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1. Introduction

We consider partial differential equations of the form

8
uy = Pz, -éﬂ)u +ef(x,t, u, Uy, ...) + Fz, t),
L (1.1)
u(x,0) = up(z).
We assume that F and its derivatives decay like 1/(¢ 4 1)? for some suitable ¢ > 0 and we

want to investigate under what conditions

lim Ju(-, £)|eo = 0. (1.2)

tr00
We shall use the following concepts.

Definition 1.1. If (1.2) holds uniformly for 0 < € < gg, g¢ > 0, then we call the problem

nonlinearly stable.
Definition 1.2. The problem is called linearly stable if (1.2) holds for ¢ = 0.

Usually, one discusses linear stability in the following way. For F' = 0, € = 0, we

construct special solutions of the form

u(z,t) = eMop(x) (1.3)
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where ), ¢ represent a solution of the eigenvalue problem
(M — P)p = 0. (1.4)

This leads to

Definition 1.3. The system (1.3) satisfies the eigenvalue condition if the eigensolutions
of (1.4) satisfy

Re A < —6 < 0. (1.5)
Here § > 0 is some fixed constant.

If one wants to prove nonlinear stability, one has to construct estimates for the solu-
tions of the linear problem (¢ = 0). We shall use the usnal Ly-scalar product and norm
and use the notations (u,v), ||u||?. There are two techniques available.

1) The Liaponov technigue. Here one constructs a new scalar product
(u, Hv)

defined by a positive definite bounded Hermitian operator H such that, for ¥ = 0, the

linear problem (¢ = 0) becomes a contraction, i.e.,
s,
E(u, Hu) < —2a(u,Hu), o= const. > 0. (1.6)

Then one extends the construction to the nonlinear problem.
2) The resolvent technique. In this case we consider (1.1) with homogeneous initial
data ug{z) = 0 and solve the linear problem by Laplace transform, which leads to the
resolvent equation

(sI — P(z, ;—m))a(m, 5) = P(z, 5). (1.7)
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If there is a constant K such that
la(-, )| < K2 F(-,s)||%, for all s with Re s >0, (1.8)
then Parseval’s relation gives us

/ " (., )2t < K? / "G, (1.9)

Mild smoothness properties of « imply convergence. For the nonlinear problem, one con-
siders the nonlinear terms as part of the forcing. Complementing (1.9) with estimating the

derivatives of u, we can estimate the solution of the nonlinear problem.

We shall use

Definition 1.4. We say that the resolvent condition is satisfied if there is a constant K
such that

(P —sI)™Y|| < K for all s with Re s > 0.

In the next four sections we shall apply the above techniques to different classes of
problems. In Section 2 we consider ordinary differential equations. In Sections 3 - 5
we discuss the Cauchy problem for hyperbolic, parabolic and general partial differential

equations, respectively.

2. Ordinary differential equations

In this section we consider systems of ordinary differential equations

uy = Au -+ ef(u, t) + F(i),
(2.1)
u(0) = ug.



Here u, f, F' are complex valued vector functions with n components and A is a constant
n X n matrix. Also, f(u,t) € C®, F(t) € C* are smooth functions of all variables and
€ > 0 is a small parameter. We will denote the Euclidean scalar product and norm by

{(u,v), |u} = (u,u)*/?, respectively. For F, f, we make
Assumption 2.1
f IP(t)Pdt < o0, Jim F(t)=0. (2.2)
0 oo

For every constant ¢y there is a constant Cy such that

| f(u, 8} < Colu| provided |u| < co. (2.3)

We want to discuss conditions such that the solutions of (2.1) converge to zero for
t — 00, i.e., that the problem (2.1) is stable at u = 0.
The particular form of the system (2.1) is natural. Consider the apparently more

general problem

Yi = F(yat)
Assume that
. . OF
tl—1>1§o F(yOat) =0, , tliz»rgb 6_y(y03t) - A1

i.e., yo is in the limit a stationary point and the Jacobian converges to a constant matrix.

Then v = y — yo solves

v = F(y,t) — F(yo,t) + F(yo, 1)
— S0,y + 60,8+ Fluo, ) 2.4
= v+ (%—Z(yo,n ~ Ao+ Glo, t) + Flyo, ).
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Here G(v,t) represent the nonlinear terms. Consider (2.4) for t > g, tp sufficiently large,

with initial data
v(te) = y(t) — y(to) = eup, |uo] <L

Then we rescale the equations by infroducing

mﬂzémﬂ

as a new variable and obtain

(%(yﬂi t) - A)
£

1
up = Au+¢ u+6G1(u,t)—|—EF(yg,t),

(2.5)
’U;(to) = tip.
(2.5) is of the form (2.1) and Assumption 2.1 is satisfied, provided ty is sufficiently large.

We shall need the following well known results.

Lemma 2.1. Let ® = ®(y, t) be a C*-function of y, t and let y(t), yo(t) denote nonnegative

C-functions defined for 0 <t < T. If

¥ < 2(y(®)t), wot) = 2(yo(t).t),

y0(0) > y(0),

then

yo(t) 2y(t) in 0<E<T

Proof. We have

(yo(t) = 9()) = B(yo(t),t) — B(u(t), 1)
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Since, for every fixed ¢,

B(yo,t) - 0(0,1) = |

v

-{f " 5@y + (0 = 1)3, s} (0 ~ ) = (w0 — )

¥ 9
a—y(b(‘U, t)d’U

we obtain

—%(e_ Ji ety y) =e I O L (go — ) — D)o —9) } > 0

and the lemma follows.

