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PREFACE .

This is a summary of five lectures delivered at the CIME course on ”Ad-
vanced Numerical Approximation of Nonlinear Hyperbolic Equations” held in
Cetraro, Italy, on June 1997.

Following the introductory lecture T — which provides a general overview
of approximate solution to nonlinear conservation laws, the remaining lectures
deal with the specifics of four complementing topics:

¢ Lecture II. Finite-difference methods — non-oscillatory central schemes;
¢ Lecture III. Speciral approximations — the Spectral Viscosity method;

¢ Lecture IV. Convergence rate estimates — a Lip’ convergence theory;

[ ]

Lecture V. Kinetic approximations — regularity of kinefic formulations.
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Chapter 1

A General Overview

Abstract. In this infroductory lecture, we overview the development of mod-
ern, high-resolution approximations to hyperbolic conservation laws and related
nonlinear equations. Since this overview also serves as an introduction for the
other lectures in this volume, it is less of a comprehensive overview, and more
of a bird’s eye view of topics which play a pivotal role in the lectures ahead.
1t consiste of a dual discussion on the various mathematical concepts and the
related discrete algorithms which are the required ingredients for these lectures.

1 start with a brief overview on the mathematical theory for nonlinear hy-
perbolic conservation laws. The theory of the continuum ( — and in this case,
the dis-continuum), is intimately related to the construction, analysis and im-
plementation of the corresponding discrete approximations. Here, the basic the
notions of viscosity regularization, entropy, monotonicity, total variation bounds
and Riemann’s problem are introduced. Then follow the the basic ingredients of
the discrete theory: the Lax-Wendroff theorem, and the pivotal finite-difference
schemes of Godunov, Lax-Friedrichs, and Glimm.

Fo proceed, our dual presentation of high-resolution approximations is clas-
sified according to the analytical tools which are used in the development of their
convergence theories. These include classical compactness arguments based on
Total Variation (TV) bounds, e.g., TVD finite-difference approximations. The
use of compensated compactness arguments based on H ~!-compact entropy
production is demonstrated in the context of streamline diffusion finite-element
method and spectral viscosity approximations. Measure valued solutions —
measured by their negative entropy production, are discussed in the confext
of multidimensional finite-volume schemes. Finally, we discuss the recent use
of averaging lemmas which yield new compactness and regularity results for
approximate solutions of nonlinear conservation laws (as well as some related
equations), which admit an underlying kinetic formulation, e.g., finite-volume
and relaxation schemes.
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1.1 Introduction

The lectures in this volume deal with modern algorithms for the accurate com-
putation of shock discontinuities, slip lines, and other similar phenomena which
could be characterized by spontaneous evolution of change in scales. Such phe-
nomena pose a considerable computational challenge, which is answered, at least
partially, by these newly constructed algorithms. New modern algorithms were
devised, that achieve one or more of the desirable properties of high-resolution,
efficiency, stability — in particular, lack of spurious oscillations, etc. The im-
pact of these new algorithms ranges from the original impetus in the field of
Computational Fluid Dynamics (CFD), to the fields oil recovery, moving fronts,
image processing,... {75], [138], [132], [1].

In this infroduction we survey a variety of these algorithms for the approxi-
mate solution of nonlinear conservation laws. The presentation is neither com-
prehensive nor complete — the scope is too wide for the present framework
Instead, we discuss the-analytical tools which are used to study the stability
and convergence of these modern algorithms. We use these analytical issues
as our ’touring guide’ to provide a readers’ digest on the relevant approximate
methods, while studying there convergence properties. They melude

o Finite-difference methods. These are the most widely used methods for
solving nonlinear conservation laws. Godunov-type difference schemes
play a pivotal role. Two canonical examples include the upwind ENO
schemes (discussed in C.-W. Shu’s lectures) and a family of high-resolution
non-oscillatory central schemes (discussed in Lecture II);

o Finite element schemes. Here, the streamline diffusion method and its
extensions are canonical example, discussed in C. Johnson’s lectures;

» Spectral approzimations. The Spectral Viscosity (SV) methods is discussed
in Lecture 1II.

» Finite-volume schemes. Finite-Volume (FV) schemes offer a particular
advantage for integration over multidimensional general triangulation, be-
yond the Cartesian grids. More can be found in B. Cockburr’s lectures.

e Kinetic formulations. Compactness and regularizing effects of approxi-
mate solutions is quantified in terms of their underlying kinetic formula-
tions, Lecture V.

Some general references are in order. The theory of hyperbolic conservation
* laws is covered in [94], [178],[157], [149]. For the theory of their numerical ap-
proximation consult {102],[58],[59],[159]. We are concerned with analytical tools
which are used in the convergence theories of such numerical approximations.
The monograph [50] could be consulted on recent development regarding weak
convergence. The reviews of {171], [123, 124] are recommended references for
the thecry of compensated compactness, and [40, 41],[17] deal with applications
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to conservation laws and their numerical approximations. Measure-valued solu-
tions in the context of nonlinear conservation laws were introduced in [42]. The
articles [62], [53], (45} prove the averaging lemma, and [111],[112),{77] contain
applications in the context of kinetic formulation for nonlinear conservation laws
and related equations.

A final word about notations. Different authors use different notations. In
this introduction, the conservative variable are denoted by the ”density” p,
the spatial flux is A("), (7, F) are entropy pairs, etc. In later lectures, these
are veplaced by the more generic notations: conservative variables are u,v,.. .,
fluxes are denoted by f,g,..., the entropy function is denoted U, ete.

1.2 Hyperbolic Conservation Laws

1.2.1 A very brief overview — m equations in d spatial
dimensions

The general set-up consists of m equations in d spatial dimensions
Sip+ Vs Alp) =0, (t,2) e Rf xRS, (1.2.1)

Here, A(p) := (A1(p), - - -, Aalp)) is the d-dimensional flux, and p == (p1(#, %), . .., pm(t, 2))
is the unknown m-vector subject to initial conditions p(0, z) = po(z).
The basic facts concerning such nonlinear hyperbolic systems are, consult

[94],[113], [35],[157],[58],{149],

o The evolution of spontaneous shock discontinuities which requires weak
{distributional) solutions of (1.2.1);

o The existence of possibly infinitely many weak solutions of (1.2.1);

e To single out a unique ‘physically relevant’ weak solution of {1.2.1), we
seek a solution, p = p{t,z), which can be realized as a viscosity limit
solution, p = lim p®, ‘

Oipf + Ve A(p7) = eV, - (QVp®), €Q >0 (1.2.2)

o The entropy condition. The notion of a viscosity limit solution is inti-
mately related to the notion of an entropy solution, p, which requires that
for all convex entropy functions, n(p), there holds, {93], [88, §5]

8im(p) + Vo Flp) < 0. (1.2.3)

A scalar function, n(p), is an entropy function associated with (1.2.1), if its
Hessian, n'(p), symmetrizes the spatial Jacobians, 4}(p),

(VA () = Ai(p) " (0),  i=1,...,d.
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It follows that in this case there exists an entropy flux, F(p) 1= (Fi(p), ..., Falp)),
which is determined by the compatibility relations,

7)) =Fj(p)T, i=1,....d (1.2.4)

What is the relation between the entropy condition (1.2.3) and the viscosity
limit solution in (1.2.2)?7 multiply the latter, on the left, by n'(p%); the compat-
ibility relation (1.2.4) implies that the resulting two terms on the left of (1.2.2)
amount to the sum of perfect derivatives, 0;n(p)* + Vg - F(p°). Consider now
the right hand side of (1.2.2) (for simplicity, we assume the viscosity matrix on
the right to be the identity matrix, @@ = I). Here we invoke the identity

577’(P€)A:npg = EA:L-T,?(PE) _ E(vae)T’l]”(PE)vx,Oe-

The first term tends to zero (in distribution sense); the second term is nonpos-
itive thanks to the convexity of 5, and hence tend to a nonpositive measure.
Thus, a viscosity limit solution must satisfy the entropy inequality (1.2.3). The
inverse implication: (1.2.3) = p = Hrmp® of viscosity solutions p° satisfying
(1.2.2), holds in the scalar case; the question requires a more intricate analysis
for systems, consult [93],[1567] and the references therein.

