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ABSTRACT OF THE DISSERTATION

Probability and Symmetry in Computational Linear Algebra

by

Man-Chung Yeung
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1997

Professor Tony F. Chan, Chair

This thesis is divided into two parts. In the first part (Chapter 2), we study
(Gaussian elimination by means of probabilistic analysis and in the second one
(Chapters 3 and 4), we study how to preserve symmetry in preconditioned Krylov
subspace methods and develop a new Krylov subspace solver for the solution of a
nonsymmetric linear system Az = b.

The numerical instability of Gaussian elimination is proportional to the size
of the L and U factors that it produces. The worst case bounds are well known.
For the case without pivoting, breakdowns can occur and it is not possible to
provide a priori bounds for L and U. For the partial pivoting case, the worst

case bound is O(27), where n is the size of the system. Yet, these worst case
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bounds are seldom achieved, and in particular Gaussian elimination with partial
pivoting is extremely stable in practice. Surprisingly, there has been relatively
little theoretical study of the “average” casc behaviour. The purpose of our study
in Chapter 2 is to provide a probabilistic analysis of the case without pivoting. The
distribution we use for the entries of A is the normal distribution with mean ¢ and
unit variance. We first derive the distributions of the entries of L and U. Based
on this, we prove that the probability of the occurence of a pivot less than ¢ in
magnitude is O(e). We also prove that the probabilities Prob(|}{U|]o/1|Allo > n**)
and Prob(}|L||., > n?) decay algebraically to zero as n tends to infinity. Numerical
experiments are presented to support the theoretical results. By combining our
theoretical results and the observations of Trefethen and Schreiber [57] on random
matrices, we propose a new method of using GE which may be particularly suited
to certain kinds of parallel computers, which greatly reduces data movements while
avoiding breakdown and instability effectively.

In Chapter 3, we consider the problem of solving a linear system Az = b when
A is nearly symmetric and when the system is preconditioned by a symmetric
positive definite matrix M. In the symmetric case, one can recover symmetry by
using M-inner products in the Conjugate Gradient Algorithm. Inner products
can also be used in the nonsymmetric case, and near symmetry can be preserved
similarly. We explore the implementation issues associated with this technique and

compare a few different options.

XV



We present in Chapter 4 a variant of the popular BICGSTAB methodkfor solving
nonsymmetric linear systems. The method, which we denote by ML(%)BiCGSTAB,
is derived from a variant of the BiCG mcthod based on a Lanczos process using mul-
tiple (k > 1) starting left Lanczos vectors. Compared with the original BiICGSTAB
method, our new method produces a residual polynomial which is of lower degree
after the same number of steps but which also requires fewer matrix-vector prod-
ucts to generate, on average requiring only 1+ 1/k matvec’s per step. Empirically,
it also seems to be more stable and faster convergent. The new method can be
implemented as a k-term recurrence and can be viewed as a bridge connecting the
Arnoldi-based FOM/GMRES methods and the Lanczos-based BICGSTAB meth-

ods.
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CHAPTER 1

Introduction

One of the most frequently encountered tasks in numerical computation 1s

solving a square and usually large linear system

Az =0b.

There are two types of approach for the solution of the system: direct methods,
which are basically variations of Gaussian elimination (GE), and iterative ones,
which come in many flavours. Direct methods are chosen when A is dense and
unstructured. When A does not fall into this category, iterative methods are often
of interest. Among iterative methods, Krylov subspace methods feature short term
recurrences and therefore require low cost and low memory. In this Chapter, we
give a description of GE and Krylov subspace methods in §1.1 and §1.2 respectively

and summarize the contributions of this thesis in §1.3.



1.1 Gaussian Elimination

GE is the most common general method for solving an square, dense, unstruc-

tured linear system

Az = b, (1.1)

where A is an n x n real or complex matrix and b is a real or complex vector
of length n. The basic idea of the method is to convert the system (1.1) to an
equivalent triangular system. The conversion is built on the following theorem

[31].

Theorem 1.1 If all the principal submatrices of A are nonsingular, then there is
a unit lower triangular matriz I and an upper triangular matriz U with nonzero

diagonal entries such that

A=LU.

If A is nonsingular, then there is a permutation matriz P, a unit lower triangu-
lar matriz L with no entry bigger than 1 in absolute value and an upper triangular

matriz U with nonzero diagonal entries such thal

PA=LU.

If A is nonsingular, then there are two permutation matrices P and (), a unit
lower triangular matriz I and an upper triangulor matriz U, where no entry in

L or U is bigger than 1 in absolute value and all the diagonal entries of U are



nonzero, such that
PAQ =LU.
Corresponding to the different cases in Theorem 1.1, there are three fundamen-
tal versions of GE:
o GE without pivoting: Compute A = LU — Solving Ly = b — Solving

Uz =y

¢ GT with partial pivoting: Compute PA = LU — Solving PLy = b — Solving

Uz = y;
¢ GE with complete pivoting: Compute PAQ = LU — Solving PLy = b —
Solving UQx = y;

For the details of the implementations of these GE versions, one is referred to [31].
The conditions in Theorem 1.1 are only sufficient. In some cases, the LU

factorization of A need not exist. For example, one can not find /;; and u;; such

that 3
1 23 1 0 Uy Upg Ugs
2 4 7 121 1 ] Uge Ugg
16 3 by sy 0 0 ug

To see this, one can equate entries to get
upy =1
Inthy =2 = Iy = 2/upy = 25

lguy =1 -1y = 3/“11 =1;



Uyg = 2;

logtiyg + tgy = 4 — gy = 0.

But when one then looks at the (3, 2)-th entry one obtains the contradictory equa-
tion 6 = I3 g + l3ougp = 4.

In practice, if some diagonal entry u;,;, of U is zero or close o zero, say, t;y;, 18
less than the machine precision in absolute value, then the LU factorization of A
can not be computed, or in other words, GE breaks down. This is because u;,;, will
be used as a denominator in the next step of the computations. Among the three
versions of GE above, it is always true that GE with partial or complete pivoting
has less chance to break down than GE without pivoting. This can be understood
in part from Theorem 1.1 since the condition that all the principal submatrices of
A are nonsingular implies that A is nonsingular but not true conversely. In the
literature of GE, the diagonal elements of U are called pivot elements.

When GE is performed on the system (1.1) in floating point arithmetic, the
computed LU factors I and U are produced. Then, by solving two corresponding
triangular systems, we obtain the solution & to (1.1). The computed solution &

satisfies
(A+ E)z=b
with

|B| < nu (3]4] +5|L{|07]) + O(u?)



in the case of GE without pivoting and
|B] < nu (3141 + 5 PT|L|TT]) + O(w?)

in the case of GE with partial pivoting, where P is the computed analogs of P.
Here % is the unit roundoff and for any matrix M, we use | M| to denote the matrix
obtained by taking the absolute value of the elements of M [31, P.106, P.115}. From

this, it follows that

1Bl < nullAll (3 " snﬁuw%) 1 O(u).

We define

= llle>  po = U1/ Al (1.2)

and call p;, and py the growth factors. It is obvious that the smaller the growth
factors are, the more accurate the computed solution  is.

GE with partial pivoting is extremely stable in practice. However, this stability
can not be guaranteed. The worst case examples are well known: the “growth
factor” can be as large as O(2*) (and can occur in practical applications [24]).
Theoretical studies on the numerical stability of GE have been made since 1940s by
a great number of authors, for example, Turing [59], von Neumann and Goldstine
[61], [62], Wilkinson [63], [64], and so on. Recently, Trefethen and Schreiber [57]

considered the topic from a statistical viewpoint.



1.2 Krylov subspace methods

A Krylov subspace method is an iterative method for the solution of (1.1)
when A is sparse, or probably structured. At the I-th iteration of the method, the

approximate solution z; is defined by the Petrov-Galerkin condition
T, € o+ Ki{A,1p) = 2o + span{ry, Arg, -+ , A7 ry}

and

b—ASEl __LLI,

where £; is a subspace in R» of dimension / and where 1y = b — Azg is the initial
residual for the initial guess z,. The subspace K;{A,rp) is called a Krylov subspace.
The existing Krylov subspace methods in the literature are defined with special
choices of £;. For example, we obtain the BiCG method {22, 39, 50] when we

choose

Ly = K (AT, ry),

where 7% is an arbitrary vector, and the FOM method [47, 48, 50! when

E! - I{I(A'.' TO)'

The classical Conjugate Gradient method (CG) [36] is a special version of BiCG
where A is symmetric.
Let v be a vector and ¥4 ,) be the grade of v with respect to A, 1.e., the degree

of the minimal polynomial of v with respect to A. Given two vectors vy and v,



we define

vET v, viTAvy, -+ v3TAPly
'UgTA'UO 'UETAZUO L 'UﬁTAl'UO
W, = ) [=1,2, y s
'USTAI_]"’UO USTAI’UD e USTAz(I—l)vD

where v = min{v4 ), (473 }- The derivation of BiCG is based on the Lanczos

process [38] which is figured out by the following theorem.

Theorem 1.2 Given v, and v:. If the principal submatrices of W, are nonsingu-

lar, there exist n X v matrices V, = [vg, vy, ,v,1] and V) = [0}, 0], i

of rank v, whose first columns are v, and v} respectively, and a v X v tridiagonal

matriz T, with all the entries t;,, ; =1 in its lower subdiagonal, such that
(vpvp) =6p,  LI=0,1,---,v—1,
where §p =0 if L# U and 64 #0 if I =1, and
AV, =V,T,

and

ATV = V*T,.
Such V,,V* and T, are unique.

In practice, the Lanczos process could face breakdown - divisions by 0 - called

Lanczos breakdown, when the Lanczos vectors v; and v} are exactly or nearly linear



dependent. Techniques called look-ahead have been developed to cure this kind of
breakdown, see, for instance, [10, 11, 26, 27, 32, 34, 44, 45, 56] and the references
given therein. Moreover, in the actual derivation of the BiCG algorithm, the
matrix T, is decomposed into two triangular matrices and as a result, BiCG is
a two-term recurrence method. Since such a decomposition of T, need not exist,
BiCQ has another potential breakdown called pivot breakdown in addition to the
Lanczos one. Several methods have been produced to remedy pivot breakdowns,
e.g., CSBCG [6, 7] and QMR [29].

FOM is derived from the Arnoldi process [3] which is charactered in the theorem

below.

Theorem 1.3 Given v, with ||vg|ls = 1. There exist an n X v orthonormal matriz
V, = g, vy, ,Vy_1] of rank v, whose first column is vy, and a v X v Hessenberg
matriz H, such that

AV, = V.,
where v = V(g Such V, and H, are unique.

Mathematically, no breakdown occurres in the Arnoldi process. Similarly to
the case of BiC@, the matrix H, is factorized into two triangular matrices in
deriving the FOM algorithm and therefore, pivot breakdown is possible in FOM.
GMRES [47, 48, 50] is an improved version of FOM which not only remedies
pivot breakdowns in FOM but minimizes the residual at each iteration. FOM

and GMRES are long-term recurrence methods involving all previously computed



iterates and residuals, unless truncated or restarted, otherwise they are practically
impossible. However, both truncated and restarted treatments lose the convergence
history.

BiQG and QMR require to perform a matrix-by-vector product with the trans-
pose matrix AT at each iteration. Since AT may not be available in some ap-
plications {50, p.214], methods avoiding transpose product have been developed.
Examples of these include TFiQMR [14], CGS [55], BiICGSTAB [60], BICGSTAB2
[33], TFQMR. [25} and BiCGSTAB(k) [53]. In principle, these methods compute a
residual characterized by a product of the BiCG residual with a polynomial of the
matrix A. Typical examples are CGS and BiCGSTAB. The residuals rP@S and

rBiCGSTAB of CGS and BiCGSTAB respectively at the {-iteration are defined by
rOGS = 4y (A)rBice

and
pBiCGSTAB — ¢( A)rPiod,
where ¥;()\) is the polynomial of degree I such that rf¢ = P, (A)ry and where

o) = (oA + D1 (A) and ¢o(A) = 1. Transpose-free methods which cure

breakdown have also been developed, e.g., [12, 30].



1.3 Contributions of this thesis

In this thesis, we study GE without pivoting from the point of view of proba-
bility (Chapter 2), how to preserve symmetry in preconditioned Krylov subspace
methods (Chapter 3) and also develop a new Krylov subspace solver to the system

(1.1) (Chapter 4).

1.3.1 Probabilistic analysis of GE without pivoting

Recently, Trefethen and Schreiber(TS) [57] studied the numerical stability of
GE with pivoting from the viewpoint of statistics. Among their many results,
they observed that for many distributions of matrices, the matrix elements after
the first few steps of Caussian elimination with (partial or complete} pivoting
are approximately normally distributed. They also found that, for n < 1024,
the average growth factor (normalized by the standard deviation of the initial
matrix elements) is within a few percent of n?/3 for the partial pivoting case and
approximately n'/2 for the complete pivoting case. After having performed more
extensive experiments, Edelman and Mascarenhas [20] further suggest that the
growth factor in the partial pivoting case may grow more like nt/? than n?/3,

Following TS, we study the probability of small pivots and large growth factors
in Chapter 2. Howeover, we will only consider the case without pivoting. We are

doing so for three reasons. The first is quite obvious: the non-pivoting case is far

10



easier to analyze than the pivoting case. In particular, we are able to derive in
closed form the density functions of the elements of the LU factors and probabilistic
bounds for the occurence of small pivots and the growth factors. The second reason
is that, with the advent of parallel computing, there is more incentive to trade off
the stability of partial pivoting for the higher performance of simpler but possibly
less stable forms of GE, including no pivoting, see, for instance, [42, 43]. Finally,
we are hoping that our results for GE without pivoting will be useful in the analysis
of, as well as providing a basis of comparison for, the partial pivoting case.

The class of random matrices we chose to study is that of (complex) Gaussian
matrices. By definition, a (complex) Gaussian matrix is a random matrix with
independent and identically distributed elements which are (N(0,1)) N(0,1), the
normal distribution with mean 0 and variance 1. This choice is motivated by the
empirical results of TS mentioned earlier. Matrices of this type have also been
studied by Edelman [17], [19], who derived the expected singular values.

On some kinds of parallel computers, say, systolic systems [37], avoiding data
movements is necessary [40]. Based on our theoretical results and TS’s observa-
tions, we suggest that we may use GE in such a way that, in the first few steps, we
use GE with partial (or complete) pivoting and then use the version without pivot-
ing (or with pairwise, neighbor pivoting). Our experimental results illustrate that
this idea may minimize data movements while avoiding breakdown and instability

of GE.

11



1.3.2 Symmetry in preconditioned Krylov subspace methods

Consider the solution of the linear system (1.1) by a preconditioned Krylov
subspace method. Assume at first that A is symmetric positive definite (SPD)
and let M be an SPD matrix that is a preconditioner for the matrix A. Then one

possibility is to solve either the left-preconditioned system

M-1Az = M~1b (1.3)

or the right-preconditioned system

AM™tu=5b, z=M1u. (1.4)

Both of these systems have lost their symmetry. A remedy exists when the pre-
conditioner M is available in factored form, e.g., as an incomplete Choleski factor-
ization,

M = LIT,

in which case a simple way to preserve symmetry is to split the preconditioner

between left and right, i.e., solve

LAL-Ty = -1, @ = L~Tu.

This can also be done when M can be factored as M = M1/2x M1/2. Unfortunately,

the requirement that M be available in factored form is often too stringent.

12



However, this remedy is not required. As is well-known, we can preserve sym-
metry by using a different inner product. Specifically, we observe that M-1A is

self-adjoint for the M-inner product,

(z,y)p = (Mz,y) = (z, My)

since we have

(M_lAm:y)M = (A:an) = (m,Ay) = (va(MmlA)y) - (va_lAy)M-

Indeed, this is how the preconditioned conjugate gradient (PCG) and symmetri-
cally preconditioned conjugate residual algorithms may be derived {31, 35, 50].
The question we now raise is the following. When A is only nearly symmetric,
it is often the case that there exists a preconditioner M which is SPD. In this
situation, the use of either of the forms (1.3) or (1.4) is just as unsatisfactory as
in the fully symmetric case. Indeed, whatever degree of symmetry was available
in A is now entirely lost. Although the above remedy based on M-inner products
is always used in the symmetric case, it is rather surprising that this problem is
seldom ever mentioned in the literature for the nearly symmetric case. In the
nonsymmetric case, when M exists in factored form, some form of balancing can
also be achieved by splitting the preconditioner from left and right. However, there
does not seem to have been much work done in exploiting M-inner products even
when M is not available in factored form. This dichotomy between the treatment of

the symmetric and the nonsymmetric cases is what motivated the study in Chapter

13



3, where we suppose A is nearly symmetric and show how alternative inner products
may be used to preserve the degree of symmetry of A in preconditioned Krylov
subspace methods.

