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EXTENSIONS TO TOTAL VARIATION DENOISING $

PETER BLOMGREN? TONY F., CHAN'AND PEF MULET!

Abstract. The Total Variation denoising method, proposed by Rudin, Osher and Fatermi, 92, is
a PDE-based algorithm for edge-preserving noise removal. The images resulting from its application
are usually piecewise constant, possibly with a stefrcase effect at smooth transitions and may contain
significantly less fine details than the original non-degraded image.

In this paper we present some extensions to this technique that aim to improve the above draw-
backs, through redefining the Total Variation functional or the noise constraints.

1. Introduction. The degradation of an image is usually unavoidable at the
early stages of its processing and it renders difficult and inaccurate the latter phases.
The algorithms for image denoising have been mainly based on least squares and, con-
sequently, their results are continuous and do not approximate well images containing
edges. To overcome this difficulty a technique based on the rninimization of the Total
Variation norm subject to some noise constraints is proposed in Ref. [1]. The images
resulting of the application of this technique are often piecewise constant, which im-
plies that the finer details in the original image may not be recovered satisfactorily
and that ramps (affine regions) will give stairs (piecewise constant regions). In this
paper we present some cxtensions to the Total Variation image restoration method
that aim to Improve these drawhacks,

The paper is organized as follows: in section 2 we introduce the problem and
the nonlinear equations associated to it. In section 3, the global noise constraint of
the method is replaced by local noise constraints, in order to get a better recovery of
the fine details of the image. In section 4 we present changes to the Total Variation
functional which aim to solve the staircase effect.

2. Total Variation Denoising.

2.1. Degradation model. An image can be interpreted as either a real function
defined on 2, a bounded and open domain of R?, (for simplicity we will assume {2 to
be the unit square henceforth) or as a suitable discretization of this continuous image.

Our interest is to restore an image which is contaminated with noise, in such
a way that the process should recover the edges of the image. Let us denote by z
the observed image and u the real image. The model of degradation we assume Is
u+n = z, where n is a Gaussian white noise, i.e., the values n; of n at the pixels
i are independent random variables, each with a Gaussian distribution of zero mean
and variance o? |

Our objective is to estimate u from statistics of the noise and some a priori knowl-
edge of the image (smoothness, existence of edges). This knowledge is incorporated
into the formulation by using a functional R that measures the quality of the image
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u, in the sense that smaller values of R(u) correspond to better images. The process,
in other words, consists in the choice of the best quality image among those matching
the constraints imposed by the statistics of the noise.

2.2. Regularization. The usual approach consists in solving the following con-

strained optimization problem:

min R{u) @)

subject to Jju — z||%. = |Q]c?,

since n = z-u and E( [, n® dz) = |Q]e? (E(X) denotes the expectation of the random
variable X) give that {ju — z||2; = [,(u — 2)? d=z =~ [Q]o?.

Examples of regularization functionals that can be found in the literature are,
R(u) = ||u| s, [|Aullc2, [|Vu - Vul|c2, where V is the gradient and A is the Laplacian,
see Refs. [2, 3]. The drawback of using these functionals is that they do not allow
discontinuities in the solution.

2.3. Total Variation regularization. In Ref. [1], it is proposed to use as reg-
ularization functional the so-called Total Variation norm or TV-norm:

TV('u.):L}Vuwm:fnduﬁ—}-ugdw. {2.2)

The TV norm does not penalize discontinuities in w, and thus allows us to recover the
edges of the original image. The restoration problem can be thus written as

min/ {Vu|dz,
¥oJn

8.b. l(/ (1 — 2)%dz — |Q]e?) = 0.

2% Ja
We refer to this problem as the globally constrained problem. Its Lagrangian is
A
l/wqw+4/@—@ww4mﬁ)
Q 2%Ja

and its Euler-Lagrange equations, assuming homogeneous Neumann boundary condi-
tions, are:

(2.3)

0=-v. Qgﬂ)+xu-@

0= %(fn(u—zfdazm 12]o?).

