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ABSTRACT OF THE DISSERTATION

Adaptive
Total Variation Minimizing
Image Restoration
by

David M. Strong

Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1997
Professor Tony Chan, Chair

We analyze the exact effects of total variation (TV) minimizing function regular-
ization in B!, B? and R®. Our more precise understanding of TV regularization
enables us to construct more effecitve TV minimizing image restoration schemes,
as well as to better understand what types of images (and image degradation)
are most effectively improved by TV restoration. We analytically find exact solu-
tions to the nonlinear TV minimizing function regularization problem for simple
but important cases, which can be used to better understand the effects of TV

regularization for more general cases.

We give formulae that describe qualitatively and gquantitatively the effects of
TV regularization. Four important results which we prove are: (1) TV regular-
ization of piecewise constant (noise-free or noisy) radially symmetric functions
results in piecewise constant functions, with edge location being preserved ex-

actly; (2) function intensity change is inversely proportional to local feature scale,

xi



is independent of original intensity, and is directly proportional to the regular-
ization parameter; (3) for smooth function features, function intensity change is
inversely proportional to radial position and directly proportioual to the regular-

ization parameter; and (4) TV regularization is local in a certain sense.

We develop two adaptive TV image restoration schemes. Both schemes are
motivated by and constructed using our theoretical results. In the first scheme
we accomplish adaptivity by locally weighting the measure of the total variation
of the image. The weighting factor decreases as the relatively likelihood of the
presence of an edge in the image increases. The second adaptive image restoration
scheme is a multi-step scheme driven by the scale of individnal image features.
Each step involves selectively applying restoration, only where the scale of the
image features is smaller than a user-controlled threshhold, scale,esn. The end
result is an image comprised of features with scale greater than scalepress. The
process can be characterized as a scale-sensitive, anisotropic diffusion process.
These two adaptive schemes can be viewed as prototypes of an array of adaptive
TV image restoration schemes which may be developed in the future as a result

of our theoretical results.
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CHAPTER 1

Introduction

1.1 The Basic Problem

A canonical problem in image processing is to find u = u(Z), an approximation of
the true (e.g. noise-free) image Usrue = Usrue(Z), given the measured or observed
image up = ug(Z), where

where n = n{Z) is the noise or other unwanted characteristics or degradation in
the image uo.

There are numerous approaches to finding an estimate u of ugy.. These

include:

function regularization;

statistics-based, e.g. Wiener Filter;

frequency domain manipulation, e.g. Fourier Transforms;

wavelet decomposition;

PDE-based methods, e.g. anisotropic diffusion.

There are two common mathematical formulations of the function regulariza-



tion approach. The first is the unconstrained or Tikhonov problem
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We note that throughout this Dissertation we use the Ly norm; that is,

1= 1,

both in the continuous case as well as the discrete (i.e. vector) case. In (1.2), @ >
0 is the regularization parameter that determines the balance between goodness
of fit of u to the measured data up and the amount of regularization applied to
the measured data ug in finding . Another common formulation of the function

regularization problem is the noise-constrained problem
min R(u) subject to |u - uglf® = o?, (1.3)
where the error (noise) level ¢ is assurned to be known.
1.2 Choice of Regularization Functional in Image Restora-
tion

Generally the functional R(u) in (1.2) and (1.3) is taken to have the form R(w) =

|Qu||?, where @ is a linear operator. For example,

I (the identity operator)
@ =< A (the Laplacian operator) (1.4)
\%

the gradient operator
g P



are often used, as roughness in a function can be minimized by controlling the
function or its derivatives (cf. [15]). Unfortunately, linear operators are limited
in their effectiveness, particularly is the function is disconlinuous, and non-tinear
operators are often needed. The following (non-linear) total variation regulariza-
tion functional has recently been proposed in [22] as a choice of R(u) in image

restoration:

TV(u) = f |Vu(7)| dZ. (1.5)
The functional TV (u) simply measures the total variation of u. We note that
his definition of TV (u) is only valid for differentiable functions u. In general, we
must interpret Vu(Z) as the distribution derivative so that

TV(u) = max ]u(ﬁ)v - w(Z) dZ,

[t5]eo <1

in order to be valid definition of the TV functional for non-differentiable functions.
However, (1.5) is a more intuitive definition of the intuitive idea of total variation,
and it will be consequently be the definition of 7'V (u) to which we will usually

refer in this Dissertation.

The main advantage that TV regularization has over other image restoration
techniques is that it does not penalize discontinuities in u (we show in this paper
that TV regularization preserves ezactly the location of discontinuous edges),
while simuitaneously not penalizing smooth functions either. TV regularization
looks for an approximation u to the original (e.g. noisy)} function ug which has
minimal total variation, but with no particular bias toward a discontinuous or

smooth solution.

TV minimizing image restoration can also be viewed as a special, model case

of PDE-based anisotropic diffusion schemes, which have recently been introduced.



[20] These anisotropic diffusion schemes are becoming quite popular as they are
studied and further understood and developed. This dual nature of TV restora-
tlon is subsequently described in a bit more detail in this Dissertation. In the
context of anistropic diffusion schemes, TV restoration is quite unique because it
can be analyzed in its function regularization form, which it turns out allows us
to develop some very important and useful theory which describes the effects of
TV minimizing image restoration. These results can potentially be extended to

other anisotropic diffusion schemes.

1.3 Outline of the Dissertation

In the balance of this Dissertation we prove and discuss exact analytic solutions to
the TV regularization problem, and we use this theoretical understanding of TV
minimizing regularization to develop two spatially adaptive image restoration
schemes. In Chapter 2, we first describe and discuss TV minimizing function
regularization. In Chapter 3, we present a detailed analysis of TV regularization,
and derive the exact solutions to several simple but very useful TV regularization
problems. In Chapter 4, using the theory developed in Chapter 3, we develop a
adaptive image restoration scheme in which adaptivity is accomplished using a
spatially varying weighting factor in measuring the total variation in the image.
In Chapter 5, again using the results of Chapter 3, we develop a second spatially
adaptive image restoration scheme which is sensitive to the scale of the individual

image features. A summary of our results is given in Chapter 6.



CHAPTER 2

Total Variation Minmimizing Image Restoration

In this chapter we give a formal and intuitive explana,tionrof TV minimizing
image restoration. We also compare it to other methods of image restoration,
and discuss TV minimizing image restoration as a special case of anisotropic
diffusion. We conclude the chapter by discussing some of the reasons for which
a better understanding of TV minimizing image restoration is useful and indeed

needed.

2.1 Formal and Intuitive Explanations

There are two common mathematical formulations of the standard total variation
minimizing function regularization problem. The first is the unconstrained or
Tikhonov problem

min  { 3llu—wol® -+ aTV(u) }. 2.1)

In (2.1), & > 0 is the reqularization parameter that determines the balance be-
tween goodness of fit of u to the measured data and the amount of regularization
done to the measured data ug. Another common formulation of this problem is

the noise-constrained problem

min TV(u) subject to Jju—ug||* = o2, (2.2)



where the error (noise) level o is assumed to be known. We note that solving
(2.1) is equivalent to solving (2.2) when o = i, where A is the Lagrange multiplier
found in solving {2.2), so that the resulis we develop for {2.1) are equally useful
for (2.2).

The main advantage of TV regularization is that it does not penalize dis-
continuities (i.e. edges) in u. In fact, we show in this Dissertation that TV
regularization preserves edges ezactly. On the other hand, the functional T'V has
the advantage that it does not penalize smooth functions. For a more intuitive

explanation of this property of the TV functional, consider the following lemma

for R', to which Figure 2.1{a) corresponds.

Lemma 2.1  (Given the set of functions u(z) defined on the intervel [0,1], the
argument of

min T'V(u) (2.3)

subject to

u(0)=a and u(l)=5b (2.4)

is any monotone, not necessarily conlinuous, function ufz) satisfying (2.4).

In Figure 2.1(a) we see that uy, ug, us and ug would all be acceptable argu-

ments in minimizing (2.3), since
TV(u1) = TV(uz) = TV(us) = TV(ug) = b—a = minTV(u).

Since ug is not monotone (in particular, it oscillates), TV(us) > b—a, and it is

consequently not a solution to (2.3).
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(a) Lemma 2.1, for B! (b) Lemma 2.2, for R?

Figure 2.1: Functions in R' and E? with equal total variation, in (a) and (b),
respectively.

Lemma 2.1 could be viewed in terms of equivalence classes, where all functions
with the same total variation (and which satisfy the necessary conditions, which

for Lemma 2.1 were the boundary conditions) form an equivalence class.

For a further intuitive explanation of the TV functional (1.5), we examine

this idea for R? functions in the following lemma:

Lemma 2.2 Given the set of radially symmetric, monotonically decreasing

functions u = u(z,y) = ulr), defined on the unit circle, such that u(1) is equal
1

to some constant, then all functions with equal integrals / u(r)dr have equal
Q

total variation.



PROOF [ u is radially symmetric, then with our domain  as the unit circle,

TV(u) = fg Vulz,y)| de dy
1
= 2 f r|us(r)idr (since u is radially symmetric—see Section 3.1.2.1)
0

1
= —27 / ru.(r)dr (since u is monotonically decreasing)

= 2%[/ ) dr - u{1)].

Thus for two functions u; and ug, if w1 (1) = ua(1) then

/01 up(r)dr = /01 ug(r)dr <= TV{(w) =TV (us).

In Figure 2.1(b) are the R! cross-sections of five radially symmetric R* func-
tions, each of which is monotonically non-increasing in radial position r. In this
example, for each function we have u;(1) = 0 ( == TV(w) = 27 /01 wi(ry dr),
and T'V(u;) = 7. For this contrived example, we have used two types of functions

that satisfy these conditions u;(1) = 0 and TV (u;) = m

a f 0<r<b
ur) = == abz% (functions ug, us3)
0 ifb<r<i1

u(r) = m(l—r) — 'ﬁ’"i“i" = % (functions uq, uy)

The TV minimizing approach to image restoration looks for an approximation
to the observed image wup which has minimal total variation. Lemmas 2.1 and 2.2
help to illustrate that in finding an approximation u to ug, there is no particular

bias towards a discontinuous or smooth solution. The measured data ug, as well



as the regularization parameter « (when solving {2.1)) or the estimated noise level
o? {when solving (2.2)), determine the sharpness or smoothness of the restored

function .

2.2 Total Variation Minimizing Anisotropic Diffusion

Total variation minimizing regularization can be viewed as a special case of the
more general class of PDE-based anisotropic diffusion schemes, in which time-

marching is done using
ue = V- (¢(IVu])Vu)  with  u(d,t = 0) = up(Z). (2.5)

In solving (2.1), we differentiate (with respect to u) the functional to be mini-

mized, and set th result equal to 0 to get

Vu

Vil

)+ (0= w) = 0. (26)

In [22], a time-marching scheme is proposed to solve (2.1) by marching the fol-

lowing PDE to steady state:

" = aV- (%ST) lu—ue)  with  w(Ft=0)=u(@).  (27)

As with other anisotropic diffusion schemes, the first term on the right-hand-side
of the time-derivative equation in (2.7) can be viewed as a nonlinear diffusion
operator, with diffusion coefficient ivl_u|’ which diffuses less where the gradient
is large (e.g. near edges). One could also diffuse without the fitfing constraint,



u - ug, by taking

Vu

y, = V- {
’ [Vl

o+
I
=
S’
Il
=
(]
P
B
e
——
IND
o]
~

In this form we see that TV regularization is a special case of anisotropic diffusion,
i

ol

To see the direct connection between TV minimizing function regularization

since (2.8} is simply (2.5) using ¢(|Vu|) =

and TV minimizing anisotropic diffusion, notice that we can re-write (2.6) as

\%
uxug—i—av-('—‘—?%—') (2.9)

so that solving (2.1) or (2.2) is equivalent to doing a single implicit step of
time-marching using (2.8) with step size of o. If we time-march ezplicitly using
(2.8) for n time steps with time increment A{, then the resulting image will be

approximately equal to the solution of (2.1) if we have

nAt = a. (2.10)

In Figure 2.2 is a simple comparison of TV minimizing regularization, and
TV minimizing anisotropic diffusion, using (2.2) and (2.8), respectively. To find
the image in (c), we solve the noise-constrained problem, for which we compute
a Lagrange multiplier, the inverse of the regularization parameter in (2.1). In
finding the image in (d), we use this regularization parameter to choose the

number of time-marching steps n (after choosing a time-step size At) in solving

(2.8} such that (2.10) holds.

10



(a) True image (b) Noisy image, SNR = 0 db

(c) TV minimizing regulariza- (d) TV minimizing diffusion,

tion, with noise constraint. with amount of time-marching
done to match noise constraint
in {c).

Figure 2.2: A comparison of TV regularization and TV diffusion.
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2.2.1 Other Ways of Viewing Total Variation Minimzing Function

Regularization

In addition to viewing TV minimizing regularization as a special case of anisotropic
diffusion, there are other similar ways of interpreting TV regularization, from
which it is more obvious that TV regularization is a very natural and intuitive
approach to image restoration. We can consider a general function f(|Vul) in
the integrand in (1.5). A common choice of f(|Vul) is f{|Vul]) = |Vu*. I
n > 1, then smooth edges are preferred, resulting in loss of sharp discontinuities
in the image. On the other hand, if n < 1 then sharp edges are preferred, which
can lead to unwanted edges, for example staircasing (and moreoever, the mini-
mization problem is no longer even convex). The only unbiased choice would be

flIVul]) = |Vul, as is the case for TV regularization.

We can again consider (2.8) back to {2.5), where g(|Vui) is chosen as a decreas-
ing function of |Vu|. Several choices of ¢(|Vu|) have been used in constructing
various anisotropic diffusion schemes. The simplest—and the most unbiased—
choice of a non-negative function g(|Vu|) decreasing in its non-negative argument

is to choose g{|Vul) which is inherent and auntomatic when doing TV

!
[Vl

regularization. This also corresponds to choosing f{|Vu|) = |Vu|in the integrand

of (1.5), as just discussed in the previous paragraph.