Lemma 2.2. Consider the differential equation

y' = =AMy + f(t), (0} = o

Assume that A(t) > 0. Then

pOl <O o)+ R

or

w(®)] < e I 2O% 1 0)] + max |F(€)/AE)

0<E<t

Proof. By Duhamel’s principle, we can write down the solution explicitly
t t t
ut) = e S 2Oy 1 [ eI g)ag,
0

Therefore, the first inequality follows directly. Since

i t t t

— L7 Aty f d — [*xm)dn

| /ﬁ I eyl < | [ (e ) (F@O@)ae
t

d — [fxm)dn
< ] Z° JeAdm e a1 £(€)/AE)]

0<€<t

< max [£(£)/A()];

= 0<e<e
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the lemma follows.

We want to prove

Theorem 2.1. The problem (2.1) is nonlinearly stable if and only if the eigenvalue

condition holds.

By (1.3) and ( 1.4), the eigenvalue condition is clearly necessary and, therefore, we

assume that (1.5) holds. To begin with, we assume that
A= A"
Then
(u, Au) < _6|'U‘I2:
and we obtain, for the solution of the linear problem (¢ = 0),
[u|2 = (u, ug) + (ug, u) = 2Re(u, uz)
= 2Re(u, Au) + 2Re(u, F)

< —26luf® + 2fu] |F),
ie.,

Juls < —6ful + 1F[,  |u(0)] = |uol. (2.6)

Lemmata 2.1 and 2.2 give us the estimate

1
B lu| < 7 olax, |F| + |uo| =: K7. (2.7)

Now we consider the nonlinear equation. For every ¢, there exists an interval 0 <t <

Te, Te > 0 such that, instead of (2.7)

lu(®)] < 2K (2.8)
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We choose T, as large as possible. There are two possibilities.
1) T, = co. In this case the inequality holds for all ¢.

2) T, = Ty < co. Now

[u(To)| = 2K. (2.9)

We want to show that (2.9) is not possible if ¢ is sufficiently small. By Assumption

2.1, there is a constant Ky which depends only on the bound (2.8) such that
f(u,t)| < Kalul, 0<t<T.. (2.10)

We consider ef as part of the forcing and obtain from (2.7)

1
max |u|<— max |F + ef| 4+ |uo]

0<t<T, § 0<t<T.
eKq
< Ky + —/— max |u].
§ 0<i<T.

Therefore,

5
ogﬁ}'j’ | < 2K, if e< oK,

which contradicts (2.9). Thus, (2.8) and (2.10) hold for all times if ¢ satisfies the above
inequality.
We can integrate the differential equation starting at any time ¢ = ¢y. Replacing ¥ by

F + ¢f, we obtain, from (2.6) and (2.10),
)
uly < —8lul + [P+ eKalul < ~Sful + |,
By (2.8) and Lemma, 2.2,

X F(O] e 0 ute)], fulte)] < 2K,

Q’)Il\?

u(t)] <



l.e.

S 2
. Z2 _
Jim |u(t)] < 5 max |[F(¢)]

Since 1t is arbitrary, the convergence follows.

We now consider the general case. We shall construet a new norm such that an

estimate of type (2.8) holds. We need

Lemma 2.3. Assume that the eigenvalues of A satisfy (1.5). Then there is a positive

definite Hermitian matrix H such that
HA+ A*H < ~§H. (2.11)

(Note that for Hermitian matrices A > B means (z, Az) > (z, Bz).)

Proof. By Schur’s lemma, there is a unitary transformation U such that

Al @iz c-+ Gip
U*AU = Az
Ei'"n.—l n
0 An
Let
1 0
d
D T d2
0 dn—l
Then
{Al d&m e te dn“l&ln\
) )\2 d&23 e dn_zagn
D-U*AUD = S : = A+ A
. da'n—l n
\ 0 A

We can choose d so small that

A+ A+ A*+ A* < —61.
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Let T = UD and define

H= (1)1,

Then
HA+ A*H = (T 1T A4+ A (T 1771

= (T Y (TTAT + T ATy T
< —§(T*)7'T ! = —6H.

This proves the lemma.

We now define a new scalar product and norm by
(v, v} i = (u, Hv), |uﬁf = (u, H'LL) (2.126&)

Since

(= ol = [HH ™, HE ™ ) < Julfy < |H] Jul?, (2.125)

the new norm is equivalent with the original Fuclidean norm. By Lemma, 2.3,
1 * 6 2
Re{u, Auyg = E(u, (HA+ A*H)u) < —§|u|H

and, therefore, (2.6) becomes

0

&
il < _Z
at!U"H < -3 luler + |Flm,

(2.13)
[u(0)|&r = uolz-

Now we can repeat the same argument as before. Thus, we have proved the theorem.

The above construction has been known for a long time and H is called a Liaponov

function.
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We will discuss another technique which is based on Laplace transform. We start with

the linear problem
uy = Au + F(1),

(2.14)
u(0) = 0.