Ashby, Manteuffel, and Saylor [4] have fully considered the case of using al-
ternate inner products when the matrix A is symmetric. Work of which we are
aware that consider the use of alternate inner products when A is near-symmetric
are Young and Jea [65] and Meyer [41]. In the latter, the ATM 1A inner product

(with M SPD) is used with ORTHOMIN and ORTHODIR.

1.3.3 ML(k)BiCGSTAB

BiCGSTAB is a popular Krylov subspace method for the iterative solution of
nonsymumetric linear systems. Its main features are that it is transpose-free, makes
more efficient use of matrix-vector products when compared to BiCG and is more
stable than CGS, but it faces potential breakdown. In Chapter 4, we introduce
a new variant of BICGSTAB which inherits all of these nice features and reduces
the probability of breakdown to zero. In addition, the key new ingredient of our
method is the use of multiple starting left Lanczos vectors which has the desirable
effect of lowering the cost per step and increasing the robustness.

BiCGSTAB is derived from BiCG which is a Lanczos based Krylov subspace

method. In BiCG, the residual vector r; at the I-th step lies in a Krylov subspace
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Ki41(A, 1) and is chosen to be
(¥ R El = I{I(AT,T';).

In our variant of the BiCG method, which we denote by ML(k)BiCG, r, is still in

Ki11(rg, A) but is now chosen to be

Lif} L L"l = Span{plana st 7pl}7

where pq = ATig. i =1,2,--- k5 =0,1,2,---, and ¢,;’s are k arbitrary vec-
tors. In the context of Krylov subspaces, £, is the union of k& Krylov subspaces
K;11(AT,q,) and K;(A”,q,), where 1 < s <12 < 8" < k and jk + 4 = [, generated
from k linearly independent starting vectors ¢;.

Our motivation for using multiple starting Lanczos vectors is to mitigate some-
what the ill-conditioning of K;(AT,r¥) for large ! by replacing a high degree Krylov
polynomial corresponding to one starting vector by a union of lower degree Krylov
polynomials generated from different, independent starting vectors. We think this
leads to better stability and robustness of the resulting iterative method and, by
choosing the starting vectors randomly, we may avoid breakdown in practice. We
derive an efficient implementation of this idea, requiring only memory of the pre-
vious k iterates (i.e. a k-term recurrence).

But we consider the major contribution in Chapter 4 to be an extension of
BiCGSTAB, which we denote by ML(%)BiCGSTAB, using multiple starting Lanc-

zos vectors. The derivation is similar to, but rather more complicated than,
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that of deriving BICGSTAB from BiCG. Not only does our method inherits from
ML(k)BiCG the increased stability of using multiple starting Lanczos vectors, it
also inherits from BiCGSTAB the advantages of being transpose-free and also more
efficient in using matvec per step than ML(k)BiCG. Specifically, after [ = jk 44
steps, where ¢ = 1,-+- ,k and j = 0,1,---, the residual vector 7; can be written
as 7 = ;4 (A)¢;(A)ro, where ¢; is the degree ! polynomial corresponding to the
residual vector r; of ML{k)BiCG, and 1,4, is a degree j+1 smoothing polynomial.
Thus, the “degree” of 7, is [+ j +1. To compute 7, exactly [+ +1 matvec’s with
A (no AT) are required. Thus, the cost per step on the average is 1+ 1/k matvec’s.
Both ML(k)BiCG and ML(k)BiCGSTAB can be implemented efficiently as k-term
recurrences.

A way to view our method is through the conditioning of the collection of vec-
tors to which the residual vector is required to be orthogonal, which we believe
controls the stability of the method. For FOM/GMRES, these vectors are mu-
tually orthogonal and thus is perfectly conditioned. For BiCG, these vectors are
the Lanczos vectors and they can be ill-conditioned. For our new ML(k)BiCG,
these vectors consist of a union of k sets of Lanczos vectors, generated by (ar-
bitrary) initial vectors which can be made orthogonal, thus making them better
conditioned than in the BiCG case. Qur new ML{k)BiCGSTAB method, be-
ing a product method derived from ML(k)BiCG, inherits this increased stability.

Thus, ML(k)BiCGSTAB can be viewed as an attempt to merge the advantages of

16



FOM/GMRES (stability) and BiCGSTAB (short recurrence, transpose-free and
efficient use of matvec’s) while avoiding their disadvantages: FOM/GMRES (long
recurrence) and BiCGSTAB (imperlect stability).

Our ML(k)BiCGSTAB method has a close relationship to the Lanczos-type
method for multiple starting vectors proposed recently by Aliaga, Boley, Freund
and Herndndez (ABFH) [1]. In fact, even though we have developed our methods
independently of the ABFH framework, our BiCG extension ML(%)BiCG can be
easily derived from the ABFH framework, using one right Lanczos vector and
k left Lanczos vectors. Even so, ML(k)BiCG deserves some interest on its own
right, because we believe it is the first attempt in using multiple starting vector
Lanczos-type methods for solving a single linear system.! The main application
of nonequal left and right starting vectors cited in [1] is for computing transfer
functions in multi-input multi-output time invariant linear dynamical systems. A
more significant difference between our present results and those in [1] is that we
have derived a BiCGSTAB variant based on multiple starting vectors, with the
advantages stated earlier. We believe this is the first product Krylov method based
on multiple starting vectors.

The origin of the ideas behind the new methods presented here can be traced to
Ruhe’s vectorwise implementation of the block Lanczos method [46], in the same

way that [1] can be considered an extension of Ruhe’s method to non-Hermitian

1Freund and Malhotra [28] did consider a QMR-type method based on the ideas in [1] for
linear systems with multiple right-hand-sides, but there the number of right and left Lanczos
vectors are the same.
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matrices and non-equal left and right starting vectors plus look-ahead. As such, we
believe our methods inherit the advantage of faster convergence of the underlying
block Lanczos method.

Gutknecht {33], Sleijpen and Fokkema [53] recently generalized BiCGSTAB
to versions called BiCGSTAB2 and BiCGSTAB(k) respectively, in which they
replaced the GMRES(1) part in BiICGSTAB with GMRES(%). The purpose of
doing so is to increase the robustness of BICGSTAB. From our experimental results,
ML(k)BiCGSTAB appears to be a good alternative to achieve this goal exploiting

the robustness of GMRES(k)/FOM().
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CHAPTER. 2

Probabilistic Analysis of Gaussian Elimination Without Pivoting and

Its Application

Let X be an n X n square {(complex) Gaussian matrix and let X = LU be the
LU factorization of X. We derive the density functions of the entries of L and U
respectively and prove that the probability of the occurence of a pivot less than €
in magnitude is O(€). 1 We also derive bounds on the probabilities of large growth
factors. In particular, we prove that the probabilities Prob(||U||ce/l|Allce > n5)
and Prob(}|L||,, > n?) decay algebraically to zero as n tends to infinity. From our
experimental results, we observe that the probabilities Prob(n < |6} < 11-®) and
Prob(n < ||Ule/!|Alle < n15) tend to one as n goes to infinity. This indicates

that our theoretical bounds are not the tightest possible but not too loose either.

2.1 Properties of a Gaussian Matrix

We present some properties involving Gaussian matrices which will be used in

the following sections. These properties can be derived easily from classical facts

1We note that Foster [23] has studied the probability of large diagonal elements in the QR
factorization of a rectangular matrix A.
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that may be found in standard texts or papers, for example, [2, 9, 18, 52, 58].
Let N(0,1) refer to the normal distribution with mean 0 and variance 1 and

let N(0,1) the complex distribution of z + yi where z and y are independent and

identically distributed (iid) N(0,1). By definition, an (complex) Gaussian matrix

is a random matrix with iid elements which are (N(0,1)) N(0,1).

Proposition 2.1 Let v and X be two independent (complex) Gaussian malrices

of sizes n x 1 and n X n respectively. Let I be the Householder matriz such that
Hv = (s,0,---,0)T
where s > 0 and let
Y = X(PH)T,

where P is a permutation matriz such that PHv = (0,---,0,s)T. Then the en-
tries s,Y;,1,5 = 1,---,n, are independent and s* is (x2,) x% while all y;; are

(N(0,1)) N(0,1). Moreover, Let
X =QR

be the QR factorization of X obtained by performing the standard Householder
transformations and let

w = @ lv.

Then the entries v, w;,t = 1,---,m,7 = 1,-+-,n are independent and ry; 18

(X3(nmiz1) X2 gyppi =1, while all others are (N(0,1)) N(0,1).
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2.2 Real Gaussian Elimination

In this section, we suppose all the matrices appearing have real entries.

2.2.1 Density Functions of «,, and [,

Let X be an n X n Gaussian matrix and let X = LU, where L is an unit lower
triangular matrix and U is an upper triangular matrix, be the LU factorization of
X 2. The (p, q)-th (p < ¢) entry u,, of U and the entries of X have the following

relation.

Lemma 2.1 Let X = LU be the LU factorization of X. Then

— e -1
Upg = Tpg "Bp*Xp—1$*q )
where
T
T = (mpla et :mppml) 5
T
Typg = (CL‘M, T )mp_lg) ’

and X,_, is the (p— 1) x (p — 1) leading principal submatriz of X.

Proof. Permuting the p-th and ¢-th columns of X and U simultaneously on

both sides of X = LU and then comparing the corresponding blocks, we find

Xp—l .'}C*q prl 0 Up»—l Ugq
T T
mp* ':EPG' lp* 1 0 qu

2Since they just form a set of measure zero, we ignore matrices for which the Gaussian
elimination fails.
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where
T
lp* = (Zplﬂ""gpp—l) ?

T
Uy, = (g0 ,u?,_lq)

and where [,_; and U,_; are the (p— 1) x (p — 1) leading principal submatrices

of L and U respectively. It follows that

— T — T r1
Xpa =Ly iUpny, B =20U,
_ 51 — _Jr
Ug = Loy 12ag Upg = Tpg lp*u*q

and these imply the desired equation.
Let H be an (p—1) x (p—1) orthogonal matrix, e.g., the one PH in Proposition

2.1, such that

with s > 0. Then

= z,,—nTY
By Proposition 2.1, the entries s, 2,,, £;, and ¥;;, 3,7 = 1,--+,p—1, are mutually

independent and all z,, z,, and ¥,;, 3,7 = 1,---,p— 1, are N(0,1) while s? is

pg?

X:_,. We now decompose Y as
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where @ is an (p—1) x (p— 1) orthogonal matrix and R an (p— 1) x (p— 1) upper

triangular matrix with positive diagonal elements. We then further have

— T p-10T
Upg = Tpg— 7 B1QTTy
= Tp-1
= T, —n Rw (2.1)
su,_y
= gy~ —2—.
T;o—lp—l

Again, by Proposition 2.1, the variables s, z,,, w;and ry;, ¢ < j, 4,7 =1,-++ ,p—1,

are independent. s? is x2_, and r2 is x2_,, 0 =1, ,p~ 1 and all others are
N(0,1).
Set
52
U=

(P - 1)"“32,_.13,_1
and

3 1 (p—1)v

z = T, Wy_1 s
Jitp—-1p " Sitp-1o

then v is F,_, ;, the F distribution with p — 1 and 1 degrees of freedom, and z is

N{0,1) and (2.1) becomes

Upy =29/ + (p—1)v. (2.2)

Since the variables v and z are independent and their density functions are

known, it is straightforward to determine the density function of u,,.
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Theorem 2.1 Suppose X is an n x n Gaussian matriz and let X = LU be the

LU factorization of X. Then the density function of the (p,q)-th entry of U is

fupq(t) = _\7/;-_5 ng% (Lii ‘., 4-2i-2 4 (_I)LP““;_lJ ¢, t‘P"'le:::p(w%tz) ¢p(t))

i=0
(2.3)
where ) »
1 M- -3) i>0
i=
bip =
\ 1 =0,
’ (p-31 p>3
§p =
1 p=2,3,

e p—1-2{(p-1)/2]
Py(t) = (] exp (-2—:1;2) da:)
0

and where —oco <1 < o0, 2<p<gq.

Proof. Since the variables v and z in (2.2) are F,_,; and N(0,1) respectively,

the density functions of them are given as follows,

| _% I‘((Pp—%)—/z_) (p — 1)E-D/20-3/2(1 + (p — 1)t)"#/2 >0

fam}
4
IA
=
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and

) = \/;—Wemp(—m) .

Since v and z are independent, their joint density function is given by

flv,2) = [,(v) f.2)

’

cv®P-3/2(1 + (p— 1)) P lexp(—2%/2) v >0

0 otherwise ,

9

1 T(p/2)
where ¢ = 7

2r T{(p — 1)/2)

(p — 1)7~1/2, Thus, the distribution function F,, (e)

of u,, is

B, (a) = c// o321 4 (p— D)) ?exp(—22/2) dv dz
upg o

= cff vE=3)/2(1 4 (p — L)v)? 2exp(—22/2) dvdz
za/ 1+ {p—1)v<e
o0 af 4/ H(p-1)v
= c] dv/ / ’ v(P=3)/2(1 4 (p — 1)v)~?/2exp(—2*/2) dz.
0 —00

Letting z = t/\/l + (p — 1)v we find

p ) 1 t2
Fupq(a) = Cf_oo th ”U(pmg)/z(]. + (P . 1)’{))“’(?4'1)/26:]’,’}) (—gm) dv

Letting s = 1/(1 + (p — 1)v) this can then be written

P, (o) = \/1%_ F((Ig;(f)—/f))/Z) f_‘; dt /01(1 — 5)(p=3)2eqp (—%t%) ds.
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Thus

1 I'(p/2)
Vor T((p—1)/2) Jo

1
fupe(t) = (1 — s)(r=32egp (Métzs) ds.

Finally, letting w = [tjv/1 — s we have

fupe(t) = vi_T/2) ( lﬁ) At /:w?’_zemp Gwz) dw. (2.4)

exp| —
* I'((p—1)/2) 2
Since
¢ 1 1\ U= il
Jo e (5“’2) wese (?2) > (1) L2 -3y
0 1=0 j=0

Hp—l)/zj B " + l ) P“1_2!.(p“1)/2.l
(—1) (p— )N eap | 5 dx
0

by integration by parts, where we define 0!! = (—1)!! = 1, the desired result follows.
&

Similar to the derivation of the density function of u,,, we first establish a
relation between [,, and the entries of X and then simplify it. Let X = LU
and XT = LU be the LU factorizations of X and X7 respectively. Set D =

. v omoa o v T s =T
diag(ny, -, iing). Thus, XT = LDD-10. So X = (D-10) (LD)". Note that
W T v o\T
(D‘iU ) is unit lower triangular and (LD) upper triangular. By the uniqueness

of the LU factorization of X, we have

Hence
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for 1 < ¢ < p <n. By Lemma 2.1,

~ _ _ T T
Ugp = Ty m*qu—lwp*
and
~ _ . T =T
Ugg = Toq m*q g—1Tqxs
where
Tp = (Tp1, " mpq—l)T ’
T
:Eq* - (mqli o 5mqq—1) 3
T
Tug = (wiqa e 1mq—1q)

and X,_, is the (g — 1) x (¢ — 1) leading principal submatrix of X. We now let H

be an (g — 1) x (¢ — 1) orthogonal matrix such that

quH = (07"'5073) = T]T

with s > 0. Then )
Loy — N (XqT_1H) Loy

T, —~ 07 (Xg_lﬂ)d:r:q*

9

rq

Y i Ve |

pg — N Y Ty
TV 1 :

Tyq =N Y-lz,,

€T

As in the case of u, . all the entries in the above expression are mutually indepen-

pg?

dent and s? is x?_, while others are N{0,1). Let

Y = QR
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be the QR factorization of Y where R has positive diagonal elements. Then the

expression can be reduced to

| Tpg TJTR‘lQT:t:p*
g Toy — " RQTz,,

—mT g1
Ty, — T RMw

il

2.5
p— (2.5)

Tg—1g—1%pg — 5Wy—1

Tg—1q-1Tqq — SHg-1

The entries T, Ty, Wi, f; and ry(i < j) are N(0,1) while s* is x2_, and r}, is

X2 wherei=1,---,g~1,j =2,--,¢ — 1. They are all independent.