Indeed, the basic guestions regarding the existence, uniqueness and stability
of entropy solutions for general systems are open. Instead, the present trend
seems to concentrate on special systems with additional properties which en-
able to answer the questions of existence, stability, large time behavior, etc.
One-dimensional 2 x 2 systems is a notable example for such systems: their
properties can be analyzed in view of the existence of Riemann invariants and
a family of entropy functions, [66], [94, §6], [157], [40, 41]. The system of m > 2
chromatographic equations, [77}, is another example for such systems.

The difficulty of analyzing general systems of conservation laws is demon-
strated by the following negative result due to Temple, [174], which states that
already for systerns with m > 2 equations, there exists no metric, D(-;-), such
that the problem (1.2.1}, (1.2.3) is contractive, i.e.,

AD: D(p'(4,); 2t ) < D(P'(0,);0%(0, ), 0<t<T, (m>2)
(1.2.5)
In this context we quote from [168] the following

Theorem 1.2.1 Assume the system (1.2.1)} is endowed with a one-parameter
Jamily of entropy pairs, (n(p;¢), F(p;c)), ¢ € R™, satisfying the symmetry

property
nleic) =n(c;p), Flpc) = Flep). (1.2.6)

Let pt, p% be two entropy solutions of (1.2.1). Then the following a priori esti-
mate holds

fﬁ 0t (b, 2); £, 2))dee < / n(ph(x); pi(2))de. (12.7)
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Theorem 1.2.1 is based on the observation that the symmetry property
(1.2.8) is the key ingredient for Kruzkov’s penetrating ideas in [88], which ex-
tends his scalar arguments into the case of general systems. This extension
seems to be part of the *folklore’ familiar to some, [36],[150]); a sketch of the
proof can be found in [168].

Remark. Theorem 1.2.1 seems to circumnvent the negative statement of (1.2.5).
This is done by replacing the metric D(-;), with the weaker topology induced
by a family of convex entropies, n(';-). Many physically relevant systems are
endowed with at least one convex entropy function (— which In tuzn, is linked to
the hyperbolic character of these systems, [61],[52],[120]). Systems with “rich”
families of entropies like those required in Theorem 1.2.1 are rare, however,
consult [148]. The instructive (yet exceptional...} scalar case is dealt in §1,2.2.
If we relax the contractivity requirement, then we find a uniqueness theory for
one-dimensional systems which was recently developed by Bressan and his co-
workers, [11]-[14}; Bressan’s theory is based on the L'-stability (rather than
contractivity) of the entropy solution operator of one-dimensional systems.

1.2.2 Scalar conservation laws (m = 1,d > 1)

In the scalar case, the Jacobians Af(p) are just scalars that can be always
symmetrized, so that the compatibility relation (1.2.4) in fact defines the entropy
fluxes, F;(p), for all convex 7’s. Consequently, the family of admissible entropies
in the scalar case consists of all convex functions, and the envelope of this family
leads to Kruzkov’s entropy pairs {88]

nipse) = |p—cl, Fpie)=sgn(p—c)(A(p) —Ae)}, ce€R (128
Theorem 1.2.1 applies in this case and (1.2.7) now reads

o [l-contraction. If p', p* are two entropy solutions of the scalar conserva-
tion law (1.2.1), then

P, ) = £ (4 Mizaesy < P50 = po( 22y (1.2.9)

Thus, the entropy solution operator associated with scalar conservation laws
is L'-contractive (— or non-expansive to be exact), and hence, by the Crandall-
Tartar lemma (discussed below), it is also monotone

A = oh() = P(1,) 2 A1 (8. (1.2.10)

The notions of conservation, L'contraction and monotonicity play an impor-
tant role in the theory of nonlinear conservation laws, at least in the scalar case.
We discuss the necessary details of these notions, by proving the énverse impli-
cation: the monotonicity property (1.2.10) implies the all important Kruzkov’s
entropy pairs (1.2.8) satisfying (1.2.3).
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Monotonicity and KruZkov’s entropy pairs

An operator T is called monotone (or order preserving) if the following implication
holds for all p’s (in sorme unspecified measure subspace of L},,)

p2 > p1 ae. = T(p2) > T(p1) ae. (1.2.11)

We use the terminology that if py dominates (pointwise, a.e.) py, then T(ps}
dominates T(p1).

The following lemma due to Crandall & Tartar, [32], provides a useful charac-
terization for such monotone operators,

Lemma 1.2.1 (Crandall-Tartar [32]) Consider an operator T, which is con-
servative in the sense that [ T'(p) = [p, Vp’s. Then T is monotone iff it is an
L'-contraction,

[ =1ei< [102- gl (1.2.12)

Proof. The standard notations, p1 V p = max(py, p3) and py Apy = min(p, p2)
will be used. Since |p1 — pa| = p1 V pa — p1 A pa, we find by conservation that

jlpz —p2| = /91 sz"/ﬂl A p2 ij(Pl VPz)—/T(P1 Apz). (1.2.13)

Now, p1 V py dominates (pointwise a.e.) both p; and py; hence, if 7' is order
preserving, then T'(p1Vps) dominates both T'(py ) and T'(ps), that is, T(p1 Vps) >
T(pr) vV T(p2); similarly, =T'(p1 A pa) > ~T(p1) AT (ps). We conclude that 7" is
an L'-contraction, for

[ =tz [T vTen) - [7o0) 1 [ 162 = [12600) - 7)1

(1.2.14)
The inverse implication (attributed to Stampacchia, I believe) starts with the
identity 2wy = |w|+ w, where w,. denotes, as usual, the ’'positive part of’,

wy = w V0. Setting w = T(p1) — T(ps) the integrated version of this identity
reads

2 [@e) =T = [ 1060) - Tl + [ Toa) = 7060)

Given that T' is L'-contractive, then together with conservation it yields that
the two integrals on the right do not exceed

2 (1) - 1) Vo s [l —pul+ [~ (1.2.15)

Now, if p; dominates ps, l.e., p1 < ps a.e., then the sum of the two integrals
on the RHS vanishes, and consequently, the non-negative integrand on the LHS
vanishes as well, L.e., T(p1) — T'(p2) < 0.
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Remark. For lnear operators T, monotonicity coincides with positivity, T{p) >
0, Vp > 0. Positive operators play a classical role in various branches of anal-
ysis. They are encountered frequently, for example, in approximation theory,
e.g., [37, §9.4]. A well known example is provided by Bernstein polynomials,
Ba(p)(2) = g cn(B)eF(1—2)~*p(£). They produce a positive linear map(s},
p — Bo{p) of C{0, 1] into the space of n-degree polynomials. Linear monotone
operators, like Bernstein projections, are at most first-order accurate.

We turn to discuss the relation between monotone operators and the entropy
condition. Let {T}, ¢ > 0} be a one-parameter family of operators which form
a semi-group of constant-preserving, monotone operators. Thus we make

o Semi-group It is assumed that {7;} satisfies the basic semi-group ’closure’
(causality) relations,

Tyes = TyTs, To = the identity mapping, (1.2.16)

and that it has an infinitesimal generator, V- A{p) := iim(At)—l(Tt (p) —p).

Remark. The existence of such a generator is outlined by the Hille-Yosida
linear theory. Extensions within the context of nonlinear evolution equa-
tions are available: Kato’s approach in semi-Hilbert spaces and Crandall-
Liggett approach in Banach spaces, consult [179, §XIV.6&7]. A concise
informative account of this theory, which was specifically ’tailored’ within
the Ll-setup for quasilinear evolution equations can be found in [28].

With this in mind we may identify, Tipp =: p(t), as the solution of the
abstract Cauchy problem

pr+ Vs - Alp(t)) =0, (1.2.17)

subject to given initial conditions p(0) = po. We assume that the following
two basic properties hold.

e Constant-preserving 7; preserves constants, namely
Ti[p = Const.] = Const. (1.2.18)
Firally, we bring in the key assumption of monotonicity.

