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Abstraci— This paper is devoted to some vari-
ational problems arising in Image recovery and
segmentation. We show that classical function-
als for image denoising and segmentation like the
Mumford-Shah functional and the Total Variation
minimization (TV) may be approximated by non-
convex functionals and moreover, the edges are bet-
ter preserved. We also show that our proposed
approximations are related to the approximation
of Ambrosio-Tortorelli for the Mumford-Shah func-
tional and to an approximation of J, Shah for a TV
minimization variant. In these approximations of
Ambrosio-Tortorelli and Shah, the functionals de-
pend on two variables (u,v), where ¢ is the image-
function and v is an extra variable which allows to
detect the contours. Then the problems consist in
solving a system with two coupled equations in two
unknowns, while in our approximations, the func-
tionals are depending on only one unknown u. We
will express v as a function of the gradient of v and
this will be our edge-detector. Finally, we compare
the models in the framework of image restoration
and segmentation. We will see that the obtained
results by the new models are better and the algo-
rithms are faster.

Keywords— Image restoration and segmentation,
variational methods, PDE's, Mumford-Shah func-
tional, Total Variation minimization, non-convex
approximations.

I. InNTRODUCTION

In the field of image analysis, an important problem
is the reconstruction of an original image w, represent-
ing a real scene, from an observed and degraded im-
age ug. The reconstructed image u has to be formed
by homogeneous regions, separated by sharp edges.
Moreover, the edges must be easily and correctly ex-
{racted, as much as possible.

Let us consider « and ug as functions defined on a
open and bounded domain @ C IR?, which is in gen-
eral a rectangle. We assume here that the degradation
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model is of the form:
o = U + 7,

where 757 represents the noise in the image. We focus
on two models proposed to compute u from ug using
variational methods and regularization are the mini-
mizations of the Mumford-Shah functional ([7]) and
of the Total Variation (T'V) of u ([8], (9]).

Let us first recall the Mumford-Shah functional for
segmentation, in the formulation of L. Ambrosio ([1]):

GMS(y) = /Q (a|Vu|2 + Blu — ue|2)dmdy + Hl(&z),)
1

where «,f are two positive parameters and ug is
bounded. S, represents the jumps set of u (the edges)
and H! is the 1-dimensional Hausdorflf measure. This
functional has minimizers and moreover, each mini-
mizer is plecewise smooth ([1]).

The second important model is the Total Variation
minimization ([8], [9]), where the following functional
is minimized:

GV (u) = /ﬂ (a|Vu|+%|u——u0i2)dwdy. (2)

For these two models, the solution u is a function of
bounded variation and only this type of functions al-
lows for discontinuities along edges (the jumps set Sy,).
For more regular functions, like the Sobolev functions,
it is impossible to reconstruct edges.

But, from a numerical point of view, it is not easy
to correctly approach functions of bounded variation,
due to the jumps on the set §, of the solution. Es-
pecially for the Mumford-Shah functional, the algo-
rithms are complicated, because of the term H*({S,) in
the functional {we refer the reader to J. M. Morel, G.
Solimini [6], for a review of variational problems and
algorithms for image denoising and segmentation).

A solution to this practical problem is proposed by
Ambrosio and Tortorelli ([2], [3]): the authors intro-
duce a dual variable v which replaces the jumps set
5, of the solution w, and approach the Mumford-Shah
functional by a sequence of functionals depending now
on the two variables w and »v. We will refer in this
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paper only to the second approximation of Ambrosio-
Tortorelli ([3]), which seems to be simpler than the
first ([2]). This approximation for GM¥ is

GAT(u v) =

fo (pIVol + a1Vl + CTE 4 lu — wol?),

(3)

and they showed that if w, = (u,, v,) minimizes GﬁT,
then {passing to subsequences) u, is an approxima-
tion of u, a minimizer of GM%, and v, goes to 1, as
p — 0, in the L*(Q)-topology (i.e. [ ju, —ul* — 0
and fy|v, — 1|* — 0, as p — 0). Moreover, v, is dif-
ferent from one (and less then one) only in a small
neighborhood of S, which shrinks as p — 0F.