Since the first equation is not well defined at points where Vu = 0, due to the
presence of the term 1/|Vu|, it is common to slightly perturb the Total Variation
norm functional to become:

(2.4)

L\/|Vu|2+ﬁda: dy, (2.5)

where 4 is a small positive parameter. In Ref. [4] it is shown that the solutions of the
perturbed problems converge to the solution of (2.3) when # — 0. The main difficulty

that equation (2.4) poses is the linearization of the highly nonlinear term V - (%).
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A number of methods have been proposed to solve (2.4). For the simplicity of the
exposition, let us assume that X is fixed. L. Rudin, S. Osher and E. Fatemi {1} used
a time marching scheme to reach the steady state of the parabolic equation:

w=V. (]_%) ~Mu—z), u(w,0)=(z). (2.6)
This method can be slowly convergent due to stability constraints. C. Vogel and
M. Oman [5] proposed the following fixed point iteration to solve the Euler-Lagrange
equation:

Vuktt
A= | AT —2) =0, 2.7
(i) + 2+ =2 27
Starting with ug = z, at each step u**! is obtained as the solution of the linear
differential equation (2.7), whose coeflicients are computed from u¥. This method is
robust but only linearly convergent.

Due to the presence of the highly nonlinear term V. (ﬁ,—z{), Newton’s method

does not work satisfactorily, in the sense that its domain of convergence is very small.
This is especially true if the regularizing parameter § is small. On the other hand,
if @ is relatively large then this term is well behaved. So it is natural to use a
continuation procedure starting with a large value of § and gradually reducing it
to the desired valne. T. Chan, R. Chan and H. Zhou proposed in Ref. 6] such an
approach. Although this method is locally quadratically convergent, the choice of the
sequence of subproblems to solve is crucial for its efficiency. The authors have not
succeeded in finding a fully satisfactory selection procedure, although some heuristics
can be used.

In Ref. [7] the above Euler-Lagrange equations are restated in such a way that
it results in a more globally linear system of equations, to which Newton’s method
can be applied satisfactorily, giving a very robust and locally quadratically convergent
algorithm. We give more details of this approach in the next section.

3. Local Constraints.

3.1. Motivation. A usual effect of the Total Variation denoising method is a
reduction of contrast in regions of the same pixel intensity, this reduction depending
on the size of the region: the bigger the region the smaller the intensity change, As a
consequence, small details may disappear in the solution if the noise level is sufficiently
high, whereas large features remain. Of course, the sizes of those details are relative,
in the sense that a small feature can be regarded as a large one of the result of clipping
the rest of the image and only retaining a small neighborhood of the feature. This
suggests that a good strategy for recovering fine details of an image could be the
division of § into subregions €, ...,y and the solution of the following problem in
each subregion:

rrhin/ |Vu|dz,

1‘“ (3.1)

s.t. 5(/ (u— 2)2de— |Qle?) =0, i=1,...,m
{3

This approach has a serious drawback: the solutions corresponding to two adjacent
regions would not match at their intersection and this would certainly create artifacts
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at those pixels. Of course, this effect is due to the fact that this approach consists in
the solution of independent local problems.

3.2. Local constraints. We propose an intermediale approach consisting in
the solution of a minimization problem with the same objective function as (2.3) and
constrained by the set of constraints of the local problems. To state it more precisely,
the proposed problem is:

min/ |Vu|dz,
v Jn

(32)
s.5. %(Li(u~z)2dm—]ﬂgldz) =0,i=1,...,m.

We refer to it as the locally consirained problem. Its Lagrangian is:

m)‘_
Vuldz + —’f u — z) dz — |]c?),
JLvedas+ 35 ([ (- 2de ke

and its Fuler-Lagrange equations, assuming homogeneous Neumann boundary condi-
tions, are:

v (Y S APl s
0=-V (lvut)+§)«,ﬂ(u ) (3.3)

G:%(f (u—2)de— |le®), i=1,...,m (3.4)
04

where P; denotes the restriction operator given by P;(v) = v|q,.

