= 9B, + By

For the term %, we may assume the case § > 7. Then, there exist positive constant T" such that for ¢t < T'/¢

P (g—y—Dy(s) (t—s+1
», = /K($ v ﬁ?z( o ),t-8+1) ds,
0 1]
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where Dy(s) = A;(0,0} + O(8) for ¢ € [0,T]. From this we have that there exists constant M, such that

M, for z > 0,
By < 5:(0,0) m
Mye i forz <0.

From this estimate we may assume that for ¢ € [0,46/¢]

M, for z > 0,

pi(z,t) <2 (5.26)

3;(0,0) «

Mye % forz <Q.

From this estimate We can interchange the order of the integration for %, and substitute the assumption
for p; into it. Then, we have that for ¢t € é/e and z < 0

o rt ~ 1y~ D t—s+1
B, = O(1) eMof fK(m y = Dals) (= s+ ),tus-l—l) dsdy
0 [

4HE
0 } - _ D +— 1 2:€0,0) ¥
+ 0(1) fMof / g i 3(3)2( i ),t —s+1}) e % dsdy
—00 0 4H
o0 2;{0,0) (m—y) g 30,0 {s-p) X;(0,0) ¢ z  Aj(0,0) y
= 0O(1) e My (f e *o  dy+ J[ e i e M gy 4 f e *Ho dy])
0 T —00
2 (0,0) =
= 0O(1) e Me ®% .

On the other hand for ¢ € [0,6/€¢] and z > 0 we need not to interchange the order of integration for %,
¢
By = O [ lpi(19)llds = O)BeM.
0

From the estimates of 33 and B, we have that for ¢ € [0,5/¢]

My for z > 0,
pil@t) = (1+ 0(1)5)

X;(0,0) =

Mye s forz <0.

Thus, (5.26) is valid. Therefore, (5.22) and (5.24) follows. From (5.22) and (3.7) we have (5.23). Q.E.D.

5.2 Correction to the Shock Fronts

The equation (5.15) is almost in a conservative form expect the term Net[Ey](z,t). By change the shock
location one may reduce the influence from Net[F;]. In this subsection we will proceed to construct a
sequence of updating the shock location to make (5.15) in a conservative form.

For the approximate solution %'(z,t) the viscous shock front remains at z = 0. Let’s denote So(t) = 0
the shock front for @*(x, ).
Set

(0 - 5ot) = | “netlBs)(o) do. (5.27)
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From (5.17) we have that for ¢ < §*/e
€l

Now, we update the location of the viscous profile ¢(zx — Sy(t),1) in @'(z,t) to ¢(z — S1(t),t). Then, we
use #*(z,t) to approximate (2.15),

ed(z,t) = Du* — s(t) 8,a° + 8, f(@%) — 2. (5.29)
where
ﬁz(:];,t) = ﬁl(g:,t) + ¢($ - Sl(t)st) - ‘;b(x - SO(t)’t)'
Let’s rewrite (5.29),

&? = B,a° — s(t) 8,u* + 0, f(@%) — O2a?
= Ey— Si(t) ¢alz — S1(2), 1) + Solt) dalz — Solt))
-+ iz — S1(2), 1) — dulm — Solt), 1)
+0, {~s(t) (@ —u") + [F (@) ~ F(@)] - 8,(@" - a")}.

From this, (5.15) and (5.27), it yields

(8, T, — s(t) 8,10y + 8, f'(&') Ty — 85 I;) + &i(z,t)dx (5.30)
R

= { net[Bs)(t) — (Si(t) ~ So(t))' } ( w(0+,t) —u(0—,1) )
—ﬁwm—&@&—@wmwamdg
= 0(¢)| 5;(t) — So(®) |-

We will proceed to construct a sequence of updating the shock front such that we can modify (5.30) to a
gystem of conservation laws.
Now we define sequences of iterations {@*}x>1, {€F i1, {&%}>1 and {Sk}r>o- The recursive relationship
is given as follows.

For k > 1 suppose that S(t) and #*(z,t) have been constructed. Then, we set

el = E,
B = @+ ¢l - Si(t).— bz — So(t)),
& = gz — Silt),t) = de(z — So(t), 1) + B,
¢ = —E,—¢f,
Hk+1 = @1 -+ 62 -+ g[@'g],
net, = net[e}),
¢
Seal) = [ netlelllo) dp

Corollary 5.2. Fort € [0,6%/¢] the sequences of functions {4*}x1, {e’f}kzl, {5} i1, {Mitest, {9[ef]},
and {Sy}i>o converge uniformly. B B

Proof. It is sufficient to show that the sequence {S; — Sy_1}s>1 is a geometric sequence. Then, the
convergence of the other sequences follows. Since the functionals net and ¢ are linear functionals, from
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the above definition of sequences we have that
¢ ¢
Skaa(t) — Sk(t) = f (netles] — net[es™]) (p) dp = /ﬁ net[€s — €§'(p) dp (5.31)
0
¢
= [ netlbio = 500, 0) — s — S-s(a),91(0) dp

¢
= [ net[ 0 €154(5) = Sucsl0) ] () dp
Let’s introduce a norm ||| - ||| for Sy — Si_1,
118k — Sk-alllz = sup | Se(p) — Sp-1(p) |-
PEL0,T]

From Corollary 5.1 and (5.31) we have that
[1Sk41 = Sklllss = O(1) 8 ||[:S — S--alllge-

"This concludes that the sequence {J|| Sy — Si—1 |||s}# is & geometric sequence. Therefore, for ¢ € [0, 5% /]
the sequence {Sy}, converges, so do {Il;}s, {#*}s, {net[€k]}), and {T[ek]},.
Q.E.D.

Since the sequences converge, for ¢ < 6% /¢ we set

w>(z,t) = klir‘raloﬁk(x,t),

Hyo{z,t) = ,}H&Hk(x’t)’

€(z,t) = lim &f(s,1)
Ue(z,t) = kli)m U[ek)(z,1).
o

The above functions satisfy that
f (8, (8% +Tlg) — 5(t) 8, ( F(E™) + F/@) o) + 82 (8% +1Ly)) do = 0.
R

Hence, we can rewrite the equation of 4™ + I, in a conservative form.

Fort < 8 /e
Oy (8% +To) — 5(t) 8, (oo + %) + 8, [F(@°) + £(@°)oo] — B2 (8% + L) (5.32)
= -, % ;C’iﬂ 0,° r;; + 0y Ereor,
pr
erwor = U™+ 3 0; (F(u) - F'(u)) rjy + [F(@°) - f/(8")] e + Error;
where 7

[z, 1) — 2% = O(1) 6 |Su(t) ~ So(®)] =¥ = O(1) 6> &7 I,

T 2
Error(z,t) Ef_ D1(0 = Seolp), 1) — d(0 — So(p), 1) dp = O(1) 66_: e 0 el — O(1) ce™® lef,

”Hm(xa t)” - O(l) (6 + Zgj(x:t)) ’
i
| ¥%(z,8) || = O(1) ee™® ¥, (5.33)
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and 0;(z,t) is a wave along the characteristic curve with mass O(6),

_ z — F5(0,%)
:Bj(x,t)_O(J)K( 7 ,t).