We can consequently view TV minimizing regularization as a model or canon-
ical case of anisotropic diffusion, of which other anisotropic diffusion schemes are
a variation or modification. Because it can be analyzed in its variational form
(2.1), it turns out that the effects of TV regularization can be understood more
precisely than the effects of other anisotropic schemes. This understanding is in

fact subsequently developed in Chapter 3 of this Dissertation by finding exact

12



solutions to the TV regularization problem by solving the variational formula-
tion of the problem. Additionally, because TV regularization can be viewed as a
model anisotropic diffusion scheme, the understanding and sciiemes we develop

for TV regularization can be extended to other anisotropic diffusion schemes.

2.3 Comparison of TV Restoration to Other Techniques

There are several function regularization or noise removal techniques which may
be used to dencise, sharpen, smooth, or otherwise enhance data such as a dig-
ital image. Many of these are effective when the data is smooth, but tend to
perform poorly when the data has steep gradients or, in particular, discontinu-
ities. Conversely, there are also regularization techniques which may perform
well in restoring sharp edges, but that perform poorly when restoring functions
with gradual or smooth edges by introducing artificial sharpness in the function.
Figure 2.3 gives a comparison of TV regularization (solving the constrained for-
mulation (2.2)) to some standard noise removal techniques; these include using
the FFT (obtained by computing the FFT of the noisy signal and dropping high
frequencies), H1 regularization (solving the constrained formulation) and wavelet
decomposition (obtained by using D. Donoho’s Wavelab software, using “soft
threshholding.”). In this example, we have SNR = 0 db. The dashed line repre-
sents the true function and the solid line represents the regularized or denoised

function. TV restoration is the optimal choice for this example.

TV minimizing regularization techniques have been shown to be very effective
in numerical studies (see [22], [26]) as well as in theoretical analysis (see [12]).
In [14], it is shown that a unique solution to (2.1) and (2.2) exists under certain

conditions.

13
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Figure 2.3: A comparison of several standard noise removal techniques in R!.
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2.4 Spatially Adaptive TV Minimizing Image Restoration

Image restoration, and more generally function regularization, can be more ef-
{fective if done in a spatially adaptive way. There is typically a trade-off between
noise removal and detail preservation, and functions are typically comprised of
multiple features of different spatial scales. In removing noise from a function,
the details and/or contrast are often reduced and can be lost completely. A
natural approach to partially alleviate this problem is to use spatial adaptivity
in restoring the image. In general, less regularization of the image is desired in
regions of more detail, while more regularization is appropriate in regions of less

detail.

Spatial adaptivity has been studied extensively in image restoration literature
(see for example [3] or [4]). At present, the author is aware of a single proposal
for an adaptive TV minimizing image restoration scheme [21], which to date has
not been published. In the context of TV regularization, one natural way of

achieving spatial adaptivity would be by modifying equation (2.1) to become
min { 3lu— wolf +/a(:7:‘)fVu(£)|d§ 1. (2.11)
We could also solve a modified form of the constrained problem (2.2),
mﬁn]a(ﬁc’NVU(:ﬁ)] di¥ subject to |ju— ugli® = o*. (2.12)

In both problems, aZ#) can be chosen to vary based on the local features in the
function as well as on the information to be extracted from the function. The
theory developed in Chapter 3 this Dissertation provides a simple foundation

upon which to appropriately base our choice of o in doing adaptive regularization.
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{a) True, noisy functions. (b} Denoised, e = .0001.

(¢) Denoised, « = .001.

(d} Denoised, o = .01. (€) Denoised, o =

I

(f) Denoised, o = 1.

Figure 2.4: Exaraple 2.1, a demonstration of the effects of choice of regularization

parameter « on the restored image. when solving (2.1).
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2.5 Need for Better Understanding of TV Regularization

As previously mentioned, numerical results have shown that TV regularization is
quite useful in image restoration. However, while a fair amount of effort has been
put into developing fast schemes for numerically implementing TV regularization
(e.g. [10], [11], [22] or [26]) and into proving the existence of solutions (e.g. [14]),
a very limited amount of study has been devoted to understanding more precisely

how TV regularization affects an image or other function.

There is a need for a more precise understanding of how 'V minimizing
regularization affects an image or in general a function. Understanding TV reg-
ularization in a more guantitative way is important for two reasons: first, if we
understand more precisely how it affects an image (i.e. why and how it works),
then we can better exploit the properties of TV regularization which make it
a useful approach to image restoration; second, if we do not have a reasonable
understanding of TV regularization, it can lead to ineffective and even disastrous

results.

Example 2.1 Consider the example shown in Figure 2.4, in which we demon-
strate the problems that can occur when choosing « in solving (2.1) without an
understanding of how its value affects the restored function. In this example the
dashed line is the true function, the dotted line is the noisy function ug and the
solid line is the restored function u. We must find , the minimizer of (2.1}, which
depends on ug and our choice of &. An unintelligent choice of « can result in too
little noise removal or in too much detail loss with increasing values of a. For
o too small, not enough smoothing is done to remove the noise, while for « too
large, more noise is removed but we lose too much of the detail. As a becomes

larger, features with smaller scale are lost due to the condition of trying to lower
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the total variation of the function. (In this sense, TV regularization is a type of

multi-scale function regularization, [25] with the scale dependent on «.)

The key is to understand how to select an appropriate regularization param-
eter «, in the cases both when « is constant and when «(Z) is spatially varying,
when doing adaptive restoration. A better quantitative understanding of TV reg-
ularization could be quite useful, and indeed is somewhat necessary to provide
a stronger mathematical justification of using TV minimizing image restoration

schemes.

In order to determine the “optimal” value of «, whether constant or spatially
varying, it is necessary to establish a relationship between the regularization
parameter « and the resulting effects—both qualitative and quantitative—which
occurs. In [12], it is suggested that the effectiveness of TV based noise removel
depends on the “mass” (essentially the area and intensity of the feature) of the
function relative to the total variation of the function. It could be very useful to
define a more precise relationship between the amount of smoothing which occurs
to an feature of given “mass” or area, and of a given scale (which corresponds
to its total variation). By developing a more precise relationship, it becomes
possible to make a more intelligent and appropriate choice of the regularization

parameter c.

It is due to the nonlinearity of problems (2.1) and (2.2) that TV regularization
is especially adept at recovering edges in an image while simultaneously not
penalizing smooth edges. It is also because of the nonlinearity that it is impossible
for the general case—and certainly non-trivial even in simple cases—to develop
an analytic theory which describes the effects of TV regularization in a simple
and useful way. However, in the following chapter we are able to develop a

precise and simple quantitative theory of TV regularization by finding solutions
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to the TV minimizing regularization problem in some specific and very important
cases. These results are also useful in better understanding and predicting how

TV regularization aflects images (or olhier functions) in the general case.
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CHAPTER 3

Theoretical Analysis of Total Variation

Minimizing Function Regularization

In this chapter we give a more complete, mathematically founded analysis of the

effects of TV minimizing function regularization. Our theory shows that

1. TV regularization of a piecewise constant radially symmetric function, whether
noise-free or noise-contaminated, results exzactly in a piecewise constant
function, with edge location being preserved ezactly, under certain condi-

tions;

2. function intensity change is ezactly inversely proportional to local feature
scale, (this helps to explain why TV regularization can remove smaller-
scaled noise, while leaving larger-scaled features essentially intact) is inde-
pendent of original intensity, and is directly proportional to the regulariza-

tion parameter «;

3. for smooth radially symmetric function feaatures, function intensity change
is ezactly inversely proportional to radial position and directly proportional

to

4. TV regularization is somewhat local in its effects on image features, which
not only gives us a better understanding of how TV regularization affects

an image, but it is potentially quite useful in developing faster numerical
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schemes. This is important because of the relatively high computational
costs in solving the T'V minimizing function regularization problem, due to

o B I N b PRV i
the nonlinearity of the problen.

3.1 Exact Solution of the TV Regularization Problem for

Piecewise Constant Functions

We first analyze the effects of TV regularization on piecewise constant functions.
We do this because image features are often partially or entirely piecewise con-
stant, and because our results can then be extended to more general cases. We
consider the unconstrained problem with spatially varying regularization param-
eter (2.11). This makes the effects of TV regularization more obvious (than if
we were to solve (2.12)), since the regularization is directly dependent on the
regularization parameter a(Z). Our results, of course, are still equally useful for
(2.12), in which a regularization parameter is implicitly present in the form of

the Lagrange multiplier.

In this section we prove that TV regularization results in intensity changes
that are inversely proportional to the scale of individual features and directly
proportional to «. In Section 3.1.1 we look at two simple examples to motivate
the analytic results which we subsequently prove in Section 3.1.2. In Section
3.1.3 we interpret our theoretical results for for three important practical cases—
in B!, R? and R®, with constant c—and give numerical examples which verify

our theory for each of these cases.
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3.1.1 Two Motivating Examples

To motivate our subsequent discussion and results, we consider two examples to
illustrate the basic effects of TV regularization on piecewise constant functions.
We note that a single noise element could be thought of as a piecewise constant
function feature with width of a single pixel, so that our results are useful for
understanding how TV regularization affects noise, as well as how it affects the

image features.

Example 3.1 We first consider a simple, noise-free example in R'. For this

example, the function ug is defined as

0 for z ey
up(z) =< 1 for z €0y (3.1)
0 for z &

as shown in Figure 3.1(a). For a piecewise constant function » in R', the total
variation 7'V (u) is simply the absolute sum of the jumps in u. Based on intuitition
and past experience {and subsequently proven in this chapter), with ug as defined

as in (3.1), it is reasonable to expect that the regularized function u will be

0+46; for z €y
wz)=9q 148 for z€ (3.2)
] -}- 53 for = = \Q.g

where &, &3 > 0 and 6 < 0, as illustrated in Figure 3.1(a). Throughout this
Dissertation we will generally denote by 6; the change in function intensity level
in region §; due to TV reqularization. For this example we assume that u has

this form (3.2) and that « is constant, so that solving for u in (2.1) is equivalent
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to solving for {§;}7_; in the problem

=

E

A,

Vi
e

We differentiate with respect to é; and easily find the resulting equations and

solutions
|Ql|51—-a:0 — 51 — Tﬁha,
IQQI (52 -+ 200 = () = (52 = —K%T a, (33)
|Qg|63‘““0.’——_—0 — 53 - TS%TlO!.

We obtained this result with the assumption that u would be as defined in
(3.2). Note that in each region ; that §; is inversely proportional to the scale,
or in the R' case the width, of the region [{};], and directly proportional to
the regularization parameter «. We will subsequently show that the resulting
function w would have been be identical if there had been noise present in wg,

under certain conditions.

= 1= 0 + 8
ol @ QO u,=0 2
{a) Piecewise constant func- (b} Piecewise constant (c) Piecewise constant
tion in R!, before and after function in R?, before function in RZ?, after
TV regularization. TV regularization. TV regularization.

Figure 3.1: The basic effects of TV regularization on (noise-free) piecewise con-
stant functions in B! and R*.
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Example 3.2 We next consider a simple example in B?. For this example, the

Tunction ug is defined as

1 for T€fyy
0 for 7€y =0 -

uol(#) =

Given two regions ; and {; we define the intersection of their two boundaries

as

891"3‘ = 391 i 8QJ

We state a result, a proof for which can be found in [24], which describes the

total variation of a piecewise constant function in R? or R®.

Lemma 3.1  Let Q be a compact domain in R* or B®. Let u be defined in

as
U for Ty

U2 fGT‘EEQQ:Q—'Q]_

u(Z) =
Then the total variation of u s

TV(U) = !Ul - Ugl |8Q«1,2|.

For now we simplify this example by assuming that u assumes the same shape
as up; that is, we assume that the boundary 9 is not deformed due to TV
regularization and that u is piecewise constant, so that

1 -+ 51 for Z = Q1

u(@) =

046, for €y
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We also assume for this example that « is constant. The fitting error between u

and ug is

and according to Lemma 3.1, the total variation of w is TV(u) = (1 + & —

82) |0 2|. To solve for u, we can solve for {§;}7., in
min  { 3(|1] 8 +[90]8) + o (148 = &) (0] }.

We differentiate with respect to each é;, and easily find

h el =0 > b= e
|QZI 52 - |aﬂl,2| =0 —— 52 = mwlﬁgilzl o4

Often ; is completely contained within 2, so that 0{); 2 = 0%, as in this
example. If this is the case, then for an image feature, generically labeled as €2,

which is of constant intensity level, we have (taking é as a non-negative value)

6= L?—gl—ia. (3.5)

We define the scale, s, of this image feature as the ratio of the area (volume in

R?) of the feature to its boundary length (surface area in R®); that is,

scale = - . (3.6)

For example, in R? a circle of radius r would have scale

7!'7‘2 T

scale = — = —
r 27
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s0 that larger circles have larger scales which are linearly proportional to r, which
makes sense intuitively. With this definition (3.6) of scale, (3.5) can be rewritten

as

o

6=

(3.7)

scale’

so that the change § in image intensity is inversely proportional to the scale. The
relationship (3.5) was found with assumptions that trivialize the problem. We

will subsequently show that (3.5) holds without relying on those assumptions.

This fundamental relationship (3.7) between scale and intensity change helps
to explain in a very basic way how and why TV regularization is effective in
denoising an image: TV regularization causes (smaller-scaled) notse to be removed
while larger-scaled image features are relatively unaffected. One example of this is
the fact that TV image restoration is especially well suited for denocising images

with large-scaled, blocky features, as concluded in [12].

Another useful application of (3.7) is that if we can locally measure the change
in intensity level due to TV regularization, then we can find the scale of various
image features, by re-writing equation (3.7) as

o
scale =

5 (3.8)

In Chapter 5, and we use (3.8) to develop automatic scale recognition schernes,

which coupled with (3.7) is used to construct adaptive image restoration schemes.

3.1.2 Formulae Describing Effects of TV Regularization on Piecewise

Constant Functions: in B'; in R* and R?® with Radial Symmetry

In this section we develop and prove the mathematical formulae which describe

how TV regularization affects a piecewise constant image—noise-free or noisy—
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with features (i.e. regions of piecewise constancy) of any given scale, for functions
in R! and for radially symmetric functions in B? and R® (we later apply our re-
sulls to non-radially symmetric functious). In Section 3.1.2.1 we show how tie
minimization problem (2.11) in R%,d = 2,3, can be transformed into a minimiza-
tion problem in B'. In Section 3.1.2.2 we prove and discuss the formulae which

describe the effects of TV regularization.