3.3. Linearization of the Fuler-Lagrange equations. Similarly to the glob-
ally constrained case, the highly non-linear term V. ]%[ causes numerical difficulties
when linearizing the equations by Newton’s method. This difficulty can be alleviated
by the introduction of an auxiliary variable w, which is constrained to verify the

equation

Vu

’UJZW.

Equation (3.3) is then replaced by the two equations:

0=-V -w+§:,\;ﬂ(u——z) (3.5)
0= [Vulw— V. (3.6)

Equation (3.5) is now mildly non-linear and (3.6) is more linear than its equivalent
equation
Vu
O=w-— W
In this fashion, we have eliminated part of the non-linearity of (3.3) before applying
Newton’s method.



The Newton’s method equations in block matrix form are:

-V Z:il MNP P(U - 2)] [6w
s, BT
0

-7 8
(Pa-ay 0 )
-V w4+ Zi:l A_;P,'(u - 2‘)
=- |[Vujw — Vu ,
[5(fo, (v — 2)* dz — |Q]0?)]
where P =[P ... Pyl
We can further use the second set of equations of {3.7) to eliminate dw:
~V - ({1 - F40V) + Tit NP Plu—2) [&u] (3:5)
(P(u— z))" 0 oA
-V w4+ znll ,\‘-Pi(u — Z)]
= - 3 3.9
[ (fo, (4 — 2V dz — [lo®)]] (3.9)
fw = —w+ 2% (BT 4yosy (3.10)
- |V u) |Vul? ' )

and make this into an iteration.

A fact that appears as crucial for the efficiency and stability of the iteration is that
the bound [Jw|lw < 1 should be satisfied during the iteration. This can be achieved
as follows: once computed §w* from (3.10), the bound [|w**+}|loo < 1 can be enforced
by setting

whtl = w¥ 4 sfuwf, (3.11)

where s = min{p5, 1}, p € (0, 1) and 7 satisfies |Jw* + 56w*[|o = 1.

Another important fact for the stability of the iteration is that A; > 0, ¢ =
1,...,m. These bounds can be maintained during the iteration in a similar way as
before, by setting

ARHL = 2F . t6?, (3.12)

with ¢ = min{pf, 1} and ¥ such that min; {A¥ + 25} }=0.

A final remark is that the obvious choice u® = z would yield a singular coefficient
matrix of the systern (3.8), thus u® must be chosen in a somewhat random way. The
complete algorithm appears in Fig. 3.1,



choose A; >0,i=1,...,m
choose u # z
w=1_
fork=1,...
compute right hand side of (3.8)
if || right hand side || < tolerance
stop
end
obtain §u¥, §w¥, 6A* from (3.8) and (3.10)
uEHt =y 4 Sy
compute s from (3.11)
whtl = w¥ 4 sw®
compute ¢ from (3.12)
AEHD = \E o $50F
end

Fic. 3.1. Algorithm for solving the Total Variation demoising problem with local consiraints.

3.4. Numerical results. The algorithm shown in Fig. 3.1 is very sensitive
to the initial guess for ), in the sense that many iterations are usually spent until
the typical Newton’s method quadratic convergence appears. To alleviate this dif-
ficulty we propose a procedure to obtain a seemingly reasonable first guess for A;,
i=1,...,m. It is based upon the heuristic reasoning that the Lagrange multiplier
for the problem

min] (| Tuf + 1(u — 2)?) ds,
u Q; 2

(3.13)
4. %(fn.-(u o) de - [9)0?) =0,

should be close to the Lagrange multiplier }; of the same constraint in problem (3.2},
for

Vulde m /Vulida:,
v ), v

if the regions % do not overlap too much (in relation to this, it is worth noting
that the solution of {3.1) satisfies Neumann boundary conditions on 9§, whereas the
solution of (3.2) only satisfies them on 80 C U8, if ¢ > 1).