6 Shock Wayves in Initial Data and Asymptotic Stability

In (5.32) we have established a well approximate function to the solution u(z,t) provided that u(z,?) and
u™(z,t) are sufficiently small at some given time ¢ = t;. However, the initial data u(z,0) with a shock
wave seems not close enough to our approximate function at ¢ = 0. Hence, one needs to show that u(z,t)
will approach @*° at some given time, (that is, the solution u(z,t) will evolve from a shock wave data
toward a viscous shock layer in finite time).

6.1 Initial Layer

Now, we consider the perturbation for @ -+ II,,. First we introduce the following functions:

((v(z,t) = u(z,t)—a%(z,1) - I (z,t),
Wiz, t) = L(z,t)-v(z,i),
w(z,t) = [ vip,t) dp
w(z,t) = L(z,t) wiz,t),
{ Ailest) = A(e(z,t) — s(h),
7 (z,t) = Gz, t),
Liz,t) = [j(a™(z,1)),
ri(z,t) = ri{a®(z,1),
[ Cji = - f"(@) (rj,rr).

From the definition of u(z,t) and @*(z,t) we have the equation for v(z,t)

1 L .
v —s(t) By v + 0 f' (@) v —Ohv = —20, Ch v’ 1 + &, 3 Flvlr, (6.1)

1<i<n

SFMy -5 3 dotvin s o0 P

1<4<n 1<4,k,0<n
- (5 DEGLD)

1 O(1) ewor + O(1 Z 0n 0, r; + O(1) |Ivl|- €] + O(1) {&y|?

(k.p)#(m)
+Error 5,
A t .
Srror | = 1) 63 ZK (m 1 ), ) min (1,6_6 sgn(i—) m) ; (6.2)
i#

and the initial data for v{z,0) satisfies that

va(aO) dr = 0, (6.3a)

W (z,0)] = O1) &2 e for  #4, (6.3b)
lv'(z,0)| = O(1) 8 e, (6.3c)
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From (6.3c) the initial data in the compressive field is in the same order as (1 + }x|)~ without any small
parameter in front of it. This causes difficulty in analyzing the formation of a shock layer. We will use the
nonlinearity of the Burgers’ equation to study the formation of the shock layer.

Burgers’ Equation.
Let Ayp(2) be a stationary wave solution of Burgers’ equation

O My + Oy (M) = 32 A, (6.4)
lim ) = A(0+0) - 5(0),
Jim Ay () = —X(u’(0+,0)) + 5(0),

Aw(0) = 0, (normalization condition for travelling waves).

Due to the genuinely nonlinearity, (1, f"(u)(r;, r;) # 0), we may assume
CL(0,0) = 1.
Let Ap(z,t) be the solution of Burgers’ equation,
3 Ap + %(’fg Mgt — 82 g = 0,
with a given initial value obtained by modifying the compressive field
A(x,0) = Ay(z) + v'(z,0).

One can apply the first estimate in the proof of Theorem 2.2 in [14] to show that

e"p[[;wtl— E"/lgf 4 for |z] < &t
t— i ’
| Aw(@) = Ap(z,t) | = O(1) 6 &7 ’ | (6.53)

1 else.

As a consequence of (6.5a) it follows

exp[—d°t/ 32] for jx| < 6t/2 —1,
| Xw(@) = Ap(m,8) | = O(1) § 7. (6.5b)
1 else,

—_ O(].) 5 e—5|a:|/2 e 521‘./32‘

Remark I. The estimates in the proof of Theorem 2.2 in [14] are obtained from a straight Cole-Hopf
transformation.
Remark II. By a suitable rescaling one can have that

e—82/2 — blal/2
Vi+1

We make the following proposition about the viscous profile ¢(z,0} and the Burgers’ shock profile
Aw (z) without giving the proof.

10:A5(z, 1)} = O(1) & (6.5¢)
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Proposition 6.1. Suppose that ||[u’(0—,0) — u’(0+,0)|| is sufficiently small. Then the normalized profile
¢(x,0) satisfies that
2:(#(0,0)) = 5(0)] = O)[u’(0~,0) ~ u"(0+,0)* = 0(1) &,
sup | (A:(¢(2,0) = 5(0)) = Aw(e) | = OQ1) u°(0=,0) = w’(0+, 0 = OQ1) & (6.6)

Set

/\H(.’E,t) == AB(.’L',?‘J) - )\tw(m).

Consider a linear problem
w + Ag iy = Uy

By a linear Cole-Hopf transformation
i(z,t) = e~z Vo) u(z, 1),

V(o t) = f " Aslp,t) dp = / " (Awlo) + alprs) ) do

one can transform this equation into a heat equation
1

u + 4/\tw,+2 i= 9,°u, where Ay, + = mkr:{lm A ().
Therefore, we can have the representation

Mgl

W(z,t) = [R e k(e —,0) 6(y, 0) dy,

- ~ Ayt 2
wz,0) = [ e TEOTO0)E kg g ufy,0) dy
R

Hence, we have the exact Green’s function G;(y, s; z,t) for this linear problem.

_ Y 2
o1V -2Et ()

G;(y,s;2,t) = e Kz —y,t—s). (6.7)

This Green’s function G;(y, s;x,t) has the same form as (4.40).
We continue to analyze G;(y, s;z,t).
Case z>0,y>0. (<0, y<0).

V@)= Vw5 = [ Ao+ [ Jalo9) = Rslos) do+ | Fu(prt) = Su(o,s) dp.
y y 0
Using (6.5) for the last two integrals, it yields that

‘}(.’E,t) - V(y,s) = /m )\tw(P) dp+ O(l) = (CB - y) )‘tw,-§~ + O(]-) [m ( )\tw(p) = )\tw,+ ) dp-i- O(].)

v

= Mot (5~ 3) +O().
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By substituting this into the definition of G(y, s; z,1) it follows

e [

Similarly for z < 0 and y < 0,

= 0(1)

G'i(ya 5T, t) = O(l)

7= o[

Case z>0,y<0. (z<0,y>0)
Similar to the above we have that

0 T
Viz,t) = V{y,s) = (/ +f ) Mw(p) dp+0(1) = —y My + T A+ +0O(1)
U 0
=2 A+ ¥ Ar T O(1) = 23 Ay 1 + Mt (=2 +3) + O(1).

By substituting this into the definition of G(y, s; z, t) we have that

Gi(y: 3 :I!,t) = O(l) \/t—l:.g exp I:___ (SC —Y 'Zz\ttqf:.;.s)(t - S)) ]
eMtu,+ & (m -y — /\tw,— (t — S))2
= 0(1) — P [— s ] .