¢ Monotonicity Our basic assumption is the monotonicity of the solution op-
erators associated with (1.2.17),

GR() > P = 2 ) 2 ML), VEE O, (1.2.19)

The main result of this section, following the ingredients in [118] and in
particular, [142], states that monotone, constant-preserving solution operators
of the Cauchy problem (1.2.17), are uniquely identifted by the following entropy
condition.
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Theorem 1.2.2 (KruZkov’s Entropy Condition) Assume {p(t),t > 0} is
a family of solutions for the Cauchy problem (1.2.17) which is constant-preserving,
(1.2.18), and satisfies the monotonicity condition (1.2.19). Then the following
entropy inequality fholds: '

Gelp(t) —e| + Ve - {sgn(p — )(Alp) — A(c))} <0, Vc's. (1.2.20)

Thus, monotonicity (+constant preserving) recover Kruikov entropy pairs.

Proof. Starting with p(t) at arbitrary ¢ > 0, we compare p(t + At) := Tasp(?)
with ({(t4+At) := Ta{(t), where {(t) := (p({)V¢c) which is cut-off at an arbitrary
constant level, c. Since p(t} V ¢ dominates both p(t) and ¢, the monotonicity
of Ta¢ implies that at later times, (¢t + At) should dominate both, Ta;p(t)
(= p(t+At) by to our notations), and Taz(c) (= ¢ since Ta; is assumed constant-
preserving). Thus (¢t + At) > p(f + At) V ¢ and hence

pE+ A Ve—ptyVe < C(t+ At) - ¢(t)
At - At '

Let At | §. By definition, the LHS gives 8;(p(¢) V c); the RHS is governed by its
Cauchy problem, 0:{(t) = Vg - A({(t)) = Vs - A(p(t) V c). We conclude that
an arbitrary ¢ > 0

G(p(t) Ve)+ Vi - A(p(t) vVe) < 0. (1.2.21)

Similar arguments yield
—0i(p(t) Ae) + Ve - A(p(t) Ac) < 0. (1.2.22)
Together, the last two inequalities add up to the entropy inequality (1.2.20). M

Early constructions of approximate solutions for scalar conservation laws,
most notably — finite-difference approximations, utilized this monotonicity
property to construct convergent schemes, [30], {143]. Monotone approxima-
tions are limited, however, to first-order accuracy [72]. At this stage we note
that the limitation of first-order accuracy for monotone approximations, can be
avoided if L'-contractive solutions are replaced with (the weaker) requirement
of bounded variation solutions.

o TV bound. The solution operator associated with (1.2.1) is translation
invariant. Comparing the scalar entropy solution, p(%, -), with its translate,
p(t, -+ Ag), the L*-contraction statement in (1.2.9) yields the TV bound,
(177],

e, v < lpolsv, ot Moy = sup 1l 22) = ol
Ax#0 z

(1.2.23)
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Construction of scalar entropy sclutions by TV-bounded approximations were
used in the pioneering works of Oléinik [129], Vol'pert [L77}, Kruzkov {88} and
Crandall [28]. In the one-dimensional case, the TVD property (1.2.23) enables
to construct convergent difference schemes with high-order (> 1) resolution;
Harten initiated the construction of high-resolution TVID schemes in [70], fol-
lowing the earlier works [6], [98]. A whole generation of TVD schemes was then
developed during the beginning of the ’80s; some aspects of these developments
can be found in §1.3.2.

1.2.3 One dimensional systems (m > 1,d = 1)

We focus our attention on one-dimensional hyperbolic systems governed by
Oip+ 8:A(p) =0, (t,z) € R} x Ry, (1.2.24)

and subject to initial condition, p(0,2) = po(z). The hyperbolicity of the system
(1.2.24) is understood in the sense that its Jacobian, A’(p), has a complete real
eigensystem, (az(p), 7e(p)}, k = 1,...,m. For example, the existence of a convex
entropy function guarantees the symmetry of A'(p) (— w.r.t. ”{p)), and hence
the complete real ecigensystem. For most of our discussion we shall assume the
stronger strict hyperbolicity, i.e, distinct real eigenvalues, ay(p) # a;(p).

A fundamental building block for the construction of approximate solutions
in the one-dimensional case is the solution of Riemann’s problem.

Riemann’s problem

Here one seeks a weak solution of (1.2.24) subject to the piecewise constant
initial data 0
— Pe; <
plz,0) = { o 2> 0. (1.2.25)

The solution is composed of m simple waves, each of which is associated with
one (right-)eigenpair, (ax(p), re(p)), 1 <k < m. There are three types of such
waves: if the k-th field is genuinely nonlinear in the sense that ry - V,ap # 0,
these are cither k-shock or k-rarefaction waves; or, if the k-th field is linearly
degenerate in the sense that 7 - Va5 = 0, this is a k-th contact wave,

These three simple waves are centered, depending on § = ¢ (which is to
be expected from the dilation invariance of {1.2.24),(1.2.25)). The structure of
these three centered waves is as follows:

e A k-shock discontinuity of the form

— Pey €<S
P(f)—{ pry £ 8

here s denotes the shock speed which is determined by a Rankine-Hugoniot
relation so that ax(pe) > 5 > ar(pr).
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¢ A k-rarefaction wave, p{£}, which is directed along the corresponding k-
th eigenvector, p(€) = rz(p(€)). Here 7 is the normalized k-eigenvector,
T - Vag = 1 so that the gap between ag(pe) < ar(p,)-is filled with a fan
of the form

ar{pe), & < ax(pe)
ar{p(€)) = { ¢, ag(pe) <€ < axl(pr)
ak(pr), ar(pr) <€

e A k-contact discontinuity of the form

_ pe, E<s
P(E)—{ pry E> s

where s denotes the shock speed which is determined by a Rankine-
Hugoniot relation sc that ag{ps) = s = appr ).

We are concerned with admissible systems — systems which consist of either
genuinely ponlinear or linearly degenerate fields. We refer to [92] for the full
story which is summarized in the celebrated

Theorem 1.2.3 (Lax solution of Riemann’s problem) The strictly hyper-
bolic admissible system (1.2.24), subject to Riemann initial data (1.2.25) with
pe — pr sufficiently small, admits ¢ weak entropy solution, which consists of
shock- rarefaction- and contact-waeves.

For a detailed account on the solution of Riemann problem consult [16]. An
extension to a generalized Riemann problem subject to piecewise-linear initial
data can be found in [5], [99]. In this context we also mention the approzimate
Riemann solvers, which became useful computational alternatives to Lax’s con-
struction. Roe introduced in [139] a linearized Riemann solver, which resolves
Jjumps discontinnities solely in terms of shock waves. Roe’s solver has the com-
putational advantage of sharp resolution (at least when there is one dominant
wave per computational cell); it may lead, however, to unstable shocks. Osher
and Solomon in [131] used, instead, an approximate Riemann solver based solely
on rarefaction fans; one then achieves stability at the expense of deteriorated
resolution of shock discontinuities.

Godunov, Lax-Friedrichs and Glimm schemes

We let p27(t,z) be the entropy solution in the slab t* < ¢ < ¢ + At, sub-
ject to piecewise constant data p2(t = " z) = 3 p%x,(2). Here x de-
notes the usual indicator function, y.(z) <= Yjo—aas|<ac/a). Observe that
in each slab, p®% (¢, x) consists of successive noninteracting Riemann solutions,
at least for a sufficiently small $ime interval At, for which the CF1L, condmon,
At/Azmax|az(p)| < 1 is met. In order to rea.lize the solution in the next
time level, 2" ! = ¢" 4 A, it is extended with a jump discontinuity across the
line ¢"+!, by projecting it back into the finite-dimensional space of plecewise
constants. Different projections yield different schemes. We recall the basic
three.
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Godunov Scheme. Godunov scheme {60} sets
PRt e) =Y A (e),
14

where "+ stands for the cell-average,

nqklo I

Py Azn PAx(tn+1 - 0,:B)Xy($)d.‘12,

which could be explicitly evaluated in terms of the flux of Riemann solution
across the cell interfaces at @, 1,

=1 =n At i n4 i
A = = AL A 2, y) - A5, ) (1220)

Godunov scheme had a profound impact on the field of Computational Fluid
Dynamics. His scheme became the forerunner for a large class of upwind finite-
volume methods which are evolved in terms of (exact or approximate) Riemann
solvers. In my view, the most important aspect of what Richtmyer & Morton
describe as Godunov’s "ingenious method” ([141, p. 338]), lies in its global point
of view: one does not simply evolve discrete pointvalues {p} }, but instead, one
evolves a globally defined solution, p#7(t, ), which is realized in terms of its
discrete averages, {g0}.