The solution of problem (3.1) for ¢ = 1,...,m can be carried out efficiently in
parallel, for they are independent. This embarrassingly parallel preprocessing stage
has given a decrease by a factor of about 2 in the number of iterations of the algorithm
of Fig. 3.1.

To illustrate the potential of this method we show the result of a 1-dimensional
example. The signal of Fig. 3.2 (a),whose dynamic range is [0, 1}, is used as degraded
image with a variance o2 = 0.0077 and a signal to noise ratio of approximately 30dB.

The output of the method (2.3), that is, of the algorithm of Fig. 3.1 withm =1,
is displayed in Fig. 3.2 (b), where we see that the smaller of the spikes of the original
picture does not appear. The number of iterations has been 43, and the norm of the
right hand side of (3.8) are plotted in Fig. 3.3 (a).
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With a partition of Q = [0,1] into two equally sized domains with an overlap of
10 pixels, the algorithm of Fig. 3.1 (m = 2) gives the result shown in Fig. 3.2 {c). It
is noteworthy to point out that the smaller of the spikes is recovered, although with
the inherent contrast loss. The number of iterations is 16 and the norm of the right
hand side of (3.8) are plotted in Fig. 3.3 (b).
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F1a. 3.2. (a} Original “noisy” image (z) for algorithm of Fig.3.1, (b) result of the algorithm
with m =1 (global constraint), (¢) result of the algorithm withm =2 (locan' eonstrainis)
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(a) (b)
Fia. 3.3. Plot of the norm of the right hand side of (3.7} versus ilerativns: (o) global consiraind,
{3} local comsirainis (m=2)

3.5, Final remarks. The dimension of the matrix C' of the system (3.8) is
the number of pixels in the image, hence it can be very large, but sparse. Iterative
methods, as those based on Krylov subspaces, can be very advantageous in this sit-
nation. The matrix of (3.8) can be replaced by its symmetrization C without losing
the local quadratic convergence. However, in spite of C' being symmetric, it is not
positive definite, thus it is not clear how to solve the systems as efficiently as with the
preconditioned conjugate gradient methods for symmetric positive definite matrices.

An important issue is finding a procedure for subdividing the domain € in such a
way that the a priori advantages of the locally constrained methods could be exploited.
This is an interesting open problem, especially for 2-d images.

4. The Staircase Effect.

4.1. Description. In one dimension, the Total Variation denoising method ap-
plied to an affine function degraded by noise will invariably yield a monotone piece-
wise constant solution. This is in part due to the fact that the TV-norm is not biased
against discontinuous nor continuous functions. For instance, the minimum of the
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Total Variation among all the functions whose values at 0 and 1 are a and b, respec-
tively, is, precisely, b — @ and this minimum is attained by any monotone function
taking those values.

On the other hand, the functional

Hl(u):L]Vulzda:,

has a strong bias against discontinuous functions and, contrary to the latter case, the
problem of minimizing H! among all the functions whose values at 0 and 1 are a and
b, respectively, has as unique solution the sole linear interpolatory in that set.

The approach we propose is to consider regularizing functionals of the type

R(u) = fﬂ (| Vul) dz, (4.1)

for suitable real functions ®. For instance, the TV-norm and the H' functionals are
obtained with ®(z) = z, 2%, respectively. Consider the functionals (4.1) for ®(z) = =”,
for p€[1,2]

R(u) = jﬂ VP da. (4.2)

The only functional among these for which problem (2.1} admits discontinuous solu-
tions is, precisely, the TV-norm. Another important fact is that the penalization for
large gradients increases with p.