The assumption that «(0} = 0 is no restriction. If it is not true, we would introduce a new

variable v = u — e~ %4(0). To begin with we also assume that I has compact support, i.e.,
F(t)=0 for t>T. (2.15)
Now we Laplace transform (2.14). Let
o0 N o0
1 :f e~ "u(t)dt, F :f e " F(t)dt, s=mn-+it.
0 0
By (2.15), F is a well defined analytic function of s. In particular,
. o0 T
|F(s)] < / e | F(t)|dt = f e ™| F(t)ldt for Re s > 0.
0 0
(2.14) becomes the so called resolvent equation
(sI — A= F. (2.16)

We need

Lemma 2.4. (sI —~ A)~?! exists for Re s > 0 and

sup |(s] — A" =R < o0 (2.17)
Re s>0

if and only if there is a constant § > 0 such that, for all eigenvalues A of A,

Rel < -6 (2.18)
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holds. Also, for |s| > [A],

[(sI =AM < ——- (2.19)

Proof. We start with (2.19). (2.16) gives us
|s| [a] = |Aa + F| < 14| [a] + | Y.

Therefore, by Fredholm'’s alternative, (2.16) has a unique solution for |s| > |A] and

1 ”
i < ————|F
=

shows that (2.19) holds. Thus, we need only consider a compact domain §, say |s] <
Al 4+ 1, Re s > 0. Again using Fredholm’s alternative, we know that the resolvent
(sI — A)~! exists if and only if A has no eigenvalue A € . In this case the resolvent is a

continuous function of s and therefore uniformly bounded. This proves the lemma.

We now assume that (2.18) holds. By (2.16),
i=(s] — A~ F (2.20)

and, by Lemma 2.4,

[a(s)| < RIF(s)].

By (2.15), the solution of (2.14) decays, for t > T, exponentially like (¢t — T")Pe—(=T),
Therefore, the Laplace transform is well defined for p > —¢6 and we can invert it. By (2.17)

and Parseval’s relation, we obtain, for n = 0,

o0

/0 " () 2dt = / " latie + 0)Pde < RY /

—) — 00

. T
(i€ + 0)2dg = R? / F()Pdt. (2.21)
4]
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Using the differential equation we can sharpen the estimate. We have
T T T T
/ g2t = / [ Au + F|2dt < 2|A]? f |2t + 2 f \F(#)[2dt
0 0 i 0
T
<2(4P8 +1) [P0
0
and (2.21) becomes

T T
f (ul? + Jug|2)dt < K f P82, Ki= 2(AR? + 1)+ R2. (2.22)
0 o]

The reason why we want to estimate also u; is that we can use the Sobolev inequality

1 (T
2 2 2 2 _
s ful < 5 [ (ul o+ )t (223)
to estimate the maximum norm of % in terms of F.
Up to now we have assumed that F'(t) = 0 for ¢ > T. We now consider arbitrary F'(f)
with
o0
f [F(8)[2dt < oo (2.24)
0
and show that (2.22) still holds. This follows from the observation that the solution of

(2.14) for 0 < t < T does not depend on values of F(t) with ¢ > T. Therefore, we can

replace F'(t) for t > T by zero for general F satisfying (2.24). Thus, we have the estimate
f fuf? + gt < Ky f 7 (8) 2. (2.25)
0 0

Now we consider the general nonlinear problem (2.1) with ug = 0. We assume that
(2.24) holds. For ¢ = 0 the estimate (2.25) holds. Therefore, for every & > 0, there is an

interval 0 < i < T, such that

T 00
/ (Ju® + Jug|*)dt < 4K, / |F(t)|2dt.
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As before, we choose T. as large as possible. If T, is finite, then we have equality. By
(2.23),

o0
2 < ()P e
omax, [u]* < 2K4 A [F(1)]*dt =: ¢q,

and, by assumption,

|f(u, )] < Colul.
We now consider € f(u,t) + F(t) as a forcing function. Then (2.22) becomes
TS Te: TE
/ (Ju]* + |u|*)dt < 2K, f |F(t)|%dt + 2¢* K, f | F(u, t)|*dt
0 0 0
T. T.
< 2K, / \F(6)[2dt + 262K, C2 / luf2dt.
0 0

Thus, for 2¢2C2K; < 1/3, we obtain, from (2.23),

2 1 T 2 2 3 Te 2
s, P < 5 [ (w4 ful)ae < 5 [ PR

Therefore, by the same argument as before, 7. = oo, for all ¢ with 262C2K; < 1/3. Since
o0
/ lu|? + |uz|®dt < oo implies Jim lu(t)] =0,
I —r OO

we have again proved Theorem 2.1.

The estimates for the size of the admissible perturbations resulting from (2.6) or
(2.13) are rather satisfactory, because they are proportional to 8. This dependence cannot

be improved. For example, the solutions of
y = —6u+cu

grow exponentially for ¢ > 6.
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The corresponding estimates for the Laplace transform technique are proportional to

R. Let A,y with y| = 1 be an eigenvalue and eigenvector, respectively, of 4, i.e.,

Ay = My

and let

F(t)=ey, a=Im\-1.

Then (2.16) becomes

ie.,

Thus, for s =Im A,

Therefore,

R™' < min|Re | = é.

If A is symmetric, then R~ = § and the admissible perturbations are again proportional

to 6. If A is very "skew”, then the admissible perturbations can be much smaller. For
-1 107
=0 1),

sup (sI — A)"Y > 107,
Re s>0

example, if

then
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However, in the H-norm we obtain, from (2.16),
Re(u, (sI — A)u)g = Re{u, F)g

and, therefore,

)

(Re s+ Dlulfy < [ulalFl.