Lax-Friedrichs Scheme. If the piecewise constant projection is carried out
over alternating staggered grids,ﬁ’:‘il% = 2 [ pAo [t -0, z)x, 4y (2)de,
then one effectively integrates ’over the Riemann fan’ which is centered at
(CH ,£"). This recovers the Lax-Friedrichs (LxF) scheme, [91], with an

explicit recursion formula for the evolution of its cell-averages which reads

it _ Py P Al _ afam
gy = Bl - S L) - AT | (1.2.27)

The Lax-Friedrichs scheme had a profound impact on the construction and
analysis of approximate methods for time-dependent problems, both linear prob-
lems [51] and nonlinear systems [91]. The Lax-Friedrichs scheme was and still is
the stable, all purpose benchmark for approximate solution of nonlinear systems.

Both Godunov and Lax-Friedrichs schemes realize the exact solution oper-
ator in terms of its finite-dimensional cell-averaging projection. This explains
the versatility of these schemes, and at the same time, it indicafes their lim-
ited resolution due to the fact that waves of different families that are averaged
together at each computational cell.

Glimm Scheme. Rather than averaging, Glimm’s scheme, [55], keeps its sharp
resolution by rendemly sampling the evolving Riemann waves,

pAa: (tn—}-l, a,:) — Z pA:z: (i”+1 -0, mu+% + THA:E)XV+%(:L‘).
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This defines the Glimm’s approximate solution, pAw(t,m), depending on
the mesh parameters Az = AAZ, and on the set of random variable {r"},
11

uniformly distributed in [-3,5]. In its deterministic version, Liu [114]

employs equidistributed rather than a random sequence of numbers {r"}.

Glimm solution, p®®{¢, ), was then used to construct a solution for one-
dimensional admissible systems of conservation laws. Glimm’s celebrated theo-
rem, [55], is still serving today as the cornerstone for existence theorems which
are concerned with general one-dimensional systems, e.g. [114],[20],[148].

Theorem 1.2.4 (Existence in the large) . There ezists a weak entropy so-
lution, p(t, ) € L[{0,T], BVNL® (R,)], of the strictly hyperbolic system (1.2.24),
subject to initial conditions with sufficiently small variation, lipa()lBVaLe®m,y <
€.

Glimm’s scheme has the advantage of retaining sharp resolution, since in each
computational cell, the local Riemann solution is realized by a randomly chosen
‘physical’ Riemann wave. (Jimm’s scheme was turned into a computational
tool known as the Random Choice Method {RCM) in [22], and it serves as the
building block inside the front tracking method of Glimm and his co-workers,
[57], [21].

1.2.4 Multidimensional systems (m > 1,d > 1)

Very little rigor is known on m conservation laws in d spatial dimensions once
(m — 1)(d — 1) becomes positive, i.e., general multidimensional systems. We
address few major achievements.

Short time existence. For H*-initial data po, with s > 4, an H*-solution
exists for a time interval [0, 7], with T = T'(||pq)|z+), consult e.g, [83],178,
£6.3].

Short time existence — plecewise analytic data. An existence resultcon-
jectured by Richtmyer was proved by Harabetian in terms of a Cauchy-
Kowalewski type existence result [68].

Short time stability — piecewise smooth shock data. Existence for piece-
wise smooth initial data where smoothness regions are separated by shock
discontinuities was studied in [118},[106].

Riemann invariants. The gradienis of Riemann inveriants enable us to *di-
agonalize’ one-dimensional systems. More is known about 2 x 2 gystems
in one space dimension thanks to the existence of Riemann invariants.
Consult [56], {157], [148]. Beyond m = 2 equations, only special systems
admits a full set of Riemann invariants (consult [148] and the references
therein).
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Riemann problem. Already in the d = 2-dimensional case, the collection of
simple waves and their composed interaction in the construction of Rie-
mann solution (-~ subject to piecewise constant initial data), is consider-
ably more complicated than in the one-dimensional setup. We refer to the
recent book [33] for a detailed discussion.

Compressible Buler equations. These system of m = 5 equations governing
the evolution of density, 3-vector of momentum and Energy in d = 3-space
variables was — and still is, the prime target for further developments in
our understanding of general hyperbolic conservation laws. We refer to
Majda, {118], for a definitive summary of this aspect.

1.3 'Total Variation Bounds

1.3.1 PFinite Difference Methods

We begin by covering the space and time variables with a discrete grid: it
consists of time-steps of size At and rectangular spatial cells of size Az =
(Azi,...,Azg). Let C, denotes the cell which is centered around the gridpoint
¢, = vAz = (nAzy,. .., vaAzg), and let {p}} denote the gridfunction asso-
ciated with this cell at time #* = nAt¢. The gridfunction {p} } may represent
approximate gridvalues, p(f®,z,), or approximate cell averages, p(t",z,) (as in
the Godunov and LxTF schemes), or a combination of higher moments, e.g., [23].

To construct a finite difference approximation of the conservation law (1.2.1},
one introduce a discrete numerical fluz, H(p™) = (H1(p™),..., Ha(p")), where
Hi(p™) = Hiy(p}.ps+ - s Pyyy) Is an approximation to the 4; (p") flux across the
interface separating the cell C, and its neighboring cell on the x;’s direction,
Cyte,. Next, exact derivatives in (1.2.1) are replaced by divided differences: the
time-derivative is replaced with forward time difference, and spatial derivatives
are replaced by spatial divided differences expressed in terms of Dyg ¢y 1=
(Puge; — Pv)/Az;. We arrive at the finite-difference scheme of the form

d
p;H-l :P?,‘: _AtZD+IﬂjHj(pg—p:"'lp3+g)' (131)
i=1

The essential feature of the difference schemes (1.3.1) is their conservation
form: perfect derivatives in (1.2.1) are replaced here by “perfect differences’. It
implies that the change in mass over any spatial domain @, ) 1,10 0y i, |-
2 {vle,eq) P |C.|, depends solely on the discrete flux across the boundaries of
that domain. This is a discrete analogue for the notion of a weak solution of
(1.2.1). In their seminal paper [96], Lax & Wendroff introduced the notion
of conservative schemes, and prove that their strong limit solutions are indeed
weak solutions of {1.2.1).

Theorem 1.3.1 (Lax & Wendroff [96]) Consider the conservative difference
scheme (1.3.1}, with consistent numerical fluz so that Hi(p,...,p) = A;(p). Let



CHAPTER 1. A GENERAL OVERVIEW 14

At ] 0 with fized grid-ratios A; = —A% = Constyj, and let p™' = {pP} denote the
corresponding solution (parameterized w.r.i. the vanishing grid-size). Assume
that p™* converges strongly, slimp®'(t" z,) = p(t,x), then p(x,t) is o weak
solution of the conservation law (1.2.1).

The Lax-Wendroff theorem plays a fundamental role in the development of
the so called *shock capturing’ methods. Instead of tracking jump discontinuities
(- by evolving the smooth pieces of the approximate solution on hoth sides of
such discontinuities), conservative schemes capture a discretized version of shock
discontinuities. Equipped with the Lax-Wendroff theorem, it remains to prove
strong convergence, which leads us to discuss the compactness of {p?}.