Although problem (2.1) with regularizing functionals (4.2) for p € (1,2] does
not admit discontinuous solutions, this is not such an issue when problem (2.1) is
discretized. A first possibility is to try an exponent p close to 1, for then we would
expect a behavior close to the TV-norm when restoring edges. In Fig 4.1 (a), (b) we
show the result of the denoising method (2.1) for the functionals (4.2) for several p,
with original and noisy signals appearing at the bottom of each picture: we see in
Fig. 4.1 (a) that sharp edges are obtained for p = 1, 1.1 and that those edges appear
smeared for p = 1.5,2. Fig 4.1 (b) shows the staircase effect for p = 1. This effect is
alleviated for p = 1.1, 1.5 and, of course, p = 2.

4.2, Variable exponents. In view of the results shown in the previous sub-
section, a more sophisticated possibility would be the use of functions @ that would
behave like x for large values of z, i.e., obtain TV behavior at sharp gradients (edges)
and like z? at smoother regions, H! behavior away from edges. Such a function
could be, for instance, a “convex combination” of = and z?, with variable weight

a{z) € [0, 1]:
®(z) = efz)z+ (1 — afz))2?, (4.3)

with a(z) — 1 when 2 — co and e(z) — 0 when z — 0.
Another possibility is

®(z) = 2P, (4.4)

where p(2) € [1,2] is a function that satisfies limg_.o p(z) = 2, limy—0 p(z) = 1.
8
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Fic. 4.1. Denoising algorithm for functionals (4.2},

4.3. Algorithms. The first and the second variations of the functional (4.1} are:

R(u)=-V- (Mvu) (4.5)

|Vl
My = —7 - &' (|Vul) v_(Vu,V'v) u (1T (Vu, Vo) "
By =-v ( v 0 e 0V g )'(4.6)

From (4.6) we deduce that:

" _ P'(|Vul) vz_‘(Vu,Vv)z " (Vu, Vv)* 2
(R (uyo,0) = [ (FOTIvol - o) + o (Ve S L

The Cauchy-Schwartz inequality implies that

2 (Vu,Vu)?
Vol - —gur 20
therefore ®'(z) > 0 and ®"(2) > 0, ¢ > 0, that is, ® is an increasing convex function
in [0, 00), are sufficient conditions for the functional R of (4.1) being convex.

A natural assumption on problem (2.1) is that no constant function u satisfies
the inequality [Ju — z|l¢ca < o2, or, equivalently, that ||7 — z|l¢cs > o? (Z denotes the
average of z), for then z would be totally dominated by the noise and it would be
hopeless to expect the image recovery. If & is convex and |7 — z|c2 > ¢, then it
can be proven {see Ref. [7]) that problem (2.1) has a unique solution, given by the
solution of the Euler-Lagrange equation:

0=~V (%Vu) + AMu— z). (4.8)
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A natural approach for the solution of this non-linear PDE is to try a fixed point
squeme, similar to the one introduced in Ref. [5], which consists in taking «° = z and
solving far #F+! the linear PDE

<I>"(|Vuki E+1 k41 _
-V (WVu +AMuH —z)=0. (4.9)

It is shown in Ref. [8] that this scheme is robust (globally convergent) but only linearly
convergent.

For these functionals, a faster convergent algorithm, Newton’s method, would
suffer similar problems to those mentioned in subsection 2.3 and a continuation pro-
cedure on the parameter § would be required if ® is close to @ (therefore R close to
the TV-norm). A technique as the one described in subsection 3.3, consisting in the
introduction of an auxiliary variable w that aims to transform the Euler-Lagrange
equations (4.8) into a more globally linear system, can be applied here as well.

4.4. Final remarks. An aspect that needs further attention is the choice of the
exponent pin (4.2) or (4.4). It is mathematically desirable to have a convex functional
R, for then the solution to problem (2.1) has some kind of uniqueness. The functional
in (4.2) is convex; however, it is not completely clear how to choose a function ® such
as in (4.3) or (4.4) verifying the sufficient conditions for convexity stated in subsection
4.3.
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