Thus, in the H-norm,

Ry = 261,
The H-norm provides a scaling of the dependent variables such that the problem behaves

like a symmetric one.

Finally, we consider an equation of convolution type

uy = fo K(t — yu()de + ef (u, 1) + F(1)

(2.26)
u(z,0) = 0.
Here K(7) is a smooth kernel with the property
Ky
L — > 0. .
|K(T)| = (1_'_1_)1,},}39 8>0, 7>0 (2 27)
We again start with the linear problem
¢
w= [ K(t-eue)de+F ()
0 (2.28)

u(x,0) =0,

and assume that F'(¢) has compact support. We need

Lemma 2.5. There is a constant a > 0 such that the solutions of the homogeneous
equation
t
vy = / K(t—&v()dE, v(0) = vo, (2.29)
0
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gatisfies the estimate

()] < e*|v(0)]. (2.30)

Proof. Introducing into (2.29) a new variable v = e**w we obtain
t
wy = f Kyt — w(E)dé —ow, Ky(r) = e K(7). (2.31)
0
Consider a fixed interval 0 < ¢ < T and assume that

2 _ 2
max [wf® = w(T) >0.

If Ty # 0, we have djw(T})|?/dt > 0. Also, (2.31) gives us, for ¢ = T4,

L8 TP < J(w(T) Tk (t — E)w(€)de)| ~ afw(T)?
2 di . o T '

Ty
< ([ 1 -olds - a) - )P
Therefore, for o > [;° |K1(t—&)|d€, we arrive at a contradiction. Thus, Ty = 0 and |w(#)|?

is nonincreasing. Therefore, v does not grow faster than e®?,

We solve (2.28) by Laplace transform. Let Re s > a. Then 4(s) is well defined. Also,

using the definition

> K(r) fort>0
K(r) = 2
(r) {0 forr <0’

we have
oo t oo pt
st _ _ —s(t—8) fr(s _ Y o—Et
/D c fo K(t— &)u(e)de dt J/o ]9 SO K (¢ - £)e=Etu(e)de dt
w/ / e O K (& — £)dt e~Stu(€)de
o Jo

= K(s)a(s).
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Here

R(s) = fo " e K (r)dr. (2.32)

Therefore, the Laplace transformed equation (2.28) is given by
(sI — K(s))a = F. (2.33)

By (2.27),

o K< /0 TR ()ldr < %. (2.34)

Also, for Re s < 0, we cannot expect K(s) to exist. By (2.34), we can solve (2.33) for
|s| > Ko/B, Res >0, and obtain the estimate

£

4} < o
|s| — 5

(2.35)

We now make
Assumption 2.2. The resolvent equation (2.33) has a unique solution for Re s > 0.

Since K(s) is an analytic function for Re s > 0 and continuous for Re s > 0, it

follows that (sI — K(s))~! has the same property. Therefore, we obtain

Lemma 2.6. There exists a constant R such that
li(s)] < R|E|

for Re s > 0. Therefore, we can choose n = 0 in the inversion formula and obtain the

estimate
T T
f lu(t)|?dt < R? f ()Pt (2.36)
g o

The last inequality holds for all F(t) with [;° |F(t)|?dt < oo and all T.
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We shall now estimate fOT |ug|2dt. (2.28) gives us
t
wl <2 [ K- ue)del+2F P
Therefore,

T T t T
2 — 2 24¢
|opa<e [ [Cre-ouesepas [ iropa
Since
T i T pt t
1 [ xe-eueapa< [ [ ike-olee- [ - ol a

< jﬁ (K () dr - f / R(t— &) [u(e)Pde dt

_§/|w%,

we obtain the desired estimate from (2.36). Now we can proceed as before and obtain

Theorem 2.2. Consider the convolution equation (2.27) and assume that Assumptions
2.1 and 2.2 hold. Then the solution of the nonlinear problem converges to zero, provided

¢ is sufficiently small.

3. Hyperbolic first order systems

In this section we consider semilinear hyperbolic systems

us = Po(Jut Bu-t ef (e, tu) + Flz, ), 20,
i (3.1)

u(z, 0} = up(z).

Here
d

0 0
PO(% - ZAV%'

v=1 v
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where A,,, B are constant n X n matrices. f, F' and ug are smooth functions of all variables
which are 27-periodic in all space variables. We are interested in solutions with the same
properties.

We shall use the following notations. p = (p1,...,p4), ¢ = (¢1,.-., ), [Pl = D_ i,
lgl = 3 ¢; denote multi- indices and

ap a9

v __ pa____Y
Oz .- OB’ v gud - Budr’

D? =
denote derivatives with respect to the £ and u variables, respectively. Also,

(wo) = [ / “w)doy - dzg, Jull? = ()l = 3 1Dl

lil<p

denote the usual Lg-scalar product,-norm and HP-norm, respectively.