Similarly for z < 0 and y > 0 it follows

6)\'&“"“ &

G;(y, s z,t) = O(1) = exp [__ (x—y ;ati}z)(t —s)) ] ‘
Set )
VB(m:t) = )\B(iﬂ,t) a,

where a is a vector of the form
u“({)—l—, 0) — 'u,“(O—, 0)

aq + [[u®(0+,0) — w0(0—, 0) |’

a=

such that

ri(,0) — u?(0+,0) — u*(0~—,0) “

ag - ||u0(0+,0) — u°(0—,0)||

From (6.5b) we have the following estimate for vg

- 2
Ivs Il = 0@ 6es - 5" (63)
We rewrite the equation for vg(z,t) as follows
0 = 6t/_\Ba+8m()\tw5\B+5\B2)amagx—\ga

= Oyvp + O (A + )_\B) vp — 0, vp.
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From this identity we consider the equation

0va + 0. (@) - s0)) vat 3t ) - 87 vs
=8, ((f@)~5(0)) —Mu) Va
The term
(£@) - 5(0)) va “ _
= /\B { (f’(ﬂoo)—S(O) ) (a—r,-) +)\1 ( r, — a) + )\.,., a}
= O(1) et Ml (63 r; + 6 Z rj) + X vy .
i
Consider the following functions:
VI(.fE,t)
D v, 1) 1(o,1)

1<i<n

V(:L‘, t) - VB(:I;: t):
VI(.’E,t),

Il

IH

wr(@,1) fm vi(r,t) dr,
> wilz,t) ri(n,t) = wils,t),
1<5<n
ﬁ;(m,t) = (%wf;(m,t) forj=1,---,n,
vi(z,t) = B +0(1) [[wi(-)]loe (& e + €).
From (6.3) we also have that

ﬁg($10) = O(}“) 62 e_éimi: 'wfr‘(a:,O) = O(l) 68_5|m|> for i =12 ,n

Subtracting (6.9) from (6.1) we have that The equation for v;(z,1) is

Ovi + O (i =)+ Ap)vir + 0 > X (vi+veY 1 -8 vy
J#i
= 8vy + 0 (XN + dg)vir; + &, Z)\ (vi+vgyr; - v,
J#i

= —%3:,,. [031(0,{}) (vh)? +0(1) (Chi(z,t) — C5(0,0) ) (02 + 0O(1) 8% ¢7¢ 0l ] .

+0, Z vvr—i—Z i Rt vy, +O(1)Z§26_‘SI“’| r;

| (b£G) 15kl i

(6.9)

(6.10)

(6.11)

+0, | O(1) vl 101 + OQ) |61]> + ervor + €wvory + O(1) Y 66,1, |,

with that i
sz(fﬂ t) = C5(0,0) = O() (6 + e ([z] + 2)),
vt o= ’UI + O( 1 ) AB,
v = v} + OQ1) 6 Agfor j#i.
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By integrating (6.11) we have the following system

Bt'wfr + Ap 3mw} - 8mfwf« = ",y"i[ wr |,
Flwrl = 0Q1) (0 +elzf) (9 + Ap*)

+0() el wi s + O() Y (wh | 82 || + wf a5 ||) + O(1) (v)?

1<k<n
+OMi | vi+vs |l + D v + | vi+va [ 6:] + >0 6)
(3, k)#(1) ki

+O() (| vi+ve P + [|€4)f ) + €rvor ' + €rvor §;

8tw§ + )_\j 3,,:10}’. — Bmw}' = 3 [wi],
Flw] = o) | a2 fwl X + 0Q) > (whlal | + willas )

1<k<n

+0) (As” + 3 "o + O [ vi+va @]l + Y, Oubs )

(m k)i 31
+O) (| vi+ve || + |8 ) + €vor? + €Ervor{;
Next, we substitute that

Ity = O) (87 e 4 ) for g > 1,

Ao = O@1) (6 + ela]),
l53(z,0)l = O(1) (6% el + ¢)

into (6.12a), and by Duhamel’s principle we have the representation for wi’-' (z,t),
wi (2, t)

0 JR 1<k<n

¢
o [ [ @wsiant) (5+ ¢ (ol +5)) (457 + 3?)
o Jr
i
+O(1)f"/ Gily, s; 3, %) (11}2 +lvr+val -0l + ) (¥ )2) dyds
0o JR i
t . .
+O(1)/ /Gi(y,s;:c,t) (vr+vallP +1©1® + €reor’® + €rvor }) dyds;
0o Jr
for j # 4,

wi{z,t) = 0(1) f Gi(y, s;x,1) wi(y,0) dyds

+0(1) [ / 3 y;s %Y (8% 4 ) wl dyds
Vi—s

1)f/gjy,s:z:t) (wl—i— Z wa,;.(gw ) (523—lel—§-e)dyds

1<k<n
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i
+O(1) / f 5w si2,8) (% + Ivill- 10l + lIvsll - [1€:] + Ive? + 04 ) dyds

t
—i—O(l)/o /I;gj(y,s;:u,t) vy +val® + Z O O + Ereor? + Erevor] | dyds,

{m.R)#({,3);
m, ki

where g;(y, s; z,t) is given in (4.37).
To obtain optimal estimates for w}(z,%) and vr(z,t) we will need to estimate another quantity:

2z, t) = duwi(z,t) forj=1,-+,n. (6.15)
From (6.12) and (6.10),
A(x,0) = O(1) 82 e ¥l for j=1,---,n. (6.16)
By differentiating (6.12) with respect to ¢, we have the equation for zi(z, t).
Case: j # 1.
By7) + N0prh = B2+ 0(1) (82 e + ) (&, + 2) (6.17a)
—1—0(1) 5\3 Bt/_\g + Z Nk + Z 8t}_\B 91 + /_\B 6.*,91)
1<m,k<n igisn
e - i5#4
+o) 3 [(e™ + ) Iwill + o] a6
1<i<n
ki
+0(1) Z [ 20y (827 ey + o0, + (26 )m}
1%;:5‘:11
+ O(1) ( Z (27 Ap o + z}namj\B)
1<m<n
+ O(1) Z 0.0 + |Ivi+vel® + |0 + €rcor? +@rvor?! | |
(my5h0.) ¢
where
, e = (0884 = (&5 + Aof), - (40,50 + Za0F). (6.17b)
Case j = 1.
B2k + N0t = 0228 + 0(1) (6% e + ¢ |z +[¢]) ) (2% + 625) (6.17¢)
+0(1) (J\B2 O0ds + D Tk + D Ap 6 + Ap 88, ))
1<m,k<n I<i<n

+0(1) 3 [ (8 et e) fwi+ 3 | a6

1<I<n
hi
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+ 0(1) Z { 2 O (8° e~0kel 4 €) + 2:0.0, + (26 )x]

1<i<n
hi

+ 0(1) ( E (2 Xp)e + 21" aa:j\B)

\ 1<m<n

0(1) ( Z 00 + lIvi+va|® + €rvor® + (Etwtil) )
t

m, ki

Ansatz
We make a priori assumption on the solutions.
There exists a constant M such that for ¢ € [0,6727*] with o, € (0,1/8)
w(e,t) < M {6 Gla, 2 (meol2) 4 o),
. €
Hwt) < M (6 N Gl T ) for j # &,

1<k<n
i 2 - o €
'UI(‘(B:'t) S M (6 o0"/4 Z Ck(x3t)3/2 o/4 + 53_/2' ) H
1<k<n
_a ol -« €
o (x,t) < M (6 0*/4 Cj(:ﬂ:,t)2 o/t 4 57 ),

2(z,t) < M§ ( Z Gz, )2 — o/t 4 oz, t; A4, E) + 63%)

1<k<n
+ Méch(z,tymin((1 + |z — A;(®) |)74,8) for j #1,

. €
da,t) < Mo (E G, 8 = %M 4 xi(w,t) + m)
1<k<n

where algebraic-decaying function are defined by

Glo:t) = [z —Ai(E)? +t+1]2 for j #4,
Gz, t) = [(jo]+6t)* +t+ 1777
Gla,t) = (£+]e—A@P )
chiz,t) = {(1) for fa] < max (A, ()] + V),

xi(z,t) = @ +1)7Y2(1 4 8(|z| + 6t) !
[ 1, for |z| < C(t+1),
0, otherwise.