1.3.2 TVD schemes (m=d =1)

We deal with scalar gridfunctions, {¢7}, defined on the one-dimensional Carte-

sian grid =, := vA,1" = nAt with fixed mesh ratio X := £L. The total

variation of such gridfunction at time-level {* is given by 3, [Ap? 41 |, where
2

ApY 1 = pyq — py. Tt is said to be total-variation-diminishing (TVD) if

y+%

DAl <D 1Al (13.2)

1

Clearly, the TVD condition {1.3.2) is the discrete analogue of the scalar TV-
bound (1.2.23). Approximate solutions of difference schemes which respect the
TVD property (1.3.2), share the following desirable properties:

» Convergence — by Helly’s compactness argument, the piecewise-constant
approximate solution, p2%(t*,2) = ¥, ptx.(z), converges strongly to
a limit function, p({",z) as we refine the grid, Az | 0. This together
with equicontinuity in time and the Lax-Wendroff theorem, yvield a weak
solution, p(t, z), of the conservation law (1.2.1).

* Spurious oscillations - are excluded by the TVD condition (1.2.23).

s Accuracy — is not restricked to the first-order limitation of monotone
schemes. To be more precise, let us use p2*(t, z) to denote a global realiza-
tion (say — piecewise polynomial interpolant) of the approximate solution
pr ~ pBH(t? ). The truncation error of the difference scheme is the
amount by which the approximate solution, g2 (¢, #), fails to satisfy the
conservation laws (1.2.1). The difference scheme is a-order accurate if its
truncation error is, namely,

10:p%¢ 4 Vs - A(p2)]] = O((AL)®). (1.3.9)

(Typically, a strong norm || -|} is used which is appropriate to the problem;
in general, however, accuracy is indeed a norm-dependent quantity). Con-
sider for example, monotone difference schemes. Monotone schemes are



CHAPTER 1. A GENERAL OVERVIEW 15

characterized by the fact that p?t! is an increasing function of the pre-

ceding gridvalues which participate in its stencil (1.3.1), ph_,, -, fl4q
(— so that the monotonicity property (1.2.10) holds) . A classical re-
sult of Harten, Hyman & Lax [72] states that monotone schemes are at
most first-order accurate. TVD schemes, however, are not restricted to
this first-order accuracy limitation, at least in the one-dimensional case’.
We demonstrate this point in the context of second-order TVD difference

schemes.

We distinguish between two types of TVD schemes, depending on the size of
their stencils.

Three-point schemes

Three-point schemes {p = ¢ = 1 in (1.3.1)) are the simplest ones — their stencil
occupies the three neighboring gridvalues, p_,,p}, piy1. Three-point conser-

vative schemes take the form

o A L .
ot = =S { AL )= A ) 5 { @y 80, - QAL (139)

2

Thus, three-point schemes are identified solely by their numerical viscosity co-
efficient, Q7 5= Q(p%, piy1), which characterize the TVD condition

AA"

i 7 n — vt
)\{G‘y.}.%i ,.<_ Qy.l_% S 1! av+% R Apn+j . (135)
YTz

The schemes of Roe [139], Godunov [60], and Engquist-Osher (EO) [47], are
canonical examples of upwind schemes, associated with (increasing amounts of)
numerical viscosity coeflicients, which are given by,

Q% = Malyylh (1.3.6)
Alplh, ) — 24 A(p?
S‘r—io_%unov — A max [ (Py+l) < n(g) + (pu ], (137)
€€y Puyy
EC - ) 1 /’P:+1 EAI(C)ldC (I 3 8)
V"I--% - APZ+% o . bn

The viscosity coefficients of the three upwind schemes are the same, @7 1=
2
AMat 13 |, except for their different treatment of sonic points (where a(p}) -

a(pPsq) < 0). The Lax-Friedrichs (LxF) scheme (1.2.27) is the canonical central
scheme. It has a larger numetrical viscosity coefficient,

QL = 1. (1.3.9)

vl =

1Capsult [65], regarding the first-order accuracy limitation for multidimensional d > 1
TVD schemes.
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All the three-point TVD schemes are limited to first-order accuracy. Indeed,
condition (1.3.5) is necessary for the TVD property of three-point schemes, [162],
and hence it excludes numerical viscosity associated with the second-order Lax-
Wendroff scheme, [96], l{'_}V_Vl = A3(a? +3 )2, Therefore, scalar TVD schemes
with more than first-order accuracy require at least five-point stencils.

Five-point schemes

Following the influential works of Boris & Book [6], van Leer [98], Harten [70],
Osher [130], Roe [139] and others, many authors have constructed second or-
der TVD schemes, using five-point (- or wider) stencils. For a more complete
account of these works we refer to the recent books by LeVeque, {102], and
Godlewski & Raviart, [58]. A large number of these schernes Wwere constructed
as second-order upgraded versions of the basic three-point upwind schemes. The
FCT scheme of Boris & Book, [6], van Leer’s MUSCL scheme [98], and the UL-
TIMATE scheme of Harten, [70] are prototype for this trend. In particular, in
[70], Harten provided a useful sufficient criterion for the scalar TVD property,
which led to the development of many non-oscillatory high-resolution schemes
in the mid-80’s.

Higher order central schemes can be constructed by upgrading the staggered
Lx¥ scheme (1.2.27). This will be the subject of our next lecture II. Here we
quote a five-point TVD scheme of Nessyahu-Tadmor (NT) [126] - a second-order
predictor-corrector upgrade of the staggered LxF scherme,

ptt = 53—5(1‘1(5"3))', - (1.3.10)
Ho_ At
fasy = T3 7
oy ) — (phaes) +1 +3
—L)—;mﬁ:}l {A pori) — Aoy )}. (1.3.11)

Here, {w}} denotes the discrete numerical derivative of an arbitrary grid-
function {w,}. The choice w}, = 0 recovers the original first-order LxF scheme
(1.2.27). Second-order accuracy requires w;, ~ Awdyw(z,). To guarantee the
non-oscillatory properties is a key issue in f}he construction of higher (- than
first-order..) resolution schemes; this requires more than just the naive divided
differences as discrete numeucal derivatives. A prototype example is the so
called min-mod limiter,

w = %(syﬁ% + sy+%) -min{|Ame_| |Awy+1 (}, Sppy 1= sgn(Awu_l_%).
(1.3.12)
(We shall say more on (nonlinear) limiters like the min-mod below.) With this
choice of a limiter, the central NT scheme (1.3.10)-(1.3.11) satisfies the TVD
property, and at the same $ime, it retains formal second order accuracy (at least
away from extreme gridvalues, p,, where pf, = Sy_1t 8,41 = 0).

We conclude we few additional remarks.
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Limiters A variety of discrete TVD limiters like (1.3.12) was explored during
the '80s, e.g, [161] and the references therein. For example, a generaliza-
tion of (1.3.12) is provided by the family of min-mod limiters depending
on tuning parameters, 0 < f,.1 <1,

1
w,(8) = §(Sym§+3v+%)x

. 1
min{é, _ %—Ivam% IJ Eiwv—*-l — wy—i], 9v+%|Awu+%(}'3'13)

An essential feature of these limiters is co-monotonicity: they are "tailored’
to produce piecewise-linear reconstruction of the form 3_[w, + zzw) (s —
z,}]xv{z), which is co-monotone with (and hence, share the TVD prop-
erty of —) the underlying piecewise-constant approximation ) w,x,(2).
Another feature is the limiting property at extrema gridvalues (where
w!, = 0), which is necessary in order to satisfy the TVD property (1.3.2).
In this context, fimiters can viewed as extrema detectors: the detection is
global, yet they are activated locally (at extrema gridvalues). The study of
the TVD property along these lines can be found in {164]. In particular,
limiters are necessarily nonlinear in the sense of their stencils’ dependence
on the discrete gridfunction.

Systems — one-dimensional Godunov-type schemes The question of con-
vergence for approximate solution of hyperbolic systems is tied to the
question of existence of an entropy solution — in both cases there are no
general theories with m > 1 equations®. Nevertheless, the ingredients of
scalar high-resolution schemes were successfully integrated in the approx-
imate solution of system of conservation laws.