Following this idea, J. Shah {[10]) proposed an ap-
proximation for a Total Variation minimization vari-
ant. The approached functional introduced by J. Shah
is:

G5 (u) /Q (a|Vu| + Blu — ud)dmdy

aut — u~|

1
5. 1+ alut — u‘]dH ’

_§_

where (ut — u™) represents the jump of u across 5y,
and the associated approximation is:

G35 (u,v) =
[ (ol + vl + L2 4 pju — ).

(4)

Minimizing these two approximations with respect
to u and v yields a system of two coupled equations in
two unknowns. We will show in this paper that these
models for image restoration and segmentation can
be reduced to the minimization of some non-convex
functionals depending only on the unknown u, the
image-function, and then the problems are reduced to
only one equation, making the computation more ef-
ficient. Moreover, we will express v as a function of
the gradient of u, and in this way we can easily ex-
tract the contours of the initially noisy image. From
the pumerical comparisons, we will see that our algo-
rithms are faster, the obtained results are better and
the edges are very-well preserved.

The outline of the paper is as follows. In the next
section, we introduce and describe our new approxi-
mations, and in Section III we present the numerical
results and comparisons. We end the paper by a short
concluding section and an appendix, where we give the
details of the numerical schemes.

II. THE DESCRIPTION OF THE MODEL

The system associated to the minimization of the
Ambrosio-Tortorelli approximation G47(u,v) from

(3) is:

Bu — aV(0?Vu) = Bug
14+4ap|Vul? 1 _ (3)
—_— A v + 4p2 ( - 1+4a¢p|Vu|2) - 0-

We can see from the second equation of (5) that v is
in fact a smoothing of W.

In this paper we want to reduce this system to only
one equation with only one unknown, while still being
able to extract the edges.

Qur main new idea is to drop the term — A w»
from the second equation in v of (5) and then v be-
comes: v = v,({Vu|) = WOZIM"W' Substituting it in
GfT(u,v) (i.e. without considering the regularizing
term [ p|Vo|? in G4T(u,v)), we obtain, after com-
putation, the functional:

Gzt(u)zjﬂ(a [Vul”

1+ dap|Vul?
In this way, the following new problem:

{ inf, { G {(u) }

i
vp(|Vul) = T+dap|Vul?

+ Blu — ’U.g|2) dady.

(restoration for u)

{edge-detector)

(6)

will be our reduced model for the Ambrosio-Tortorelli
approximation (3). Then we no longer have to solve
two coupled PDE’s, but only one, from the minimiza-
tion of G,';f(u), v being expressed as an explicit func-
tion of the gradient |Vu| of u.

Similarly, the system associated to the minimiza-
tion of G5 (u, v) is:

Bluua] ~ -V (o? |Vu|) 0,

7
_Avt +4apru[( (7

1 —
- 1»{~4o:p{Vu|) =0,

and again v can be seen to be a smoothing of
——1+4a1plvu|. Let us drop the term — A v in the sec-

ond equnation of (7). Then we obtain v = »,({Vu|) =
m and we substitute it in G5(u,v) (i.e. with-

out the regularizing term f, p|Vv|?). We obtain the
functional:
[V

Gf’(“)z/( 1+ dap| V|

Again, as before, the following new problem:

{ infu{ Go(u) }

1
([ Vul) = T+4ap[Vu]

+ Bl u0|)d:vdy.

(restoration for u)

(edge-detector)

(8)
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will be our reduced model for the Shah approximation,
having only one PDE with one unknown w, v being
expressed as a function of |Vul.

Analogous to these new approximations, we may
consider a more general model, as follows: first mini-
mize

Gow = [ (o

with p > 1, to restore u, and then compute v by:

[Vul?

TT dap| VP + Blu — u0|p) dedy, (9)

1
o[Vul) = 14 4ap|Vulr
as an edge-detector. We obtain from (9) G4 for p = 2
and G for p = 1. Finally, in our numemcal comptu-
t&thIIS we use in (,(u) the I2-norm of (u - up) for
every p > 1, instead of the LP-norm. Then G,{u)
becomes (and this will be our new model):

G(w= [ (a

Denoting by ¢ the function

|Veul?