Proposition 6.2. The function wy’(x,0) in (6.10) satisfies that
aﬁfgj(y,ﬂ;:v,t)wfj(yﬁ)dy = 0(1) V6 (e, )2 for k=0,1, j #1.
R

Moreover,

o5 f gi(z,t;9,0) 6 ™ dy = O()VS Gi(w, )2 for x| + 6t < vt for k=0,1.
R
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Proof: We separate this proof into two cases.
Case 1. k=0.
From (6.10) we have that

ng(y,ﬂ;x,t) wi’(y,0) dy! = O(1) fR 9;(y,0;3,t) 6 dy = O(1) 4.

For |m;(x,t)] < vt

1

7 § e dy = 0(1)

S

[ 50,053,8 wrt,0 dy[ - ow [

This and (6.19) yield that for jm;(z,1)| < VI

[ 5,02, w0 dy[ = 0(1) min(§,vE) = O(1) V5 / ¢

For m;(z,t) > Vi,

fgj(y,ﬁ;x,t) wp (y,0) dy = (/ +/ )gj(y,o;x,t)wrj(y,ﬂ) dy
R |yls%!m.?(m3t)| iy|2%|m3(€ﬂ,t)|

_mz‘](.:z:,t)2 1
_ e ™ —dmyet)/e | . o
0(1) ( it ge~0m = O(1) ek

By combining (6.19) and (6.22) it yields that for m;(z,t) > /%

[ 5(0,05,0 w0 dy| = 0) V5 / /Iy )]

From this and (6.20) we have that

' fR 9;(, 053, ) wi (y, 0) dy l = 0(1) \/ng(m,t)l/z_

Case 2. k= 1.

1[1;8m9j(y,0;:n,t)wﬂ(y,O)dy’ = 0(1) fR\i/fK (mj(a:,t);mj(y,o)

On the other hand

t) sy = o

S

. 1 O
\ / Bmgj(y,O;a:,t)wf”(y,O)dy! = o) [5e ay =20
R R t t

This and (6.24) yield that

a V6
,75) = 0Q1) =7 -

o | =

| [ 2uayts0,2, w0 (0,0 dy]- — o) min(
R
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For |m;(z,t)| > /1,
/};amgj(yso;xat) wl’j(y: O) dy - /RamK ( mj(y,O) _ mj(x]t):t) ij(yJO) dy

mjy(yao)
— fR ByK( mj(y;:jya’;;(’”’ t),t) wr(y,0) dy
_f Ky ( m;(y,0) ;m;;(ﬂ?,t) t) (mj(y?o)_mj((m??)mjyy(yno) wp (4,0) dy
R My (Y, 0 ’ My (y,0)? ’
- o (P w0
/ Kx ( m’(y;? (ym - ’*) — mmj(;mot)))mm(y’o) w (4,0) dy

( ) K ( J‘ mJ T t)
y|<amg(m t>|/z |y|>|m,(w 8)l/2 2mw y,0
-0 mJ z,1) se—dimi(@nl/2 ) _ -1
=0(1) ¢ at = O0(1) 6 (14 |m;(z,t)|)

,t) (6% +6¢) e dy

Similar to this derivation one can obtaln that
f Begi(y, 0; 7, )w, (y,0) dy = O(1) & 7 = O(1) A + |my(=,)[)
|y|<lmy; (z.8)] /2

On the other hand,

) —lmj(a: t) / 16t .
f 8,9;(4, 050, 1) wii(y, s) dy = O(1) / i (3, 5)] dy
[ < |mg (et} /2 wl<lmy{z8)|/2

—Imi(e, t)i2/ 16t

=0(1) ————— =0(1) (1 + |my(z,8)| )~
From (6.27) and (6.28), we have that

| [ 0:910,0:0,1) wr't,5) dy| = 0Q) 1+ [my(a, )

Combine (6.26) and (6.29) to obtain that for m;(z,t) > /%

; 93 (Y, 0; 3, 1) wi(y, s) dyi =O0(1) V8 (1+ my(z,1) )2
From (6.30) and (6.25), we have that

[ 02,0 w,) o] = 00) V5 (o).
By the same derivation for (6.21), we have that

f O gi(z, t;y,0)0e "W dy = O(1) V§ ¢i(w,t)+/2 for || + 6t < viand k=0,1.
R
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Thus, the proposition follows. Q.E.D.

Verification of Ansatz
By substituting the ansatz (6.18) into the integrals in the R.H.S. of (6.13), (6.14) and (6.17) we can verify

the ansatz (6.18) is valid for ¢t < §=(+ee),

We begin with the estimate of the integrals in the R.H.S. of (6.14).
From Proposition 6.2 the first integral satisfies that

/gj(y’O;m’t) wi(y,0) dy = fﬁj(y,ﬁ;w,twe“é'yi dy
R R
= 0(1) V3 ¢(z, t)"/2,

Before estimating the second and the third integrals, we need to estimate the function Se~ol C;-’ with p > 0
as follows

Se Mt @(y,s)" — o dll/2 (6 e_dly%/ij(y,S)p)
= 0(1) ¢™M/2 (5 (145 + 3 (145)7 4002 ).

From this with p = 252 and (6.18) that
. an?
e ul(y,s) = O(1) M ( 5o e/ (6 (148~ E=2)t 4 V5 (L+s)~ E- )8 ) + € ) ;
) o
é e""‘i'_f“’lq‘)}(y, s) = O(1)M ( 5 g7/ (6 (L+s)"C @) 4 V5 (1)~ (08 ) + € ) ;

Consider the integral
, t)
f f g;,. Cabkid AP w;(y, s) dyds = %.

Since « satisfies that o € [0, 1 / 8], we ha,ve that for |z| > 6% and ¢ € [0, 5~ (F)]

2 ag?
T = O() M m/ =9 ¢ 5% dyas (6.31)
i< &

t—s

g;(y, s; %, 1) ag® 3 (2-ag) €
" Mf/.>as“*“";:“;“f”“‘5 Tt E)
e~ %

=~ o) M Vi g e

(log(t) t )64 + O{1) M ¢

= 0(1)M(etlog(t)5+ (14 [2])? + 6% 6772 ¢ )

Since ¢ satisfies that € < 6°, (6.31) becomes
ag?

T <O M@E T (14 |2)2% + €). (6.32)
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On the other hand for |z| < 6° and for ¢ € [0, §~@+2)] we have that

e ((55%2” g~ (2-o0)/8 4 i) ds

T = I

— O(l) M ( 1.;(24-»:!“))/8 € + € 2 ‘6/2_ )
= 0(1) " M §°F C5/3(a:,t).
From this and (6.32) we have that
T = O1)55 M (&% 5/3(9,- t) + €). (6.33)
Then,:i?by a,pplying Lemma 4.5 with o = (2~ a)/2, 3/2 — ay/2 and § = 2 we have that

,s z,t) ;

o) 6“%/4 (5(1 + o= M@ )2 4 VB (1 + fo— A )] )l

and with & = 3/2 — oy/2, 5/2 ~ og/dand f=1,

t A
/ féz g;(y, 5;z,1) Z: (wﬁ, + ¢ w}“) e~ dyds (6.34)
o JR

ki
= O(l) M ag/4 (5 (1 + |z —Aj(t)| )"(1——0;9/2)/2 + /6 (1 + |z— Aj(t)l )—3/4—0:0/4) _