3.1.2.1 Radial Symmetry in B* and R®

One special class of functions in B? and R® are those that are radially symmetric.
For the moment, we consider the R* case. Because of radially symmetry, we work

in polar coordinates:

x = rcost,

y = rsinf,
ro= (2t tyt,

so that

jlwss

Then since ug = 0 {due to radial symmetry), we have
z

Up = Up Ty +Ua by = Up Ty = — Up.
T

Similarly,
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so that

Vulz,y)| = Jus g
T
= JCuwp+Euy
r
_ 332—I—y2 )
r? i
= |un(r)}.

To simplify the analysis, we take  to be the unit circle, and assume that a(z,y)

is also radially symmetric, so that

/Qa(a:,y) Vu(z,y)|dzdy = /: 2r r ar) |up(r)] dr. (3.9)

If 4o is radially symmetric then the fitting error in the region of the unit circle £

is given by
/g[u(a:,y) —ug(z,y)*dzdy = j{: 21 r [u(r) — uo(r)}® dr. (3.10)

Recall that the problem (2.11) we wish to solve in R! (taking the domain to
be [0,1]} is to find the argument u of

min { [ §[u(a) — uwo(2) ] + a(e)lus(=)| do }. (3.11)

In R%, if u and ug are radially symmetric (and assuming that o{Z) = «(r) is
radially symmetric), then by using (3.9) and (3.10) we see that the problem is to
find the argument of

min { [ 2rr {3u(r) ~ wo() P +a()w()} dr ). (312
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This is easily extended to R, in which the problem is find the argument of

El
oo
—y
iy
=
-3
b2
e
Bt
R
d
=
~—
<
—
I
-~
=
o
——
=3
—
s
2
—
3
e
ey
=
H
—
-
e
et
B
3
M
—
(]
j—
[WPhe)
S—

The problems in the radially symmetric B* cases have reduced to problems that
are almost exactly the same as the problem in the R case. Problems (3.11) -
(3.13) differ only by a multiplicative constant (which has no effect in the mini-

mization problem) and the weighting factor r or r* in the integrand.

In general, with radially symmetry, the minimization problem (2.11) in B%, for 1 <

d <3, can be written

min { [ Bar® {3u(r) = uo(r) P + o)l ()|} dr ) (3.14)
where
1 for d=1
Ba=1{ 27 for d=2 .
47 for d =3

To make our subsequent notation more obvious (particularly in the subsequent
proofs), we point out that given an interval Q, = [0,7] in B!, or a circle 2, in R?

or sphere ) in R? with radius r, then we have

1BQT| = ﬁd?"dml’
) = P,

for 1 < d < 3. Notice that |0€2,| is actually the weighting term in each integrand
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in (3.11) - (3.13), so that (3.14) could also be written as

v 1 il . - 2 ik s
win {100, {}u(r) ~ uo(r) P + afr)

gb
3
—
=3
S
[—
.
=3
oy
—
Ll
[y
o]
g

The notation we use in the subsequent proofs is given in Definition 3.1.

Definition 3.1 (Explanation of notation |0Q;;11] and |Q:})  Let the region
iri_1,7i] be the Rt region which corresponds to the radially symmetric region ()

in B8, d=2,3. Then

0| = |09, = Bari,
B
= 192 = 1] = T,

3.1.2.2 Formulae and Corresponding Proofs

Piecewise constant functions are comprised of three types of features: eztremum,
steps and boundary regions. We now give formulae which describe the effects of
TV regularization on each of these types of features. The basic effects of TV regu-
larization are (1) preserved edge location and (2) change in image intensity which
1s inversely proportional to local feature scale and directly proportional to the reg-
ularization parameter o. Theorem 3.1 describes the effects of TV regularization
on a monotone step function, which is illustrated in Figure 3.2(a). Corollary 3.1
describes these results for the special case when there is a single step, iHlustrated
in Figure 3.2(b). Using Corollary 3.1 we prove Theorem 3.2, which describes the
effects of TV regularization on a hat function, that is, a function with a single
extremum, as illustrated in Figure 3.2(c). Theorem 3.3 summarizes the results

of Theorem 3.1, Corollary 3.1 and Theorem 3.2 for general piecewise constant
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functions, whether noise-free or noisy.

In Theorem 3.1 we make the following assumptions:
o uo(¥) = up(r) is radially symmetric;

e ug(r), without noise, is piecewise constant in each region {}; of the domain,
so that if noise-free up(r) = U; in §;; however, noise may be present in ug,

in which case mean{ug{r)) = U; in £; {see (3.16));

o or) is sufficiently large to remove the noise in the image, and is sufficiently

small to not remove any edges (see (3.20)).

Note that no assumptions are made about u, except that it is radially symmetric
(which is a natural assumption since ug is radially symmetric). We also point out
that this theorem is stated and proved for monotonically decreasing step func-
tions, but the results (and corresponding proof) are analogous for monotonically

increasing step functions, which results we consequently assume without proof.

Noise-free ——  Noigy = Noise-free ——  Noisy ~~ Noise-free ——  Noisy ~--

After Regularization s After Reguiarization s

]\‘ i ‘\if‘*f‘\/lﬁ
i \‘igw (M
LA 1 VALY

5] e o

After Regularization e

..... A ' ‘ ; e
o 1 g, "2 a1, Tn o g 1 o ™ Yo o ", Iy Q5
{a) Monotone Step Function (b) Step Func- (¢) Hat Function:
tion, Single Step. Single Extremum

Figure 3.2: The effects of TV regularization on noisy piecewise constant functions.
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Theorem 3.1 (Monotone Step Function)  Letug(r) be the function defined
on [ro, 1) which corresponds to radially symmetric function uo(Z) in R%, forl <

a<3. Lel _
f l B4 pd-t uofr) dr
— Jrig

vi= l r: Ba rd=1 dy

and assume that U; > U;y, 1 <i<n-—1. Assume that

for 1 <1 <n, (3.16)

a(r;)) = o for 1 <i<n—1,
' (3.17)
alr) 2 Quee = lsr%zfil{ai} elsewhere in [ro, 7).
Then the solution to (8.14) is given by
ulr)=U;+é& for r€ric,m], 1<i<n (3.18}
where )
_C’tlﬁiﬂl1 z fOT 3 =1
§; =< @iz |39i,e—|1siﬂoee|89i,s+1l for 2<i<n~1 (3.19)
Qn—1 |I?§:T—I nl fOT i =n

(see Definition 8.1 for explanation of notation) if the following conditions hold:

() Ui+é = Upgr+ i Jor 1<1<n—1
(3.20)
(ii) |6;] = max lua{ry = U;]  for 1 <i<n

To prove Theorem 3.1, we will need the following technical result.

Lemma 3.2 [n R% 1 < d <3, let u(r) and €(r) be functions defined on

[ro, mal. If u(r) is @ monolically decreasing step function with discontinuities al
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S={r}ix, then'

/[ ]ﬂd L a(r) [u, (r)] dr + Bar® ™ alr) e, (r)| dr

[""0 )"“n}_s

Proof of Lemmma 3.2  Let

S = {r: f{r} lu, (r)| — e (r) dr 20, 1 <i<n—1},

Sy = {r;: /{“}WT(T)}—&T(T) dr <0, 1<i<n-—1}

Then we have

S el ) )] d

- /[m ral-8 Bar®™ a(r) lex(r)] dr + /Sﬁd P un (7) + €. (r)| dr

(since u,{r) = 0 in [ro,7n} — 5)

= ~/[To,'rn]—S Bart alr)le(r) dr -+ /S} Bar®talr) [ ur (r)] — € (r) ] dr

[ Bart al) o) = ()] dr
(since [, us(r)dr <0 for 1<i<n—1)

1The integral over « single point jﬁdrdmla(r)er(r)dr is  identical o
i

Bard™t alr;) jurmp(e(r:)), which = 0 if e(r) is continuous ai r;. Inlegrating over a sel
of poinits S 15 analogous.
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Y

- =1 — €.(r)] dr
f[ro,rn]—-SﬁdT alr)|e(r)| dr + fsﬁdr a(r) [ e (r)] — e.(r) ] &

= /[] Byt o(r) fuy (r)| dr + Bt ar)le.(v)] dr

- /Sﬁd pd—1 afr) e (r) dr.

Proof of Theorem 8.1 Define

F©) = [ Bar® {3blr) = o) + ofr) o (7)) .

We show that f(u + €) > f(u) for any € = ¢(r) (unless € = 0), where u is as
defined in (3.18). Using Lemma 3.2 we have

flute) = f Bar®™ { 3u(r) + e(r) — uo(r)]* + a(r)u.(r) + e (r)| } dr
> flu)+g(u,e€)

where

g(u,€) = /T:n Bar?™t e(r)[u(r) — ue(r)] dr + Bar®t alr) |e.(r)| dr

[TO »'rn]“‘“S

_ /S Bar®La(r)e (r) dr + fr:n%—ﬂdrd‘l [e(r)]? dr

We must show that g{u,e) > 0.

We first define €(r) to be a modification of € which is continuous at each of
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the points in S = {r;}’o]. Where S; = {r;}};, define

A

an

) = o(r)— /S a()dr = )= jumple(ry) for v € [, 1<

(notice that &(r) = e(r) for r € [ro,r1]) so that

I

d- d-1 -
/[Tg,rn]—-S Par™ ofr) e (r)| dr j[rwn]_s Bar® " alr) | ()] dr

= / Bar® ™ olr) |&.(r)| dr. (3.21)

since &(r) is continuous at each r; € 5. We also have

f Bar®e(r)[u(r) — uo(r)] dr

= fr:n Bar® T E()[u(r) — uo(r)] dr
+ /f:n By e(r) — &) [u(r) ~ uo(r)] dr

- / Bar L&) [u(r) — wo(r)] dr
Y / Bar™= [e(r) — &) [u(r) — uo(r)] dr

g1 ¥ Ti-1

~ j B E(r)[u(r) — wo(r)] dr
+ ; [ B f [ () drlfu(r) - uolr)] dr

_ / Bar® L E(r)u(r) — uo(r)] dr
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—1

+ 2 [t 1|89 1] — 0l 0 ara [ f r) dr]

o300 1l [ elr)dr (nsing (316), (3.18) and (3.19))
= [ Burt T elr)ulr) — w(r) dr+2] Bar® ofr) e (r) dr

= /T:n Bar®? é(r)[ulr) —uo(r)) dr + /:gﬁd pd=t afr) e.(r) dr. (3.22)

Next we define

so that
Hrna) =0 = Hr)= ] L1 dt,
t=rn.t

and &(r) = &.(r) leads to

[ gt afeldr = [ fartt ol o] dr (3.23)

Then since
/T:n Bar® 1 u(r) — uo(r)]dr = 0 {using (3.16), (3.18) and (3.19))

we have
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Tn

= [T e[ R dtu(r) - ue(r)] dr

re=rg = )

Tn

= 7 Ban) () dt

t=rp

where

_ / ;O P u(r) — ug(r)]dr for mo <t < iy
h(t) =

/?‘n P47 u(r) —uo(r)]dr for ra St <y
e

We next show that

()| < tmar 41 for rp <t <1,

so that
—|h{t)} > — g 1 for g <t < 1. (3.24)

If ro <t < rq, then

Ol = | [ 7 ) - ua(r) dr

IA
2
PT
o
s
e

AN

G 19" (using (3.17)).

37



Er;<t<ri, 1<7<n—2, then

LAY
!h\"ﬂ

A

I~

R e Y 25 | £
LS [ [ 38 ) — uolr)l dr
70 =1 k Ty

1t — pd
apri Tt + Z an(rigt =) F o — i
Tigr — T
(using (3.16), (3.18) and (3.19))
J J ¢ — pd
Omacl Ty F + Z (rigi—ri ) + (Tj-i_—ll - Tj—i)rcg _;d]
J+1 k]

(using (3.17))

ama:t:(rj ! -+ =t - '-'";'!—1)

d1
Omaz b s

Ifro_y <t <7y, then

Lol

I

N

| [ Bar™" u(r) — uolr)] dr|

T'd_l (T‘d . td)

O P B (using (3.16), (3.18) and (3.19))
n n-—1
o,y 191

RS (using (3.17)).
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So

N

(")) — wo(r)] dr

n
d—1
["
1 1‘0

Ta

= Ba h(t) &(t) dt

f=rg

S N ALOOTE
> e / Bt B dt (using (3.24))
> - f Bt a(t) [E(1)|dt  (using (3.17))

- /,@dtdl &(t)|dt  (using (3.23)) (3.25)

Finally we have

9,9 = [ Bar T elr)utr) — uo(r)] dr + [ Bar® el () dr

-;-] 18474t [e(r)]? dr (using (3.21) and (3.22))

i}

A%

/Tﬂ LBar® e(r)Pdr  (using (3.25))

> 0 (unless e=0).

So we've shown that f(u+ €) = fu) + g{u, €} > f(u), unless € = 0. Therefore u

is the unique solution.
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Condition (3.20) in Theorem 3.1 ensures what is subsequently referred to as
the a-condition, when applying TV regularization to noise-free or noisy piecewise
constant functions. The a-condition is defined qualitatively, and must be inter-

preted quantitatively for each individual problem.

Definition 3.2 (a~condition)  The regularization parameler o(Z) meets the

a-condition if:

(1) a(Z) is sufficiently small that all jumps (not due to noise)
in Ug are present in u;
(1) ofZ) ts sufficiently large that the noise is completely removed, resulting in o

regularized function that is exzactly piecewise constant with reduced contrast.

We discuss a few of the implications of the a-condition. The smaller the jumps
are in ug {i.e. the noise-free version of ), the smaller the upper bound on o must
be in order to satisfy condition (i). Similarly, the more noise present, the larger
the lower bound on « must be to satisfy (ii). For relatively simple functions,
there is often a region for values of « in which (i) and (ii) are both satisfied;
however, if there is too much noise relative to the size of the jumps in ug, then
the upper bound for (i) could be smaller than the lower bound for (ii}), in which
case there is theoretically no region for acceptable « values which give the results

of Theorem 3.1 exactly.

For the theorems and corollaries given in this chapter, this region for an
acceptable value of « 1s relatively simple to find, but it can become quite com-

plicated to find this region ezactly for more complex functions ug. Consequently,
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the a-condition is generally an infuitive guide rather than a set of strict bounds
on afz). In practice, these theoretical bounds on a generally do not have to be

met i order to oblain approzimately the predicted resulls.