Many of these high-resclution methods for systems, employ the Godunov
approach, where one evolves a globally defined approximate solution, paT (t, @),
which is governed by iterating the evolution-projection cycle,

T{tutn—l}p(',tnml), tﬂ“l < t < tn - ﬂAt,
pRE( ) = (1.3.14)
PA% (1" —0), T ",
Here, T} denotes the evolution operator (see (1.2.16), and PA% is an arbi-

trary, possibly nonlinear conservative projection, which which is realized
as a piecewise polynomial,

PA% (") = D pi(@s (@), () =7 (1.3.15)

Typically, this plecewise polynomial approximate solution is reconstructed
from the previcusly computed cell averages, {57}, and in this context we

2There is a large literature concerning two equations — the 2 X 2 p-system and related
equations are surveyed in [157].
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may, again, distinguish between two main classes of methods: apwind and
central methods.

Upwind schemes evaluate cell averages at the center of the piecewise poly-
nomial elements; integration of (1.2.24) over C, x [t",#"*!] yields

1 tn+1 i"‘+1
ﬁ;ﬂul =Py = Az /thn f(p(T’ Tutds Nr = /T:t“ f(p(T’ Lo ))dr

This in turn requires the evaluation of fluxes along the discontinuous cell
interfaces, (7 x @, L }. Consequently, upwind schemes must take into ac-
count the characteristic speeds along such interfaces, Special attention is
required at those interfaces in which there is a combination of forward-
and backward-going waves, where it is necessary to decompose the “Rie-
mann fan” and determine the separate contribution of each component
by tracing “the direction of the wind”. The original first-order accurate
Godunov scheme (1.2.26) is the forerunner for all other upwind Godunov-
type schemes. A variety of second- and higher-order sequels to Godunov
upwind scheme were constructed, analyzed and implemented with great
success during the seventies and eighties, starting with van-Leer’s MUSCL
scheme [98], followed by [139, 70, 130, 26]. These methods were subse-
quently adapted for a variety of nonlinear related systems, ranging from
incompressible Fuler equations, [4], [46], to reacting flows, semiconductors
modeling, . ... We refer to [59, 102] and the references therein a for a more
complete accounts on these developments.

In contrast to upwind schemes, central schemes evaluate staggered cell
averages at the breakpoints between the piecewise polynomial elements,

tn-i-'.l

1 et
Pty =Py — 5o [ / _ Fmp())dr - ] (el m)}dr] :

7=t

Thus, averages are integrated over the entire Riemann fan, so that the
corresponding fluxes are now evaluated at the smooth centers of the cells,
(r,2,). Consequently, costly Riemann-solvers required in the upwind
framework, can be now replaced by straightforward quadrature rules. The
first-order Lax-Friedrichs (LxF) scheme (1.2.27) is the canonical exam-
ple of such central difference schemes. The LxF scheme (like Godunov’s
scheme) is based on a piecewise constant approximate solution, p,(z) =
Po. Its Riemann-solver-free recipe, however, is considerably simpler. Un-
fortunately, the LxF scheme introduces excessive numerical viscosity (al-
ready in the scalar case outlined in §1.3.2 we have QLoF = 1 > @@odunovy
resulting in relatively poor resolution. The central scheme (1.3.10)-(1.3.11)
is a second-order sequel to LxF scheme, with greatly improved resolu-
tion. An attractive feature of the central scheme (1.3.10)-(1.3.11) is that
it avoids Riemann solvers: instead of characteristic variables, one may use
a componentwise extension of the non-oscillatory limiters (1.3.13).
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Multidimensional systems There are basically two approaches.

One approach is to reduce the problem into a series of one-dimensional
problems. Alternating Directicn (ADI) methods and the closely related
dimensional splitting methods, e.g., [141, §8.8-9], are effective, widely
used tools to solve multidimensional problems by piecing them from one-
dimensional problems — one dimension at a time. Still, in the context of
nonlinear conservation laws, dimensional splitting encounters several limi-
tations, [31]. A particular instructive example for the effect of dimensional
spiitting errors can be found in the approximate solution of the weakly
hyperbolic system studied in [49],[81, §4.3].

The other approach is 'genuinely multidimensional’. There is a vast litez-
ature in this context. The beginning is with the pioneering multidimen-
sional second-order Lax-Wendroff scheme, [97]. To retain high-resolution
of multidimensional schemes without spurious oscillations, requires one
or more of several ingredients: a careful treatment of waves propaga-
tions (*unwinding’), or alternatively, a correctly tuned numerical dissipa-
tion which is free of Riemann-solvers (’central differencing’), or the use of
adaptive grids (which are not-necessarily rectangular), ... . Waves propa-
gation in the context of multidimensional upwind algorithms were studied
in [25, 103, 140, 158] . ... Another ’genuinely multidimensional’ approach
can be found in the positive schemes of [95]. The pointwise formulation of
ENO schemes due to Shu & Osher, [153, 154], is another approach which
avoids dimensional splitting: here, the reconstruction of cell-averages is
bypassed by the reconstruction pointvalues of the luxes in each dimension;
the semi-discrete fluxed are then integrated in time using non-oscillatory
ODEs solvers (which are briefly mentioned in §1.3.4 below). Multidimen-
sional non-oscillatory centralscherne was presented in [81], generalizing the
one-dimensional (1.3.10)-(1.3.11); consult {105],[89] for applications to the
multidimensional incompressible Euler equations. Finite volume methods,
[85, 86, 24, 29]... , and finite-element methods (the streamline-diffusion
and discontinuous Galerkin schemes, [76, 79, 80, 148, 122]...)) have the
advantage of a ’built-in’ recipe for discretization over general triangular
grids (we shall say more on these methods in §1.5.1 below). Another 'gen-
uinely multidimensional’ approach is based on a relaxation approximation
was introduced in [82]. It employs a central scheme of the type (1.3.10)-
(1.8.11) to discretize the relaxation models models, [178], [19}, [125],....

1.3.3 TVD filters

Every discretization method is associated with an appropiiate finite-dimmensional
projection. It is well known that linear projections which are monotone (or
equivalently, positive}, are at most first-order accurate, [60]. The lack of mono-
tonicity for higher order projections is reflected by spurious oscillations in the
vicinity of jump discontinuities. These are evident with the second-order {and
higher) centered differences, whose dispersive nature is responsible to the forma-
tion of binary ascillations {64],[104]. With highly-accurate spectral projections,
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for example, these (O(1) oscillations reflect the familiar Gibbs phenomena.

TVD schemes avoid spurious oscillations — to this end they use the neces-
sarily nonlinear projections (expressed in terms of nonlinear limiters like those -
in (1.3.13)). TVD filters, instead, suppress spurious oscillations. At each time-
level, one post-process the computed (possibly oscillatory) solution {p(t")}. In
this context we highlight the following.

¢ Linear filters. Consider linear convection problems with discontinuous
initial data. Approximate solutions of such problems suffer from loss of accuracy
due to propagation of singularities and their interference over domain of depen-
dence of the numerical scheme. Instead, one can show, by duality argument,
that the numerical scherne retains its original order of accuracy when the trunca-
tion in (1.3.3) is measured w.z.t. sufficiently large negative norm, [121). Linear
filters then enable to accurately recover the exact solution in any smoothness
region of the exact solution, bounded away from its singular support. These
filters amount to finite-order mollifiers [121], or spectrally accarate mollifiers,
{119], [67], which accurately recover pointvalues from high-order moments.

* Artificial compression. Artificial compression was introduced by Harten
[69] as a method to sharpen the poor resolution of contact discontinuities. (Typ-
ically, the resolution of contacts by a-order schernes diffuses over a fan of width
(At)(@) (41} The idea is to enhance the focusing of characteristics by adding
an anti-diffusion modification to the numerical fluxes: if we let H, +1 denote
the numerical flux of a three-point TVD scheme (1.3.4), then one replaces it
with a modified flux, H,, = Hy1+ a, +1, Which is expressed in terms of
the min-mod limiter (1.3.12)

. 1
Hypy = 5Apl +phys = sgn(Bpy )l 4a = 21} (1.3.18)

Artificial compression can be used as a second-order TV filter as well, Let
@, 11 be the numerical viscosity of a three-point TVD scheme (1.3.4). Then, by
adding an artificial compression modification (1.3.16) which is based on the 6-
limiters (1.3.13), g}, = p,, () with 6,y := Qy+%—/\2a3+%, one obtains a second-
order TVD scheme, {70], [133]. Thus, in this case the artificial compression
(1.3.16) can be viewed as a second-order anti-diffusive TVD filter of first-order

TVD schemes
P;1-|-1 — p;H‘l - {-E{y.;.%(.ﬁn) _ﬁy__é_(pn)}_ (1.3.17)

e TVD filters. A particularly useful and effective, general-purpose TVD
filter was introduced by Engquist et. al. in [48]; it proceeds in three steps.
{i} (Isolate extrema). First, isolate extrema cells where Aph - Apy L < 0.