From the ansatz (6.18) we have that [[wi(-,t)]|eo = O(1) M §~@-00)/4 +a8/4 (1 4 ) ~(2-20)/4 Thig, the
procedure for obtaining (6.33), and Lemma 4.5 with o = (2 — ap)/2 and # =1 yield that

' i ; (ed+24ep)
f [ & 5y 53,8 (why + wh) e dyds = OQ1) M 570 ¢, 122,
0 YR

By Lemma 4.5 with ¢« = 0 and # = 1 the first integrand in the fourth integral satisfies that
t
/ f G;(y,8;2,t) Ap(y,5)? dyds = O(1) 6%/* ¢i(m, 1)@ for 1 <t < §2 %, (6.35)
o Jr :

The second integrand satisfies that for ¢ € [0, 6‘(2"'“0)]

e +e) 1ol

By this estimate and by using Lemma 4.1, 4.2.A, and 4.2.B with & = 2.5 ~ ap/4 and # =1 we have that

.a|w

vl -l = o) M (5a5/4

/0 ng"(y’S?-’”at) 1l vzl ) (w, s) dyds

= O(1) M 58+ (“*‘1)1/4*“"/3 o(, A, B) + Zc:k(x,t)”z)
k#d,q

= O(1) M 6°%/2 (1)@l
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For the third integrand from (6.8) there exists a constant £ > 1 such that

Iva(y, )l - 101y, )l = O(1) § &7%/F > " a(y, s; A, E)
ki

= O sV + s)_3f42cr(y, s; Ag, E).
ket

Then, from this estimate and from Lemma 4.1, 4.2.A and 4.2.B with o = 5/2 and § = 1 we have that for
t € [0,6 ~(3+a))

t
| [ st siz0teu- lval duds (6.36)
= 0@) 84T (1 +1)i0(s,4:A5,B) + Go,0)%)
— 0(1) 60:5/4-1" 1/4 Cj(m,t)lfz.
The fourth integrand satisfies that

”VI(y, S)”2 - 0(1) M2 (60-’%/2 Z Ck(yas)sw%u + 62 )

1<k<n

Then, by Lemma 4.3, 4.4.A and 4.4.B with & = 2.5 and § = 1 as well as by the above estimate it yields
that

12
f f iy, 52, OVl dyds = O(1) M? (8 /% Gz, t)'/* + € t).
0 JR
By Lemma 4.1, 4.2.A and 4.2.B with & = 3 and # = 1 the integral for fifth integrand satisfies that
__ ,
[ [ o520 10000 diis = 00 & (G + olotidm)) (631
o JR

= 0(1) 8 ¢(z, )%

The first integrand in the fifth integral satisfies that

“VB-i-VI”s = 0(1) (53 P A R Ve L Z Cza).

1<l<n

By Lemma 4.5 with o =0 and §=1fort € [0,§ ~(2+ )]

f /gj v, 5;2,0)8° e dyds (6.38)
O(1) 6% chiz,t) = 61+ ¢i(z, 1),
and by Lemma 4.3, 4.4.A and 44B witha=3and =1
¢
| [ awsen il @9 dyds (6.39)
3ad
= O(1) M® 6 7 (z, )2
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‘There exists a constant E such that the second integrand satisfies that

D>, (6n0)(mt) = O() (Zeﬁ + 0 Zeg) (z,1) (6.40)

(mm,)’ziig 4) I#4,4 £,

o(1) 6° (Z o(z, t; Ay, E)? + e HE Z o(z,t; Ay, E) ) .

I#iji L

From this and by using Lemma 4.2.A and 4.2.B with @ =2 and 8 =1,

[ [atwsn X (o005 dis = 01) 8 a1 (6.41)

g
From (6.2) and (5.32) the last integrand satisfies that
[€tvor 7 + €eeor | (y,5) = O(1) e e~
+O(1) § @0/ (1 4 )8 = 0?4 o /e g ( L;:rf_ . ) _

By Lemma 4.1, 4.2.A and 4.2.B with @ = 2.5 — oy/4 and 8 = 1 as well as by Lemma 4.5 with 8 = 1 and
a = 0 we have that

t -
f fgj(y,s;a:,t) (€rvor? + €rvor {) (y,5) dyds (6.42)
o JR
— @+ao®)/d 0 pi2 4 €
o) (s Glo ) + 2).
The estimates for (6.35), (6.37), (6.38), (6.39), (6.40) and (6.42) do not contain the factor M. The others

contain both the factor M ando(6*°4). Thus, the above estimates for integrals in the R.ILS. of (6.14)
yields that there is a constant M, such that for ¢ € [0,6727%)] and for j # i

) an? wn?
wi(z,t) < (MG +O(1) (M +M*+ M) 5+) (5*3- Gi(m, t) o0t 3% ) . (6.43)
Now we continue to verify the ansatz for wi(z, ).
We also begin with the estimate the double integral fet Iz Gily, s;2,¢) 6° e~ ¥ dyds in the first integral
in the R.H.S. of (6.13). One need to treat this integral in two cases, (k # 4 or k =1).
For k£ # ¢ this integral can be treated by the same procedure as that for w’(z,t) with j # 4 in the

above.
For k = i substitute the ansatz (6.18) into this integral to yield that

¢
f /G,-(g,,r,s;:c,it)ﬁ3 wt e~ dyds
0 JR

¢
= O M 53/ fG,;(y,s;:c,t)( (Jy| +88)% + s ) 208 o=l gygs.
0o JR

From this and Lemma 4.8 with @ = (2 — @p)/2, 8 =1 and v = 0 there is a positive constant C such that
t
[ f Gi(y, s; 2, 8)8° wh e dyds = O(1) 61796/ M §9/% ( |z] 4 6¢ ))~B-o0)/4e=Clel, (6.44)
o Jr
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For z < 4/t < 571 we need a sharper estimate for this integral,
¢
f / G;(y, 5;1,1)8° wh e~ dyds
o JR
¢
= oM 53f U +/ ) Gi(y, 5;2,8)( (jyl +85)* + ) C% Ml dyds
0 lyl<vs Jlyl>vE
¢
= 0(1) M& / (t — )25 a0 g
0
= O(1) & 0/ Mo/t ¢ (a,1). (6.45)
Hence from (6.44) and (6.45)

¢
/ /Gi(y,s;m,t)és wh e~ dyds = O(1) §1%M ¢i(w, ).
0o Jr

We decompose the integrand §%w?, as

Ful,(y,5) = O(1) M (674 ((y|+ 857 + 5)M 4 5 )
= O(l) M (51-}-0:3/4 (1 +s)—1( (Iy| +5S)2 + s )(2_,10)/4 + 51/2 E) .