Set
To—1g—1 S
v= fzq A z e T T 5 Wa—1
T otq—1 + s T oig—1 + 3
and

Tg-1g-1

3
P e WS, SN S
fn2 2 2 g re—L?
Tq—ltI"l s 'rq—lq—rl + s

then I, = v/z. Since both v and z are N{(0, 1) and they are independent, [, has

Cauchy distribution.

Theorem 2.2 Suppose X is an n x n Gaussian matriz and let X = LU be the

LU factorization of X. Then the density function of the (p, q)-th entry of L is

1 1
f[pq(t) = ;1+t2 (26)

where —co<t<ooandl <qg<p<n.
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2.2.2 Probability of Small Pivot

In practice, if one of the pivot elements u,, is zero or smaller in magnitude than
a preset tolerance ¢, Gaussian elimination will fail. In this section, we describe the
probability of the occurrence of such a situation.

To make the statements below neatly, we use a shorthand notation here. For

given € > 0 and 1 < p < n, we define
E,.={X € B™"||u,,} < €}.

Then the event that at least one u,, has |u,,| < € is naturally denoted by U E,..
p=1

Lemma 2.2 Suppose X is an n X n Gaussian matriz and let X = LU be the LU

factorization of X. Given e >0 and 1 <p <n. Then

V2 T(p/2)
Prob(E, ) < — MF((p 1/ €.
Proof. From (2.4), we have

VE_T@D) o gy = o L2
fl® = TR0 J wraw = VarL((p+1)/2)°

where p > 2, and from which the desired result follows.

For the case where p = 1, it is sufficient to note that

1 € 1
Prob(E, ) = Prob(|zy;] < ¢} = \/?f exp (-Etz) dt. 7
T J—€

29



Theorem 2.3 Suppose X is an n X n Gaussian matriz and let X = LU be the

LU factorization of X. Then
Prob(|J E,,) < V2 s T (2.7)
p=1 T plr ((p+1)/2)

Proof. Since Prob(| } E,.) < > Prob(E, ), (2.7) follows by Lemma 2.2

niain E
p=1 p=1
The coefficient of € is a rather slow-growing function of n. In fact, it is about

1800 even when n = 108, So, if € is small enough, (2.7) will certainly give a

satisfying bound for the desirable probability. Moreover, the right hand side of

(2.7) is linear with «.

2.2.3 Probability of Large Growth Factor

It is possible that the growth factors p; and py, which are defined by (1.2)
in §1.1 of Chapter 1, can be very large because small pivots can appear. In this
section, we study the probabilities of the occurrence of large p;, and py and give

probabilistic bounds on the sizes of them in the following Theorem

Theorem 2.4 Suppose X is an nxn Gaussian matriz and let X = LU be the LU

factorization of X. Then there exist numbers 1 > b > 0 and ¢ > 0, independent of

n, such that

1
Prob(py >7) < Sps/? + min (En7/2, —) + b
r

T T
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and

Prob(py, >r) < gns

for anyr > 1.

Proof. We first claim that there exists a ¢; > 0, independent of n, such that

Prob(|U||.>7) < a2,
T

In fact, by (2.4), we have

fo(t) < ?ﬁé%exp (——%tﬁ) 1 [ exp (%wz) dw.

_ V2T e (—%tz) ¢ /G "exp (%wz) dw YL

7Pl ((p—1)
Since

. 1 T(k/2)
ttoo ED((k —1)/2)

exists by Stirling’s formula

lim (z 4 1) _
v—+oo gregp(—z)V2rT

and since

1 ¢ 1
1 ——t2 D2 —
t§+mootexp( Qt)/o exp (gw )dw 1,

we can find a ¢, such that

fupq(t) S 62\/}_)/t2'
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Therefore

n n

Prob(lUll > r) < 323 Pllugg| >r/n)

p=1gq=p

- vy

p=1g=p |>T/

A

Sy [ et

pz=1 g=p

CqC3
< n7/2
r

for some ¢y > 0, independent of n. The existence of ¢; is due to the existence of

the limit
1
kETmWZ(k p+ VP = / (1— tViEdt.
We set ¢; = ¢yc; and then (2.8) is proven. For proving the first inequality in the

theorem, we note that the expected value p and the variance o of the variable

zy = Y |wq,| are
g=1
— 2 - 1 2
p=Enyf— o, of= R

2
Setting € = n4/1 — — in Chebyshev’s inequality [15, p.183]
%

o2
Prob(|zy —p| = ¢e) < 22
we have
1
Pﬂ"ob (':El < ?164) S ' (2'9)
n
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2 2
where ¢y = {/— — /1 — e Combining (2.8) and (2.9) we find
m

Prob(py >r) = Prob(|Ull,, > rllAl.)
< Prob(||U], > &)
= Prob(iU|l > 1;:::1 , 7y = ney) + Prob(||U]|,, > roy, ney > 2 > 1) +
Prob(|U]., > rer, 2y < 1)
< Prob(||U]|,, > nrey) + min(Prob(||U]l,, > ) , Prob(z; < neg)) +
Prob (ia:1q| <LV1<g< n)
 somenn(son o o 10

n p—1
Prob(p;, >7) < > Prob ([lpq| > —m)

p=2g=1

Finally,

1 a2 1
- -3 f di
T = lij>2=t 1412

1
p=2 g=1 1

AN
=
[

for some ¢5. 3
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2.2.4 Numerical Experiments

In this subsection, we present numerical results to support Theorems 2.1 - 2.4
All our calculations have been carried out in MATLAB 4.2¢c on SUN workstations.
In our first experiment, 595000 Gaussian matrices of dimension n = 31 were
selected at random. Then Gaussian elimination was applied to each of the matrices
and then statistics on the elements {13 19, l30,20, U12,12 and ugy 33 Were accumulated.
The data are plotted in Figures 2.1 and 2.2 together with the corresponding func-
tions indicated in Theorems 2.1 and 2.2. In order to make clearer the difference
between Figures 2.1(a) and 2.1(b), we present them together in Figure 2.3(a).
The purpose of our second experiment is to test formula (2.7). Gaussian matri-
ces of several dimensions n were selected at random, with the sample size varying.
A few tolerances ¢ were used. The results are outlined in Table 2.1. The frequency
column of the table provides the numbers of matrices which, in their LU factors,
have at least one u,, less than € in magnitude. By comparing with the empirical
probabilities, we conclude that the bound given in (2.7) is a fairly tight one.
Finally, if we set r = n®,a > 2.5 for py and « > 3 for pp, in Theorem 2.4,
then we can see that the probabilities Prob(p;, > n®) and Prob(py > n*) decrease
with n increasing. In fact, empirically this is true even for smaller «, say, a > 1.5
for both p;, and py, as illustrated in Figures 2.3(b) and 2.4. In this experiment,

we chose sample sizes to be 968500, 365500 and 98000 for n = 25,50 and 100
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[[n | ¢ | Sample Size | Frequency | Empirical probability | Theoretical bound |

25 | 10°° 10° 5 5 x 107 5.8586 x 10~°
50 | 1073 10% 90 0.009 0.0085
50 | 10~ 10% 8 8§ x 1074 8.4853 x 101
50 | 167° 107 0 0 8.4952 x 10~°
50 | 10°° 168 9 9 % 10~° 8.4952 x 10~°
75 | 1073 104 89 0.0089 0.0105
75 | 10~* 10% 8 8 x 107* 0.0011
75 | 10°° 10% 0 0 1.0519 x 10774
1061 1073 10% 115 0.0115 0.0122

Table 2.1: Probabilities of small pivot.
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respectively. In each sample, we calculated p7, and py for each matrix X. Then
the data of p; and py were grouped into ten classes respectively. In the case of
p1., for example, the first class consists of matrices X with n® < pf, < n%% and the
second class with n95 < py < n!, the third one with n! < pr, < n' and so on. The
number of matrices in each class was then divided by the corresponding sample size
to get the percentage frequency to the class. The distributions have been plotted in
the form of histograms. Empirically, there is a tendency that Prob(n < p;, < n'$)

and Prob(n < py < n'®) tend to one as n goes to infinity.

2.3 Complex Gaussian Elimination

All the results that were derived for the real case in §2.2.1 have straightforward

analogues in the complex case.
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2.3.1 Density Functions of u,,

Let X be an n x n complex Gaussian matrix and let X = LU be the complex

LU factorization of X.
By applying the procedure of deriving (2.1) to the complex case now with uni-
tary transforms replacing the corresponding orthogonal transforms, the following

simple expression for the (p, ¢)-th (2 < p < ¢) entry u,, of U can be obtained,

_ SW,_y
Upg = Tpgq ” 2
p—1p-1

where all the variables on the right-hand side are independent and r;t?)—lp-l (Pptp—1 =

0), s2(s > 0),w,_, and z,, are X%:X%(p_l)aN(O= 1) and N(0,1) respectively.

Set
1 2 s22(p—1)
R Toip-1 Tptpe1l?
and
S SN A Gl LI
JiA—1o " i1 P
then

Upg = /L + (p—1)v.

The variables v and z are again independent and they are Fyg,_y)o and N (0,1)

respectively.

Theorem 2.5 Suppose X is an n x n complex Gaussian matriz and let X = LU

be the LU factorization of X. Then the density functions of ufq,uéq and Juy,l, the
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real part, imaginary part and absolute value of the (p,¢)-th (2 <p < q) entry uy,

of U respectively, are

1 &0

fa() = fu () = 11/2_7:2( 1,0+ 3/2) 8%,

1==0

where —oo <t < 0o and

ot = it (e (-2) (1= ) - i),

=0

where 0 < t.

Proof. Since v and zR are independent and they are Fyp 1y and N(0,1)
respectively, their joint density 1s
flv,z) = fi(v)fr(2)

\/Q—W(p — 1)PoP2(1 + (p— Dv)Pexp(—2%/2) v>0

0 otherwise ,

.

where zE is the real part of z. Thus the distribution function £,z (a) of uﬁq is

given by

Fuﬁz(a) = /ju flv, z)dvdz

g = <o

- -2 — Dv)Pexp(—22 vdz
T[] sromyies Tt P70+ (o= D) cxpl 2222

m( - 1)1"/ / /\/H(P—l);vp 14 (p— 1)?))_1’8Xp(—z2/2)dz_
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Letting z = t/ 1+ (p—1)v,

Fula) = _\/15—%.(19 — 1) /000 dv /:o vP 21+ (p— v) P/ 2exp (‘%ﬁéi:l—)v) dt

1 o oo 1 2
= ——(p—1) dt/ p—2 w PYp)—p-1/2 e\ dv.
\/ZW(p 1 /—oo o " (1 +(p—1p) exp( 21-|~(p—1)v) v
Letti !
etting § = —————,
& 1+(p—1)v

o 1 1
Fur(a) = -—\7_12—7}.(19—“ l)[»oo dt/{} s1/2(1 — s)P~2exp (—Etzs) ds.

Thus

e

—1 gt 1
fur(t) = P = /o sU2(1 — s)P~Zexp (—é-t?s) ds

ﬁ

—1&1 1. .. /.
_ P - Z"‘T(m??)z/ s+1/2(1 — 5)P2ds
V 2T j—p i 0

S Z(_.?iB(p—l,’i-I—3/2)t2i.

To obtain the density of |u,,|, we notice that

|u'pq| = lzl\/1+ (p—l)’i}.

Set

2 2
w = 2 4 217,

then

|tiy] = Vwr/14 (p— 1L)v.
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w is x2 and independent of v. Since the joint density of w and v is

.

_;_(p —1)PoP=2 (1 + (p— Dw) Pexp(—w/2) v,w>0
flw,v) = <

0 otherwise,

N

the distribution function £}, () of |u,,| is

B () = ] /|u;,ql<a F(w, v)dwdy
1
= // —(p—1)pvP2(1+(p— 1)v) * exp(—w/2)dwdv
w(l+{p—1)v)<a? 2
1 oo pa?/(l+p-1)
= =1 [ [T o (L (p = Do) T exp(—w/2)dw
2 o 0

— -1 [T - (e (<))

1
1+ (p—1)v’

Fugl@) = 1-(p-1) [ (1= sp-2exp (ﬂ%i.s) ds.

Letting s =

Therefore,

Fiupal®) = Fpu(®)

t2
= - 1)] (1 —s)P~%sexp (—53) ds
= - 1)/ 1—s)P%s Z 2—3531033
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1
= - 1)2 21 3 / (1 — s)p-2sit1ds

o h]

= i~ ) (-1 Be—Li+2)

21 (p— 2)1(i + 1)1
- =055y (z-)+(p)z )

=0

& 12§+ 1
= t - 1 ! ‘—1 1_._7___ .
(p—1) g( 2¢ (1 4+ p)!
Since
S .,;i‘l'l d(oo xttl )
;“’ G+p)!  dz ;0 (i +p)!
d o gpite
= JE— i-p -
i (ST
d p=1 4
- (e v £7))
Pl p+1
= zPexp(e)(l—p+z)—>, 5
=0 *
we have

Srupa(t) = (=1)P2P(p—1)1e1% (exp (—g) (1 —p- g) -2
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2.3.2 Density Functions of [,

The expressions for the density functions of [, are far simpler than those of u,,
as shown in the real case. The situation is the same in the complex case. A similar

derivation of (2.5) with unitary transforms replacing orthogonal transforms gives

Pg-1g—-1Tpg — 5Wq-1

P — ’
Tg—1q—1Tqq — SHq—1

where the variables on the right-hand side are independent and T§_1Q_1(Tq—1q—1 >

0), s%(s > 0) are x3, Xg(q_l) respectively and others are N(0,1).

Set
Tg—1q—1 8
UE—W"——‘_QQ q_{_gﬂ?pqw——“‘—"“ +2wq_1
Ti g1 8 . /rq_lqﬁl 3
and
T
g—lg—~1
2 = ee——e——— Ho_1
2 7 T ag 2 g e
Tq—lq—l + s Ta—19-1 §

then [,, = v/z. Both v and z are N(ﬁ,l) and independent. Thus,

; B 4 fpl
P GR gl
vRzR vl 41 (v12R — vfizl)
= 2 2
ZR + ZI
and therefore,
pg  LR? I e

RyR 3 plxl

phzh Lotz / )

= —-—-—-«-/ zR2+zI
V2B 4 21
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H
e
e
3

= —(.
n and £ are x2 and N(0, 1) respectively and independent. Hence ( has the student’s

¢ distribution with 2 degrees of freedom. Thus,

1
_ 2y—3/2
fgt) = S+,
where —o0 < t < co. Moreover,

I IOP
Ll = Wl = |\ pp = Ve

where § has I , distribution. Hence

,

2t

Ty 170

Fitpat ()

0 otherwise .

.

We summerize the above results about [, in the following theorem.

Theorem 2.6 Suppose X is an n x n complez Gaussian matriz and let X = LU
be the LU factorization of X. Then the density functions of I8, Il and |Lygl, the
real part, imaginary part and absolute value of the (p,q)-th (1 < ¢ <p < n) entry

l,q of L respectively, are

f[g}q(t) m fl{,q(t) = %(1+t2)—3/2,
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where —oo < t < oo and

where § < .

Figures 2.5-2.7 plot the empirical densities of some entries of L and U and their

corresponding predicted densities in Theorems 2.5 and 2.6.
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Figure 2.5: (a) Distribution of uf} ,: observed(+), predicted(-). (b) Distribution

of |uyq14|: observed(+), predicted(-).