5
{ii} (Measure local oscillation). Second, measure local oscillation, osc,, by
setiing

. 1 my min
05Cy = mln{ml/: §MV}J { M, } = { max }(APS_%aAPﬁ-I-%)
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{iii} (Filtering). Finally, oscillatory minima (respectively — oscillatory maxima)
are increased (and respectively, increased) by updating pj; — p’,}-{—sgn(ApL" 41 Joscy,
and the corresponding neighboring gridvalues is modified by subt;].ﬂacting;2 the
same amount o retain conservation. This post-processing can be repeated, if
necessary, and one may use a local maximum principle, min; p < pj; < max;pf
as a stopping criterion. In this case, the above filter becomes TVD once the
binary oscillations are removed, [155].

1.3.4 TVB approximations (m > 1,d = 1)
One sided stability

As an example for Total variation Bounded (TVB) approximations, we begin
with the example of approximate solutions satisfying the one-sided LipT stabil-
ity condition.

Let {p°(t,z)} be a family of approximate solutions, tagged by their small-
scale parameterization, . To upper-bound the convergence rate of such approx-
irations, we shall need the usual two ingredients of stability and consistency.

o Lipt-stability. The family {p°} is Lip*-stable if
19°(t, N|pip+ = sup Gzp° (¢, ) < Const. (1.3.18)
kel

This notion of Lip™-stability is motivated by Oléinik’s One-Sided Lipschitz Con-
dition (OSLC), pz(t, ) € Const, which uniquely identifies the entropy solution
of convez conservation laws, (1.2.24), with scalar A” > 0 (we refer to [100]
for & recent contribution concerning the one-sided stability of cne-dimensional
systems). Since the Lip*-(semi)-norm dominates the total-variation,

“pe(t) ')HBV < C’onst.”ps(t, ')“Lip"‘ + ”PS()ULH Const = Zisuppxps(tJ )l:

{p°} are TVB and by compactness, convergence follows. Equipped with Lip*-
stability, we are able to guantify this convergence statement. To this end, we
measure the local truncation error in terms of

o Lip'-consistency. The family {p°} is Lip’-consistent of order ¢ if

Hatps -+ axkl(pe)”_[,,;pf(t)w) ~ £, (1319)

It follows that the stability4consistency in the above sense, imply the conver-
gence of {p*} to the entropy solution, p, and that the following error estimates
hold [166], [127],

05, ) = pt, Mlwsoogey ~ € 7, —1 <8< 1/p. (1.3.20)

The case (s,p) = (—1,1) corresponds to a sharp Lip/-error estimate of order
¢ — the Lip'-size of the truncation in (1.3.19); the case (s,p) = (0,1) yields
an Ll-error estimate of order one-half, in agreement with Kuznetsov’s general
convergence theory, {90},
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Multidimensional extensions to convex Hamilton-Jacobi equations are treated
in [107]. We note in passing that the requirement of Lipt stability restricts our
discussion to convex problems; at the same time, it yields more than just con-
vergence. Indeed, the above error estimate, as well as additional local error
estimates will discussed in lecture IV.

Higher resolution schemes (with three letters acronym)

We have already mentioned the essential role played by nonlinear limiters in
TVD schemes. The mechanism in these nonlinear limiters is switched on in ex-
trema cells, so that the zero discrete slope g’ = 0 avoids new spurious extrema.
"This, in turn, leads to deteriorated first-order local accuracy at non-sonic ex-
trema, and gIoba,l accuracy Is therefore limited to second-order®. :
To obtain an improved accuracy, one seeks a more accurate realization of the
approximate solution, in terms of higher (than first-order) piecewise polynomials

“n, :U) - va(ﬂ:)XU(ﬁ); Pv EP(‘?) J/J (1.3.21)

Here, the exact solution is represented in a cell €, in terms of an r-order poly-
nomial p,, which is reconstructed from the its neighboring cell averages, {Bv, }
If we let p2(t > t*,.} denote the entropy solution subject to the reconstructed
data at § = ", PA"“’ p(t", ), then the corresponding Godunov-type scheme gov-
erns the evolution of cell averages

il L / PP 0, @)y () de (1.3.22)
Az J,

The properties of Godunov-type scheme are determined by the polynomial
reconstruction should meet three contradicting requirements:

{i} Conservation: p,(z) should be cell conservative in the sense that fo, pu(e) =
Jﬁc pv(2). This tells us that PA% is a (possibly nonlinear) projection, which in
turn makes (1.3.22) a conservative scheme in the sense of Lax-Wendroff, (1.3.1).

{ii} Accuracy: p(J) ~ (Azdy) p(i", z,).
At this stage, we have to relax the TVD requirement. This brings us to the
third requirement of

{iii} TVB bound: we seek a bound on the total variation on the computed
solution. Of course, a bounded variation, [|p2%(#", )|lpy < Const. will suffice
for convergence by L*-compactness arguments (Helly’s theorem).

The (re-)construction of non-oscillatory polynomialsled to new high-resolution
schemes, In this context we mention the following methods (which were popular-
ized by their trade-mark of three-letters acronym ...): the Piecewise-Parabolic

3The implicit assumption is that we seek an approximation to piecewise-smooth solutions
with finitely many oscillations, [168]. The convergence theories apply to general BV solutions.
Yet, general BV solutions cannot be vesolved in actuzel computations in terms of 'classical’
macroscopic discretizations — finite-difference, finite-element, spectral methods, etc. Such
methods can faithfully resolve piecewise smooth solutions.
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Method (PPM) [26], the Uniformly Non-Oscillatory (UNO) scheme [74], and
the Essentially Non-Oscillatory schemes (ENO) of Harten et. al. [71]. The
particular topic of ENO schemes is covered in C.-W. Shu’s lectures elsewhere in
this volume.

Thete is large numerical evidence that these highly-accurate methods are
TVB (and hence convergent), at least for a large class of piecewise-smooth solu-
tions. We should note, however, that the convergence question of these schemes
is open. (It is my opinion that new characterizations of the (piecewise) regularity
of solutions to conservation laws, e.g., [38],[169] together with additional tools
to analyze their compactness, sre necessary in order to address the questions of
convergence and stability of these highly-accurate schemes).

There are alternative approach to to construct high-resolution approxima-

tions which circumnvent the TVD limitations. We conclude by mentioning the
following two.
One approach is to evolve more than one-piece of information per cell. This
is fundamentally different from standard Godunov-type schemes where only
the cell average is evolved (and higher order projections are reconstructed from
these averages — one per cell}. In this context we mention the quasi-monotone
TVB schemes introduced in [23]. Here, one use a TVD evolution of cell aver-
ages together with additional higher moments. Another instructive example for
this approach is found in the third-order TVB scheme, [144}: in fact, Sanders
constructed a third-order non-expansive scheme (circumventing the first-order
limitation of [72]), by using a 2 x 2 system which governs the first two moments
of the scalar solution. More recently, Bouchut et. al. {8}, constructed a second-
order MUSCL scherne which respects a discrete version of the entropy inequality
(1.2.3) w.r.t all Krugkov’s scalar entropy pairs in (1.2.8); this circumvents the
second-order limitation of Osher & Tadmor [133, Theorem 7.3], by evolving both
— the cell average and the discrete slope in each computational cell.

Another approach to enforce a TVB bound on higher{(> 2)-resolution schemes,
makes use of gridsize-dependent limiters, pU) = pl) {5 Ax}, such that the fol-
lowing holds, e.g., [151],

IEPA“’(t”“, Nlsv < HpAm(an, Jilev + Const - Az.