By Lemma 4.8 with a = (2 — aq)/2, v =2, 8 = 1 and replacing §C~#/2 by (s + 1)3-A/2
t
/ f Gi(y, 52, 1)8" wjy, € dyds = O(BM) (¢ +dlal)~%, (6.46)
o Jr
For |z} < v/t < 67! by the same argument as (6.45) we have that
Lot _
f /Gé(y,s;m,t)é2 wh, e dyds
0o JR
t
= O(M(Sg)f (/ -{-/ ) Gi(y, 55,0 ([y] +65)? + 5 )~ E208 o=l gyds
0 ivs  Jylzvs

t
= 0(1) M / (t_ S)"I/ZS_(ﬁ—‘ID)/SdS — 50(1) M t-—-(2—a0)/8
= O(1) M M§*/* (i(x,1). (6.47)

From (6.46) and (6.47) it yields that
t
/ / Gily, 533, 1) 6% wh, e dyds = O(1) §1o8/t prsed Glx, ). (6.48)
o Jr
For ¢ € [0,6~(+)] the integral for (wi, + dw}) € is

_(atog®)
8

_{240g)?
+ 5 .

t
/ /Gj(y,s;x,t) (w}y + dw}) edyds = O(1) M ¢ (5
o Jr
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The integral for € Jy| G;(y, s; =, t) #%(y, ) we have that

i
/ [R e Iyl Gy, 5;2,8) Ty, s)? dyds
Q0

t i ? —a
= o w* | f Cily,53,1) € [yl 6 F (lyl? + 5)~F> dyds
Ul x| 2 Lr 3
=0(1) M?> e 6 °F [/G(y,s:ct T dyds=0(1) M2 e§ T+ 1
ch(Q +czﬂ

=0(1) M?e§ %

By Lemma 4.6 with o = 0 and 8 =1 it yields that
i
f fﬂj(y,smﬁ,t) & Ap(y,5)° dyds
0 JR
t
= 0(1) & f /Gj(y, s;,t) e dyds = O(1) § =W
2oy 2—ag
= O( ) _ﬁ Cz ( )
By Lemma 4.3 with a = 3 — ay/2 and 8 = 1 the double integral for vi? is
t
f f Cily, 5;3,1) vi(y, s)’dyds = O(1) M? 6°%/* ¢;(x, 1)/,
0o Jr

The integrals for the higher order terms in (6.13} can be handled by the same procedure for obtaining
(6.43). It yields that for £ € [0, 67272 | there exists a constant M, such that

wi(z,t) < (M0 + O(1) 6%/ (M + M? + M?)) (53"3“ G, )@/t 4 5—62 ) (6.49)

Hence, it justifies the ansatz w; for t € [0, 6“’(2””‘”)} if 4 is sufficiently small and if M is chosen such that
| M /M) is sufficiently large.

Next, we verify the ansatz zi(z,t) in (6.18¢c). The procedures for verifying ansatz in compressive field
and non-compressive fields are different just as we did in the verification for wy.

From (6.16), (6.17) and (6.18) we have the representation for z}(x,t) with j #
A@t) = O(1) & f 3, 03, )= gy (6.500)
R
1) /tf (mﬁj(y,s;m,t) +g,(y, 8 t)) (82 e 1 ¢) 21 dyds
+0(1) / fgj Y, 87,1} | Agd, AB+Za Astr) + Z ( 0 )s | dyds

14

m, ksl

(m, k)#{f )
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t
20 [ [ gusat) 3 o duds
0

1<m,k<n
t .
+0) [ [ g s,0F@,)duds,
o JR
where the function F(z,t) is
F(z,t) =
o > [(& & + o) fwill + 5| o

1<I<n
P

+ O(1) E [(52 e~ 4 ey 20, + 20,8, + (2 6 )m]

1<i<n
kL

+ 0(1) ( Z (27 Ap ) + 21" Budi)

1<m<n
+0(1) ( Z 0.0, + lvi+val® + 1O + Error T 4 rvor d ),

m ki

(mkYEG )

2(z,1) = O(8%) f Gi(y,0;2,t)e ¥ dy (6.50b)
R

t
+O(1) f / Cily, 5:3,8) (%W + ¢ (lo| + ) (64 + 8,4 ) dyds
0 JR

m_t )
+O(1) f f G,;(y, 8, :B,'f]) :XZB(')SXB + Z 33 (5\39;) + Z HmBk dyds
0 /R

£ m, ki

(k) (d:5)
1
+O(1)// Gi('yis;xat) Z Thmk d"yds
o JR 1<

mk<n

+0(1) /Ot/RGi(y,s;w,t)F(y,s) dyds.

The first integral in (6.50a) and (6.50b) can be obtained by Proposition 6.2. For the integrand in the
second integral in R.H.S. of (6.50a) it can be estimated as follows

t .
0(1) & /g ngj(y, s;x,t) e W 2y, s) dyds (6.51)

az £
= o@) M&+E / [ st M S Gy, ) dyds
o] R

1<k<n
+ O(1) M 7 /0 ng(y,s;m,t) e ch(y,s) (14 |y— A;(s)] ) dyds.

The first integral in R.H.S. of (6.51) can be estimated by the same way for obtaining (6.34). The integrand
in the second integral in the R.H.S. of (6.51) satisfies that

8 ch(y,s) (14 ]y — A;(s)| ) le™ W
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6% (1+ )™ e~ for [y] < §|As(s)l,
< C

§l6+a0l/4 (1 4 g)=(6=0al/t o=d0l/2 for |y| > 1IA,(s).

By Lemma 4.5 with 8 =2 and « = 2 the function (1 4 5)~(6-20)/4 ¢=0Itl/2 gatisfies that for ¢t < §2-

1
& M _/ fﬁj(y,é‘;w, (1 +35)"! e dyds
0 R

= O(1) M 82, 1)(1 + )71 e dyds

¢
1
puseon [[ Ly
0 JR It—8l+1j(

| = O(1) M §@°9/2 |Ing| ¢ (z,1).
By Lemma 4.5 with 8 =1 and o = (6 — a)/2 the function (1 4 s)~(6~0)/% ¢~4/2 gatisfies that
¢
M §(6+an)/4 f f iy, s;m,t) (1 + 5)C700)/4 =02 gygs
o JR

= O(1) M 87 (((w, ) + Vio,(a, 4, E) ).

By Lemma 4.5 with o = 2 and 8 = 1 we the integral in (6.50a) satisfies that for t € [0, §~(G+20) ]
t
f / ﬁj(ya 8T, t) as )\B(y: S)zdyds
o JR

¢ e~ 201yl
= O(éz)fo ngj(y,s;:v,t) 1+deds
= 0(0) [ch(z,t) (1+]z— A0 )]
+ O(1) 6= logs| (G, + Gi(z,H)) .

The integrand 8,(Ap ;) next to Agd,Ap in (6.50a) satisfies that

83(5\3 9;) = O(].) 52 U(y,S;A[,E)z 6_6lyi
0(1)53/2 oly,s; A, E')? g~ 0lvl/2

for some positive constants £ > E'. Therefore,

t
f f gj(y: S;mat)as(/\B 95) dyds
0 JR

= O(1) 8*? /Otngj(y,s;x,t) o(y, s; Ay, BN e70W/2 gyds,
By a similar method for obtaining (6.36) we have that
62 / /93 (y, s;x,1) oy, s; Ay, E)? e~ dyds
(1) 6 oz, t; Ay, E') for | = j,
Lo

1) 6%2 (o(z, t; Ay, B') + o(z, 4 Ay B') + ch(z, 8)(1 + |z — A, (B)])1) for 1 # 5.
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To obtain a sharper estimate for the integral of the third integrand (6,6;), is not similar to (6.41). We
consider the integral f; [ (00 )sdyds in two cases, k& # m and k = m.

Case k< m.

We can separate the two waves o(x,t; A, F) and o(z,t; Ay, E) by a curve = $(Ax(£) + A,(t)). There
exist positive constants I); and D, such that

- D s .
_ 2 € U(yzsyAm:D2) for z < (Ak(t) + A ( ))1
0ulhl1,5) = 00 8§ g a8 A S

The product of two diffusion waves decays exponential fast, hence this function can be compared with any
function with algebraic decaying rate. It yields that

Ombi(y,8) = O(8%) (1+8)™" (0(y, 8 Am, E) + 0(y, 5, A4, E)) for any R > 0.