2.4 Application

In some kinds of parallel computations, such as in a systolic system [37], Gaus-
sian elimination without pivoting is preferred to GE with pivoting because the
latter version is difficult to implement due to data movement which can not be

determined a priori and, as a result, leads to high overhead both in time and

45



{e)

0.67 T

0,06}

0.05+-

0.041

0.021

2014

A .
50 40 -3 -20 -10 [ 0 20 %0 40
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of |ugy a1|: observed(+), predicted(-).
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of |l151,|: observed(-+), predicted(-).
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memory [40]. However, as we mentioned earlier, there are two difficulties about
the implemeﬂtation of GE without pivoting, that is, breakdown and instability.
Recently, Lé, Parker and Pierce (LPP) [40, 42, 43] suggested an effective method
to overcome these difficulties in which they first randomized the original matrix
and then applied GE without pivoting to the resulting matrix. More precisely, let
A be an n X n matrix and V a random n X n matrix from some special class. Their
basic idea is that they perform GE without pivoting on the product matrix VA
instead of A. Experimental results have shown that this indead greatly reduces
the probability of breakdown and improves the potential ill-conditioning of A.

In this section, we describe an alternative method to that of LPP’s to cure
breakdown and instability in GE without poviting. Based on eight random classes
of matrices, Trefethen and Schreiber [57] observed by experiments that, after the
first few steps of GE with partial (or complete) pivoting, the remaining matrix ele-
ments are approximately normally distributed, regardless of what class the matrix
comes from. On the other hand, as we have seen in §2.2, if GE without pivoting is
applied to a Gaussian matrix, then the probability of the occurence of a pivot less
than € in magnitude is O(¢) and Prob(n < p; < n!¥) =1, Prob(n < py < ntsym 1
when n is large. All of these observations suggest that we may use GE in such a
way that, in the first few steps, we use GE with partial (or complete) pivoting and |
then use the version without pivoting (or with pairwise, neighbor pivoting). The

goal of the use of GE with pivoting in the early steps is to make the elements ap-
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proximately normally distributed so that the chances of breakdown and instability
could be reduced when a simpler form of GE is performed later on. We have done

some experiments on this idea based on two random classes of matrices:

e Class 1: independent elements from the discrete distribution with P(-1)=

P(1)=10.5

o Class 2: independent elements from the discrete distribution with P(0) =

P(1) =05

Since both the results from these two classes are analogous, we will only show
those for Class 1 below. The scheme we adopted in our experiments is the follow-
ing. We perform GE with complete pivoting on A in the first k steps to get the

decomposition,

Ly O Uy Ure
PAQ = ;

where P and () are permutation matrices, Uy; and Ly, are k X k upper and unit
lower triangular matrices respectively and [ is the (n— k) x (n—k) identity matrix.
Based on the observations of Trefethen and Schreiber, we may expect that the
elements in U,, are approximately normally distributed. Then we perform GE

without pivoting on Us, to get the LU decomposition of Us,,

Uzz = Emﬁzz-
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Thus we obtain the following form of LU decomposition for A,

Ly 0 Up Uy
PAQ =
| Loy Lo || 0 O
Although the entries of U,, are not independent, we may still expect, according to

the theory we derived in earlier sections, that the probability of the occurrence of

small pivots and large growth factors is very small in the LU factorization of Us,.

0.25

Figure 2.8: Observed distribution (+) of the elements of Uy, vs. the N(0,1.77)

distribution (-). & = 20,n = 51.

Figure 2.8 plots the empirical distribution of the elements of U,, together with
the normal distribution N(0,1.77), where we chose k = 20 and n = 51. We can see
that the elements of U,, are indeed almost normally distributed, even though it is
obvious that they are correlated. Based on this observation, we can expect that
the elements of L,, and U,; would obey the distributions described in Theorems
2.1 and 2.2. In fact, Figures 2.9 and 2.10 illustrate this point, where we plotted

the empirical distributions of the elements ly3 12, [30,20, 12,12 and gy g Of Ly and
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Figure 2.9: (a) Observed distribution (+) of the (12,12)-th entry of U,, vs. the
predicted distribution 0.7f,,, ,(0.7t) (-).  (b) Observed distribution (+) of the
(31,31)-th entry of {,, vs. the predicted distribution 0.8f,,, ., (0.8¢) (-). The

functions f,,, ,(t) and f,,, ,,(t) are defined in Theorem 2.1.
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Figure 2.10: (a) Observed distribution (+) of the (13,12)-th entry of Ly, vs.
the predicted distribution fy,, ,(#) (-).  (b) Observed distribution (+) of the
(30,29)-th entry of Ly, vs. the predicted distribution f. .. (¢) (-). The functions

firssz(t) and fi, . (t) are defined in Theorem 2.2.
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Figure 2.11: Percentage frequency distributions of p;_ (dashed) and pg,, (solid).

(a) k = 20,n = 45. (b) k = 20,n = 70. See Figures 2.3 and 2.4 for the meaning of
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Figure 2.12: Percentage frequency distributions of p;, (dashed) and pg,, (solid).

{(a) k= 20,n = 120.

of a.

(b) k = 20,n = 220. See Figures 2.3 and 2.4 for the meaning
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n =64 n =128 n = 256

E| B | EP B ] EP B | EP

0 112350 | 9.8872 x 10-1 | 12378 | 9.9024 x 10| | 12368 [ 9.8944 x 107"
5| 0273 | 7.4184x 10-1 | 0408 | 7.5264 x 10~* | 9324 | 7.4592x 10~!
107] 926 | 7408x 10-% | 936 | 7488x 102 | 935 | 7.48x107%
15| 21 | 168x10° | 14 | 1.12x10° | 19 | 152x10°°
20 1 8x10°° 2 1.6x 10°° 0 0

25| 0 0 0 0 0 0

Table 2.2: 12500 matrices from Class 1 were selected in this experiment. B: the
number of matrices which make GE without pivoting performed on U,, breakdown;
EP: the empirical probability of breakdown when GE without pivoting performed
on Us,
{7,, tespectively versus their corresponding (scaled) predicted distributions. Both
the observed and predicted distributions match very well in these two figures.

Table 2.2 shows some information on the situation of breakdown. In this ex-
periment, 12500 matrices were selected from Class 1 for each matrix order n. From
the table, we can see that the probability of breakdown is almost the same as n
varies for each fixed & while it decreases as k increases for n fixed. If this were true
for the general case, then we would be able to avoid breakdown in GE without
pivoting with little data movement by choosing small k, regardless of how large
the matrix size is.

In the case of the Gaussian matrix, we have seen that the probabilities Prob(m <
p;, < nt5) and Prob(n < py < nl®) tend to one as n goes to infinity. The situation

seems to be the same for the Class 1 matrices as shown in Figures 2.11 and 2.12.

More precisely, for k fixed, we may have

lim Prob(n < pj,, < ntt)=1

=400
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and

lim Prob(n < pg,, < ntd)=1,

R o0
where p;,, = Lol and pg,, = [Unalloo/ 1Uzsllco-

We end this section with the conclusion that the method we discussed here may
be a good choice in solving GE related problems to avoid breakdown, instability
and data movements in large quantities. We can not say any more on this idea
at this point because we only did a few experiments on some special classes. We

mention it just for the references of the GE users.
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CHAPTER. 3

Preserving Symmetry in Preconditioned Krylov Subspace Methods

We consider the problem of solving a linear system

Ar =15

by a preconditioned Krylov subspace method when A is nearly symmetric and
when the system is preconditioned by a symmetric positive definite matrix M. In
the symmetric case, one can recover symmetry by using M-inner products in the
conjugate gradient (CCG) algorithm. This idea can also be used in the nonsymmetric
case, and near symmetry can be preserved similarly. Like CG, the new algorithms
are mathematically equivalent to split preconditioning, but do not require M to
be factored. Better robustness in a specific sense can also be observed. When
combined with truncated versions of iterative methods, tests show that this is
more effective than the common practice of forfeiting near-syminetry altogether.
This chapter is organized as follows. In §1, it is shown how alternative inner
products may be used to preserve symmetry in GMRES. §2 considers the use
of truncated iterative methods when the preconditioned system is close to being
symmetric. This has been hypothesized by many authors, for example, Axelsson

[5] and Meyer [41]. In §3 we consider the symmetrically preconditioned Bi-CG
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algorithm. §4 shows the results of tests on a Navier-Stokes problem. This problem
is parameterized by the Reynolds number, and thus nearness to symmetry. We

conciude this chapter in §5.

3.1 Symmetric preconditioning in GMRES

When A is nearly symmetric, split preconditioning may be used to preserve the
original degree of symmetry. Alternatively, left-preconditioning with the M-inner
product, or right-preconditioning with the M~!-inner product may be used. We
refer to these latter two preconditionings as symmetric.

Consider first the left-preconditioned version of the Arnoldi algorithm based
on the classical Gram-Schmidt process, with preconditioner M, which we assume
to be SPD.

ALGORITEM 2.1. Left-Preconditioned Arnoldi-Classical Gram-Schmidt
1. Choose a vector v1 of norm 1.
2, Forj=12,---,m
3. w; = Avy;
4. 2= M twy;
5, Compute hi; = (z,v;) for i=1,2,---,j;
6. = z—z;fﬂ hijus;
7. by =zl
8. If hjy1,; = Othen stop;
9. vjg1 =2/hjar;

10. End
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To implement this procedure using M-inner products, we would first compute

the scalars h;; in Line 5,

h":(Zj,Ui)M:(MZj,Ui):(UJ' 'U') 3 3:1, ,j. (3.1)

143 i

Then we would modify the vector z; to obtain the next Arnoldi vector (before

normalization},

J

=1
To complete the orthonormalization step we must normalize the final Z;. Be-

cause of the M-orthogonality of Z; versus all previous v;’s we observe that
(85 2)m = (25, 2 = (M71wy, 2i)ar = (w5, 25)- (3.3)
Thus, the desired M-norm can be computed according to (3.3) and then computing
Pipii = (éj,wj)lfz and vy = 2[R (3.4)

One potentially serious difficulty with the above procedure is that the inner
product (2;,%;)pr as computed by (3.3) may be negative in the presence of round-
off. Indeed, loss of M-orthogonality between z; and the previous v;’s causes the
first equality in (2.3) to be invalid in the presence of rounding, which may result
in a negative inner product (w;, 2;).

There are two remedies. First, we can compute this M-norm explicitly at the

expense of an additional matrix-vector multiplication with M, i.e., from

(3, 2)m = (M2, 2;).
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As was pointed out earlier, this is undesirable, since the operator M is often not
available explicitly. Indeed in many cases, only the preconditioning operation
M~-1 is available from a sequence of operations, as is the case for multigrid pre-
conditioning. Another difficulty with computing h;; with (3.1) is that it is not
immediately amenable to a modified Gram-Schmidt implementation. Indeed, con-
sider the first step of a hypothetical modified Gram-Schmidt step, which consists

of M-orthonormalizing z against vy,
hiy = (2,00 2=z— hyv.

As was observed, the inner product (z,v;) s is equal to (w, v,) which is computable.
Now we need M# to compute (2 — hyyvy,v;)p in the modified Gram-Schmidt pro-
cess. However, no such vector is available, and we can only compute the (z,vi)m
of classical Gram-Schmidt.

An alternative is to save the set of vectors Mv; (again, not computed by mul-
tiplying by M) which would allow us to accumulate inexpensively both the vector

2; and the vector ; via the relation

J
w; = sz = Wy _ZhijMvén

=1

which is obtained from (3.2). Now the inner product (Z;, 2;)x is given by

(8, %) = (M~

FElad

iy M)y = (M1, ).

In this form, this inner product is guaranteed to be nonnegative as desired. This

leads to the following algorithm.
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ALGORITHM 2.2. Arnoldi-Classical Gram-Schmidt and M-inner products
1. Choose a vector wy such that v = M ~lwy has M-norm 1.
2. Forj=12,.--,m
3. w = Avy;
4. Compute hy; = (w,v;) fori=1,2,.--,j;
5. W :’!,U—Z‘::=1 hijwg;
8. z = M~ lb;

7. hijyr,; = (z,t?))lfz;If higy1j = 0 then stop;

8. wip1 = w/hj415
9. i =2/hip
10. End

As is noted, the above algorithm requires that we save two sets of vectors: the
v;'s and the w;’s. The v;’s form the needed Arnoldi basis, and the w;’s are required
when computing the vector 1; in Line 5. If we do save these two sets of vectors we
can also easily formulate the algorithm with the modified Gram-Schmidt version
of the Arnoldi procedure.

The situation for right-preconditioning with the M~!-inner product is much
simpler, mainly because M~1z is available when z needs to be normalized in the
M-1 norm. It is only necessary to note that M~z is normally computed at the
next iteration in the standard Arnoldi algorithm. Again, both the v’s and the w’s

need to be saved, where w; = M~1v; in this case.
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The additional storage of the w’s, however, makes the algorithm naturally
flexible, i.e., it accommodates the situation where M varies at each step as when
M~1v is the result of some unspecified computation. If M~? is not a constant
operator, then a basis for the right-preconditioned Krylov subspace cannot be
constructed from the v’s alone. However, the vectors w; = M7 v; do form a basis
for this subspace, where M J-"l denotes the preconditioning operation at the j-th
step. The use of this extra set of vectors is exactly how the standard flexible
variant of GMRES is implemented [49].

We can now write preconditioned GMRES algorithms using these implemen-
tations of alternative inner products in the Gram-Schmidt process. In the left-
preconditioned case, we can minimize the M-norm of the preconditioned residual
vector M~1(b— Az) by simply minimizing the 2-norm of the projected system in
the standard GMRES algorithm. To be formal, we state the following theorem

without proof.

Theorem 3.1 The approzimale solution x,, obtained from the left-preconditioned
GMRES algorithm with M -inner products minimizes the residual M-norm [|[M~*(b—

Az)||ar over all vectors of the affine subspace zo + Ky, in which
K, = span{zy, M1 Azg, ... ,(M~TAy" 2y} (3.5)

where zy = M~'r,. Also, the approzimate solution w,, obtained from the right-
preconditioned GMRES algorithm with M~ -inner products minimizes the residual

M-1-norm |ib — Az||ps-: over the same affine subspace.
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We can show that both left and right symmetric preconditioning are math-
ematically equivalent to split preconditioning. All that must be noticed is that

minimizations ol
|2 (b— Az)|lp = ||b— Az||py-1 = [M~'(b— Az)||m

are the same, and that the minimizations are over the same subspace in each of
the left, right, and split preconditioning options [50, §9.3.4]. We emphasize in
particular that it is the split preconditioned residual that is minimized in all three

algorithms.

3.2 Truncated iterative methods

Truncated iterative methods are an alternative to restarting, when the num-
ber of steps required for convergence is large and the computation and storage of
the Krylov basis becomes excessive. When A is exactly symmetric, a three-term
recurrence governs the vectors in the Arnoldi process, and it is only necessary to
orthogonalize the current Arnoldi vector against the previous two vectors. If Ais
nearly symmetric, an incomplete orthogonalization against a small number of pre-
vious vectors may be advantageous over restarted methods. The advantage here
may offset the cost of maintaining the extra set of vectors to maintain the initial
degree of symmetry. The incomplete Arnoldi procedure outlined below stores only

the previous k& Arnoldi vectors, and orthogonalizes the new vectors against them.
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It differs from the full Arnoldi procedure only in Line 4, which would normally be
a loop from 1 to j. It can be considered to be the full Arnoldi procedure when &

is set to infinity.

ALGORITHM 3.1. Incomplete Arnoldi Procedure
1. Choose a wvector vy of norm 1.
2. Forj=1,2,---,m
3. w = Aw;;

4, Fori:max{}}j—k_yl},...,j

5. hij = (w,v;);
6. w = W — N vi;
7. End

8. iy =|zlls;

9. If hjy1; = 0 then stop;
10 wipr =w/hjp;

11. FEnd

The truncated version of GMRES uses this incomplete Arnoldi procedure and is
called Quasi-GMRES [13]. The practical implementation of this algorithm allows
the solution to be updated at each iteration, and is thus called a ‘direct’ version,
or DQGMRES [51].

To suggest that truncated iterative methods may be effective in cases of near
symmetry, we study the asymptotic behavior of the iterates of DQGMRES as

the coefficient matrix A varies from nonsymmetry to (skew) symmetry. We first
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decompose A as

A=5+EB
in which S is symmetric or skew symmetric, and set
e =Bl

We will first establish asymptotic relations among the variables in the incomplete
and full Arnoldi procedures. Then we will apply the incomplete procedure to
A, and the fall procedure to S, using the superscripts I and I to distinguish
between the variables appearing in the two procedures. (Note that since S is
(skew) symmetric, the full procedure on 5 is the same as the incomplete procedure
with & > 2.)