An obvious corollary of Theorem 3.1 is when there is a single discontinuity,

as illustrated in Figure 3.2(b).

Corollary 3.1 (Step Function, Single Step)  Let ug(r) be the function de-
fined on [ro, ra) which corresponds to radially symmetric function ug(Z) in R¢, 1 <

d<3. Let

/Ti Byrt? ug(r) dr
U, = = for i=1,2
f Byrdt dr

and assume that Uy > U;. Assume that

alr) = o

afr) > oy elsewhere in [ro,re).

Then the solution to (3.14) is given by

u(r)=U;+ & for r € [ri1,mi], =12

where

if the following a-condition (Definition 8.2) is met:

min ug(r) > Uy +6 2 Uy + 62 > max _ug(r).

r&[ro,r1] r€fri,ra]
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The following Theorem is a natural extension of Corollary 3.1 to the case
of a radially symmetric piecewise constant function with a single extremum, as

illustrated in Figure 3.2(¢c).

Theorem 3.2 (Hat Function: Single Extremum)  Let uo(r) be the func-
tion defined on [ro,r3] which corresponds to radially symmetric function ug(Z) in

R 1<d<3. Let

ri

A Byr®t up(r) dr
U, = =t , for 1 <4<3,

and assume thal Uy > U; for i = 1,3. Assume that

alr)) = o for i =1,2

a(r) 2 Qmee = maxi=12{e;} elsewhere in [ro,ral.

Then the solutions to (3.14) is given by

w(ry=U;+6 forrefy, 1=12 (3.26)

where
oz1|691 2|

& for 1=1

b, = ma2|aﬂz,alls-;jl (80 2] for i =2

a0, .
S i

if the following a-condition (Definition 3.2) 1s met:

max ug(r) < Ui+6& < Up+8; < min w(r) for i=1,3

r&friey il T€[r1,73]
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Proof Choose 7 € (r1,72) such that

d—1 d—1_.4d

wd _ Qi rg + iy T

T d—1 d—1
ayry kg

so that
cry |08 o} + |00 3 _ 01|08 o _ ara| 082 5
€2 |€22,] €22, |

(3.27)

where Q, C R corresponds to r € [ry,#] and where Q5. C R? corresponds to

r € [F,ry]. Define

F0) = [ Bar o) =) + o) [ ()} ar. (3.28)

Let

fly) = Bar®™ {3o(r) — uo(r)* + a(r) v, (r)]} dr,

[""0 )'F)

flv) = N r {3lo(r) — uo(r)i? + ofr) Jo(r)]} dr.

(’F‘Ta

Then

@) = A+ R0)+ [ Ber o) ()] dr

— minf() = min () + L)+ [ fert a(r)lun(r)]dr )

[V

min{ fi(v) + fo(v) }

Vv

min f,(v) + min fo(v).

By Corollary 3.1 and using (3.27) we find that fi and f; are each minimized by
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u in (3.26). Since this u is continuous at r = 7, then f in (3.28) is minimized by

this .

The following theorem is a summary of Theorem 3.1, Corollary 3.1 and 3.2,
and can be used to understand and to some extent predict the effects of TV
regularization on any piecewise constant function: in R}, and in R?* and R® with
radially symmetry. Figure 3.3 illustrates the effects of TV regularization applied

to a general piecewise constant in R*, with radially symmetry for d > 1.

Theorem 3.3 (General Piecewise Constant Function)  Let ug be a radi-
ally symmetric precewise constant function, possibly contaminated with noise, in
Rt 1 < d <3 (a noise-free ezample of which is illustrated in Figure 8.3), and
that the a-condition (Definition 8.2) holds. Then the unique argument u to (3.14)
is as shown in Figure 3.3, where the change in function intensity (treated as a

non-negative value) for each region is given by

"““1|39""'“|1éj «ilfissil  pgremum Regions (£ and §)
8; = ai—llani,i—ll‘é;'l“ |00 41| Step Regions (Qs) (3.29)

@i—1|08 i1

o Boundary Regions (Q4)

\

The sign of the change in intensity §; in each region will be such as to reduce

contrast (i.e. total variation) in the function.

Proof This theorem can easily be proved for any piecewise constant function

by dividing the function into its three types of components (extremum, step and
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Before Regularization -
After Regularization
D)
1%
18
— Radial Axis —= 64
$ } } } -
O & Q, {2 Qy
(a) An R! function, or the R! cross-section {(b) An R? image, or the R?
of (b}, before and after TV regularization. cross-section of an ¥ image,

corresponding to (a).

Figure 3.3: The effects of TV regularization on piecewise constant, radially sym-
metric functions in B? and R3.

boundary regions), as was done in proving Theorem 3.2.

We give a brief intuitive explanation of these results for the important case
where a(Z) = a is constant, in order to make it easier to understand the effects

of TV regularization. For the boundary regions (in Figure 3.3, {L),

|08 i1
§; = 120z
1€

The {0§;;_1| in the numerator corresponds to the boundary size of the jump

between £2; and its single neighbor {};_; that affects the total variation of wu.
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Similarly, in extremum regions (£} and Q3), we have

_ |08 i1 + [0 i44] o= |09 ]

&; e =
) |€2;] |€2:]

due to the boundary size of the jumps between §2;’s two neighboring regions {1;_;
and ;47 which affect the total variation of u. Finally, in the step region, as 63
increases, the variation between 0y and {3 tncreases while the variation between
24 and Qs decreases (or conversely), with the net change in total varation of u
being proportional to the difference of the boundary lengths, |0Qs4| — |02

The precise formula then is

5 — |0Q23,4] — [0€29 3
|€23]

(Notice that in the extremum regions, the total variation is proportional to the
sum of the two boundary sizes.) In each region, the greater the change in intensity
&; the more the total variation is decreased, but at the cost of increasing the
fitting error. Hence a balance 1s found between decreasing the total variation and

increasing the fitting error, depending on the value of a.

Our results show that the regularized image is the same when restoring a
notise-free tmage and when restoring the noisy version of that tmage, if the mean
of the notise is 0, for sufficiently large values of . This is subsequently illustrated
in Figures 3.4 - 3.6. Theorem 3.3 can be applied to any noise-contaminated

piecewise constant function in R%, 1 <d < 3.

3.1.3 Three Special Cases of Theorem 3.3

We conclude Section 3.1 by giving three practical corollaries of Theorem 3.3 which

give the formulae (3.29) for the case when a(Z) = « is constant in R', R? and R®.
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We note that in R' the “size” of a boundary between two regions is |08 ;11| = 1.

3.1.3.1 Thecrem 3.3 in R!, with Constant «

Corollary 3.2 (R' Piecewise Constant, Constant «) In R let the con-
ditions of Theorem 3.3 be satisfied. Let Q; = [2i_y, 2] and assume that a(z) = «

is constant. Then (8.29) is given by

2 .
—a Eztremum Regions
Ly — Ti-1
0 ,
§i={ ————a=0 Step Hegions (3.30)
Li— Ti—y
1 .
— Boundary Regions
Ty — Ti-1

Corollary 3.2 can be applied to any {noise-free or noisy) piecewise constant

function in R!. We give a single example of this.
Example 3.3 For this example we define the original image ug as

0.5 for 0.00 <z <0.25 ()
1.0 for 025 <z <050 ()
0.5  for 0.50<z<0.75 ()
| 00 for 07552 <100 (Q)

(3.31)

ug(z) =

The results of solving (2.1) using o = 0.01 are given in Table 3.1 and FigureFig-

ureNumericallD.

In Figure 3.4(a) we give the numerical results in applying TV regularization to

the function (3.31), solving (2.1) using o = 0.01. In Figure 3.4(a), we also apply
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Region Type Up uw | u—ug | Predicted ¢ using (3.30)
Q| Boundary | 050 | 054 | 004 | tors (0.01) = 0.04
Qs Extremum | 1.00 | 0.92 | -0.08 0.50_—_%_25(0.01) = -0.08
Qs Step | 0.50 | 050 | 0.00 | 5% (0.01) = 0.00
Q4 Boundary | 0.00 | 0.04 | 0.04 | 75557z (0.01) = 0.04

Table 3.1: Example 3.3: TV regularization of an R' piecewise constant function.

TV regularization to a noisy version of this image and obtain identical results (in
the step region, £13, we obtain only approximate agreement in the results of the
noise-free and the noisy cases). In the two figures, the dashed line is the noise-
free function, the solid line is the regularized or denoised function, and in (b) the
dotted line is the noisy function. Example 3.3 shows that the regularized image
is the same when restoring a noise-free image and when restoring a noisy version
of that same image, for sufficiently large values of a (except in step regions,
where in general we would have approzimate agreement between the regularized
function u in the noise-free and noisy cases). In this example the a-condition is
not actually met, which demonstrates that in practice the bounds on « required
by the a-condition need not be strictly met to approximately {or even exactly)

obtain the results predicted by (3.30).

3.1.3.2 Theorem 3.3 in R?, with Constant o

Corollary 3.3 (R? Piecewise Constant, Constant o) In R? let the con-
ditions of Theorem 3.3 be satisfied. Let Q; C R? correspond to v € [ri_y, 7], and

assume that a(r) = o is constant. Then (8.29) is given by
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Figure 3.4: Example 3.3: TV regularization of an R' piecewise constant function.

2

4%
Ty — i1

N
ri+ i1

2ria

2

-5 &
2
TP T

Eztremum Regions

Step Regions

Boundary Regions

(3.32)

As for the B! case, for the R* case Corollary 3.3 can be applied to any (noise-

free or noisy) piecewise constant function in R*. We give a single example of

this.
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Example 3.4 For this example we define the original image uo(r) = uo(z,y) as

o
b

for 0.00 <z <0.25 ()

1.0 for 0.256 <z <050 (£)

0.5 for 0.50 <z <0.75 (£3)

0.0 for 0.75<2<1.00 ()

The results of solving (2.1) using & = 0.01 are given in Table 3.2 and Figure 3.5.

Region Type ug u U — Up Predicted & using (3.32)
O Extremum | 0.500 | 0.580 | 0.080 | g3zisgs (0.01) = 0.080
Q;  Extremum | 1.000 | 0.920 | -0.080 | szp2a3s (0.01) = -0.080
23 Step 0.500 | 0.484 | -0.016 5??"5"%536 (0.01) = -0.016
Qs Boundary | 0.000 [ 0.034 | 0.034 | 222L. (0.01) =~ 0.034

Table 3.2: Example 3.4: TV Regularization of an 1? radially symmetric piecewise
constant function.

In Figure 3.5(a) we give the numerical results in applying TV regularization
to the function 3.33, solving 2.1) using o = 0.01. In Figure 3.5(a), we also apply
TV regularization to a noisy version of this image and obtain identical results.
In the two figures, the dashed line is the noise-free function, the solid lire is the
regularized or denoised function, and in (b) the dotted line is the noisy function.
Our results show that the regularized image is the same when restoring a noise-
free image and the noisy version of that same image, for sufficiently large values
of « In this example the a-condition is not actually met, which demonstrates
that in practice the bounds on a required by the a-condition need not be strictly

met to approximately (or even exactly) obtain the results predicted by (3.32).

30



. . . \ A L L i
a LA) 02 03 04 05 0§ 07 08 08

(a) B? noise-free case.

i

a ol

(b) R?, noisy case.

02 0.3 &4 o5 0.6 o7 o8 o9

¥

Figure 3.5: Example 3.4: TV Regularization of an R? radially symmetric piece-

wise constant function.

3.1.3.3 Theorem 3.3 in R°, with Constant «

Corollary 3.4 (R® Piecewise Constant, Constant «)

In R? let the con-

ditions of Theorem 8.8 be satisfied. Let Q; C R? correspond to v € [ri_1,7], and

assume that or) = « is constant. Then (8.29) is given by

3(7"? + T?—I)

3 3
i

2 2
3(""i — 71
3 3
L

2
3riy
3 _ 3

LTy T T

84

&

o

Fritremum Regions

Step Regions

Boundary Regions

(3.34)

As for the R! and R? cases, for the B case Corollary 3.4 can be applied to any

(noise-free or noisy) piecewise constant function in R*. We give a single example

of this.
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Example 3.5 For this example we define the original image ua(r) = uo(z,y, #)
as
0.5  for 000 <z <025 ()

1.0 for 0.25 <z < 0.50 ()
up(r) = < . (3.35)

0.5 for 0.50 <z <0.75 (Qs)

0.0 for 0.75 <z <1.00 (Q4)

.

The results of solving (2.1) using o = 0.01 are given in Table 3.3 and Figure 3.6.

Region Type Ug u | |u-—wug||. Predicted § using (3.34)
Q;  Extremum | 0500 | 0.620 | 0.120 | 2025409 541y — 0,120

0.25%—0.003

Q,  Extremum | 1.000 | 0.014 | -0.086 | 328040250 (5 61) v -0.086

0.50°~0.25%
Qs Step 0.500 | 0.468 | -0.032 | 2IE=05 (g g7) -0.032
(s  Boundary | 0.000 | 0.029 | 0.029 | =207 _(0.01) =~ 0.029

I

0.75%—0.50°
1.008—0.75°%

Table 3.3: Example 3.5: TV Regularization of an E° radially symmetric piecewise
constant function.

In Figure 3.6{a) we give the numerical results in applying TV regularization
to the function 3.35, solving 2.1) using o = 0.01. In Figure 3.6(a), we also
apply TV regularization to a noisy version of this image and obtain identical
results. In the two figures, the dashed line is the noise-free function, the solid
line is the regularized or denoised function, and in (b} the dotted line is the noisy
function. Our results show that the regularized image is the same when restoring
a noise-free image and the noisy version of that same image, for sufficiently large
values of o (except in step regions, where in general we would have approzimate
agreement between the regularized function « in the noise-free and noisy cases).

In this example the a-condition is not actually met, which demonstrates that in
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practice the bounds on « required by the a-condition need not be strictly met to

approximately (or even exactly) obtain the results predicted by (3.34).
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(a) R3, noise-free case. (b) k3, noisy case.

Figure 3.6: Example 3.5: TV Regularization of an I3 radially symmetric piece-
wise constant function.

3.2 Exact Solution of the TV Regularization Problem for

Smooth Radially Symmetric Functions

In this section we extend the theory developed in Section 3.1 to non-piecewise
constant features. Our results are again developed for radially symmetric func-
tions in R4, 1 < d < 3. To simplify the problem we consider the case where

aZ) = « is constant.