Set R = b, then by Lemma 4.1, 4.2.A and 4.2.B with &« = 5 and § = 1 we have that

f/gJ Y, 83z, t) (0,0, )dyds

0(1) & ( (z,t; Ay, B) + (=, t)3/2)

Case k=m, m#1
From (3.8) the nonlinear diffusion wave 8;(z, 1) satisfies that

8,05 + M x 0,07 — 205 = O(8°) o(z,t, Ay, E)*

for some positive constant E. Rewrite this equation as follows

8,6 = B,0% + \;,;0,0% — 8262) + O(8%) o(m,t, Ay, E)*.

A ok T /\J,J (

From this and by Lemma 4.2 with =1, @ = 4 and § = 2, o = 6 we can have the following estimates
t
| [ 3sw.s50.0.80(0, 5 dyds
o JR
¢
= 0(62)/ [ gj(ya 8T, t)O'('y, 8, Ak1E)4 - ((88 + Aj,_j!' + a;)gj(ya 5, t)) U(y: 55 Akn E)2dyds
o JR

¢ 52—l
— 2 3 . . 4 _ = . . 2
- 0(6 )/{; /R g:,(y,s,:c,t)d(y,s,Ak,E) (1 + !t_SI)I/QQJ(y’S’m’t)U(y’ S:Ak:E) dyds

t
0(52)f / (v, 5,2, )0(y, 8; Ay, B)* — (L+ [t = s|) 72 (1 + 8)7%;(y, 53 2, t)o (v, 53 Ay, E') dyds
4] R
— 08 (0($,t; A;, E') +gj(x,t)3/2) .

Let’s return to the fourth integral f; | r TmTkdyds in RH.S. of (6.50a). From (6.17b) we have the following
estimates

t
f f 3; (v, s; 2, t)nu (v, s)dyds : (6.52)
8 JR
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t—1 t
= (f +[ )'/.gj(yﬂs;m:t)aa(ﬁ§ﬁl[)dyd5
0 -1 R

= /R 3y, t =Lz, t) (350 (y,t — 1) — g;(y,0;2,%) (0505)(y,0) dyds
t-1

- [ f 8,3;(y, 510, 1) (U308 (y, 8) dy
4] R

¢
—I—f 1fR 8,9 (v, 8;2,t) (250h + 2408 + g;(y, 5,2, 0)(250,0% + 240,5F) dyds.
t—
The estimate of the first integral in the R.H.S. of (6.52) is

/1; gj(yvt_ 1;:22‘,t) (T)’f@})(y,t— 1) - gj(yao;m:t) (6}65‘5’)(%0) dy
' 2
=0(1) M* fR gi{y,t — Lz, 1) (6"5/2( Gly,t— 177 + Gy, t—1)%77 ) +-§5) dy

+0(1) M* 595/ /R 3i(1,0;2,) ( G(w,0* % + ¢(v,0% T ) dy
2

= oQ) M* (6“3/2 (G % + G™ % + olntihy, B) + ot %) + 5 )

By Lemma 4.3, 4.4.A and 4.4.B with o = 3 — /2 and § = 2 estimate for second one in the R.H.S. of
(6.52) is
2

t—1
/ / 8,3;(y, 5;5,1) (50) (3, — 1) dyds
0 R
1 6—c 6—a €
=0(1) M* fo fRasgj(y,s;x,t) (5“3/2( Gs) T + Gly,s) 2 ) + g) dyds

— 2 sads2 foag 6-ag b-ag t ¢
= O(1) M™{ &% (Cj(a:,t) T4 Gl ) 4 e, ) ) t 5 )

For t < §=(+20) the estimate for the last integral in R.H.S. of (6.52) satisfies that

i
f / 8,3:(y, 5: 7, ) (250 + 240 + 55y, 51, D)(2E0,0 + £40,5%) dyds
t--1J R
2

t 3 o o €
= o [ [gwsmy (6%/2(<k(y,s)3-42‘ T >+§) dyds
t
+ O(1) 52M2f fs?j(y,s;m,t) ch(y,s) ((L+1y—Ae(s)] )72 + (L+1y—As)])™") dyds
-1JR
2 tz 2 320 3..90 320 €
= o (1 (Gt + G0t + o) + 5 )
+ O M?6® ((1+ly—A®])™ + U+ly~A@®)7)
2
= O(1) M* (5“5/2 (gj(x,t)3/2 + Gz, )" + C;(a:,t)m) +-§-3—)
Similar to the procedures for obtaining the estimates for wﬁ we have that

t
/ [ 59, 52,8 F(y, s)dyds = O(1) (M + M2 + M%) 6%8/2 3" (y(m, 1),
0 R

1<k<n
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Thus, from all above estimates we have that for ¢ € [0, 5“(24“”0)] there exists a constant M such that

Az, )= ( Mg+ O(1) 65/4(M 4 M? + M®) ) 6°0/4 ( Z Gz, 1)3? ~ M 4 o(x, A4, E) ) (6.53)

1<i<n

+( Mo+ O(1) 6%/*(M + M* + M) ) (6ch(m,t) (1 +le = AN + -5575)

Similarly, we can have the estimates for 2}(z, t)

m2
q _ ol 2/4 3/2 - a9/4 € ¥
A,t) = (Mo+O(1) 6/ (M + M>+ M%) 6=/ { N~ Gl 1) — | (6.54)
1<k<n t+1

+ ( My+0(1) 8%/ (M + M® + M) = /2
By differentiating (6.13) and (6.14) with respect to z we will obtain the estimate for 73 and @4, for

j#iandl=1, - n.

For t € [0,6~%)] and j # 4

|q'j}.($,t)| = (MO + 0(1) 5(2(2)/4(M+ M2 + M3))(6a§f4<-j($,t)3/2 — agf4 + 53/2) for |5L' (t)l < \/Z (655)

[ha(, )} = (Mo + O(1) 6°/4(M + M* + M*))(6°/*¢,(,1)*/* ~ */* + 73) for = € R. (6.56)

53/2)
From the definition of 2} (x, %) (6.15) and (6.12b) we have that for j # i

3

i)

From this we can use the estimate of 27 in the region |z — A;(t)| > v/%. Therefore, substituting (6.18) into
F[v;]’ and using the estimate (6.53) as well as (6.56), then we combine the result with (6.55) to obtain
that for ¢ € [0, §~(3+0)]

= O(1) (My +6F (M + M? + M%) (54L Gt + 5i ) (6.57)

@ 2
Thus, if 6, M 3§°, and M, /M are sufficiently small, then (6.56) and (6.57) justify the ansatz for ||0,v||
and 77 for j # 1, respectively.