Moreover, if we denote the degree of the minimal polynomial of »f" with respect
to S by v, then bl =0and hfﬂ_j # 0for 1 < j < v. Inthe proof of the following
lemma, we also use f)f and 'ﬁf’ to denote the vectors w! and w¥ obtained at the

end of Line 7 in the incomplete and complete Arnoldi procedures.

Lemma 3.1 Assume the truncation parameter k > 2. If vl = oF + O(g), then
hl=hE+0(e), wvf=0vl+ O(e)

where 1 <j <v aendmax{l,j—k+1} <:<j+1.

Proof. The proof is by induction on the index j. By Lines 5 and 6 of the Arnoldi

procedure,

B, = (Avf,vf), ) = Avf—h{yv], kg, =5l

62



we have

BI, = (SvF,vF) + O(e) = hE, + O(e),

1271

6 = SvF — hEvF 4+ Ofe) = 0F + O(e),

b, = [9£ s + O(e) = b, + O)

and hence the lemma holds for j = 1. Assume that the lemma has been proved for
j < jo < v. On that hypothesis, we prove it for § = j,. By Line 10 of the Arnoldi

procedure,

I I I
v o= P L.
Jo Jo/hJo,Jo—l

which yields that

oF + O(e) o
UJ{): hFJ _|._O(5) = hFJ +O(5)3U£+O(5)

Jajo-1

Joujo—1

by the induction hypothesis. Therefore
wl = Avl = Svl +0(e) = w” + O(e)

for the w! and w¥ in Line 3 of the Arnoldi procedures. Using another induction on
the index ¢ in Lines 5 and 6, and the induction hypothesis on j and, in the mean

time, noting that hf;o =0for 1 <1 < j, — 2, we have
I _F
hijo - hijo T O(E)

for max{l,j, —k+ 1} <1 < jp and

o =08, +0(e).

0+1 vjo+1
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From the last equation,

B o = 105 sall2 = 1195 alle + Oe) = hf 41 4, + OCE)

and then the induction step is complete.

We now turn to the DQGMRES algorithm. Consider the linear system
Sz ="b

and denote by z€ and &Q the approximate solutions by the GMRES and DQGM-
RES algorithms, respectively. Let g be the degree of the minimal polynomial of
the vector b — Sz, with respect to S. A result of the lemma can be stated as

follows.

Theorem 3.2 Given the same initial guess zy to GMRES and DQGMRES with

k> 2, then at any given step m with 1 <m < p,
2@ =28 + O(e).
Proof. By the definitions of DQGMRES and GMRES, we have
29 = o+ OV ((g;)T Hgl)_l (1) e,

and
oy .—1 —
2G = o+ ﬂGan? ((ﬁﬁ:)Tﬂﬁ) (H,{—f;)T ey
where 89 = [|b — Azg|l, and B = {|b — Sizg|,. Since

vl = B%(b— Azy) = )31_@(6— Sao) + O(e) = vf + O(e),
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we have by the lemma,

I =AF +0(), VI=VF+0()

and therefore the desired equation holds. 5
If we let =, be the exact solution to Az = b and zg be the exact solution to
Sz = b, then it is obvious that x4 = ¢34+ O(e). Since, on the other hand, =& = z¢

we immediately have the following corollary.

Corollary 3.1 For any initial guess x4 and any k > 2,
333 = T4 + O(E).

The corollary suggests that we may use DQGMRES with small & when A is
nearly symmetric or nearly skew symmetric. It may be possible to generalize the
above theory to the class of CG(s) matrices of Faber and Manteuffel [21], i.e., the
class of matrices for which it is possible to define Krylov subspace algorithms using

s-term recurrences.

3.3 Symmetric preconditioning in Bi-CG

Both left-symmetric and right-symmetric preconditioning of the Bi-CG algo-
rithm are relatively straightforward, and no extra vectors are required. In the right-
preconditioned Bi-CG algorithm with coeflicient matrix A and preconditioner M,

the preconditioned coefficient matrix of the dual system is (AM-1)T = M-TAT,
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i.e., the dual residual r* is the residual of
M—T AT p* = b*,

which is a left-preconditioned version of some linear system with AT, To develop
the symmetric right-preconditioned Bi-CG algorithm using M—1-inner products,
the preconditioned coefficient matrix of the dual system must be the adjoint of

AM-1in the M~ inner product. This is ATM~* as shown by
(AM~z,y)p— = (MTYAM 'z, y) = (z, MTATM1y) = (z, ATM~y)pr—1.

The dual system thus involves the coefficient matrix AT M-1.

Like GMRES, both left and right symmetric preconditioned versions of Bi-CG
ate equivalent to the split preconditioned version, and this can be shown by a
change of variables. However, in both left and right symmetric preconditioned
versions, the exact, rather than the split preconditioned residual is available.

The unpreconditioned Bi-CG algorithm cannot have a serious breakdown if A
is SPD and ry is chosen to be rg. This is because r} =r; and pt = p; for all § and

the vectors Ap;, P} never become orthogonal. In fact, the cosine

(Ap;»p}) _ (Ap;, p5) |lp;ll
NAp; el llesHlies I H Al

can be bounded below by the reciprocal of the condition number of A.

Similarly, in the symmetric right-preconditioned version of Bi-CG, if both A
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and M are SPD, and r% = ry, then rr=r; and P =p; for all j, and

Ap;, p*
—-———( b p"?*) > cond”(A)
[1Ap;1I112]
(M~1r;,r)
—— I > cond M (M).
(| M= ||

We measure the cosines rather than the quantities (Ap;,p;) and (M —lrj,’r;.‘)
because the p and r vectors have magnitudes going to 0 as the algorithms progress.
Recall that in the case when (M ~1r;, r;‘) = O and r; = 0, we have a lucky breakdown.

For the case of regular right- or left-preconditioning, or if 7% # 7, in the sym-
metrically preconditioned cases, then no such lower bounds as the above exist, and
the algorithms are liable to break down.

When A is near-symmetric, it is our hypothesis that the probability of break-

down is lower in the symmetrically preconditioned cases, and this will be shown

by experiment in the next section.

3.4 Numerical Experiments

85.1 tests the idea of using symmetric preconditionings with truncated iterative
methods. §5.2 tests the breakdown behavior of symmetrically preconditioned Bi-

CG.
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3.4.1 Truncated iterative methods

To test the idea of using symmetric preconditionings with truncated iterative
methods for nearly symmetric systems, we selected a standard fluid flow problem
where the degree of symmetry in the matrices is parameterized by the Reynolds
number. The flow problem is the two-dimensional square-lid driven cavity, and was
discretized by the Galerkin Finite Element method. Rectangular elements were
used, with biquadratic basis functions for velocities, and linear discontinuous basis
functions for pressure. We considered a segregated solution method for the Navier-
Stokes equations, where the velocity and pressure variables are solved separately;
the matrices arising from a fully-coupled solution method are otherwise indefinite.

In particular, we considered the expression of the conservation of momentum,
Re{u - Vu)=—-Vp+ Viu

where u denotes the vector of velocity variables, p denotes the pressure variable,
and Re is the Reynolds number. The boundary conditions for the driven cavity
problem over the unit square are u = (1,0)7 on the top edge of the square, and
u = (0,0)7 on the other three sides and the corners. The reference pressure
specified at the bottom-left corner is 0.

The matrices are the initial Jacobians at each Newton iteration, assuming a
zero pressure distribution. For convenience, however, we chose the right-hand sides
of the linear systems to be the vector of all ones. A mesh of 20 by 20 elements

was used, leading to momentum equation matrices of order 3042 and having 91204
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nonzero entries. The nodes corresponding to the boundaries were not assembled
into the matrix, and the degrees of freedom were numbered element by element.
For Reynolds number 0., the matrix is SPD, and is equal to the symmetric part of
the matrices with nonzero Reynolds number.

We generated matrices with Reynolds number less than 10, which gives rise
to the nearly symmetric case. For Reynolds number 1., the degree of symmetry

measured by
14— ATlly
A+ AT

has value 7.5102 x 10-% and this measure increases linearly with the Reymnolds
number (at least up to Re = 10).

In the numerical experiments below, we show the number of matrix-vector
products consumed by GMRES(%) and DQGMRES(k) to reduce the actual resid-
ual norm to less than 10-8 of the original residual norm, with a zero initial guess.
Several values of k are used. A dagger (i) in the tables indicates that there was
no convergence within 500 matrix-vector products. The incomplete Choleski fac-
torization IC(0) of the Re = 0 problem was used as the preconditioner in all the
problems.

For comparison, we first show in Table 3.1 the results using standard right-
preconditioning. Table 3.2 shows the results using right-preconditioning with M-t
inner products, or equivalently, split preconditioning. The right-preconditioned

methods have a slight advantage in this comparison (by as many as 20 Mat-Vec’s),
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since they directly minimize the actual residual norm, whereas the symmetrically
preconditioned methods minimize a preconditioned residual norm.

When split preconditioning is used, the actual, or non-preconditioned resid-
nal norm is not available. In this case, for GMRES, we use the preconditioned
residual norm in the stopping criterion, and check that the actual residual norm is
within twice the tolerance at the end of the iterations. For DQGMRES, since an
accurate residual norm estimate is not available within the algorithm, the actual
residual norm was computed and used for the stopping criterion for the purpose
of this comparison. (This slight mismatch in the stopping criterion accounts for
the difference between GMRES(0c0) and DQGMRES(2) for the Re = 0 case.) In
practice, the stopping criterion should use the preconditioned residual norm that

is available, not necessarily the actual one.

Table 3.1: Mat-Vec’s for convergence for right-preconditioned methods.

GMRES(k) DQGMRES(E)
Re. [ B [10 oo 213 4 [5[6] 7 819 [10
0 || 232|120 [59 || 76 | 920 | 106 |72 |92 | f | 160 | 83 |75
1 || 218|126 |69 || 76 | 276 | 131 |81 | 94| + | 97 | 90 {79
9 || 233|126 |70 | 78 | 391|268 |82 |95 | t | 98 | 94 |78
3 || 208|126 | 71|l 87 | 346|232 (85|95 | § | 99 | 97 |79
4 |[214 ] 128 |72 | 94 {345 | 1 |88 |95 |477|108| 98 |86
5 || 210|128 |72 | 192 3941 t |o1]o95| 326|128 99 |90
6 | 214|128 |73 || 446 | 361 | t |94 |97 | 258 | 197 | 100 | 94
7 G215 120 |73 |l + |345| t |97 |99 239|229 101 | 96

The results in Table 3.1 show the irregular performance of DQGMRES(%) for
these small values of & when the preconditioned system is not symmetric. The per-

formance is entirely regular in Table 3.2, where the preconditioned system is near
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Table 3.2: Mat-Vec’s for convergence for symmetric right-preconditioned methods.

GMRES(F) DQGMRES(E)
Re.T B [0 oo 23] 4567 (89 [10
0 || 243 | 119 |57 || 58 | 58 | 58 | 58 | 68 | 58 | 58 | 58 | b8
1 |l243 | 119 |67 75 | 74 | T4 | 75 | T4 | 74 | T4 | T5 | 75
9 ||244 {120 |68 | 78 |78 | 78 | 79 [ 78 | 78 | 78 | 78 | T8
3 || 244|121 |69 || 88 | 87 | 87 | 87 | 87 | 86 | 86 | 87 | 87
4 244|122 |70 |l 108 | 95 | 95 | 95 | 93 | 91 | 91 | 93 | 95
5 || 244|126 |70 } t (105|103 | 105 {100 | 97 | 96 | 101 | 104
6 | 244 | 127 |70 || t | 118|111 | 119 | 108 | 101 | 101 | 110 117
7 |l 243|128 |70 || + | 131 122 | 139 | 117 [ 104 | 105 | 121 | 139

symmetric. For Reynolds numbers up to 3, the systems are sufficiently symmetric
so that DQGMRES(2) behaves the same as DQGMRES with much larger k. The
performance remains regular until beyond Reynolds number 7, when the number
of steps to convergence begins to become irregular, like in the right-preconditioned
case.

GMRES with either right or symmetric preconditioning does not show any
marked difference in performance; apparently the symmetry of the preconditioned
system is not as essential here for this problem. However, the results do show that
DQGMRES(k) with small values of & may perform as well, In terms of number
of steps, as GMRES(k) with large values of k, particularly if near-symmetry is
preserved. Since the former is much more efficient, the combination of preserving
symmetry and truncated iterative methods may result in a much more economical
method, as well as the more regular behavior shown above.

We also performed the same experiments with orthogonal projection methods,

namely the Full Orthogonalization Method (FOM) and its truncated variant, the
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Direct Incomplete Orthogonalization Method (DIOM) [50]. The results were very
similar to the results above, and are not shown here. Indeed, the development of
the algorithms and the theory above is identical for these methods.

For interest, we also performed tests where an ILU(0) preconditioner was con-
structed for each matrix and compared right and split preconditioning. For the
near-symmetric systems here, there was very little difference in these results com-
pared to using IC(0) constructed from the Re = 0 case for all the matrices. Thus
the deterioration in performance as the Reynolds number increases is not entirely
due to a relatively less accurate preconditioner, but is more due to the increased
nonsymmetry and non-normality of the matrices. Although the eigenvalues of the
preconditioned matrices are identical, their eigenvectors and hence their degree of
non-normality may change completely. Unfortunately, it is difficult to quantita-

tively relate non-normality and convergence.

3.4.2 Breakdown behavior of Bi-CG

To test the breakdown behavior of Bi-CG, MATLAB was used to generate
random matrices of order 300 with approximately 50 percent normally distributed

nonzero entries. The matrices were adjusted so that

A+ AT A~ AT

A — —(o-m'i'n. "+“10m5)1+5 9 N
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i.e., the symmetric part was shifted so that the lowest eigenvalue was 10~° and then
¢ times the skew-symmetric part was added back. The parameter ¢ was altered to
get varying degrees of nonsymmetry.

For each ¢ that we tested, 100 matrices were generated, and the smallest value
of the cosines corresponding to the denominators in the algorithms were recorded.
In the right-preconditioned case, we recorded the minimum of

(AM~p;,p?) (ry,7%)

A

AM=p ezl " Tl

for all j, and for the symmetric right-preconditioned case, we recorded the mini-

mum of
(Ap;,p3) (M~trjry)
TR and el
|1 Ap;lllipzl M =2l

for all j. The relative residual norm reduction was 10-? when the iterations were
stopped. The initial guesses were 0, and r¥ was set to 7. IC(0) of the symmetric
part was used as the preconditioner.

Table 3.3 shows the frequencies of the size of minimum cosines for the right-
preconditioned (first row of each pair of rows) and the symmetrically-preconditioned
cases (second row of each pair of rows). For example, all 100 minimum cosines
were between 10~3 and 3 x 10~3 in the symmetrically-preconditioned case. The
average number of Bi-CG steps and the average minimum cosine is also shown.
The last column, labeled ‘better’, shows the number of times that the minimum
cosine was higher in the improved algorithm.

The Table shows that the right-preconditioned algorithm can produce much
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smaller cosines, indicating a greater probability for breakdown. The difference
between the algorithms is less as the degree of nonsymmetry is increased. For
¢ = 0.1, there is almost no difference in the breakdown behavior of the algorithms.
The Table shows that the number of Bi-CG steps is not significantly reduced in
the new algorithin, nor is the average minimum cosine of the modified algorithm
significantly increased. It is the probability that a small cosine is not encountered

that is better.

Table 3.3: Frequencies of minimum cosines for right-preconditioned (first row of
each pair of rows) and symmetrically-preconditioned (second row of each pair of
rows) Bi-CG.

£ steps § 3e-6 | le-b | 3¢-b | le-d | 3e-4 | 1e-3 | 3e-3 le-2 | 3e-2 || average | better
to to to 1o to to to to to %1073
le-5 | 3e-5 | 1le-4 | 3e-4 | 1le-3 | 3e-3 | 1le-2 | 3e-2 | le-]

0.000 | 32.51 1 4 9 19 26 30 11 1.35
31.77 100 1.87 74
0.005 | 30.57 1 2 8 16 34 34 5 3.51
29.97 2 1 82 15 8.64 92
0.010 | 209.27 1 0 3 2 10 29 32 20 3 7.25
28.94 1 2 1 6 88 2 || 15.79 7
0.050 | 27.53 1 3 8 13 36 31 8 4.15
27.32 2 3 7 18 39 26 5 9.47 69
0.100 ; 26.38 1 11 18 39 27 4 0.88
26.42 3 4 15 40 27 11 1.26 b7

It is important to note that this behavior only applies when rf is set to rg.