3.2.1 Smooth Functions as the Limit of Plecewise Constant Functions

We first consider the portion of a radially symmetric function with constant,
decreasing slope, as illustrated in Figure 3.7(b). We can take this function as the

limit of the step function shown in Figure 3.7(a). In Section 3.1 we found that é;
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in 3.7(a) is given by

0 1] — |05 o =

8(r) = TN

As we take the limit to the smooth case, we let r;_; - 1y,

r € [ri_1, 7], where we treat §(r) as a non-negative value,

T Wy
2 2
drry —4dwri
4.3 _ 4..3
E’ﬂ"n‘",i —_ 57”“1—1

5(r)

0 in R
1
~a in R?
,
2
—a in R®
r

3.2.2 Smooth Functions in KR!

in B!

in R?

in &3

and find that for

(3.36)

We next consider the effects of TV on the “smooth” function shown in Figure

as illustrated in Figure 3.8, We refer to it as “smooth” in the sense that it is

continuous, with no sharp discontinuous edges. (Although this function is not

actually smooth is the usual sense, the results we develop using this example

are applicable to functions which are smooth in the usual sense. In addition,

the notion of smoothness is actually somewhat moot in the discrete numerical

implementation of the problem anyway.) By viewing this function as the limit of

a step function, the results developed in Section 3.1 and in (3.36) would predict
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Figure 3.7: The effects of TV regularization in the smooth case taken as the limit
of the piecewise constant case.

the regularized function shown in Figure 3.8. The function f(z) which describes

the function up(z) for z1 < z <z 1s

e 1
flz) = AL A m(z —z3), where m = ,
Ty — Tg Iy — g

so that f(z1) =1 and f(a3) = 0. For convenience our domain is [0, 1].

For the R case we can find explicit equations for 6; and #;. Note that in

Figure 3.8

6; .
FTi=a;——, for 1=1,2, (3.37)
m

where we will have §; < 0 < ;. Assuming that « is not large enough to flatten

out the function, that is 1 + & > 0 + 4, then the fitting error would be

L1[u($) —up(2))Pdz = /Oxl 82 dz + Af}{f(m) — (14 &) dz
+ [ f@)Pdo+ [ Shda
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Figure 3.8: A “smooth” function, before and after TV regularization.

., & 8 2
= ||é] ~ 3 + T + |Qz¥52-

The total variation of u would be TV {u) = 1 4 é; — 65. So the problem to solve is

] &3 &3
min { 311067 - g“,rl;;% gﬁ;-l- Q2165 ]+ (1 + 61 — &2) },

which by differentiating with respect to each 6; gives the equations

&1
|Ql|61—§;1-——|—a = 0
2

)
|\Qg|52+—2%—a = 0.

By taking the appropriate value of §; in solving each gquadratic equation, we find

that

6 = +mlu]+/(mlu])? + 2ma,
(3.38)

8, = —mlQa] — /(mlQal)? + 2mar.
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'To see the similarity to the piecewise constant case, notice that as m — co, we
have

b — — and &g —

i e
€24 | ]’

as found for the piecewise constant case in Section 3.1.

We consider an example in R'.

Example 3.6 Using the parameters

1 = 0256 | m = =2
(3.39)
T, = 075 a = 0.03
we find that the values predicted by (3.37) and (3.38),
(3.40)
b = +0.139 | 2, = 0.680

agree with the regularized function found by solving (2.1), as shown in Figure
3.9(a), where the dashed line is the original function and the solid line is the
regularized function. We do not give a formal proof to validate these results, as
they are a natural extension of results given in Section 3.1) for the R piecewise
constant case. For comparison, we apply TV regularization to a noisy version of
the function, and observe similar results in Figure 3.9{b), except for the unwanted
effect of “staircasing,” which is caused by the presence of noise. (This staircasing
effect is well-known and is currently being studied [6].) In (b) the dashed line is
the true function, the dotted line is the noisy function and the solid line is the

regularization function.
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Figure 3.9: Example 3.6: TV regularization of a “smooth” function in R!.

3.2.3 Smooth Radially Symmetric Functions in B? and R3

We next consider a radially symnﬁetric function R? or R? as illustrated in Figure
3.10, analogous to the B! function just considered in Section 3.2.2. The function

f(r) which describes the function up(r) for r1 <r <y is

— 1
flr) = TR m(r —ry), where m = ,
LT 1Ty

so that f(r1) = 1 and f(r2) = 0. For convenience we again take the domain to
be r € [0,1].
In Figure 3.10, we can find 7y as a function of r1, m, 61 and « by using (3.36),

as shown in Figure 3.10. For R? we have

o o o
%— = f(?"l) —_ (]_ -|- 5;) == m(n —_ T‘l) — 61
1
= = mr"‘f—mﬁiﬁ—i—cﬁﬂ.
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Figure 3.10: The R! cross-section of an R? or R® radially symmetric function,
before and after TV regularization.

and solving m 72 —mr; 7 + 6171 —a = 0 for 7 (and similarly for /) gives

mr; + & — \/(&; +m7r)? + 4o

g— ) = 2, “
7 5 for 1 =1, (3.41)
In R?, we similarly find that
mT,;—]—(S,;— 55—|—ng2+8?7105
7 = W ) for §=1,2. (3.42)

2m

For this example in R* or B3, we can write equation (2.1) as a function of &
and 6. We can find equations for the fitting error e; as functions of é; and &, in
each of the five subregions in the domain (see Figure 3.11). In R?, for example,

we would have

e:(61,6,) = /T;: 2 7 [uo(r) — ul(r))* dr,

so that that in the region [0,7(] we could find that

e1{1,862) = /: 21 7 [uo(r) — u(r)])* dr
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L&
= f om r &% dr
0

_ 202
= wryd;.

Also, the total variation of u can be written as a function of §; and é,. For

example, in R? we have

i

1
TV(u) ] o | up | dr
0

r

721
= / QWT(—%——m)dr
71

_ M2 ks
= 2m| 5 (77 —73) + aln 7 ]
Since {7;} are functions of {§;} (and of other known parameters), the problem
(2.1) then can be written as a function of & and &
5
min { % Z 61;((51, 62) + TV(’M((SI, 62)) } (343)

51 )'52

1=l

The R? and R® cases are more complicated than the R! case, and we cannot
find an explicit analytic equation for the optimal values of §;. We can, however,
numerically verify that equations (3.41) - (3.43) accurately describe the effects
of TV regularization on the function shown in Figure 3.10 by computing the
values of §; and &, which minimize (3.43), where {#;} are functions of {§;} using

(3.41) and (3.42). It is reasonable to assume that we can numerically find unique
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Before Regularization —— After Regularzaion s

Figure 3.11: The fitting error ¢; in each of the five regions created by ry, rq, 7
and #s.

optimal values for §; and &; since in [14] it is shown that a unique minimizer to
(2.1) exists under certain typical conditions. If our assumptions about the form
of u, as illustrated in Figure 3.10, are correct, then the resulting functions u in

solving (3.43) should be identical to the functions found when solving (2.1).

Example 3.7 In R? we use the parameters

™ = 0.25 m = —2
(3.44)
r, = 075 | a = 004
and find that the values found by solving (3.43), using (3.41),
6 = —0278 | 7y = 0.328
(3.45)
o = +0.113 | 72 = 0.663

agree with the regularized function found by solving (2.1), as shown in Figure
3.12(a), in which we see the R! cross-sections of R? and R® radially symmetric

functions. The dashed line is the noise-free function and the solid line is the
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regularized function. In Figure 3.12(b) are the results of applying TV regulariza-
tion to the function from (a) which has been contaminated with Gaussian noise.
Results for the noisy R? case are shown in Figure 3.12(b), in which the dashed
line is the noise-free function, the dotted line is the noisy function and the solid
line is the regularized function. We note that the staircasing observed in Figure
3.12(b) is exaggerated, as we took the noise to be symmetric (in order to solve
this B? problem strictly as an R* problem). In the actual R? problem, the noise
of course is generally not radially symmetric, and the staircasing although still

present, is not nearly as pronounced.
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(a} R?, noise-free case. (b) R?, noisy case.

Figure 3.12: Example 3.7: TV regularization of a “smooth” radially symmetric
function in R%.

Example 3.8 In R?, again using the parameters {3.44), we find 6 and 4, by
miniminizing (3.43), and use these values to compute 7y and 73. Solving (3.43)

using (3.42) gives the values

(3.46)

6 = +0.089% | ¥, = 0.643
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which agrees with the function found by solving (2.1), as shown in Figure 3.13(a).
Results for the noisy H° case are shown in Figure 3.13(b). The dashed line is
the noise-free function, the solid line is the regularized function, and in (b) the
dotted line is the noisy function. Once again, the staircasing is exaggerated, due

to the radially symmetric noise.
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(a) B3, noise-free case. (b} R3, noisy case.

Figure 3.13: Example 3.8: TV regularization of a “smooth” radially symmetric
function in R®. :

3.3 Agreement Between Theory and Numerical Solutions

in Non-radially Symmetric Case

So far, we have considered some special cases of the continuous TV regularization
problem, namely piecewise constant and simple “smooth” functions, assuming
radial symmetry. We have been able to find analytic solutions for these various
cases. In the general case, however, we are not able to explicitly find analytic
solutions. In addition, in practice we must of course numerically solve the discrete

version of the continuous problem, for example, when dencising a digital image.
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In this section we briefly examine the agreement between the theory and the
nuimerical solutions to the discrete problem for more general images. In examining
the general case, we limit ourselves to the three images shown in IMigure 3.14, in
order to keep the discussion relatively simple. Qur primary purpose has been to
develop a simple and precise theory for the special cases which we have treated,
which may be used to understand how TV regularization affects the various types
of images dealt with in the general case. It is not our purpose in this Dissertation

to attempt to exhaustively examine the effects of TV regularization in the general

case.

Example 3.9 We wish to examine the agreement between the change in inten-
sity in the feature of interest and the change predicted by (3.5). The feature of
interest Q in the first image, shown in Figure 3.14(a), is a noise-contaminated
circle of radius % in a unit square domain. For this example we use a = 0.01,

so that in the rectangular region the .change in intensity dpredicted as predicted by

(3.7) and (3.29) should be

a0 1
ép'l'edicted == !|Q|| o = (53’3 (001) = GOﬁp (347)
3

so that in the circular region the intensity level should be 0.94 after regularization.
This is nearly exactly the case, as shown in Figure 3.14(b) (notice the grayscale
bar to the right of each image). Notice that the boundary of the circle has
been slightly smoothed. 'This is due to the slightly discrepency between the
continuous and discretized problems. If ) is the circular region in the image,
then where 84, = '/g up(#) — u(&) d¥ is the average amount of intensity change
(over the entire circular feature), it turns out that Spuy & bpregictea = 6(F). If
desired, this boundary smoothing in the discrete case can be completely overcome

by employing an edge-preserving numercial approximation scheme, such as the
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(a) Noisy image, before regulariza- (b} After regularization.
tion.

-0.66

(¢c) Noisy image, before regulariza- (d) After regularization.
tiomn.

(e) Noisy image, before regulariza- (f) After regularization.
tion.

Figure 3.14: The results of applying TV Regularization to general piecewise
constant functions. Refer to Table 3.4.
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minmod scheme used in [22].

Shape o Predicted é = %3% a | Computed b,y
Circle 0.010 0.060 0.060
Rectangle | 0.005 0.060 0.056
“S” 0.010 0.180 0.193

Table 3.4: Refer to Figure 3.14 for the images to which this table corresponds.
A comparison of predicted changes in intensity to the results found numerically
in applying TV regularization to functions with smooth and sharp boundaries.
The numerical resulis nearly exactly match the predicted results, with the slight
discrepency being due to discretizing the continuous function and/or the defor-
mation of the boundaries.

We give two more examples of images to which we apply TV regularization:

1

3 x 1 and an “S”-shaped object. These two images are

a rectangle of dimensions
both non-radially symmetric. We point out here that in the non-radially sym-
metric case, TV minimizing techniques tend to smooth out rough or oscillatory
boundaries in a function (see [12}), and can consequently result in the deforma-
tion of boundaries in a function. This boundary deformation occurs because the
total variation of a feature is directly proportional to its boundary size, e.g. for
a plecewise constant feature (see Lemma 3.1), so that one way of minimizing
the total variation of the feature is to reduce its boundary size. (As we have

shown, in the continous radially symmetric case this boundary deformation does

not occur.)

For each function, we find the theoretically predicted value for the change in

. . o} . : .
intensity, é = L_l o, as well as the change of intensity when solving the problem

€]
numerically. The results are given in Figure 3.14 and Table 3.4.
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For these three examples, the slight discrepencies between predicted and com-
puted changes in intensity level are due to the boundary deformation and/or the
discretization of the continuous image. Overall, the agreement between the the-
ory and the numerical results is almost exact. The theory which helps us under-
stand the continuous problem thus is of almost equal use for understanding the

numerical, discrete problem.

3.4 Summary of Theoretical Results

In this chapter, we have given formmulae, proven analytically and verified numeri-
cally, which describe the effects of total variation minimizing function regulariza-
tion for several special cases in R%, 1 < d < 3. These results are quite useful not
only for describing TV regularization in these specific cases, but also in better
understanding and predicting how TV regularization will affect images (or other

functions) in the general case.

‘We have shown that TV regularization causes piecewise constant radially sym-
metric features to remain eractly piecewise constant, with edge location being
preserved ezactly, and that change in function intensity is inversely proportional
to the local feature scale and directly proportional to the regularization parame-
ter (see (3.7) and Theorem 3.3). In addition to the formulae given for the general
case, we have given these results for three specific practical cases: in R, R? and
R? with constant . OQur results demonstrate that TV image restoration is espe-
cially effective for restoring images with piecewise constant features. For smooth
(i.e. non-piecewise constant) functions we have shown that intensity level change
is inversely proportional to the radial distance from the center of the feature
and directly proportional to the regularization parameter {see (3.36)). We have

shown that for general (i.e. smooth) radially symmetric features, the basic shape
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of the feature is retained, and noise, if present, is essentially removed. Our formu-
lae help explain how and why TV image restoration can remove (smaller-scaled)
noise while leaving relatively intact larger-scaled image features. Our formulae
also help to demonstrate the localness of TV regularization, which is useful in
understanding how TV regularization affects an image, and is potentially quite

useful in developing faster numerical schemes for solving the TV regularization

problem.
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CHAPTER 4

Feature-driven Adaptive Total Variation

Minimizing Image Restoration

4.1 Introduction

In this chapter, we propose a spatially adaptive TV minimizing image restoration

scheme where the adaptivity is realized by using a weighted TV functional
TV, (u) = / o @) | V()| dZ. (4.1)

The corresponding noise-constrained minimization problem would then be
min T'Vo(u) subject to |lu — ul|* = o> (4.2)

The detailed analysis of TV minimizing function regularization in Chapter 3

provides a theoretical justification for this approach.