The estimate of vi(z,t) can be obtained by considering (6.13),. However, we just carry out the inte-
gration 8,G;(y, s;7,£)0;(y, s)* for which the estimate procedure is different from the other.
From the definition of G;(y, s;2,1) (6.7) we have that for ¢ € [0, 5-(2+*)]

8,Gi(y, 5;2,8) = —8,Gi(y, 85,8 +0(1) (8,V(z,t) +8,V(y,s))
= —8,G;(y,52,t) + O(1) (e7W 4 0l ),
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From this we have that for ¢ € [0, (3+0)
¢
f /amGi(y,s;m,t) 0;(y,s)? dyds
o JR
¢ ¢
=O(6)/ fGﬁ-(y, s;z,t) e M 0;(y, s)2dyds + O(d)e‘él’”lf ng-(y,s;:c,t) 0,(y, s)%dyds
0o JR o JR
t
+ / /Gi(y,s;:c,t) 8,0;(y, s)? dyds
0o Jr

= 1 + 1 + .
Estimate se W0, (y, 5)? as follows

&2 a2
56—6ly|9j(y,3)2 0(1) 8% 5I'ylo-(y,3, J:D) o1 )5‘29' $7 U(yvs;Aj!E”)
= 0(1) 57 o*(y,s;Aj,E')G_“"

for some positive constants E' and E”. Therefore,

4
i = 06 [ [ Gty o,50,8)78 dyds
0 VR
= 0%/ (Gi(z, t)*? + ¢i(z, 1)*? + o (x, 8, A}, B')) for z > 0.

i = 0(6%e —l=| f fG (y,s;7,t)o(x, t; Ay, E')? dyds
= O(8%) el (a,0)'? = O (1 + |2 )7L + |a] + ¢)7/
By using the following identity

1
aygj(yas)z = m ( [0; + AjiOy — 31}2] Hj(y,s)2 - [33 + )\Bay - 3;] Bj(y,3)2 )
59

= 0(62) U(yv 35Aj:E’)4 - 6s + )‘Bas - as] ej(y: 3)2

Aig = AB [

we have that

( m‘;gat)
i = 0(1) §? (8 =+ Gz, t)¥? + Cj(x,t)3/2) +0(1) Vted®

22_25$ .
= 0(1) & (em -

%

[y

t+ + G@ 0" + cj(m,tfﬂ) + O(1) e 6

= 0(°7) (|z| + )"/ 1 O(%) (g(x,t)?’/z + Cj(m,t)?’/z) + 0Q1) e 7

Then, from the procedure for obtaining estimates for z} we have that

1<k<n

i(z,t) = O(1) (My+6°/* (M+M*+M®)) (5%/4( 3 Gl )Y + (1+|x|)“1(t+|$|)“1/2) +

74

€

i

) .



This justifies the ansatz for ot (z, 1) for ¢ € [0, 6~ 3+20) if §, 5%/ 73 and M, /M are sufficiently small.

The ansatz (6.18) shows that v;(z,t) becomes small at time ¢ = §~3*%)_ This shows that the u(z,1)
will approach @*° +I1,, + vg. The function vz measures the formation of the shock layer for the Burgers’
equation. From (6.8) and (6.18) vg(z,t) becomes so small ¢ = §~(+20) that

Ivall(z,t) < [[vill(z,?)
if § is small enough. From this we have the estimate
lu — &% — ool (2, 6~#*+) < 2|lvill(z, 1) (6.58)

if & is small enough.
Thus, u(z,t) will approach the approximate solution @™ + I, at the time ¢t = §~(2+a0) This establishes
the formation of the shock layer.

6.2 Asymptotic Stability

Since we have shown that w(z, t) and 7°+I1,, at time ¢ = 63+ we can freeze u(z, t) at time ¢ = §~(2+a0),
Then, take this as an initial data, which becomes a small perturbation of the approximate function #*°+Il,.
So, we need to consider the asymptotic stability of the system (6.1)

v —s(t) 8y v + 0,1 (@) v—0iv = -—56‘3} Civv'r, + Z F[ v} r;,
1<7<n
with an initial data satisfying that
(e, 5059) = O(1) M (5 (o, 5-Cro0s (1moolt) 4 £,
W@, 5 0) = 0() M (‘5”2’* (32 Gole, 60l = 20y (ja] 4 1) (o] +£42) 72 4 X:r')

1<k<n

€ .
+0(1) M FE] for j +# 1,

oz, 67Ty = O1) M (5“02/4 Z Ck(:c,é_(2+°’°))3/2"”"’/4+(!$|+1)_1(|$|+t+1)_1/2)

1<k<n
€
+O(1) M 57
@g($,5”(2+ao)) = O(l) M (5%2/4 ng(w,J_(”““))z - a4 + 5_;/_2_) .
k=1

Similar to the variable z}(z,1), we introduce the variable

Az, t) = wilz,t)
= N (x,1) + 8,7 (z,1) + BvY

&[v)

Fiv) (z,1) + O(1) > L8eri (%)w*.

k=1
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We make the following a priori assumptions for ¢ € [§~(3+0) §3/¢]:
There exists a constant M; such that

wi(z,f) < M, (5“0 ¢ ( B2 (1 “0/2)+5 ).

vet) < M6 (o) + (el + 1) (1] ))

n
+M, (5a02/4zck($’t)3/2 ~ apf4d }- 5:/2 ) fOI‘J 7’—'%,

k=1

7(x,t) < M; 8™ /4((|sc| + 1)1 +t+]z )2 + Zg :ct)3/2‘“°/4) + My 63/2,

k=1
"_J.:Ju;(w,t) < ( Zfsaﬁ /4 (.’L' 5)3/2 ~ oo/4 + 337“2" )

k=1

x,t) < M §N (ZQ (z,1)32 ~ @/t ¢ o(z,t; A, E) + %;(z, t))
k=1

€ .y
+ M, 572 for j # 1,
zz‘(x? t) = M (Jaoz/tl (@(.’B, t)3/2 — apf4 + ng(x,t)?»ﬂ -~ opfd + Xz’(m’t) ) + 63—6/2 ) .
ki
where algebraic-decaying functions x;(x,t) and ¥;(x,t) for j # 1 are defined by
Xi(z,t) = min(x;(z,t), (£ + 1) (|z] +1)71?),
%i(@:1) = |z — A7 1+ 8z — A )

1 for0<z <At —VEj>1
1 for0>x>A;(t)—v4,j <i
0 else.

By Duhamel’s principle we have the following representation

67270 p ) (y, 6727 dy

1t

1
( —i— 1) 8%e Wi (y, s)dyds
35y, 533, ) SIVP (y, s)dyds for j #4,
wi(z,t) = [ gy, 6727z, Hw'(y, 6727)dy

i 1 .

+ / (0-+ i 552, D) 0, )y

¢
+ fﬂi(y,b‘;rv t) BV (y, s)dyds,

2-ag JR
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o (z,t) = / 0a03(y, 6727 7, t)w (y, 677 )dy

R

i
1 ‘ '
+ 1+ ——=)7;(1, 5; 7, 1)6* (v (y, 5) + 6% (y, s))e " *Wdyds
/JWMO/( \/_)g,(y )8 (v (y, 5) (,9)) Y
t s

/ [ gj(y’” &{v](y, s)dyds for j # i,
§—2~ag

7'(z,t) = /gz(y,d 2=, 0 thw'(y, 627 dy

1 .
o+ 52(6 + gi(y, s;,t e Wity s)dyds
[ R e R

) 83 T t i
[ / v &[v]'(y, s)dyds,
6—2 ag t -

The verification of the above a priori assumption ig almost identical to the verification of the ansatz
for the initial layer. It is even easier because the slower decaying term vp does not show up in the above
representation. Therefore, we omit the lengthy calculations and conclude that the above a priori assump-
tion is true. So, the Main Theorem follows.

Q.E.D.
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