When 7 is chosen randomly, there is no gain in the symmetrically-preconditioned

algorithm, as shown in Table 3.4.
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Table 3.4: Frequencies of minimum cosines when r

t]

* is chosen randomly.

€ steps || 3e-6 | 1le-b i 3e-5 | le-4 | 3e-4 | le-3 | 3e-3 | le-2 | 3e-2 i average | better
to to to to to to to to fo x10—3
le-b | 3e-5 | le-4 | 3e-4 § 1e-3 | 3e-3 | 1e-2 | 3e-2 | le-l
0.000 | 33.05 1 4 11 24 26 30 4 0.92
32.54 1 i 3 11 24 56 4 1.31 683

Table 3.5: Steps and minimum cosines for the driven cavity problem.

Bi-CG steps min cosines
Re. || right | symm || right symm
0 70 62 1.5%2e-4 | 1.4be-1
1 71 68 1.08¢-4 | 6.73e-3
2 T4 T2 2.44e-4 | b.12e-4
3 73 72 2.02e-4 | 9.07e-3
4 77 72 1.93e-5 | 6.52e-3
5 30 75 5.64e-5 | 5.19e-4
6 30 78 1.91e-4 | 4.30e-5
7 80 80 1.87e4 | 1.02e-3

Table 3.5 shows the number of steps and the minimum cosines for the two

algorithms applied to the driven cavity problem described in Section 5.1 above.

Figure 3.1 shows a plot of the minimum cosines as the two algorithms progress

for the Re = 1 problem. Note that the minimum cosines are higher and much

smoother in the symmetrically-preconditioned case. In the Re = 7 problem, the

cosines are still higher, but the smoothness is lost.
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Figure 3.1: Minimum cosines in right-preconditioned Bi-CG (solid line) and sym-

metrically-preconditioned Bi-CG (dashed line) for the Re = 1 problem.

3.5 Conclusions

When solving linear systems with matrices that are very close to being symmet-
ric, this paper has shown that it is possible to improve upon the standard practice
of using a (nonsymmetric) preconditioner for that matrix along with a left- or
right-preconditioned iterative method. The original degree of symmetry may be
maintained by using a symmetric preconditioner and an alternate inner product
(or split preconditioning, if appropriate). By combining this idea with truncated
iterative methods, solution procedures that converge more quickly and require less
storage are developed. The truncated methods also seem to become more robust
with the truncation parameter k& when near-symmetry is maintained. The Bi-CG
algorithm also seems to be more robust with respect to serious breakdown when

near-symmetry is maintained.
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CHAPTER 4

ML(%k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos

Starting Vectors

We propose a new Krylov subspace solver, which we name ML(¥)BiCGSTAB,

for solving the nonsymmetric linear system
Az =1

in this chapter. The derivation of the new method is similar to that of BICGSTAB
but based on multiple Lanczos process. ML{k)BiICGSTAB can be regarded as a
bridge between BiCGSTAB and FOM. In fact, both BiCGSTAB and FOM are
special cases of ML(k)BiCGSTAB where & = 1 and 2 respectively. In §1, we give
our version of the multiple Lanczos process with one right starting vector and & left
starting vectors. In §2, a BiCG-like method is derived from the Lanczos method in
§1. §3 contains the main derivation for the ML(k)BiCGSTAB method. Numerical

results are given in §4.
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4.1 A Lanczos method for k Left Starting Linear Independent Vectors

Let A be an n X n real matrix and given &+ 1 real vectors vy and ¢y, 95,7 - , g

We define
Pikys = ATjQq: (4-1)

fori =1,2,--+,k;j=0,1,2,---, and suppose the matrices

PF{UG PfA'UU s P{Al_lvo
pive PiAv .- p A=y,

i/Vl: ) 121:27"'51}
plve plAve -- pl Aoy

are nonsingular, where v is the grade of v, with respect to A, i.e., the degree of
the minimal polynomial of vy with respect to A.

We now consider a sequence {v;};g; ..., of vectors from the Krylov space

K{vg, A) = span{vy, Avg, A%vg, -+ }

with the properties

v, € Alvg + K (v, A) = Alvg + span{vg, Avg, - - -, Al"1ug} (4.2)

and

v, L span{py,py,- - 10} - (4.3)
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The existence and uniqueness of such a sequence is guaranteed by the nonsingu-

larity of the Wy's. In fact, if we express v; as

= Alvg + "y“)vg + )Av 4+ 4 7(1) Aty (4.4)

then (4.3) is equivalent to Wiy = —f where v = ['yg),ﬁ{g), . ,fn(l_)l]T and

f= [PfAIUOv N :P?AIUG]T-

Two simple facts can be derived for the sequence {v;};-01....,: (a) v, = 0 and
(b) v; L pyr whenever [ < v. To see (a), we note that v is the grade of v,
and hence A*vy € K, (v, A). Property (4.2) is now reduced to v, € K, (v, A)
and thus (a) follows by the uniqueness of v,. To prove (b), we assume that v; L
Piy1- Then combining with property (4.3), we have v, L span{p,, - ,pi1}, and
hence Wi, 5 = 0, where 3} = [fy(l) o 'yl(l)l, 17 and ~ are defined in (4.4), in
contradiction with the nonsingularity of Wy,,.

Applying (4.4) to itself recursively, we can represent v, in terms of its previous

Vg, "'+ ,V;_q as follows,

(1=1),,

= Avy_y -+ by v + h( I}UI»-Q +- hg_l)’Uo

Noting that v; L span{p, - - ,p;}, v; L piy1 and ATp;, = piy;, and examining in
turn

P?'”l = p;TAUIq + h} 1 )PT'UI 1+ hE 2 P Vgt hgl_l)ngo

fori =1,2,---,l—k—1, we find all the coeflicients zero except h?_‘f’, h“ 1), . hg;l)

where m; = max({ — k —1,0). Thus we obtain a k + 2 term recursion relationship
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for {v;};=1,... ,, of the form,

vy = Avy_y + h}'_"f)vz_l + hru__gl)vlwz + hﬁ,ﬂjl}vml . (4.5)
If we set V, = [vg, vy, -+ ,v,_1] and H,, = (h;); j1.... »» the v x v Hessenberg matrix

with by, ;=1 hy; = —h(“j__ll) for m;+1 < i < 45 hy; = 0 otherwise, and if we recall

1

that v, = 0, then the recurrence relations (4.5) can be written in matrix form as
AV, =V, H,. (4.6)
Moreover, set P, = [py, P2, ,p,] and apply PT to (4.6) from the left,
PTAV, = PTV,H, . (4.7)

Because of (4.3) and the fact that v; £ pyq, PTV, is a lower triangular matrix
with all the entries nonzero in its diagonal. Comparing the corresponding prin-
cipal blocks of both sides of (4.7), we obtain a condition, which guarantees the

nonsingularity of H,, that 1f the matrices

plAv, plA?v, .- pTAly,
pTAvy, pfA%g .- pl Alvg

Sl: ’ l”—*l,z,"',b’
plAvy pf A%y, - pFAly,

are nonsingular, so are the principal blocks of H,.

Finally, we can see from (4.2) that

I{I'i-l(vUJA) = span{ve,vl,--- avl}a [ = 071-)"' s Vo 1. (48)
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Since the dimension of K, (v, A} is v, the vectors {v;};=01,.. ,—1 are linear inde-
pendent,

Summing up the above discussions, we conclude that

Theorem 4.1 Given vy,¢1,95, -+ ,q, and v, p’s, W, and S, as defined above.
If the principal submatrices of W, are nonsingular, there exist an n X v matrix
V, = [0g, 01, , 0] Of rank v, whose first column is vy, and an v X v Hessenberg
matriz H,, which has upper bandwidth k and all the entries hy, ; = 1 in ils lower

subdiagonal, such that

Uy -J-'Span{plap2>"' ?pl}a ] 1K-PI+17 l:0:1: WV = 17

and

Such V, and H, are unigue. Furthermore, if the principal submatrices of S, are

nonsingular, so are the principal submatrices of H,.

In most of cases, the conditions of Theorem 4.1 are satisfied when the g;’s are
chosen randomly from a continuous distribution.

Our procedure for generating the vectors v;’s and p;’s are closely related to
the multiple starting vector Lanczos method in [1]. In fact, the columms of V,
are exactly the same as the right Lanczos vectors in {1]. However, the p;’s are

different from the left Lanczos vectors in [1]; in fact they are not orthogonal to the
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v;’s. It turns out we do not need the full bi-orthogonality property in deriving our

extensions of BiCG and BiCGSTAB.

4.2 ML(k)BiCG: A BiCG Variant Based on Multiple Starting Vectors

Lanczos

We now turn to the linear system !

Az =b (4.10)

and we shall derive, based on Theorem 1, a projection method by borrowing the
techniques used in the derivation of the Conjugate Gradient algorithm from the
symmetric Lanczos procedure [p.176, 12]. Even though this is a well known pro-
cedure, in our case there is some difference from the standard case and therefore
we include the derivation here for completeness and clarity.

Suppose an initial guess zq to (4.10) is given. We set in Theorem 1 vy = b— Az,.

At the Ith step of our projection method, we seek an approximate solution x; with

;€ Ty + Span{vﬂavlw e :vl—l} (411)

and

"= b‘"Awl-J—Span{phpZﬂ"' 7pl}: (412)

1'We do not assume the matrix A is nonsingular throughout the paper unless where specified.
We just require that the assumptions in Theorem 4.1 hold.
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where the v,;’s and p;’s are as defined in Theorem 4.1.

Since PV}, a lower triangular matrix with all diagonal entries nonzero, is
nonsingular, it can be shown in the same manner as in deriving CG from the
Lanczos basis that ; is uniquely determined by conditions (4.11) and (4.12) and

has the following expression,

with the corresponding residual r, is in the same direction as v, where P =
[P, >pids Vi = [0, - s vima)y Hy is the I x I principal submatrix of H,, and e,
is the first column of the I x I identity matrix. From (4.11) and (4.8), we have
r € vy — span{ Avg, A%y, - -+ , Alug} and hence r; # 0 if [ < v since v is the grade
of vg. Moreover, r, = 0 from (4.13) and (4.9).

Letting r; = £v; for some scalar £ which is not zero whenever ¢ < v and setting

A, = diag{&, &y, -+ €11}, then (4.13) can be rewritten as
z; = zo+ MATIH ey,
where Ry = [ro, 71, -+ ,7i_1). Write the LDU decomposition of HjA; as
HA = LD,

which exists due to the nonsingularities of the principal submatrices of H}A;, and

define

G =ldo, g1, o1l = BUT, =D Ly er
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Following again the derivation for CG, we have

21
Zl =

Of;_l

for some ;. As a result, z; can be updated as
zp = 2o+ Gz = To+ Gz T i = Ta g (4.14)
and hence
rp =11 — aAg ;. (4.15)

On the other hand, since Gy,y = Ry US4, g; can be computed from the previous

g;’s and r; by the update

g=n+ ﬁz(i)191—1 + ﬁz(i)zgz—z 4+t ﬂgzgﬁu (4.16)

where 7, = max({—k, 0} and where — }5',;(0 are the nonzero entries of the last column
To compute the coefficients a; and A" in (4.14), (4.15) and (4.16), we need the

A-orthogonality of the vectors g;’s and p;’s. Since

PTAG, = PTARU™ = PTAVNUT = PE(VIL + vel AU
= PTVH AU = PITVILIDIUIUI_} = PIViL Dy,
where ¢; denotes the last column of the ! x ! identity matrix, and since PTV] is

nonsingular and lower triangular, we have

pTAg; =0, <y (4.17)
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and
Pnga—l #0.
Thus, utilizing this information, we examine the following equations derived from

(4.15),
P?Tl = P?TIA - O‘IPITAQ'I-l
and

plAgy = pl Arp+ BO DT Agi_y + BT Agrg + - + AT Agy,

for i going from ;4 1 to [. Then we get

P}T?”zmz
o) = =Lt (4.18)
YT T Agy

and

g0, - _P?A"'! +pf E;jﬁ; ﬂa('nAgj
- p?Agi—l

,  i=my+lee (4.19)

Now, putting the relations (4.14), (4.15), (4.16), (4.18) and (4.19) together, we
have
ALGORITHM 4.1. ML(£)B1CG

1. Choose an inttial guess xo and k veclors q1,42, -+, Q&

2. Compute rg = b— Azg and set py = q1, go = 7o-

3. Forl=1,2,- -, until convergence:

4. ey =pira /ol Agiea;

5. @ = &1 + argi-1;

6. =T — arAgia;

=~

Fors =max{(I—k,0), -+ ,1~1

85



o

) = A (’"r + E:;;lax(a-k,o)ﬁtmgt) [PTr1Ads;
9. End

10. g1 =7+ er_:%nax(i'——k,ﬂ) ﬂg}gs;
11. Compute pros according to (4.1)
12. End

It is worthwhile to remark on two special cases where ¥ = 1 and £ > v. If

k=1, then p; = AT" g, and conditions (4.11), (4.12) become

€ $O+Span{vﬂavla"' avlmi}ﬂ Ty J—I{I(QDAT):

which are exactly what the BiCG approximate solution zBiCC needs to satisfy. As
a result, Algorithm 4.1 is equivalent to the BiCG algorithm mathematically. On

the other hand, when k > v, (4.11) and (4.12) reduce to

&y € xp + span{vg, vy, -+, v}, 1 Lspan{a, @@}
for 1 <1< . If, at the Ith step of the computations, we choose (P13 =) g1 = 7
while setting (p, =)q = ro beforehand, then Algorithm 4.1 is mathematically

equivalent to the FOM algorithm.

From its derivation, we can state the following result about Algorithm 4.1.

Theorem 4.2 Under the assumptions of Theorem 4.1, ML(k)BiCG does not break
down by zero division before step v and the approzimale solution z, at step v is

exact to the system (4.10).
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4.3 ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Start-

ing Vectors Lanczos

The implementation of Algorithm 4.1 requires the use of AT to compute pry,
in Line 11. In practice, however, the transpose of A is not always available, for
instance if the matrix is not formed explicitly and the matvec product is only given
as an operator. But this difficulty can be overcome by adopting the techniques in
the derivations of CGS and BiCGSTAB. In this section, we give a transpose-free
Versioﬁ of Algorithm 4.1 which we call ML(k)BiCGSTAB.

We first rearrange the outer for loop of Algorithm 4.1 into a form more conve-
nient for our development. Let [ = jk +17 and let the index ¢ vary from 1 to & and
4 starting with 0. Then we convert the loop in / into doubly nested loops in 7 and
i respectively. By moving the case where 7 = 1 outside the é-loop, we rewrite the

lloop (omitting Lines 5 and 11) of Algorithm 4.1 as,
1. For3=10,1,2,.
Qjpt1 = p?k+1r(j—l}k+k/ p?k+1Ag(j——1)k-§-k;

Pikd1 = T(i-1k+k ™ ajk+1A9(j—1)k+k;

4. Fori=1,2,---,k

5. Fors=max((j — 1)k +14,0),--+ ,jk+1—1
) ki) :
6. ﬂg'?kw‘“) - —Pg'+1A( Tjk+i + Zt =max{(j— 1)k+z() (J ) /ps+1Ags’
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End

8. Gitti = Tjhpi + Eiiﬁ;xl((j—l)k+i,0) plktig,;
9. Ifi<k
10. Cjiptitr = P?Hiﬂ Tiktif P?}cHH Agjpyis
11. Tiktisl = Tikgi — Cibpirt AGsrass
12. End
13. End
14. End

in which Lines 5-8 can be again expanded into:

1.

W

4.