We choose a(Z) based on the likelihood of the presence of an edge between any
two neighboring discrete image locations. The weighting factor is chosen to be
inversely proportional to the likelihood of the presence of an edge. This allows for
less regularization where edges are present and more regularization where there
are no edges, which results in better overall noise removal and detail preservation.

The results are generally good, particularly for images with piecewise constant
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image features.

In the balance of the chapter, we present our basic ideas in R and give results
for restoring noisy R' images, after which we extend our scheme to H* and give

results for restoring noisy R? images.

4.2 Adaptive Image Restoration in R!

We first discuss the weighted TV norm (4.1} in R'. We next discuss how to choose
the weighting factor, first by using a priori information and then automatically.

Results of restoring noisy R' images are then given.

4.2.1 Weighted TV Norm in R

To accomplish adaptive TV miniminizing image restoration, we replace (1.5) with

the weighted TV norm (4.1). In R', the discrete version of (1.5) is

n—1 -1
TV(u) = > lus(i+ ) = D_ luips — il (4.3)
=1 =1
L du{z) . . .
where ug{i + ) represents lz=z , . The weighted TV functional (4.1) is
i-|~'§'
analogously
n—1
TVQ(‘U,) = ; ai+%1ﬂ-i+1 - U'»z']. (4:4:)

The theoretical results of Chapter 3 leads to idea of choosing o, 1 to be smaller
where there is an edge between w; and vy, and conversely choosing &i+% to
be larger where there is no edge. The motivation is to better preserve edges by
allowing the variation in the image which is due to the edges, and to better remove
noise where edges are not present by penalizing the variation in the image that is

due to the noise. In regions of relatively moderate intensity change (i.e. smooth,
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non-plecewise constant image features), the choice of o1 would be somewhere
p

in between. This relationship can be written

1
iy Likelihood of an edge between positions ¢ and ¢ + 1 in Ugpae

4.2.2 Adaptive Restoration Based on Likelihood of Presence of Edges

@ o1 02 03 04 05 08 a7 o0& 08 1 9 a1 D2 B3 04 05 08 OF 08 om 5 of 8y a3 o4 o5 08 o7 o8 o8 1

{a) Noisy image. (b) Restored image, (c) Adaptively restored,
Qplar . Dedge — 1:1. Qflat - Kedge = 2.1,

(d) Adaptively restored, (e) Adaptively restored, (f) Adaptively restored,
Cflat t Cegge = 01 L Cflat } Cedge = 101 L, Qflat * Qedge = 100 1.

Figure 4.1: Example4.1: adaptive TV minimizing image restoration solving (4.2),
using a prieri information about edge location to determine et @ Gedge.
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Figure 4.1 Cflas & Uedge ISNR
(a) (Noisy Image) | 0.00 dB
(b) 1:1 11.78 dB
(c) 2:1 16.09 dB
(d) 5:1 22.72 dB
(e) 10:1 28.21 dB
(£) 100:1 | 47.62 dB

Table 4.1: The improved SNR for each of the adaptively restored images (shown
in Figure 4.1) found by solving (4.2}, where the ratio of the weighting of (4.1) in
the flat regions to the weighting at the edges is given by g | Ctedge. We note
that the case in which oy @ Qtegge = 1: 1 is simply the standard {non-adaptive)
case.

Example 4.1 In Figure 4.1 we give an example of adaptive restoration for a
piecewise constant R! function, contaminated with Gaussian noise, SNR, = 0 dB,
where the edge locations are known e priori, to demonstrate the effectiveness of
the our idea for choosing o, Be In finding each of the restored images shown in

2
I'igures 4.1(b) - (f), we have chosen

Qedge 1f there is an edge between positions 7 and ¢ + 1 10 gy,

I

s
¥
b

apree i there 4s not an edge between positions 7 and ¢ + 1 10 gy,

where Qegge < ®fige. We note that in solving the constrained problem (4.2), is
is not the actual values of {o:g.+ 1 } that are important, but rather their relative
values, that is, relative to each other. We solve (4.2) using different ratios for
Cflat * Xedge, Where TV, (u) is as in (4.4). We find, as expected, that the adaptive
restoration scheme 1s more effective for larger ratios of oyu: @ edge. Decause of the

exact information which we had about edge location in this contrived example,
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we have

X flat
U— Uppye 8 —L2% — 00, (4.5)

edge

if the mean of the noise is 0 in each of the piecewise constant regions (which we
artificially enforced for this example). Figure 4.1 illustrates (4.5). Note that (b)
is simply the standardly (non-adatively) restored image, solving 2.2). The results
are better for larger ratios of afius @ edge. Table 4.1 gives the ISNR for each of

the restored images.

4.2.3 Automatically Defining {a.+1} in R
T3

In defining {aH_ ! } in the preceeding example we knew a priori the location of
the edges. In general we do not have to this information e prier: (otherwise
the problem is often already solved). Here our approach in determining the
likelthood of an edge at any given location is based on examining the size of the
jump between neighboring pixels of a partially or fully (non-adaptively) restored
image. The reason for this is that a partially restored image can give us valuable
information which can be used to determine the weighting factor «, which we
can then use to restore the noisy image with a spatially varying balance between
noise removal and fit to the original data. In Chapter 3 we found that the
effects of TV minimizing image restoration are inversely proportional to scale,
so that smaller-scaled features are sometimes compromised or completely lost in
our attempt to remove noise from the image. Thus partial noise removal (i.e.
a partially restored image) can potentially give us better information about the
more detailed or smaller-scaled features than could a completely restored image,
in which the levels of both noise and detail are decreased. The algorithm for

implementing this approach is given in Table 4.2,

The first step is to solve the standard minimization problem (2.2) using a
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The FATV Scheme in R':
Feature-driven Adaptive Total Variation
Minimizing Image Restoration in R!

1. Find @ by solving

min TV (@) subject to ||§ — up||* = &%,

where 0 < 5% < o2

2. For 1 <:<n—1, define
1
Qg om—————————
47 g — il te
where ¢ > 0.

3. Find the adaptively restored image u by solving

min TV, (u) subject to ||u—ugl]* = o>
U

Table 4.2: Feature-driven Adaptive TV minimizing (FATV) image restoration
scheme in R

2

(possibly) smaller estimated noise level 5% < o2 Thus by solving (2.2) using

&% we expect to remove much of the noise while preserving the image features,
particularly if the image is detailed. This information can then be used to define
{ai + }in Step 2. In Step 2, the parameter ¢ is used both to stabilize the numerical
problem and to give us more control over how adaptive the scheme will be. The
larger e is, the less variation there is in the weighting factor «(Z) in (4.1). For €
very large, the adaptive scheme essentially becomes the standard scheme (2.2).
On the other hand, if € is chosen to be extremely small, the weighting factor

a{Z) may be too adaptive, resulting in an image where discontinuous edges are

artificially introduced, due to the corruption of the image from the noise. The

T4



choice of € will be directly related to the range of the grayscale values in the image.
Appropriate choices of ¢ will be briefly addressed in our subsequent analysis of
our results in B?. With {aw 1} defined, in Step 3 we again solve the constrained
minimization problem, this time using the weighted TV functional.

We briefly comment about the extra computational cost of the adaptive
scheme. In the standard TV minimizing restoration scheme, we solve the con-
strained minimization problem a single time. In the adaptive scheme we solve
a constrained minimization problem twice. Thus the adaptive scheme could be
about twice as expensive to apply as the standard scheme. However, we note that
the partially restored image @ found in Step 1 can be used as a good initial guess
for the iterative scheme used to find w in Step 3.} Because of this good initial
guess for solving the minimization problem in Step 3, the computational work of
the adaptive scheme as compared to the standard scheme is actually increased

by less than a factor of 2.

4.2.4 Numerical Results in R

Example 4.2 To illustrate the effects of this scheme, we again consider the
noisy image from the previous example. We use the true and noisy images from
the previous example, as shown in Figure 4.1(a), and we can compare the results
of our scheme to the results of standard (i.e. non-adaptive) TV restoration,
found in the previous example and shown in Figure 4.1(b). In Figure 4.2 are the
adaptively restored images found by using the values g; = 0.50,0.75,0.90, 1.00,
and € = 1.00,0.10,0.01. Compare these results to the non-adaptively restored
image given in Figure 4.1(b). Table 4.3 gives the ISNR for each of the restored

'The numerical problem that arises from solving the TV minimizing restoration problem
(2.2) or {(4.2) is nonlinear, and hence must be solved with an iterative solver, for which an initial
estimate or guess is needed.
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0.50,¢ =

I

o 0.50,¢ = (b) &

@ & = 075,c = () & =0Tc= ()5 =075 =
1.00. 0.10. 0.01.
® & = 090, = (h) & = 090,¢ = () & = 090,¢ =
1.00. 0.10. 0.01.

i 7 83 b4 45 &9 07 O8 &9

() % = 1.00,¢ = k) & = 1.00,¢ =
1.00. 0.10.

Figure 4.2: Example 4.2: Feature-driven Adaptive TV minimizing (FATV)

restoration of a noisy R! image.
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images. For this example the results are better for larger values of g and smaller

values of e.

%\ el 100 0.10 0. 01
0.50 | 13.63 dB | 15.58 dB | 15.93 dB
0.75 | 13.55 dB | 15.96 dB | 16.45 dB
0.90 | 13.66 dB | 16.86 dB | 18.20 dB
1.00 | 13.56 dB | 16.72 dB | 18.23 dB

Table 4.3: Example 4.2: the improved SNR for the adaptively restored images,

using various ratios of g—z— an various values of ¢. The ISNR for the standard

(non-adaptive) restored image is 11.78 dB, as shown in Table 4.1, row (b). The
restored images, shown in Figure 4.2, were found using the scheme given in Table
4.2.

4.3 Adaptive Image Restoration in R?

4.3.1 Weighted TV Norm in R?

We now extend our discussion to images in B2, For a discrete R? image {u;;}, 1 <

i, < n, the most natural way of discretizing (1.5) is

n—1 n

TV(8) = {33 luali 500 + lli + 5,9
F S ualind + DE g + 3P )

(i



where

. . dulz,
u i+ 4,5) = 2z

l(m,y)z(mi%,yj)»

uy(z + %aj)

Bufm,y!l
By (w,y):($,+l,yj)=
3 (4.6)

|y 1)
.?+§

wlij +4) = 24

. dulz,
uy(,j + 3) %ﬁl!(w,w:(mf,yﬂl)-

2

It is easy to see that the first and fourth terms in (4.6) should be discretized as

ug(i + 1,7} = i1y — vig,

uy(d,7 + 3} = Ui — Ui

One natural approach to discretizing the second and third terms in (4.6) would

be

uy( 4 5,7) = F(ijan + tipnien — %igo1 — Yir1,i-1)s

U(t, 7+ 3) = Etigr + Uisr 01 — Yie1j — Ui-1,41)-

In this chapter we use the minmod scheme [22] in order to better preserve bound-

aries of image features:

uy(i+1,7) =
minmod| 2 (Ui jp1 + Wip1,j41 — %ij — Yit1i)s
(i + i1 — Uijo1 — Uiyi-1) ]
uo(i,j + §) =
manmod| $(Uig1,; + Yig1,i41 — Uij ~ Yij41)s

5 (Ui + tigen — Uictj — Y141 ]
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where
sign{a) + sign(b)

5 min(|al, |8]).

minmod(a, b} =

The discrete weighted T'V functional in R? is analogous to the discrete weighted
TV functional (4.4) in R':

GAOREIETS 3 SN XN

OQur adaptive restoration scheme for R? is given in Table 4.4. It is analogous to

the adaptive restoration scheme for R* given in Table 4.2.

We point out that as in the R' case, the partially restored image found in
Step 1 can be used as a first guess in the iterative numerical scheme used to find
the adaptively restored image in Step 3, so that the extra computational cost of

the adaptive scheme is generally not significant.

4.3.2 Numerical Results in R?

Example 4.3 We apply our adaptive TV minimizing restoration scheme, as
well as the standard scheme for comparison, to five noisy test images: a cross, a
triangle, a circle, a square and a hemisphere. The resulting images are found in
Figures 4.3 - 4.5. Errors between the true image and each of the original (noisy)

ug, standard restored siundard, and adaptively restored wggapeive 1tnages are given

in Table 4.5.

As demonstrated in Figures 4.3 and 4.4 and Table 4.5, our scheme is superior
to standard TV minimizing image restoration for denoising piecewise constant

images. At the same time, our adaptive scheme has similar effects as standard
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The FATV Scheme in R*:
Feature-driven Adaptive Total Variation

Minimizing Image Restoration in R?

1. TFind %@ by solving

min TV (%) subject to ||ii — uli® = &7,

where 0 < g; < 1.

2. For 1<i:<n—1,1<3 <n, define

&, 1., = 7o 1~ y
od |ty — Uil + €
and for 1 <1< n,1 <75 <n-—1, define
1
Fiitd T Jigjan — g+
where ¢ > 0.

3. TFind the adaptively restored image « by solving

nguin TVy(u) subject to |ju— u@H2 = g2,

Table 4.4: Feature-driven Adaptive TV minimizing (FATV) image restoration
scheme in R
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0 dB.

(¢) Non-adaptively re- (d) Adaptively restored
stored. using &7 = 1.0, ¢ = 0.1.

f{“

i

y ‘f’} i ‘ m
] A ‘ ,N'\ Ve m
U!i’:, ﬁéf'ft i “‘“ d

il

‘}i f it .0\"!

0 dB.

(g) Non-adaptively re- (h) Adaptively restored
stored. using g—: = 1.0, e = 1.0.