Corresponding to Assumption 2.1, we make
Assumption 3.1. For every cy, there are constants C\y) q such that
[DEf (.8, 0)] < Cipolul,  [DEDESf (8, u)| < Clppyjqps lal 2 1,
provided |u| < cp.
We start with the symmetric case, i.e.,
A;=A;, B=5B, (3.2a)
and assume that
B+ B* < =26l <0. (3.2h)

As for the ordinary differential equation, we derive an estimate for the linear problem.
Since
Re{u, Ou/dz;) =0, Re(u,Bu) < —8lu||?,

20



integration by parts gives, corresponding to (2.6),
2 el < ol + 1.
ot -
Differentiating the differential equation we obtain
0 11y P »
5 108u( Ol < =8Il DSu(, ) + [ DEF (1,

ie.,

Sl Dllzr < ~8luC, Bl + G, Ol (33)

Therefore, by Lemiata 2.1 and 2.2,

1
Jmax (lul, Ol < 5 max IFC,Olls + ul, Ol = K1 (3.40)

Using Sobolev inequalities there is, for every p > [d/2] + 1, a universal constant ¥, such

that

|Dgul-, t)]oo < Epllul-,t)lgr for all @ with p > [d/2] + |a] + 1. (3.4b)

([=] largest integer < x).
Now we consider the nonlinear problem (3.1) and proceed in the same way as for
ordinary differential equations. Local existence causes no difficulty, i.e., if we have estimates

of u and its derivatives, the solution exists and changes continuously with time. Let p with

p—[p/2] > [d/2]+1 (3.5)

be fixed. For every ¢ > 0, there exists an interval 0 < ¢ < T, T. > 0, such that (3.4a)
holds with K replaced by 2K;. We choose T, as large as possible. Either T, = oo or if

21



T. < oo, then we have equality at t = T.. We want to show that, for sufficiently small ¢,
we have T, = oo.
Let | < p. By Leibniz rule (see for example [1 ,Sec.6.4.2]),

||

D¢ f(m, tyulz, t)) =) > Co D% u(z,t) - - - DS u(z, ).

r=1]a1|++]|or|<laf
Here C, consists of partial derivatives of f with respect to z and u of order 7 < |a|. By
Assumption 3.1, we have uniform bounds for these derivatives. If |o;] < [p/2], it follows

from (3.5) and (3.4b) that
D% ey Bleo < Epllu( )15
Since |a| < p, there is at most one o; with |o;| > [p/2]. Therefore,
137t u(, )] < comst Ju- ).
Thus, there is a constant Ky which depends only on 2K, such that
1FCotuC Dl < Ko (14 Jul, Ol )l Dllms, 0<t<T..  (36)

We consider f as part of the forcing and obtain instead of (3.4a), using (3.6),

1

o225, el Ollae < 5 (e IFC 0l + e max 1G4 1)) + [l Olle
< K1(1 + 2 Ky(1 4 (2K1)P"1)).

Therefore, the inequality (3.4a) with K; replaced by 2Ky and the inequality (3.6) hold for

all times for the solution of the nonlinear problem if

1
< 0+ 2K
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Considering again f as part of the forcing, we obtain, from (3.3) and (3.6),
2 o Dllr < 8 Dl + el Dl + 1 Ol
< =Sl Ollms + |FC )
Here K3 = K3(1+ (14 (2K1)?"!)). Using the same argument as for ordinary differential

eqguations, we obtain

Theorem 3.1. Suppose p satisfies (3.5). For symmetric systems satisfying (3.2), we have,

for sufficiently small ¢,

tli{& ”u(: t)”Hp =0 if t1—1>11c;lo ”F(':t)”ffp = 0.

Now we consider strongly hyperbolic systems, i.e., the symbol
d
Poliw) = z'ZA,,w,, = lw|P(iw'), w' =w/iw|real
=1
has the following property: There is a constant K and, for every frequency w = (w1, .. .,wq)
# 0, w; integer, a transformation 7' such that

T (W) Po(iw) T (w) = |w|T~ (w’)Po(iw’)T(w')

A1 0 (3.8)
= |w| =: [w|A, RelA; =0,
0 An

where

max{|T|,|T"Y} < KY? K >1.

We now construct a new norm. Let

HO0Y=1I, HAw)=T Y )T w') forw#0.

23



H is Hermitian and
K1 < H(w) < KI
This follows from the relation
K Ya? = K~HTT P < |7 Yui? = (a, Hd)
= [T~ < |77l < K|a)>.
Also,

H(0)Py(0) + P2 (0O)H(0) =0

and, for w # 0,
HPy+ B} H = (T (T BT + T B3 (T~1)*) T
(3.9)
= (T (A+AYT =

We define a new norm in the following way:

Let f € Ls. It can be represented by its Fourier series

f=2 e fw)

We define the operator H by

Hf = Ze” (W) f(w).

By Parseval’s relation,

IHf|? = ZlH w)|2<K‘*Z|f(w ? < K112,

(9, Hf) = Z(g, ajf) = Z(Hg,f) = (Hg, ).

W W

Also, H™1 exists and
H7f =) e A w)f(w),
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ie.,

IH-FI? < K272
Thus, H is a selfadjoint positive definite bounded operator.
We now define a new scalar product by

(w,v)r = (v, Hv), |lullfy = (v, Hu).

Since,

A

(&, A~ Ha) < {H'|(4, ) < K(a, Ha),

we obtain, by Parseval’s relation,
K~ ul? = K~ (o, B Hi) < (a4, Hi) = (u, Hu) < K||ul].
w 3]
Thus, the H-scalar product defines a norm which is equivalent with the L,-norm.

Now we can prove

Lemma 3.1. Assume that the system is strongly hyperbolic. Then we can construct a

new norm which is equivalent with the Ly-norm such that

Re(u, Pou)g = 0.