&

Fors=max((j — )k +1,0),--- ,(j~1)k+ k-1

o LR+ ,
ﬁ£3k+) = “*P;FHA ( Tikgi T Etwmax((:w k4, 0) Jt )/pSHAg“

End
ki k+k-1 k+i .
((;_-{);}g.l_k = —PﬁﬂA (Tjk+é + ZEJ m.'lx?i_j' — 1}k, 0) (J ) ) /p3k+1Ag(j—1)k+k’

Fors=jk+1,-+,jk+i—1

sy 1)k+k k+i
BUkH) = —pT A (1 + DN s B0

s—1 (7k+1) .
Zt:jk—{»l t ) /psHAgs’
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7. End

1Yke+k 1k-ti— %
8. g..’i'k+2- = Tjk“f’"i + Z.(sj mix((j 1}k+41,0) ﬁ(J + )g + Zi -I;,:k:-i-l ﬁ(Jk+ )g

and further into:
1. 1 fi=0
2. B = —pT Ar,/pT Agy;

3. Fors=1,---,i—1

4. Bl = —p’;‘"HA (7'5 + ﬁéﬂg{, + Z:;ll t Qt) /P5+1A£’s;
5 End

6. =r;+ 01 Bg,;

1. Else

8. Fors=i, - ,k—1

jk-+i
9 ﬁ((j—l)gc-Fs = _pa—l)k+s+1A(rjk+‘i +
3 k41 .
= ﬁ((j 1)k+tg(3w1)k+t) /p%;'—a)k+s+1 Ag(j—l)k+s:
10. End
Tk+i _ {ik-+i) '
11. )6((;_1)2c+k = —pJIkHA (rjk"'f m ﬁ(j 1)k-|-tg(3 l}k-}-t) /P£+1A9(j_1)k+k,
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120 Fors=1,---,i—1

(7k+1) _ {7k-+7)
/37k+s - _pfk+s+1A ( Tikgi T Z:t....:l ﬁ(y eed(i—1) k41 +

13.
- ﬂfiﬁtl)gﬁﬁ) / p?k+s+1Ag:ik+s3
4. End
15. Gikti = Tikgs T Ef—; ﬁ((j k-;;k+sg(o~»1)k+s s_l ;Efc}fl—tz)ggkﬂ:
16. End

We now introduce an auxiliary polynomial ;(}) defined by the recurrence

relation,

an()()\) = 1:

11[;1()\) - (pl)\ + 1)17[)!—1(A)7 [ = 1727' Ty

where p; is a free parameter. This polynomial ;()) was first used by van der Vorst
in the derivation of BiCGSTAB [60]. If we express ¢,(A) in terms of the power
basis,

i \) = n(l))\z bt 77(‘))\ CE

0 _

then it is clear that n;” = pyp, -+ p; and ir,r() =1

Next, we define the following vectors, analogous to those defined in BICGSTAB,

Tihpi = "»()j(A)Tij: Tikyi = ¢j+1(A)Tjk+i ’
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Birri = Vi(Ari>  Wikwi = Visa(A)Giese
fori=1,2,--- ,k;7=0,1,---, and set 7y = wg = 1y (= go). Our goal is to define
ks 10 be the residual of our new method. The other three vectors are needed
in deriving a recurrence for 7;,;. By recalling (4.1), (4.12) and (4.17), we find
that the scalars o;’s and §,’s in Algorithm 4.1 can be computed via these new
vectors. The derivations are quite complicated and therefore we give the details in

the Appendix while summarizing only the results here. In fact, we have

9 T(i~1)k+k

Wiy =
! 41 AW 1)kt
for 0 < 5,2 = 1;
qT e
o _ Pa+lqe‘+1 FLE
STRVES =
qa_l(wjkﬂ — Djpys)
for0< 7,1 <e <k
Tx
@ —__ 4T
s =

p1G¥ Awg

for1<:<k,7=0;

_ Q‘ﬂ_l (Wi + ﬁ((li)plAwﬂ + 25;11 t(i)(wt - LL’t))

qf-{-l (ws - ws)

g

for1<s<1<k,3=0

(ik+4)
ﬂ((jk+i) _ ”‘1311( i T 20 5(§~1)k+t(w(3 1kt ™ W(— 1)k+t))

i—1)k+
Tk q§+1 (W(i-1ybts = D(-1)p+s)

for1<g,1<i<s<k—1;

k+i
(ik41) . qT( Jk+z +PJ+1 t-g 58 1);)c+tAw(j_1)k+t)
/6(3 etk —

Pi+19 Aw(g 1)k+k
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for 1<j5,1 i<k

ikt s—1 olk+i .
ﬁ(jk+€) ‘13;1 ("’rjk+i + Pt Ef:,- ﬁ((j—l)l)c+tAW(j—1)k+t + Etzi ﬂﬁm }(%‘k+t - ij+t))

Tk+s - T ~
0% (Wikts — @ieys)

for1<jl<s<i<k
The vectors 7 iy, Tippis Djpps and wizy; themselves can be updated according

to Algorithm 4.1 as follows,

Tigm = (A

= P (AN rG—tyktk — Vb1 AGG-1)k+h)

= T htk — Qa1 AW 1)tk

for 0 < 7,2 =1
ikl = ¢j+1(A)T'jk+1
= (pjp1A4%;(A) + (A7 k41
= P AT + Tk
for 0 < 5,2 = 1;

Tippidr = ’/’j (A)""jk+i+1

= ;(A)(ripri — Yrpirr AGjati)
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- @uwﬁwm“ﬁzﬂwﬁam—¢xmmﬁﬁ

o ikt ~
= Wipai M(”jkﬂ — Wjyi)
- Piga
for 1< <k, 05
Tibrirt = P (A)jrpin
= ¢j+1(A)(T'jk+i AT ERES | Agjk+z')
= Tiki — Qprir1 A
for 1 <:<£,0<y;
W = to(A)g;
= o(4) (r; + T2L B0, )
= 7+ Bwy + T B0,
for 1<1 <k, =0
w; = ¢1(A)9-i

= u(A) (ri + 2L BOg,)

= by (A)r; + B (A)go + TI2L B (A)g,
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= m+ ﬂ(()i)(PlAwo + wp) + Zi;ll Blw,

for 1<i<k,j=0;

Wikyi = ";bj(A)Q'jk+i

§13 i k42
— ¢j(A) ( Tikdi + Zs_ ﬁ(;—-;)k+sg(:1 1k+s + Zs— ﬁ(i:.; )gjk+3)

_ ko plikti) {ik+d) ~
- 3k+1 + zs—-z ﬂ(J 1)F~+8w(ﬁ' 1)k“§“3 s*l ﬁ.?k'i's Wikts

for 1<5,1 <1<k

Wikti = Pt (A)gjk+i

k : k41
= Pipa(A) (rjurs + 5 BT - vyens + Tk BEE G

= P (A + Th, ﬁ{gii-;z;+s(9j+1A + 1) (A)g-1ykest

ik
Yt 18§§c+ta)¢j+l(‘4)gjk+s

k+i Fa k41
= T+ Lo ﬁ((;mi-)lz:+s(pj+1Aw(j—1)k+s+w(j—1)k+s)+zs_ ﬁ(i:;) Wikts

for 1 <34,1 <1<k, where [ is the n x n identity matrix.

The formulas we have just derived constitute the main operations of the ML(k)BiCGSTAB

algorithm, which we summarize as follows.
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1. Set 1y = wy = 1y,

2. For3=0,1,2,---

T
_ 5 TGk
3. ajk-{—l - TA ;
a7 AWG_1)k+k

Tikt1 = T(otyhek — Q1AW 1yt
5. Choose p;q # 0
Tikgr = Pit1 AT e + Tjrgas

7. Fori=1,2,-+-,k

8. Ifj=0
9. () = ——@?f—;
P14y Awg
10. Fors=1,--+,1—1
11, gy — _Ton (i + ﬂ‘gi)pfwo B2 Do~ )
( P oy

12. End
13. @ = 7+ A + T BOG,;
14. w; = 7; + B (py Awg + wo) + 2L
15. Else
16. Fors=1,---,k—1
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17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

(7k+4) .
6(J‘k+i) _ Q’STH( T jk-+i +Zm 6{;-—1)k+t(w(a Dkt — w(j—l)k-}-t)).

(G=Dkts ™ 0043 (WG-1kts — P(i-1)b+a) ’

End
k—1 plik+d)
(7k+5) q ("Tjk+i + Pita Et:z'i ﬁ(;—l)k+1Aw(j—1)k-§-t) )
p G-Dk+k ™ ;

Pi19; AWG_1yktk
Fors=1,---,2—-1
ﬁiiﬁti - —9‘3;1 (ﬂ' ki + P41 Zfzi ﬁ((}?:ﬁ;iﬁflw(j_})k“-l-
ﬁ{iﬁji)( Wiggt — ijw)) / qh  (Wikgs — @jys);
End

ko plik+i) i-1 glik+i) ~
.?k'H o /‘T.?k“i'i + Es = ﬂ(g 1)k+3w(j—1}k+s + Zs: 163k+.s :,'k-l-sa

ki i-1 glik+i} |
Wikyi = Fjks T Zf:g- !3((;?_1-}11+5(Pj+1Aw(j—1)k+s + w(j—l)k-i—s) + Zs_ll ﬁJiJrs

End

Ifi<k

T s
Pi+19 41 ki

T AT

gl (Wikgi — @)

kit =

Tikgidl = Fjpgi — (Wikti — Djpa )

Tikitt = Fjb4i — ajk+i+1ijk+i;

End
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31. End

32. FEnd

Some simplifications can be made to these operations, for instance, (a)} resetting
the scalar ajy ;4 in Line 27 to be ¢ %y /gl (Wips —@;pps) SINCE gy iy 18 Only
used in Lines 28 and 29 and the factor p;,, will be cancelled in Line 28; (b) merging
Lines 9-14 and Lines 19-24 by adding a conditional control “2f j > 1”7 in Line 16
and freating ,81('.) with [ < 0 as zero; such ﬂ,m’s will appear in Lines 19-24 when

7 = 0; {¢) introducing the auxiliary vector
djk+i = Wikti — 5’jk+i 3
which can be updated by using Lines 23 and 24 as

k i—1
. ki 1%
d:ik+=i = Wikei = Fjkti T i1 Zﬁgq)iw*’qw(j—i)kﬂ + Z ﬁﬁws )djk-]-s .

s==1

With these changes, we rewrite Lines 8-30 as,

L. Fors=i,---,k—1landj>1

~ 5— Tkt
qf+l (Ws‘k“’ri + Et:il ﬁg-—l)i)c+td(j—l)k+t)_

2. Uk ,
(ks qF1dGi-1)es
3. End
k— ki)
4 ﬂ(jk-}»z‘) _ 4 (”Tjk+¢+Pj+1 Zm-l ((;ml)k+tAw(j—l}k+t).
: G-Uk+k — 3

pistds Aw(i_1)etk
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3 Fors=1,---,i—1

k+) s—1 glik+i
qz;l ( Tikti T Pitt zt'—'t '88 1)k+tA""{j—1)k+t -+ Et:: ﬁ;giﬁ )djk+t) .

6. Ukt -
s qs+1d3k+s
7. End
. ikti i k+i
8. djk+i = Wipti — Fihgs + Pig1 EI::,; )38_1)2;);+5Aw(j—1)k+s 23_1 5J(i+s Gkt

(k) (3h+i)

9 Wipgi = Tirgi + v Bt yers(Pir1 AWG 1 bps T Wi1)ps) T 3 Bibre Wiktss

0. Ifi<k
G ikt
11 ajk-i-—é+1 %ﬁt
Giv1%ik+i
12.

Tikier = Tikti — Qiktit1 Liktis
13.

Tiktitl = Mjkti = Piq ajk+i+1ijk+i§

4. pnd

in which Lines 1-9 can be further written as,

2y = Tipgis % = Fjhpis Zhw = 0;

2. Fors=i,---,k—landj>1

e

T
ﬂ Jk+1) . qs+1zd .
(7-1)k+s ™ } !
s+1d(J-1)k+s

jk-i
4. Zg =23 T JB((J..l)k+sd{j~—1)k+s;
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10.

11.

12.

13.

14.

15.

16.

17.

18.

k+)
Zw T 2y +ﬁ((j-1)k+sw(j k53

ki
Zpw = FAw T ﬂ((;_i-)])gg+sAw(jw1)k+s;

FEnd

ﬁ(’fk“) _ _Q; (ﬂ'jk+i + Pj+lew) )
{1}tk pj+1qfwa(jm1)Mk )

Z, = 2yt /ngk_;;k+kw(j 1)k+k
Zaw = Pit1 (ZAw + JB((;:ET;])‘:+kAw(j—1)k+k) ;
24 = Tikti F 2 Aws

Fors=1,---,2—-1

T
ﬁ(ﬁk'l'*) qs+1 .
jk+s d
s—]—l 3k+s

(7k+7) .
24 = 2d + ﬁ;k+s djk+s:

_ (Fk+1) .
Ry = &y + ﬂjk+3 Wikts3
Fnd
djk+z' =20 — Tkt

Wikti = Zu T 24w
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As the approximate solution z; at step I{= jk + ) of the ML(k)BiCGSTAB

algorithm, we define

Liktr = L1tk — Pit kg1 + Xpp1W(i—1)k+k (4.20)

for j > 0 and
Tikitr = Tikpi T L1 Xgkgit1 Wik (4.21)

for § > 0,k > ¢ > 1. One can readily verify by induction that =, is the residual
vector of z;, that is, 7, = b — Az,

We are now ready to state the ML(k)BiCGSTAB algorithm formally. As part of
the algorithm, we choose the parameter p;,, to minimize the 2-norm of the vector
Tive1 = Py AT + Tg, Loy piyg = =75 AT /|| AT i 14 [|2. Noting that the
data ¢7 Aw;_1yktk; q3"+1d(j_1)k +s and qf_l_ldjk +s are repeatly used inside each loop
of the control variable j, to save the computational cost, we introduce a variable
Cirepar such that cigyy = ¢f diyy H1 <7 S k-1 and iy = qf Awprgyy, if

i’ = k. Moreover, since m; is the residual of x;, we relabel m; as r;. We also relabel

w; and 7, as g; and u; respectively.

ArcoriTiM 4.2. ML{k)BiCGSTAB

1. Choose an initial guess oo and k vectors q1,qa, -+ , Qk.
2. Compute ro = b — Axy and set go = ro.

3. Forj=10,1,2,.--

4. wgo Dk = AGG-0r+E

5. C—1)k+k = 01 Wi 1)k4E>

(1]

Hjk4l = 1 PG -1)k+b/ CG -1kt
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10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.
29.
30.

31,

Usp+l = T(i—1)k+k — EH1WG-1)k+Es

piv1 = —uly s Auinga /| Aue ]l
Tik4l = B(i-Dk+k — Pi+1%jk+1 T O
Tik+1 = pir1 AUk + Uiy 1
Fori=1,2,---,k
g = Ujh4i) By = Tikis 2w = 0
Fors=4,--  k—~landj>1
ﬂgﬁ;iﬂ = —q1 1124/ C(i-1)k+s>

bt
Zd = zd + ﬁg’ 1)k+_,d(j—l)k—i—s§

g =2yt ﬁ(j. l)k-i—sg(.? 1k4ss

Ty = ‘i‘ﬁ(j. 1)k+_,w(j —1)k+s3

End

k190 —1)k+k;

ﬁ(ak-m) _ 4 (ripsit piaz)

DR piie— ik

zg =29+ IH(J 1)k+k9{3 EYk4k

e
Fw = Pi+1 (zw + 5§§—41-)});+kw(1'—1)k+k) ;

24 = Tik4i T Zw;
Fors=1,..-,i—1

FLE ) I .
BURED = T 2a/Cbgss

k
2g= 24+ ﬁ(i::)d ks

+
Zg = Zg + ﬁ(Jk+s )gjk%-h

End

dipyi = 2d — Ujps;
Jik+i = Zg + Zu;
Ifi<k

P & -
Cikgi = qi+1djk+n
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R .
32. Cjhtitt = Qi Ujikti/ Cie+is

33. Ujkdits = Ujkdi — Cihtit105h 445

34. Tiktitt = Tikti + Pi+10Gk+it2Gik+i3
35. Wik+i = Agik+is

36. Tikditl = Tiki = PiH1 G ki1 Wik
37. End

38. End

36. FEnd

The denominators in the ML(k)BiCGSTAB algorithm appear only in the eval-
uations of a's and ’s and from the process of their derivations, these denominators
differ from their counterparts in Algorithm 4.1, but can not be zero if the denom-
inators in Algorithm 4.1 are not zero, assuming the p,;’s defined in Algorithm 4.2
are nonzero. Hence, under the assumption that p;y, # 0 for all j, we can see
that if Algorithm 4.1 does not break down by zero division at some step, then
neither does ML(k)BiCGSTAB at the same step. Moreover, since the residual

vector 72 . is by definition the vector ¢; +1(A)r}k L¢» Where 1

2
et i and i denote

the corresponding residual vectors in Algorithms 4.1 and 4.2 respectively, and since
s € Kivrin (vg, A), v € Kingirirs (vp, A). Thus it is possible that Ty van-
ishes when jk+i+7+1> v, or jk+¢ > v —j—1. On the other hand, r2 must

be zero hecause ri =9.