Figure 4.3: Example 4.3: image restoration using the FATV Scheme.
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(a) True Image. (b) Noisy image, SNR =
0 dB.

(c) Non-adaptively re- (d) Adaptively restored
stored. using g; = 1.0, e = 1.0L

AT ' ‘f a“; “
.‘, ) ‘v.‘!.‘. ivf\._ ‘
"h" {4 \.(.' \"!}ﬂ\\i\}a\‘f\y‘i&\\‘{r e,
i
i \‘("f.a\?y-.v

LN

(e) True Image. (f} Noisy image, SNR =
0 dB.

(g) Non-adaptively re- (h) Adaptively restored
stored. using 5}; =1.0, e= 1.0,

Figure 4.4: Example 4.3: image restoration using the FATV Scheme.
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Image ISNR, vstandard | ISNR, Ugdaptive | €
Cross 8.00 dB 25.80 dB 0.1
Triangle 12.75 dB 19.17 dB 1.0
Circle 13.75 dB 17.35 dB 1.0
Square 9.73 dB 17.12 dB 1.0
Hemisphere 0.39 dB 0.34 dB 1.0

Table 4.5: Example 4.3: the improved SNR for both the standard (non-adaptive)

Ustandard a1d adaptively restored w,gapive images, which are shown in Figures 4.3,
4.4 and 4.5.

;’f' N
Jiit n','".""\‘:\ 2
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’”f’ %"l' f " \\\\
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N,

\""

-o—;

(a) True Image.

(b) Noisy image, SNR =
3 dB.

ffl;"’f"’r,m'.'l Iy
mllr'l; y

(¢) Non-adaptively re-
stored.

(d) Adaptively restored
using i—: =10, e = 1.0,

Figure 4.5: Example 4.3: image restoration using the FATV Scheme.
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TV restoration for denoising smooth images, as demonstrated in Figure 4.5.

We found that relatively conservative values of € were appropriate in restoring
these R? test images. For most of the examples we used a value of € = 1.0, except
for the case of denoising the cross, in which for this example € = 0.1 gave better
results. We conclude that for an image with grayscale values ranging between 0
and 1, a good range would be 0.1 < e < 1.0, with € being closer to 1 to be more
conservative. Of course, if the grayscale range of the image is greater than 0 to 1,
¢ could be chosen larger, in a linearly dependent way. We note that larger values

of ¢ also result in a more stable numerical problem.

4.4 Summary

In this chapter, we have given a feature-driven spatially adaptive total variation
minimizing image restoration scheme, where the adaptivity is realized by weight-
ing the measure of total variation of the image. A spatially varying weighting
factor is chosen to be inversely proportional to the likelihood of there being an
edge (i.e. discontinuity) between two neighboring pixels. The approach given
in this chapter is to determine the weighting factor by examining the size of
the jumps between neighboring pixel values in a partially restored image. To
control the effect of the weighting factor, as well as to improve the stability of
the resulting numerical problem, a parameter is chosen (which herein is labelled
). We found that the appropriate value of ¢ should be approximately equal or
slightly less than the grayscale range of the image. Our adaptive TV minimizing
image restoration scheme proved to be quite effective and superior to standard
(non-adaptive} TV minimizing restoration in restoring piecewise constant image
features. The adaptive and standard schemes were quite similar in restoring

smooth image features. The extra numerical cost of solving the adaptive restora-
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tion problem is not great relative to the cost of solving the standard restoring

problem.
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CHAPTER 5

Scale-driven Adaptive Total Variation

Minimizing Image Restoration

In this chapter we use the theory developed in Chapter 3 to develop a spatially
adaptive TV minimizing image restoration scheme which is driven by the local
scale in the image. The end result is that the image is selectively restored to a
precisely-controlled level of detail; that is, the processed image will be comprised
of features with scale no smaller than a controlled threshhold. This scale thresh-
hold is selected by the user, and may be constant or spatially varying, depending

on the type of image to be restored and the purpose of the restoration.

When using our scheme, the user has explicit control over the minimum scale
to be present in the restored image. The image manipulation is done selec-
tively; that is, the restoration is only done where needed, in order to preserve as
completely as possible the original features, even though they have been noise-
degraded. Moreoever, inherent to TV image restoration, there is no blurring
or shifting of important edge information, as edge location is preserved exactly.
Our scheme can also be characterized as a spatially-selective anisotropic diffusion

scheme, as our results demonstrate.

The balance of this chapter is as follows. In Section 5.1 we discuss the feature
of automatic scale recognition which is inherent in TV regularization and which

will be a important idea used in constructing our scheme. In Section 5.2.1 we
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discuss the basic ideas and theory used to construct our scheme. The basic
algorithm is given and discussed in Section 5.2.2, while a modified, more robust
version of the algorithin is given and discussed in Section 5.3. In Section 5.4 we
give results of applying our scheme to noisy images in B! and R%. In Section
5.5 we give a summary of our results and discuss future work motivated by the

results of this chapter.

5.1 Automatic Scale Recognition

Qur scheme is constructed using the theory developed in Chapter 3, in which
we give exact analytic solutions to the TV image restoration problem for specific

cases. We found that the basic effect of TV image restoration, when solving
min { Hlu—uol? +aTV() }, (5.1)

is to change the intensity level of each feature, depending on the scale of the
feature, in such a way as to reduce the contrast in the image. The change in
intensity level § is inversely proportional to scale and directly proportional to

the regularization parameter o, as given in Chapter 3:

(8

6=

(5.2)

scale

In general, equation (5.2) is important because of the insight it gives us into how
and why TV regularization restores an image: noise (which in general can be
thought of as some combination of relatively small-scaled features) is removed,
while larger-scaled features are left relatively intact. The balance between noise

removal and detail preservation in solving (5.1} is determined by the choice of a.
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The scale of an image feature is defined in Chapter 3 as the ratio of the size a
feature’s area to the size of its boundary. That is, where {2 represents an image

feature,

scale = % (5.3)

For example, in a two-dimensional image, a circle with radius r would have scale

Tre

SCG;Z? = % == 5,
5o that the scale is linearly increasing with the radius r. We note that this
definition of scale is given for piecewise constant image features. Although this

definition (5.3) does not extend exactly to non-piecewise constant image features,

this has no detrimental effect on the results of our scheme.

For a noise-free image with distinct piecewise constant features, we can find
the scale of each image feature by solving the TV minimizing image restoration

problem {5.1), using (5.2), rewritten as

scale = %. (5.4)

We give an example to illustrate how this is done.

Example 5.1 In Figure 5.1{a) is an image ug(Z) comprised of simple piecewise
constant features. To find the scale throughout the image, we solve the standard

TV minimizing image restoration problem (5.1) to find u(#). We then compute

8(Z) = [u(@) — uo(Z),
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{(a) Original image, up. (b) The change in intensity level, 8(Z)

uo(Z) — w(&)|-

(¢} The scale of the image features, scale(Z) =
&

“5“(;:_“‘")" .

Figure 5.1: Example 5.1: automatic scale recognition by solving (5.1).
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which is plotted in Figure 5.1(b). Finally, we use (5.4) to find

scale(F) =

which is plotted in Figure 5.1(c).

This feature of automatic scale recognition is used to construct our adaptive

image restoration scheme, as discussed in the next section.

5.2 The SATV Scheme: Scale-driven Adaptive Total Vari-

ation Minimizing Image Restoration

5.2.1 Underlying 1deas of the Scheme

The purpose of our scheme is to resolve an image to a precise, user-controlled
level of detail. For example, this level of detail might correspond to the scale
of the image features of interest to the user. In this case, our scheme preserves
the features of interest (i.e. those with scale larger than the selected threshhold),
while removing the noise and/or other extraneous detail in the image. The scale
throughout the image is determined while the restoration is being done, as dis-

cussed in the previous section.

In standard TV minimizing image restoration, we solve (5.1) in a single step,
with an appropriate value of o (which is done automatically if solving the noise-
constrained problem (2.2)). In our scheme, the approach is to regularize the image

gradually and selectively in a process of multiple steps. This is accomplished by
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repeatedly solving

min - { 3|l tnew — Uoigl* + ¢ TV {tew) T, (5.5)

=y

repeatedly, updating u,y at each step, as subsequently described. Initially we set
Upld = Ug. Because this is a multi-step process, we use a smaller value of o in
solving (5.5). For example, if in solving (5.1) we used the value of ¢, then using

@, R . .
Tp nour multi-step scheme would require approximately 10 steps.

In each step, after finding wn.., by solving (5.5), in theory we determine
scale(Z), the scale of the features in the current image, as described in the previ-
ous section. We then allow the regularization to occur where the scale is smaller
than the desired threshhold, scaley,esn; however, the regularization is not applied
where the scale of an image feature is larger than the scale threshhold. In other
words, where ., 18 the adaptively or selectively restored image, after solving

(5.5) we determine scale(F) and set

Unew(Z) if scale(F) < scalegpresh
ﬁnew(f) =

uold("ﬁ) if Scale(‘i“) Z Scalethrcsh

So in a single step of this process we start with our current image u,4, and
eventually find @,e., a selectively restored image where the regularization is ap-
plied only in certain areas (where scale(Z) < scaleipresn). At the conclusion
of each selective restoration step, we redefine U,y = finew, and repeat the step,
solving (5.5) in each step, until convergence of the scheme. Convergence occurs
when

max scale(#) > scalepresh,
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that is, when all features which are of scale smaller than the desired threshhold

(such as noise) have been regularized from the image.

In theory, in each step of this process we check at each location in the image
to see if

scale(Z) < scalepresh.

In practice, we do not actually compute scale() throughout the image. At each

step it is easy to compute

8(Z) = |ttnew (&) — tota(&)]-

This actually gives us the information we need without explicitly computing the

scale, since (5.2) leads to the relationship

scale(Z) < scalespresn <= 6(Z) > binresh,
(5.6)

&
where Oithrosh = ————.
scalespeesh

So at each step, rather than computing scale(Z), we need only compute §(%) =
|u(Z) — uo(Z)|, in order to extract the desired information about scale of the

various image features.

5.2.2 The Algorithm

In Table 5.1, we give the algorithm of the SATV Scheme for the R?* case. It is

obvious how this scheme would be constructed in the B' and R* cases.

5.2.3 A Single Iteration of Step 3
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The SATV Scheme:
Scale-driven Adaptive Total Variation

Minimizing Image Restoration in R?

1. Choose scalegy,esn, the desired scale threshhold,

and compute 8yp.esn using equation (5.6).
2. Choose «, to use for each iteration of Step 3.

3a. Given uyy and «, find ., the solution to
min{ §l[tnew — totalf* + & TV (tinew) }
(use uog = ug for the first iteration of Step 3).
3b. Tor 1 <t <m,1<7<n,
8(1,5) = |unew(?, 5) — tota(?, )|
3c. I Ir%?xﬁ(i,j) < dthresh,
then,end the algorithm (else proceed to Step 3d).
3d. For 1 <:<m,1 <5< n,
if 6(1,7) > Sthreshs
then Gnew(?,7) = Unewls, 1),

else tnew(t,7) = voa(z, 7).

3e. Update uyq = Tinew, and repeat Step 3.

Table 5.1: Scale-driven Adaptive TV minimizing (SATV) image restoration
scheme in R2.
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0.8

0.8

04

02F

(a} Images uqq (solid line) and upeqy
(dotted line), which is found in Step
3a.

0.8F

C.6F

045

D.2¢

QAF 1

0.3

(b) Absolute change in intensity
§(z) = |u{z) — uo(z)|, found in Step
3b (solid line), and &ipresn = 0.1 (dot-
ted line).

LX: 19

0.6

04y

o.2F

(¢) tnew, the modified version of
Upew, a9 Tound in Step 3d.

{(d) The final image, after convergence
of the scheme.

Figure 5.2: Example 5.2: an illustration of a single iteration of Step 3 in the
SATV Scheme.
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Example 5.2 To illustrate the effects of the Scale-driven Adaptive TV Mini-
mizing Scheme (SATV Scheme), we examine a single iteration of the scheme when
applied to a simple, noise-free function in R'. In Figure 5.2(a} are the current
image uyqg and the regularized image u, found in Step 3a. In Figure 5.2(b), we
plot 8(z) = |u{z) - uo(z)|, to determine where to apply the regularization (i.e.,
where to allow the changes from ug to u in Step 3a, to remain), depending on the
scale in the image. We use the relationship (5.6) to do this. Finally, in Figure
5.2{c) we see the modified regularized image, tne,, which is equal t0 Upe, in the
regions where scale(z) <¢ scaleipyesn (this is only in the region of the narrowest
column, located between 0.6 and 0.7 in the domain of the image}, and equal to
Uorg elsewhere. In 5.2(d) is how the image would appear upon convergence of the

scheme.

5.2.4 Choosing scaleper, and a

The choices of parameters made in Steps 1 and 2 must be guided by understanding
of the effects of Step 3, as analyzed above. In choosing scalegnresn (Step 1), the
following should be kept in mind: a larger value of scaleipresp, Wwill result in less
detail being present in the restored image (which includes better noise removal),
and conversely, a smaller value of scalegyesn will result in more detail (possibly
including more noise) being present in the restored image. The choice should
be made based mostly on the purpose of the restored image, but with some

consideration of the type and level of noise in the image.

In choosing o (Step 2), the following should be kept in mind: a larger value of
o will result in faster convergence to the restored image (i.e. fewer iterations of
Step 3 to reach the final image), but with less sensitivity to detail; conversely, a

smaller value of @ will result in better sensitivity to detail preservation, but will
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require more steps of the algorithm to reach the final image. For choosing both
scalegrresh and a, a bit of experience in applying the SATV Scheme will provide

useful insight into how to choose appropriate values for a particular image.

5.2.5 A Numerical Implementation Consideration in R? and R?

Step 3a involves finding the solution to (5.5), the standard TV restoration prob-
lem. As shown in Chapter 3, standard TV image restoration naturally preserves
the edges exactly for radially symmetric image features, but boundary defor-
mation can occur for non-radially symmetric features, such as those with sharp
corners. To overcome this effect, if desired, in applying TV restoration to two- or
three-dimensional images, one might employ a numerical approximation scheme
which 1s better at preserving edges for non-radially symmetric features, such as
the minmod scheme used in {22]. In general this is recommended, although for
some tasks it may be that this effect of boundary smoothing is desired. Again,

experience will help in determining which approach to use.