2
W-Fﬁl“_uﬂl )dmdy. (10)

|27

2 9l120) = T

we write the Fuler equation associated to this mini-
mization problem by

e (—%ﬁﬂ )2[3“0, (11)

'g—zlan = 0.

After the computation of the solution u, we com-
pute and present the edge-strength function v{(|Vu|) =
1
1+4ap|Vul?P "
In order to minimize Gf(u,v), J. Shah used the
associated evolution system ([10]), which is:

U—1g 2 Vu\ _
+'8[u w] "oV (v mi) =0,
@ 14+40p|Vu 1
- Av+ 42 VT g T 0, (12)
u(0) = uo, 3—z|an =0, gﬁ'lan = 0.

“

We will also compare our new model from (11) with
the following, which will be called “modified Shah

3

model”: in (4) we replace the Ll-norm of (u — ug)
by its L?-norm. The modified functional obviously is:

G3(u,v) = (13)

Joo (P01 + 0?Vul + 4 Bl — wol?)

as p — 0. Moreover, we use and discretize the associ-
ated stationary system to this minimization problem,
instead of the evolution system, used by J. Shah:

4

Au — aV - (v%—‘%) = fBug,

1+40piVu 1
- Av+ ngi v—&;g:(}, (14)

Bﬂui

u(0) = uo, g—glan =0, F,lea=0.

\

We present in the Appendix the details of the fi-
nite differences schemes used for each equation and
system.

Remark 1. Let us denote by ¢, the function:

i

bp(t) = 1+ dapt”

Then, using these notations, the general model (9)
can be written as:

() = /ﬂ (b, (IVulP) + Blu — uol? ) dzdy.  (15)

Note that the function ¢, is non-convex. For instance
for p = 1, G as p — 0 is formally a non-convex ap-
proximation of the total variation TV minimization
{[8], [9]). Of-course, due to the non-convexity of ¢,,
the problem is, in principle, ill-posed, but the numer-
ical results are very satisfactory, and the algorithms
are unconditionally stable.

Remark 2. We wiﬁ see in the numerical results
that »,(|Vu|) = W may be used as an edge-
strength function, and moreover, just like in the theo-
retical result of Ambrosio-Tortorelli, we will have “nu-
merically” that v, — 1 as p — 0, except in a small
neighborhood of 5, which shrinks as p — 0.

Remark 8. We can say that our new approximation
from (9) with only one variable is a new way of view-
ing the Ambrosio-Tortorelli approximation and Shah
approximation with two variables. Our new model
is not equivalent to the approximations of Ambrosio-
Tortorelli (p = 2) and Shah (p = 1), or even with
the Mumford-Shah functional (again p = 2). We have
that ¢,{|t|?) is a (non-convex) approximation of [#|.
We will see in the numerical results that by minimiz-
ing non-convex functionals (as for instance in [12]) in
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image recovery, the edges can be better preserved, but
unfortunately the problems are often mathematically
ill-posed. In this paper, we propose in fact a compro-
mise between the minimization of a convex functional
(as for instance the TV minimization, so the problem
is well-posed) and the minimization of a non-convex
functional (when the edges are better preserved, but
the problem is ill-posed): we approach the convex
functional by a sequence of non-convex functionals.

I11. NUMERICAL RESULTS AND COMPARISONS

This section is devoted to numerical results and
comparisons using the different models described be-
fore.

We present in Fig. 1 our synthetic test image (orig-
inal and noisy), of size 100 x 100.

Because there is not a rigorous choice of parame-
ters, we use for each model the parameters for which
we obtained the best results for the SNR (we can first
fix 3 = 0.5). We get p = 0.00009 for each model, but
o is different. However, for the models GAT(u, v) and
G"(u) we keep the same parameter , and also for
G3(u,v) and G*(u), because the models are in some
sense “equivalent”, or related. We present each time
the reconstructed image u and the edge-strength func-
tion v, together with the SNR (the signal to noise ra-
tio) between the original image and the reconstructed
image.