Theorem 4.3 Under the assumptions of Theorem 4.1 and suppose p,4, # O for

all 7, the ML(k)BiCGSTAB algorithm does not break down by zero division before
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step v and an ezact solution 2 to ({.10) is obtained at or before step v.

A similar remark to the one at the end of §3 can also be made here. Mathe-
matically, ML(1)BiCGSTAB is equivalent to BICGSTAB since it was established
based on BiCG by using exactly the same techniques used in deriving BiICGSTAB.
In the case where k > v, we can obtain an exact solution in the first loop of j, i.e.,
7 =0, and the algorithm now can be regarded as a FOM algorithm (with the ¢;'s

appropriately chosen), for the reasons stated in the following. Since
r} € vy — span{Avy, Avg,- -, A'vg}
from §3, we have
r?2 = (A)r! € rF — span{Arl, A%E ... AirF}

where vy = b — Azg, rf = ¥(A)vy and r! and r? are the residual vectors of
Algorithm 4.1 and ML(k)BiCGSTAB respectively and 1 < ¢ < v. Thus if A is

nonsingular and recalling that t,(A) = p;A + 1, then
mf & a:g' + stan{rOF,ATg", e ,Ai—l?..g‘}

where z? denotes the approximate solution of ML(k)BiCGSTAB, defined by (4.20)
and (4.21), with residual r? and where af = x—pyvp and rf’ = b— Az} lf af step s

of the ML(k)BiCGSTAB algorithm, we choose g (= A%, = p;) = 9 (AT )b, (A)v,

2If the coefficient matriz A is singular, the system ({.10) may have more than one solutions.
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3 and qi:(Z Aoq.i,' = p‘i‘) = ’qbl(AT)T?,_l for 2 S ! S 'i, then

(Tg)TT? = (¢1(AT)¢1(A)”0)TT} = PTT'l = 0, 1<z,

and

(T2 = (R(Ar) = prt = 0, 1S¥si-l

by (4.12). In other words,

r2 Lspan{rl,r? ... 2 1}, 1<i<v.
As a result, the ML(k)BiCGSTAB (k > v) algorithm with the special choic es for
g;’s described above is mathematically equivalent to the FOM algorithm defined
by
ol € 2l + span{rl AL, | AT}
and
F.L{T'O, 197 ,rf;l},

where the initial guess 2 and residual r} are defined as above.

It is quite straightforward to give a preconditioned version of ML{k)BiCGSTAB.

Suppose we are solving the right-preconditioned system,

AM-ly =6, y=Mz.

Directly applying the ML(k)BiCGSTAB algorithm to the system AM -1y = b{ or

the y-variable and then recovering the z-approximation from the y-approximation

3Note that p;, the leading coeflicient of ¥1(}), is a function of ¢; according to Steps 4-8 of
Algorithm 4.2 and here we suppose the equation q; = v (AT )1 {A)vg has solutions for ¢;.
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with the relation y; = Mz, yields the following algorithm.

AvcoriTeM 4.3. ML(k)BiCGSTAB WITH PRECONDITIONING
1. Choose an inttial guess xy and k vectors q1,q2,* , qk.
2. Compute rg = b — Azg and set go = ro.
3. Forj=0,1,2,-.-

4. Gi-1p+k = Mg kg

5. WG —k+k = AGG 1)k +k5
6 : =gl .
. Cli~k+k = 91 W(H—13k+k>
7 b1 = 47T . -
. Qi1 = 4} T(g—l}k+k/5(g—1}k+k,
8. Uikl = PG~ k+k — Xfhp1 WG 1)k 4k
9. ipt1 = M up40;
T ~ ~ .
10 g1 = ~ufy g Al /AT )
1L %41 = TG-Dktk — Pi+185k41 + k41— 1)k+E
12. Pikdl = Pip1Atipg + Yika;

13. Fori=1,2,.-.,k

14. 24 = Ujkpis Zg = Tiktis 2w = 05

15. Fors=1d,--- k—landj>1

16. ﬁ((;i-{;,%.hg = _qg+1zd/c(j—1)k+s§
17. 24 = 24 + ﬁgiﬂi{;‘;}wsd(j—nkH;
18. 2y = 2y + ﬁ((;kf)kﬂg(g ks

19. Zw = Zw + ﬁ((;k.il‘}k+sw(1 =1)k+s5
20. End

91, s o (ripti + pis1z)

Pi+iC(i—1)k+k

i
22. Zg = 24 ~§“ﬁg_1;,)c+kg(j_1)k+k§
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23.

24,

25,

26.

27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42,

e (7 k+i) .
Zw = fi+1 (Zw + ﬂ(j_1)k+kw(:f—i}k+k '
24 = Tik4d + Zw;
Fors=1,..-,i-1
(Ghk+d) _ T g
ﬁjk-]-a = _qa+1zfi/cak+s:
5kt .
Zd = &4+ ﬁj.(-kH Ydjis;
— Jk+t .
g =12+ ﬁg('k+s Jgjk+aa
End
dipgi = Zd = Ujhris
Gik+i = Zg + 2w
Ifi<k
_ T .
Cikti = Gip1ik+i
R i S P
Qjptid: = Qi+1”1k+t/c;rk+ﬂ
Ujkpitt = Ujkti — OGktit1dibgds
~ _1 .
Gikt+i = M~ gjnai;
Tikditl = Tik+i T Pi+21¥kpi+15 k43
Wikti = Afjhtis
Tiktid) = Tjk4i = Pib10G ki1 Wik 4
End
End

End

With suitable changes of variables, it may be shown that both the left and split

preconditioning versions of ML(k)BiCGSTAB also lead to Algorithm 4.3 provided

that ¢,,¢s, - , g are appropriately chosen. For the concepts of left, right and split

preconditioning, one is referred to [50].
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Preconditioning (M~1v) | 14+ 1/k | Vector addition 3
Matvec (Av) 1+1/k Sazpy 2.5k+3.5+1/k
dot product k+2 | Scalar operation E+3-—1/k
Scalar-vector 1

Table 4.1: Average cost per step ol the preconditioned ML(k)BiCGSTAB.

Each loop of the control variable j in Algorithm 4.3 involves solving &k + 1
systems with coefficient matrix M, k + 1 matrix-vector multiplications with A,
k* + 2k dot products, 2.5k% + 3.5k + 1 saxpy’s, 3k vector additions, k& scalar-
vector multiplications and k2 + 3k — 1 scalar operations. Since there are k steps
in each loop of j, the average cost per step can be calculated and is listed in
Table 4.1. Regarding the storage, the data {g1, -+, }, {dy_iptir s digsizr )
{9G—1)b+i> =+ > Giwgizt } and {WG_1yrpir , W;k+i—y } are used in the process at step
jk -+ ¢ and hence they must be stored. Since they dominate the memory when &
is large, the storage of the algorithm is about 4kn. We note that when k = 1 the

cost is the same as BiICGSTAB’s and for large & the cost tends to that of FOM.

4.4 Numerical Experiments

In this section, we shall illustrate the numerical convergence behavior of ML(%£)BiCGSTAB.

We shall compare ML{£)BiCGSTAB to BiCG, BiCGSTAB and GMRES(m) [48]
on a test suite of matrices from the Harwell-Boeing Collection [16]. For the imple-

mentation of these latter three methods, we used the versions described in [8]. All
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the experiments were run in MATLAB 4.2¢ on a SUN Sparc station with machine
precision about 1016, As for the initial guesses and right-hand sides, we always
chose 25, = 0 and b = [1,1,--- ,1]T. For the initial vectors ¢y,¢,, -+ ,¢; in the
ML(k)BiCGSTAB algorithm, we first chose k random vectors with independent
and identically distributed entries from a normal distribution with mean 0 and
variance 1 and then made them orthogonal to each other by using the modified
Gram-Schmidt algorithm [31]. With ¢,’s chosen randomly, the conditions of The-
orem 4.1 are satisfied in most of cases and therefore we expect that the chance of
the algorithm encountering breakdown is very rare. The iteration was stopped as
soon as the true relative error ||b — Az;ll3/]|b]|2 was less than 10-7. Finally, all the
figures plot the true relative residual versus the number of matrix-vector multiplies
taken.

We ran all four methods, on a representative group of matrices from the
Harwell-Boeing collection. The results are summarized in Table 4.2. We observe
that, in terms of number of matvec’s, ML{50)BiCGSTAB and ML(100)BiCGSTAB
are always better than the other four methods, at least for this collection of
matrices. The only exception is the matrix watt2 where only BiCG and GM-
RES converged. We can also see that ML{k)BiCGSTAB for £ = 25 is almost
as good as k = 50, whereas £ = 100 does not give much improvement over
k = 50 in most cases. We believe that the improvement of ML(%k)BiCGSTAB

over BiICGSTAB can be attributed to the use of multiple starting vectors. In prin-
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ciple, ML(k)BiCGSTAB can never be better than full GMRES, but as we can see
from the table, it can be much better than restarted GMRES. We can also see from
the table that ML{k)BiCGSTAB and BiCG tend to converge and diverge more or
less on the same subset of matrices, but ML{k)BiCGSTAB typically requires many
fewer matvec’s when they all converge.

Next, we present the convergence history for three matrices from Table 4.2.
These matrices are described below. We have used ML(30)BiCGSTAB in these
examples.

Ezample 1. This example is the first matrix named IMPCOL D from the
CHEMIMP group of the Harwell-Boeing collection. The order of the matrix is
425 and it has 1339 nonzero entries. In this example, no preconditioner was used
and the convergence curves are plotted in Figure 4.1. BiCGSTAB encounter a
breakdown after 450 matvec’s.

FEzample 2. The matrix is the second one named ORSIRR1 from the OILGEN
group. The order of the matrix is 1030 and the number of nonzero entries is
6858. We first run the algorithms without preconditioning and then with ILU(0)
preconditioning. The results are shown in Figures 4.2 and 4.3 respectively.

Ezample 3. This is the HOR131 matrix from the NNCENG group. The order
is 434 and it has 4710 nonzero entries. The ILU(0)} preconditioner was used and
the result is plotted in Figure 4.4.

We observe that when all four methods converge (as in Examples 2 and 3),
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[ Mairiz | Order | BiCG | BiCGSTAB | GMRES(100) | ML(25) | ML(50) | ML(100) ]

1138bus 1138 | 4748 5872 - 1966 1384 1395
bespwrlf | 1454 | b81D 14248 - 3167 2720 1899
bessth08 | 1074 | 15844 — - 3859 1902 1242
besstkl4 | 1806 | 29294 - — s 13315 6336
besstk19 817 - - — - - -
besstm27 | 1224 — - - - - -
cani0f{ | 1054 | 9908 — — 4058 3126 2606
dwild0s | 1005 | 1178 2034 — 673 6825 64b
erisl176 | 1176 | 1426 1530 1197 698 532 499
fsb414 541 2738 2640 o 728 469 403
qr3030 900 76 52 38 40 40 40
grel107 1107 - b - - 8676 3262
hori31 434 — -~ — 1945 1268 1048
impcold 425 - b - 1619 916 597
jagmesh2 | 1009 | 1726 2958 — 1152 995 1129
Jpwh981 991 100 58 49 55 53 55
insf11 511 - - — — - —
lock1074 | 1068 0 - — — - —
Ishpl270 | 1270 | 2492 4458 - 1628 1501 1445
mahindes | 1258 - b - - — -
mefe 765 - - - - - -
nnci37{ | 1374 - b — - — -
nosd 960 494 384 1968 251 249 246
orsirrl 1030 | 2088 3318 1270 838 781 772
platf919 | 1919 e - — - — -
pores? 1224 - - — - - -
saylrd 1000 o - — o o o
shermeng | 1080 - b e - - -
waitd 1856 | 19406 — 1131 — - —
west989 | 989 - — — — - -
Table 4.2: Comparison of Methods on a Representative Group of Matrices

from the Harwell-Boeing Collection. ML(25), ML(50) and ML(100) stand for
ML(25)BiCGSTAB, ML(50)BiCGSTAB and ML(100)BiCGSTAB respectively.
The numbers in the table are number of matvec’s. “-” means no convergence
within 20n matvec’s for BiCG and 10n for the other methods, “b” denotes break-

down, “o” denotes overflow.
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Figure 4.1: Example 1: with no preconditioning
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Figure 4.2: Example 2: with no preconditioning
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Figure 4.3: Example 2: with ILU(0) preconditioning
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Figure 4.4: Example 3: with ILU(0) preconditioning
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ML(30)BiCGSTAB requires approximately the same or fewer matvec’s than the
other three methods. In fact, it can be significantly faster than the other three
methods, as in Example 2. Moreover, ML(30)BiCGSTAB manages to converge
when the other three methods fail, as in Example 1.

Finally, we present some numerical results to demonstrate the dependence of
the performance of ML(k)BiCGSTAB on the value of k. In Figure 4.5, we plot
the number of matvec’s (scaled by 1/10n) versus k for the two matrices ORSIRR1
and HOR131. In order to illustrate the improvement of ML(%)BiCGSTAB over
BiCGSTAB for k£ > 1, we plot for £ = 1 the number of matvec’s for BICGSTAB
instead of for the mathematically equivalent ML(1)BiCGSTAB. We observe that
for both matrices there is a dramatic improvement in performance as k increases
from 1. This behavior is typical for the matrices that we have tested and this can
be partially observed from Table 4.2. Thus the advantage of ML(£)BiCGSTAB
can be realized even for small values of k. On the other hand, we can also see
that for large enough values of k¥ (e.g. & > 10 for ORSIRR1 and k& > 30 for
HOR131), the performance is not sensitive to the value of k. Thus, it is not crucial
to choose an optimal value of k as long as k is large enough. We have also found
that the performance is not sensitive to the specific choice of the random starting
vectors g,’s, provided that & is large enough. However, we should caution that the
performance could be sensitive to the choice of g¢;’s for small values of k.

More testings are of course needed to better understand and assess the per-
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Figure 4.5: Number of matvec’s / 10n vs. k for the matrices HOR131 (a) and
ORSIRR1 (b). “0” denotes no convergence within 10n matvec’s. For k = 1, we
plotted the number of matvec’s for BICGSTAB. Note that there is a dramatic
improvement in performance as k increases from 1, but that for & > 30, the

performance is not sensitive to k.
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formance of ML(k)BiCGSTAB, but we hope we have at least demonstrated the

potential advantages of this new method.

4.5 Appendix

Here we give the detailed derivation of the coefficients «;’s and B3;’s of the

ML(k)BiCGSTAB algorithm.

( ‘) . R
iy = 771'3 p;ﬁcﬂ TG-Vktk Eizo ngj}pfk-i-lr(:i—l)ﬂk
J @,

15 Pirrr AGG—1)htk im0 ng)pngAg(j—l)kJrk

Zimo niqL AT i)k _ 0 i (A)rG-tyhes
=0 ng)qlTAng(j—nquk QfA%[’j(A)g(j—z)Hk

_ UG-k
Qirfiw(ju—nk%

for 0 < 7,2 = 1;
N Pk Tik 2o 15 Papqin Tk
Ciktitl T TG 4

- = s .
M5 Pirpis AGiti 20 ngj}psk+é+1Agjk-!-%

- z,i=0 DU A i 35
oL A s 0 AP (A)gn

_ Pis10h 1 Vi (AT ik _ Pi1 @ ikt
-9,%’;1(%“(14) = YAy G (Wikrs — Djras)
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for 0 < 7,1 <e <k

g _ PO Ar a0 g (A
’ nVpT Ag, paTAgy

I
P1Q%1AW0

for 1 <2< k,5=0;

B = pf+1( )AT' -I—ﬁ(%) gl)Ago + 2 5’)7?9)1‘19:)
. (1) 7

P 541

o0y (A + BP0 Ago + £yt B (94(A4) — olA))gi)
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6%,y (mi + B9 py Awo + 2070 B0 (w0r — 1))
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g k41
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