5.3 The Look-ahead Scale-driven Adaptive Total Varia-

tion Minimizing (LSATV) Image Restoration Scheme

In its current form, the SATV Scheme given in Table 5.1 is somewhat simplis-
tic. Specifically, there is the possibility that, depending on the noise in the
image, some image features of scale greater than the desired threshhold might
be removed. An example of this breakdown is given below by examining single

iteration of Step 3 of the SATV Scheme.

Example 5.3 In Figure 5.3(a) are the current image uoq and the regularized

image Unew, found by solving (5.5). In this example we are interested in preserving
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(a) Images uoyy (s0lid line) and
Unew (dotted line), which found
in Step 3a of SATV Scheme.

(b) Absolute change in intensity
§(x) = |u(z) — up{x)i, found in
Step 3b (solid line) and inresn
(dotted line).

(€} Binew (solid line), the modified
version of tnew, as found in Step
3d.

(d) The results of another itera-
tion of Step 3.

(e) The final image, after conver-
gence of the SATV Scheme.

(f) The final image, after con-
vergence of the LSATV Scherne,
subsequently given in Table 5.2,

Figure 5.3: Example 5.3: an illustration of the breakdown in the SATV Scheme.



the single column as a whole, but not the division of the column in to two parts.
In Figure 5.3(b), we plot é(z) = |u(z} — uo(z}|, to determine where to apply
the regularization (i.e., where to allow the changes, due Lo regularization in Step
3a, to remain), depending on the scale in the image. We use the relationship
(5.6) to do this. The &presn shown in Figure 5.3(b) corresponds to wanting to
preserve image features with scale at least as great as the width of the entire
column. Finally, in Figure 5.3(c) we see the modified regularized image, t,ew (%),
which is equal t0 Unew (&) in the regions where scale(x) < scalegpresr and equal
to una(F) elsewhere. In Figure 5.3(d) gives the results after another iteration of
Step 3 in the SATV Scheme. In (d) the old image (dashed line) is the selectively
restored image found in the previous step, shown in Figure 5.3(c). In 5.3(e)
is how the image would appear upon convergence of the scheme. The feature,
which has a scale greater than scaleyesn (which means we want to keep this
feature, has been lost, due to the oscillatory-like behavior of the SATV Scheme.
Figure 5.3(f) shows the final image which would be found if the LSATV Scheme,
a more robust version of the SATV scheme, were used. The LSATV Scheme is
given in Table 5.2. The difference between the LSATV and SATV schemes is
that in the LSATV Scheme, a look-ahead step is included in the algorithm which
checks to see if a certain image feature is actually part of a larger feature. The
look-ahead idea is to take the selectively restored image .y, apply standard
TV regularization to it, and use the results to modify €,y a second time before
proceeding with another full iteration of the scheme. In this look-ahead step,
we uge the information to more accurately determine how the scale throughout
the image relates to scalegpresn. A careful analysis of the LSATV Scheme will
clarify the purpose of the scheme. The LSATV Scheme is the SATV Scheme,
with Steps 3e and 3f added, and Step 3g being a modified version of Step 3e
from the SATV Scheme, in order to accomplish this look-ahead approach. This
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essentially doubles the work, but will remedy this type of breakdown which might

otherwise occur.

5.4 Numerical Examples in B! and R?

Example 5.4 To demonstrate in some detail how the Look-ahead Scale-driven
ATV Scheme will affect a noisy image, we consider the R* example illustrated in
Figures 5.4 - 5.6. The true and noisy images are shown in Figure 5.4{a). The
subsequent images show the adaptively restored image at each step of the process.
Figure 5.6(c) is the final image produced by our algorithm, along with the true
image for comparison. Also for comparison we give Figure 5.6(d), which is the
image found using standard TV restoration. In applying the LSATV Scheme, we
used a scale threshhold that would remove all features of scale smaller than the
column of width 0.05, the approximate width of the smallest column in the true

(noise-free) image.

Example 5.5 In this example we apply the LSATV Scheme to a noisy R*
image. We choose scalegpresn t0 be equal to the smallest-scaled feature in the
image, so our scheme will remove the noise in the image while preserving the
features, particularly the smaller ones, as well as possible. In Figures 5.7(a),
(b), {c) and (d) are the true, noisy, standardly restored and adaptively restored
images, respectively.

As demonstrated in Figure 5.7, the adaptiive scheme does a better job than
standard TV restoration in preserving the smaller-scaled features, but it also
tends to leaves the image looking somewhat “patchy.” This “patchiness” 1s due to

the noise (more specifically, the fact that even if the mean of the noise throughout
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The LSATYV Scheme:
Look-ahead Scale-driven Adaptive Total Variation
Minimizing Image Restoration in R?

1. Choose scalepess, the desired scale threshhold,

and compute &ipres, using equation (5.6).
2. Choose «, to use for each iteration of Step 3.

3a. Given uyy and o, find Upeq, the solution to
{EEB{ %“unew - uold”2 -+ aTV(unew) }

(use ugyg = up for the first iteration of Step 3).
3b. For 1 <2< m,1<y<n,
81(6,7) = [tnew (2, 5) — vota(d, 7)1
3c. If Ir}afx|6(i,j)| < bihreshs
thenﬂend the algorithm (else proceed to Step 3d).

3d. For 1 <i<m,1<j<mn,
if 51('3,]) > 6th.resha
then '&new(?:)j) = Unew (?':J) )
else Tnew(?,J) = Uadl(?, ).
de. Given fipe, and «, find Uporahead, the solution to

11. min { %Hulookahead - ﬁnem“2 + aTV(ulookahcad) }
lockahead

3. For 1 <i<m,1 <7 <n,
52(i,j) = !Ulookahead(’i:j) - ﬁnew(i:j)l‘
3g. For 1<i<m,1 <5 <n,
if max{61(2,7),62(2,7)} > Sinresh,
then @new(?,7) = Unew(s,7),
else fpew(?,7) = Uoia(t, 7).

3h. Update uyg = tinew, and repeat Step 3.

Table 5.2: Look-ahead Scale-driven Adaptive TV minimizing (LSATV) image

restoration scheme in R2.
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(a) Original image {dashed line) and
noisy image (dotted line)

. : . x x L L L L 3
a 0.1 0.2 03 0.4 0.5 .8 o7 0.4 o2 1

(¢) After 1 iteration of LSATV

(b) Noisy image.

Kl

: £ i L . . X : 4
o1 02 0.3 &4 0.5 0.8 07 [1X:] [13:]

{d) After 2 iterations of LSATV

Scheme. Scheme.
25 256
2k 2k
15} 18+
1} 1
0.5 0.5
o JL/’L(’V]‘ oF=L
—0.5F ~o5}
-1F N " N N N N N N N — —1 B N N N N N N 3z N M -
1] o1 0.2 0.3 04 9.5 0.6 fulrd 0.8 ca 1 o 01 0.2 03 c.4 0.5 0.6 0.7 0.5 0.8 1

{e) After 3 iterations of LSATV
Scheme.

Figure 5.4: Example 5.4: the original image, and the first four steps of restoration

using LSATV Scheme.
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(a} After 5 iterations of LSATV

Scheme.

s | s . . : . . .
a 0.4 0.2 03 0.4 0.6 0.6 o7 2] o8

(¢) After 7 iterations of LSATV
Scheme.

) . 4 . 1 \ 1 1 1
Q a.t 0.2 Lx ] o4 0.6 0.6 oy 2] 0.9

(e) After 9 iterations of LSATV
Scheme.

L L L : L x » \ )
0 a1 0.2 03 04 0.5 o4 o7 0.8 0.9 1

{b) After 6 iterations of LSATV
Scheme.

1 r 1 L L . L i L
0 a1 0.2 0.3 04 0.5 08 or [1:3 0.9 1

1 1 s . + L s 1 s
1] 0.1 0.2 0.3 0.4 0.5 0.6 a7 0.8 o8 1

(d) After 8 iterations of LSATV
Scheme.

(f) After 10 iterations of LSATV

Scheme.

Figure 5.5: Example 5.4: the middle six steps of restoration using LSATV

Scheme.
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(a) After 11 iterations of LSATV (b) After 12 iterations of LSATV
Scheme. Scheme.
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{c) True and adaptively restored im- (d) True and standardly restored im-
ages. ages.

Figure 5.6: Example 5.4: the final two steps of restoration using LSATV Scheme,
and the final restored image, which is compared to the standardly restored image.
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(b) Noisy Version of (a).

(¢) Standard restoration of (b). (d) Adaptive restoration of (b) using
scalegpresn = 0.0,

Figure 5.7: Example 5.5: LSATV Scheme applied to a noisy R? image.
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the image is 0, subsets of the noise will generally have nonzero means), as well
as the fact that regularization halts in any location of the image when a feature
_LT - L

with scale larger than the scale threshhold has been found in that location of

image. This effect and methods for overcoming it are currently under study.

In order to make the results more obvious, we give a cross-section of the images
in Figure 5.7. Figure 5.8(a} shows the location of the cross-sections, and Figure
5.8(b) shows the cross-sections of the true and noisy images at that location. In
Figure 5.8(c) we see the cross-sections of the true and adaptively restored images
and in 5.8(d) are the cross-sections of the true and standardly restored images.

These B! cross-sections give us a clearer and more favorable comparison of the

LSATV Scheme and the standard TV Scheme.

5.5 Summary

We have used the theory developed in Chapter 3 to develop a spatially adaptive
TV minimizing image restoration scheme which is driven by the local scale in
the image. This is a multi-step process which involves selective restoration of the
image at each step. At each step, the current image is restored, and using the
automatic scale recognition feature of TV minimizing function regularization, we
determine where to allow the restoration to occur based on the scale in the current
image. This process is repeated until convergence, updating the current image
with the selective-restored image at each step. Convergence is reached when
the processed image is comprised only of features with scale no smaller than a
controlled threshhold. This scale threshhold is selected by the user, and may be
constant or spatially varying, depending on the type of image to be restored and

the purpose of the restoration. The end result is an irnage comprised of features
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Figure 5.8: Example 5.5: a cross-sect
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with scale greater or equal to the given scale threshhold. Our scheme can also be

characterized as a spatially-selective, TV minimizing anisotropic diffusion scheme.
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CHAPTER 6

Summary

We have analyzed the exact effects of total variation (TV) minimizing function
regularization in R!, ? and RS. This more precise understanding of TV regu-
larization has enabled us to more intelligently construct TV minimizing image
restoration schemes, as well as to better understand what types of images (and
what types of image degradation) are most effectively improved by TV restora-

tion.

We have analytically found exact solutions to the nonlinear TV regularization
problem for simple but important cases, which can be used to better understand
the effects of TV regularization for more general cases. Our results were found
by solving the unconstrained (Tikhonov) formulation of the TV minimizing func-
tion regularization problem, in which a regularization parameter (which may be
spatially varying) is chosen to determine the balance between goodness of fit to
the original (e.g. observed, noisy) function and the amount of regularization to
be done to the function. Our results are equally useful for the noise-constrained

formulation of the problem.

We gave exact formulae that describe the effect of TV regularization when
applied to radially symmetric image features. These formulae are also applied to

more general functions. Four important results which we proved are

o TV regularization of piecewise constant (noise-free or noisy) radially sym-
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metric functions results in a piecewise constant function, with edge location

being preserved exactly;

¢ [unction intensity change due to T'V regularization is inversely proportional
to local feature scale, is independent of original intensity, and is directly

proportional to the regularization parameter;

e for smooth radially symmetric function features, function intensity change
is inversely proportional to radial position and directly proportional to the

regularization parameter;

o TV regularization is local in a certain sense.

We have used our theoretical results to develop two spatially-adaptive TV
minimizing image restoration schemes. Each of our schemes is quite effective in
image restoration in the examples given in this Dissertation. Both schemes are

built around the theory developed in our analysis of TV restoration.

In the first scheme we accomplished adaptivity by locally weighting the mea-
sure or computation of the total variation of the image. We do this based on the
relative likelihood of the presence of an edge in each discrete location throughout
the image. This likelihood is a function of the difference of adjacent neighbors in
both the x- and y-directions (in B? images). The weighting factor is chosen to be
decreasing as the relatively likelihood of the presence of an edge increases. This
allows for less regularization where edges are present and more regularlization
where there are no edges, which results in better detail preservation and better

overall noise removal,

The second adaptive TV minimizing image restoration scheme is driven by
the scale of individual features in the image. This is a multi-step approach which

involves selectively applying restoration in each step, only where the scale of the
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image features is smaller than a user-controlled threshhold. This causes noise to
be removed while preserving image features as well as possible. The end result
18 an bnage comprised of features wilh scale grealer or equal to the given scale
threshhold. The process can be characterized as a scale-sensitive, TV minimizing
anisotropic diffusion process, where the diffusion occurs only to features of scale

smaller than a user-specified threshhold (e.g. noise).

The theory developed in this Dissertation is useful both in understanding
(and thus justifying) TV minimizing image restoration, as well as using this
understanding in developing more effective TV image restoration schemes. The
two adaptive schemes which we have developed can be viewed as prototypes of
an array of adaptive image restoration schemes which will be developed in the

future as a result of our theoretical results.

Future work motivated by the results in this Dissertation includes:

o In regards to our theoretical analysis:

— Extend theoretical results to TV minimzing anisotropic diffusion;

~ Develop theory to understand/predict results when numerical implen-

tation involves using the minmod scheme;

— Develop numerical schemes which take advantage of the localness of

TV regularization;

— Develop theory which describes how the choice of 5% affects the re-

stored image.
¢ Tor feature-driven adaptive restoration schemes (FATV):

— Explore other ways of choosing «(&) in TV, (u) = /a(:ﬁ') |Vu(Z)| dZ.
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o For scale-driven adaptive image regstoration schemes (SATV/LSATV):

— Allowing scale(#) to be spatially varying, for example depending on

the statistical properties of the image;

— Developing Scale-driven Adaptive Total Variation Minimizing Anisotropic
Diffusion, with {2.8), using the automatic scale recognition feature of
TV function regularization to determine where to apply the diffusion

process;
— Interactive restoration;
— Numerical concerns, e.g. computational efficiency;

— Overcoming patchiness in the image caused the the scheme (e.g. this

might be dealt with by using a spatially varying scaleresn(Z)).
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