Proof. By (3.9) and Parseval’s relation,

ZRG(’UL, P[)'LL)H = (u, (HPO + P(;"H)u)

= i(w), (H(w)Po(iw) + Py (iw) H(w)) t(w)) = 0.

This proves the lemma.
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The next step is to consider the system
g .
Uy = (Pg(a—m) + B) u, DB constant matrix. (3.10)

We want o prove

Lemma 3.2. Assume that (3.10) is strongly hyperbolic and that the eigenvalues p of
By(iw) + B satisty

Rep < —6 < 0. (3.11)

Then we can construct a new norin such that

Re(u, (PO(%) + B)u)H < —6(u,u)g.

Proof. We consider the symbol

P(}(?:Lu‘) + B.

By (3.8), we obtain, for w # 0,
T Py + T BT =: lwlA + B.

Now we can find a unitary matrix U{w) such that

Hi1 b1 §13 e ém
_ pz bag -+ bop
U*(|wlA + B)U = SN
En—-}.,n
0 Ln

We want to show that the g-ij are bounded independently of lw|.
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Clearly, the entries of U*BU are bounded independently of lw|. Since the sum of the
entries of |w]U*AU and U*BU below the diagonal add up to zero, these entries of [w|U*AU
are bounded independently of |w|. Since U*AU is Hermitian, the eniries of jw|U*AU above
the diagonal are also bounded independently of |w|. Therefore, the I:;,;j are bounded inde-

pendently of |w|. By (3.11), we can construct a diagonal matrix D,

1 0

dy
D= . )

0 d'n,ml
d > 0 sufficiently small but independent of w,

such that

2Re(D™'U*(Jw]A + B)UD) < —61.

For w =0,

Po(iw)+ B =B
and, by (3.11), there is a transformation 77(0) such that
Re(T;I(o)BTl(o)) < —4I.
Now we define H(w) by
AW) = (I7@)) T4 W), Taw) = T)U@)D for w#0

and the lemma follows.

We can now prove

Theorem 3.2. Assume that the system (3.1) is strongly hyperbolic and that the eigenvalue
condition (3.11) is satisfied. Then the results of Theorem 3.1 hold.
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Proof. We follow the proof of Theorem 3.1 in the H-norm, constructed in Lemma 3.2.

In applications one is interested in quasilinear systems

) )
us = Po(5—)u+ Bu+ E(Pl(:c, tu, 5 Yut f(a,t, u)) + Fz, 1). (3.12)

Here
Plzg J&(.’Btﬂ)i
v t R ] 633'11

is also a first order operator whose coefficients depend on u. One could be tempted to

consider

Pi(z,t,u, —(;%)u + flz, t,u) = f(z,t,u, Du)

as part of the forcing and use the same proof as above. However, this process does not

work because, instead of (3.5), one can only prove that
[If(':t:u('$t),Du('=t)]1HP < Kolju(:, 8)]| zo+1,

which cannot be dominated by the left hand side of (3.4a). To treat systems (3.12), one

has to construct a new norm which depends on u such that
Re (u, (P+eP + B)u)H < —6(u,u)gy.

For details, see [3] where Theorem 3.1 is proven for systems (3.12).
Instead of the Liaponov technique, we could also use the resolvent method to prove

Theorem 3.1. However, this technique cannot be used for the more general systems (3.12).

4. Second order parabolic systems
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In this section we consider parabolic systems

du 8%y

d
up = Au+(Pg(£) + B)u+ef(rc,t, % Br’ Bty T F @ 1) W)
u(z,0) = 0.
Here
s 2
Y
g=1 :I;J

denotes the Laplacian. As in Section 3, Py + B is a first order operator with constant
coeflicients. f, F' are smooth functions of all variables which are 2r-periodic with respect
to the space variables. We are interested in solutions with the same properties.

Corresponding to Assumption 3.1, we make
Assumption 4.1. For every cp, there are constants C\, such that

d
iDPf|<C'|p|(IUI+Z| |+Zla_% 1),

[DPf| < Cy),

provided

d
|u|+§:| !+Zla$2

(As before, DY stands for space derivatives, D? for derivatives with respect to all variables.)

We shall use the resolvent technique. We start with the linear problem (g = 0).

a
z (4.2)
u(z,0) = 0.
Fourier transform with respect to the space variables and Laplace transform with respect
to t gives us

((s + |w|2)I - (Pg(iw) + B) (w, s) = Fw, s). (4.3)
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Corresponding to Lemma 2.4 we have

Lemma 4.1. (4.3) has a unique solution for Re s > 0 and there is a constant R such that

s ] (s + W] = (Po(iw) + B))“li <R (4.4)

if and only if there is a constant § > 0 such that, for all real w and all complex s with

Re s > 0, the eigenvalues A of Py(iw) + B — (s + jw|?)I satisfy

ReA < 4. (4.5)

Proof. The condition is certainly necessary. We shall show that it is also sufficient. Since
Py is a first order operator, (s+ |w|?)J dominates Py(iw) + B for sufficiently large |s|+|w|?,

and we obtain the estimate
(Isl + |w®)li(w, )| < 2/F(w,8)], 8]+ |w]* >> 1. (4.6)

For bounded |s| + |w|?, the estimate follows in the same way as in Lemma 2.4 by a com-
pactness argument,

We can now invert the Laplace and Fourier transform and obtain by Parseval’s relation