We start by presenting in Fig. 2 the best results ob-
tained using the two coupled systems from Ambrosio-
Tortorelli (top) and Shah (middle, the evolutionary
case} approximations. We see that the reconstructed
images are too much regularized and the results for
the variable v are still noisy, or contain artificial edges.

Now, by changing the system proposed by J. Shah
as described before, the obtained results are better,
both for the image u and the edges v, as we may see
in Fig. 2 in the bottom (the Modified Shah model).
But the edges in v are still not too sharp.

The fact that the edges in the variable v are not
sharp using the Ambrosio-Tortorelli and Shah models
is due to the isotropic regularizing term [, p|Vo|? in
the functionals, which yields the Laplacian of v (so,
a regularization in all directions on v) in each sys-
tem. In our approach, we do not have an explicit
regularizing term on v; our edge-detector v = v(|Vul)
is regularized only implicitly, because u is regularized.
Using the formulation in two unknowns (u,v) of the
problems, to overcome this effect of diffused edges, we
can use p®{|Vv|) as a regularizing term on v in the
approximated functionals, where ® can be a function

with at most a linear growth to infinity. For instance,
we can consider for ® the identity, then we obtain
TV (v), or a non-convex function. This last possibil-
ity has been used in [11], but there is still a coupled
system with two equations in two unknowns.

Then we present in Fig. 3 the results obtained with
our new model, for different values of p between 1 and
2. We remark that the results are much better than
using the modified Shah model, both for the recon-
structed images (SNR=22.3 db for the case p = 1)
and for the edges, represented by the variable v.

We continue the comparisons in Fig. 4, where we
presented the same cross-section of v for all models.
We classified the results in two groups, the case p =
1 in the top, and the case p = 2 in the bottom of
Fig. 4. This illustrates that the locations of edges are
better preserved using the new model, while with the
modified Shah model the jumps have been regularized
a little bit. We also present the same cross-sections of
v in Fig. 5, now in intensity.

In Fig. 6 we compare further the new model with
the modified Shah model, representing the SNR func-
tion of the time calculation. We remark that the
new model is faster, this being obviously due to the
fact that the problem was simplified: we solve only
one equation and with only one unknown, instead
of a coupled-system with two equations and two un-
knowns. Moreover, we compute v{|Vu}) only one time
in the end of the algorithm, while in the both Shah
model and modified Shah model, is necessary to com-
pute in parallel © and v, at each iteration.

Finally, in Fig. 7 we present the results using the
new model u, v({Vu|), and the cross-section of v{|Vuj)
for y = 73 (Fig. 8), for a decreasing sequence of p to
0, in the case p = 1, in order to illustrate the behavior
of the solution as a function of p. We remark that the
parameter p has a regularizing effect on the solution
u, but forces v,(|Vu|) to be different from 1 only on
the set S,, which shrinks as p — 0.

Note that we use the same value of p in all cases.
The model in the case p = 2 regularizes better the
edge-strength function »{|Vwu|) in the homogeneous
regions, and the edges in v are darker than in the case
p = 1 (the values on S, of v are closer to 0 than in the
case p = 1). Even though in the result from Iig. 3
the case p = 1, the edges in v are not so dark, we can
overcome this by doing a thresholding on v. However,
in the cases p = 1 and p = 1.25, we consider that the
edges have been extracted the best, because there is
no noise on the contours, like in the cases p = 1.75
and p = 2.
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u oV
New model: p=1, o = 48, SNR=22.31 db

Lf

New model: p= 1.25, o = 32, SNR=21.26 db

Fig. 1.  The original image and the noisy image ug
(SNR=7.38 db).