T T
|t oipa < B2 [ e ol @.7)
0 0

(4.6) tells us that we can also estimate the second space derivatives in terms of F. Therefore,

we can sharpen (4.7) to

T T
/0 (s 8)2pdt < B2 f 1P (). (4.8)
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Thus, we gain two derivatives,

Differentiating the differential equations gives us

T T
|1 OlBmsade < B2 [ 1Ot (4.9
Using the differential equation and (4.9), we can also estimate u;. We obtain

T T
Bt <2 [ 8ut, )+ (Paln) + Bt Bt

T
+2 f IF( 8) || Frodt
0
T T
< const.f [|u(-,t)]]12tp+zdt+2/. LE () Fedt
0 0

T
< const,/ 1F (-, D)% dt.
0

Thus, there are constants fﬁp such that

T T T
fo (-, )] Fps2lt + fo s (-, 8) || dt < 22 fo WEC, 8)]| 3pdt. (4.10)

By Sobolev inequalities, there are universal constants E‘p such that, for all T (observe that

u(z,0) = 0)

T

T
max |Dgu(, t)lz < Eﬁ(/ flud:, t)“%IP-E-Zdt +/ Hut(':t)”%i‘?dt)
ostst 0 | 0 (4.11)

T
< B2R? /0 IFC,8)2pdt for all a with p > [d/2] + o] + 1.

Now we consider the nonlinear problem and we proceed as before. We choose p
satisfying (3.5). There is an interval 0 <t < T,, T, > 0, where u satisfies (4.10) with fﬁg

replaced by 2R2, i.e.,

T T T
N OlBradt+ [l OB <272 [ IPC O, 0<T T (412)
0 0 1]
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We consider f as a part of the forcing and obtain, from (4.10),

T T
IOl + [t )l
0

3

- T T
<B(3 f 1F ¢, )l rde + 3¢ f |#1wdt), T <T..
0 0

As in the previous section, we can estimate the nonlinear term by

T T
f{, 172 dt < const. (1+ R2P~2) fo 1F ||,

Therefore, for sufficiently small &, we never achieve equality in (4.12), and T, = occ. We

have proved

Theorem 4.1. The problem (4.1) is nonlinearly stable if and only if the eigenvalue
condition (4.5) holds.

In [2] the above results have been proven for very general mixed hyperbolic-parabolic
systems.
5. General partial differential equations

In this section we consider perturbations of general systems of partial differential

equations with constant coefficients

i) i}
Up = P@(a)u + ePi(z, t, u, £)u + F(z,1),

(5.1)
’U:(iC,O) wug(m)
Here z = (221, - ,xd), 9y = ('u.(l), L ,u(n))T and
0 vl
PO(%)_llEmAym;, Vm(lﬂ’l,...,lls), |V|EZV55

denotes a general differential operator with constant matrix coefficients. Assume lim,_, o,
L F(z,t) = 0f|. We are interested in solutions which are 2z-periodic in all space directions.
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Therefore, we assume that all data and coefficients have the same property. P; is a
nonlinear differential operator whose special properties we discuss later.
To begin with, we discuss well posed linear problems
d
v =B 0("5"”") Uy
T (5.2)
v{z, 0) = vo(x).
Definition 5.1. The problem (5.2) is well posed if, for smooth data, there is a solution

which satisfies the estimate

lo(, )| < Ke** o, 0)]}. (5.3)
Here K, o0 are universal constants which do not depend on the particular initial data.

We can solve (5.2) by Fourier expansion. Let

viz,t) = Z eHw)g(w, 1).

734

Then ¥(w, t) solves

do 4 -
~ = P(iw)8, P= E A, (iw )" -+ - (iwa)™?,
dt (5.4)

H{w, Q) = Bo(w).
We have
Lemma 5.1. A necessary condition for wellposedness is that the eigenvalues \ of P(iw)

satisfy the Petrovskii condition

Re X < a. (5.5)

Proof. For every fixed w, the solution of {5.4) is of the form

Hw,t) = eﬁ(é“)t'ﬁ'g(w),
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which gives us the solution
v(z,t) = ef (it giw,m) Bp(w).
Therefore,
o 812 = [P (w2, (5.6)

Since

|eP ()t > ¢Be Nt for any eigenvalue A,
the inequality (5.3) can only be satisfied if (5.5) holds.

Theorem 5.1. The problem (5.2) is well posed if and only if, for all frequencies,

P @)t < Feat, (5.7)

Proof. That (5.7) is necessary follows from (5.6). (5.7) is also sufficient. Let v be a solution,

It can be represented as the Fourier series

v(z,t) = Y ePlteiwmlpy (),
w

By Parseval’s relation and (5.7),

(-, )II* = Z "ty (w)[2 < K22 - [lu(-, 0) 1% (5.8)
Therefore, (5.3) is satisfied. The representation (5.8) also shows that, for smooth data,
there is a smooth solution. This proves the theorem.

We can give necessary and sufficient algebraic conditions such that (5.7) holds. The

Kreiss matrix theorem (see, for example,[1]) gives us
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Theorem 5.2. The following conditions are equivalent.

1) There are constants K1, such that, for all frequencies w,
]eﬁ(’:“’)t] < Kje*®, Rei<a. (5.9)
2) There are constants Ko, a and, for every P(iw), a positive transformation S(w) with

[S(w)] + |57 Hw)| < Ko

such that
/\1 bl2 e N b].'n,
S (w)P(iw)S(w) = 0 Ay baz -+ bop
O .0, Ay

is upperdiagonal and the eigenvalues are ordered
0> Re(A: —a) > Re(Ay — ) > --- > Re(Ay — ).
The upper diagonal elements satisfy the estimate
|b;j] < Ka|Re(A; —a)], 1<i<j<n.
3) There are constants K3, « such that, for all complex s with Re s > «,

(51— Pliw)) | < E{?T&' (5.10)

4) There are constants K4, « and, for every ﬁ(iw), a positive definite Hermitian matrix
H = H(iw) with

K\ I<H<IK, (5.11a)
such that

HP +PPA <22 H. (5.11b)



If we know an « for any of the above conditions, then this a can be chosen for all
conditions. This is not true for the K;. However, if one of them is known, then the other
can be estimated.

We shall now connect these results with the stability results for ordinary differential

equations in Section 2. Immediately, we have

Theorem 5.3. The initial value problem (5.1) is linearly stable if it is well posed and

a < 0in (5.3).

Proof. (5.7) and Parseval’s relation (5.5) show that the solution of the linear problem (5.1)
with e = 0 anf F' = 0 converges exponentially to zero. If F' # 0 and lim;,oo || F(-,%)|| = 0,
then we also obtain convergence by Duhamel’s principle.

We shall now connect o with the eigenvalue condition. Introducing into the horﬁoge—

neous linear equation (5.1} the ansatz

gives us

o
Ap = FPy(+)ep. A2
¢ = Po(5-)p (5.12)
Fourier transform shows that the eigenfunctions are
= 6i(w,x) Yo

and the eigenvalues satisfy

(A - P(iw))po = 0, (5.13)

i.e., the eigenvalues of the differential operator are the eigenvalues of the symbol P(zw)
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We have

Theorem 5.4. Assume that the linear problem (5.2) is well posed and that the eigenvalue
condition is satisfied, i.e., there is a constant § > 0 such that, for all w, the eigenvalues of
(5.13) satisfy

Re A < -4 (5.14)
Therefore, the problem (5.1) is linearly stable.

Proof. We use the the second condition of Theorem 5.2. Wellposedness tells us that there

is a fixed constant « such that
|bi;| £ KaRe(X; — o)

holds for all frequencies w. Since

[Re(Ai — )] = [Re Al (1 + IR‘:‘/\”) < 2(1+ 3)[Re %I
<201+ D)Re xi — 5],

we also have

= & ~ o
b5 < KaRe(As — 2)I, Ko = 2(1+ 2)Ka.
Thus, we can choose o = —%6 and apply Theorem 5.3.

Now consider (5.1) with & = 0 and up(z) = 0 and Fourier transform it with respect to

z and Laplace transform it with respect to time. The transformed system has the form
(SI - ﬁ(zw))ﬁ, =F.
If the problem is well posed and « < 0, it follows from (5.10) that, for Re s =0,

K
el < =X

< AL (5.15)

37



Therefore, by Parseval’s relation,

g 2 K’Z 2
[t oiPar < 5[y opa

Differentiating (5.1} with respect to the space variable we obtain

Kz

T
f D7, )t <

/ DY E (-, )| 2dt.

Here DV stands for any space derivative. As in the previous sections, we can use these
relations to obtain estimates in the maximum norm and discuss nonlinear perturbations.
However, in general, we do not “gain” any derivatives. Therefore, the nonlinear perturba-

tions which we can handle are of zero order, i.e.,
0
Pi(z,t,u, :9”;)” = B(z,t,u) u.

As we have seen in the last section, we can do better for parabolic partial differential
equations. In this case m is even and, for linearly stable problems, there is a constant
& > 0 such that

Re A < —6(jw|™ + 1).

In this case we obtain, instead of (5.15),
6(|lw|™ + 1)|a] < Ku|F|

which leads to

/ > IID"u(, t)li%dt < K, /TIIF[lzdt.

|ei<m

Thus, we gain m derivatives and, therefore, the admissible perturbations can be any non-
linear differential operator of order m.
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For hyperbolic partial differential equations, the estimate (5.15) is sharp and only zero
order perturbations are allowed when using the resolvent technique.

We consider the fourth condition of Theorem 5.2. The matrices H define an operator
Hu=:>" &= J(iw)i(w).
By (5.11a) and Parseval’s relation,
(u, Hu) = ) (i), Hliw)d(w)) = > |HY?4(w)|*.
w w
Since
E{Maw)? < A Yaw)? < [Ha(w) < 18] |iw)? < Kaliw)P,
we have, by Parseval’s relation,
Ky ul® < (u, Hu) < Kql|ul.

Therefore, (u, Hv) defines a scalar product which is equivalent with the L, scalar product
and norm. Also, as for the ordinary differential equations, the linear problem (5.2) becomes

a contraction in the new norm if & < 0. We have

(u, Hu)y = (u, HPou) + (Pou, Hu) = Y (4(w), (P + Py H)a(w))
w (5.16)
< =2|ef(u, Hu).
In general, one can only treat zero order nonlinear perturbations. However, for
parabolic systems, one can again treat perturbations of order m. As we have already men-
tioned in the last section, first order perturbations of hyperbolic systems can be treated if

one uses a H-norm which depends on the perturbation.
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