u v

Ambrosio—TortoreHj model: a = 14, SNR=15.24 db

B

Fig. 2. From left to right, top to bottom: results (u,v)
obtained using Ambrosio-Tortorelli, Shah and modified
Shah approximations,

| S

Fig. 3. From left to right, top to bottom: results using the
new model u, v{{Vu|), for p=1, 1.25, 1.5, 1.75, 2.
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o 1 bottom: the original image and the results: Ambrosio-
‘Fortorelli, Shah, Modified Shah approximations, New
ok ! : Model p = 1 and New Model p = 2.
V] 1 1 i i 1 1 1 i 1, 1
1} 10 20 30 40 &0 40 70 80 20 900 SNR
Fig. 4. Cross-sections for y = 73 of the edge-strength
function v. Top: for the new model p = 1, Shah model 2% ' ' ' ' ' g odpt” o
and Modified Shah model. Bottom: for the new model sl e |
p = 2 and Ambrosio-Tortorelli model.
205
20 |- —— e
wsr F J— a
9 F 4
185 | 4
8t 4 1
175 4
. . . . . . .
4] 10 20 €0 70 80

TIME 4Ejsecolicéis)

Fig. 6. SNR function of the time calculation, for the new
model (p =1 and p = 2) and modified Shah model.
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p=0.001
SNER=8.4

255.000000

SNR=11.9

2=19.000000

255.000000

255.000000

255060000

£=0.00005
SNR=21.2

Fig. 7. The behavior of the results for the new model Tig. 8. The associated cross-sections of v,(|Vu|) for y =
p=1,as p— 0. From left to right: u, v,(|Vul). 73, from Fig. 7.
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IV. CONCLUSION

In this paper, we have introduced some non-con-
vex approximations, related to an approximation
of Ambrosio-Tortorelli for the Mumford-Shah func-
tional, and to an approximation of J. Shah for a vari-
ant of the Total Variation minimization. We reduced
and simplify their approximations with two coupled
equations in two unknowns, to approximations by
only one equation in only one unknown, while being
able simultaneously to denoise and extract the edges.
We deduced a general class of approximations. Fi-
nally, by the numerical comparisons, we illustrated
that, at least for piecewise-constant images, the re-
sults are better and faster, and the edges are very-well
preserved. This methods can be applied, for instance,
to medical imaging, where the images are generally
piecewige-constant.

APPENDIX

In this section we will describe the finite differences
schemes and the fixed point algorithms used in the
discretization of the models.

For the equation (11), we use for instance a finite
differences implicit scheme based on the method of
Rudin-Osher-Fatemi ([9]) to discretize the divergence
operator and an iterative (or fixed point) algorithm
([4], [12], [13]). The resulting scheme is uncondition-
ally stable, even if the functional that we minimize
is non-convex (see [4], [12]). We note that there are
others possible schemes, like the primal-dual method
of T. Chan, G. Golub and P. Mulet ([5]).

The algorithm used here is the following: given

1° = ug, compute u™tt from the linear problem:

! i
n+l . QS (ivu I) n+lYy __
% aV (W|Vu“| Vu ) = g,

using Neumann boundary conditions. The details of
the scheme can be found in [4] and {12].

To solve numerically the system (12), we use a finite
differences scheme of the same type, applied to the
following linearization: given u” = u{0) = up, and
v0 = vy, we compute ™t and v" 11 by:

wrtl g gy o Vurtly
At 2|um—~ug| av - ((Un) [Vun| ) =0,
RS R 1 Hep|Vu| o 1
v Ayttt 4 4p2 CHA 4p — 0,
(16)

using Neumann boundary conditions. Here, we ini-

tialize v by 1o = v,(|Vtio]) = rasirem-

The linearization of the system (14) will be, as be-
fore:

n41
Wt — oV ((,U'n)2 Y‘gunl ) = Ug,

gty Ty L

A S
U = Ug, UV =V = Vyy = 1+4dop|Vugl”

{17)

\

In order to give an idea about the numerical
schemes, we mention only the following: to see how
we discretize the divergence operators from each equa-
tion, let us consider a general divergence operator of
the form:

5% (z/)(m, Y, U, uy)um)

We use the following discretization:

L (0 (252, Bty M

where A% ug; = wipy; — wij, AZuy = wig — vioy, b
being the step space. We also use:

1
Avig = 5 (341 vicr + Vighs + 001 — 405).

The same method is used in the discretization of
the system (5), obtained from the Ambrosio-Tortorelli
approximation.
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