Such Az-dependent limiters fail to satisfy, however, the basic dilation invariance
of (1.2.24)-(1.2.25), (f,z) — {ct, cx).

Time discretizations

One may consider separately the discretization of time and spatial variables.
Let Py denote a (possibly nonlinear) finite-dimensional spatial discretization
of (1.2.1); this yields an N-dimensional approximate solution, px({t), which is
governed by the system of N nonlinear ODEs

L pw(t) = Pr(en (1), (1:3.23)
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System (1.3.23) is a semi-discrete approximation of {1.2.1). For example, if we
let Py = P2% N ~ (Az)~¢, to be one of the piecewise-polynomial reconstruc-
tiong associated with Godunov-type methods in (1.3.21), then one ends up with
a semi-discrete finite-difference method, the so called method of lines. In fact,
our discussion on streamline-diffusion and spectral approximations in §1.4.2 and
§1.4.3 below will be primarily concerned with such semi-diserete approximations.

An explicit time discretization of (1.3.23) proceeds by either a multi-level or
a Runge-Kutta method. A CFL condition should be met, unless one accounts
for wave interactions, consult [101]. For the construction of non-oscillatory
schemes, one secks time discretizations which retain the non-oscillatory prop-
erties of the spatial diseretization, Py. In this context we mention the TVB
time-discretizations of Shu & Osher, [152],(153, 154]. Here, one obtains high-
order multi-level and Runge-Kutta time discretizations as convez combinations
of the standard forward time differencing, which amounts to the first-order ac-
curate forward Euler method. Consequently, the time discretizations [153, 154]
retain the nonoscillatory properties of the low-order forward Euler time differ-
encing — in particular, TVD/TVB bounds, and at the same time, they enable
to match the time accuracy with the high-order spatial accuracy,

Cell entropy inequality

Approximate solutions with bounded variation (obtained by TVD/TVB schemes)
converge to a weak solution; the question of uniqueness is addressed by an en-
tropy condition. In the context of finite-difference scheme, one secks a cell

entropy inequality — a conservative discrete analogue of the entropy inequality
{1.2.3),

d

1(e5 ) <n(eh) — At D" Dag; Gi(p2 i plyy). (1.3.24)
j=1

By arguments & la Lax & Wendroff (Theorem 1.3.1), any approximate solution
which satisfies (1.3.24) with a consistent numerical entropy flux, Gi(p, ..., p) =
F;(p), its strong limit satisfies (1.2.3), which in turn yields uniqueness, at least
in the scalar case. Crandall & Majda, [30], following Harten, Hyman & Lax in
[72], were the first to implement this approach in the context of monotone dif-
ference schemes (in fact, the abstract setup of Theorem 1.2.2 directly applies in
this case). Osher [130] introduced the so-called numerical E-fluxes to guarantee
the cell entropy inequality. In {163] we prove the entropy inequality for general
fully-discrete E-schemes: the proof is based on the key observation that the nu-
merical viscosity ( -—— quantified in terms of the numerical viscosity coefficient
@ in {1.3.4)), associated with any E-flux, is a convex combination of the Go-
dunov and Lax-Friedrichs viscosities, given in (1.3.7) and (1.3.9), respectively.
Applications to the question of multidimensional convergence can be found in
{85],[86],[24],[128].... E-fuxes are restricted to first-order accuracy, since they
are consistent with ell Kruzkov’s entropy pairs. A systematic study of the cell
entropy inequality for second-order resolution scheme can be found in [133] (for
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upwind schemes) and in [126] (for central schemes). The above discussion is
restricted to scalar problems. Of course, general Godunov and Lx¥ schemes
(m > 1,d = 1), satisfy a cell entropy inequality because the Riemann solutions
do. (For the LxF scheme, we refer to Lax, [93], who proved the cell entropy
inequity independently of the Riemann solution.

1.4 Entropy Production Bounds

1.4.1 Compensated compactness (m < 2,d = 1)
We deal with a family of approximate solutions, {p°}, such that

(i) It is uniformly bounded, p* € L°°, with a weak™ limit, p* — p;

(i1) The entropy production, for all convex entropies 7, lies in a compact subset
of Wiz, (22(t, 7)),

Vn'' > 0: B p®) + Ba ' (p°) — Wi (L2(t, 2)). (1.4.1)

The conclusion is that A{p®) — A(p), and hence p is a weak solution; in fact,
there is a strong convergence, p° — p, on any nonaffine interval of A(:). For
a complete account on the theory of compensated compactness we refer to the
innovative works of Tartar [171] and Murat {124]. In the present context, com-
pensated compactness argument is based on a clever application of the div-cuzl
lemma. First scalar applications are due to Murat-Tartar, [123],[171], followed
by extensions to certain m = 2 systems by DiPerna [40] and Chen [17].

The current framework has the advantage of dealing with L?-iype esti-
mates rather than the more intricate BV framework. How does one verify
the W, }(L?)-condition (1.4.1)7 we illustrate this point with canonical viscosity
approximation {1.2.2). Multiplication by 7’ shows that its entropy production
amounts to £(n'Qp5)s — en”'Q(p5)?. By entropy convexity, en”/@ > 0%, and
space-time integration yields

o An entropy production bound

v

Though this bound is too weak for strong compactness, it is the key estimate
behind the W,;}{L?)-compactness condition (1.4.1). We continue with the spe-

cific examples of streamline-diffusion in §1.4.2 and spectral viscosity methods in
§1.4.3.

lz2 (1,0) < Const. (1.4.2)

x Toc

4(Observe that the viscosity matrix is therefore required to be positive w.r.t. the Hessian
"

7',
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1.4.2 The streamline diffusion finite-element method

The Streamline Diffusion (SD) finite element scheme, due to Hughes, Johnson,
Szepessy and their co-workers [76}, [79], [80], was one of the first methods whose
convergence was analyzed by compensated compactness arguments. (Of course,
finite-element methods fit into L?-type Hilbert-space arguments). In the SD
method, formulated here in several space dimensions, one secks a piecewise
polynomial, {p®%}, which is uniquely determined by requiring for all piecewise
polynomial test functions 47,

(07 + V- A(6P%), 92 + | Al (A7 + A(AT A" =0, (14.3)

Here, Az denotes the spatial grid size (for simplicity we ignore time discretiza-
tion). The expression inside the framed box on the left represents a diffusion
term along the streamlines, # = A'(pA%). Setting the test function, $2% = pA®
(1.4.3) yields the desired entropy production bound

VAZ||8:0%F + Vo - APz

foc

(1,5) < Const. (1.4.4)

Thus, the spatial derivative in (1.4.2) is replaced here by a streamline-directional
gradient. This together with an L°-bound imply W, {L*)-compact entropy
production, (1.4.1), and convergence follows [79],(80],/160]. We note in passing
that the extension of the SD method for systems of equations is carried out
by projection into entropy variables, [120], which in turn provide the correct
imterpretation of (1.4.4) as an entropy production bound.

The lectures of C. Johnson in this volume will present a comprehensive discus-
sion of the streamiine diffusion method and its related exiensions.

1.4.3 The spectral viscosity method

Since spectral projections are inherently oscillatory, they do not lend themselves
to & priori TVB bound. Spectral methods provide another example for a family
of approximate solutions whose convergence could be better dealt, therefore,
by compensated compactness arguments. Spuricus Gibbs oscillations viclate
the strict TVD condition in this case. Instead, an entropy production bound,
analogous to (1.4.2) is sought. Indeed, such bound could be secured by spectrally
accurate hyper-viscosity which is expressed in terms of the computed Fourier
coefficients. ‘This leads us to a discussion on the Spectral Viscosity (SV) method.

Let Py denote an appropriate spatial projection into the space of N-degree
polynomials,

Pyp(t,z) = Y pu(t)gn(z);

[kj<N

here {¢3} stands for a given family of orthogonal polynomials, cither trigono-
metric or algebraic ones, e.g., {e**}, {L1(z)}, {Tk(2)}, etc. The corresponding
N-degree approximate solution, pn(t, ), is governed by the spectral viscosity
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(SV) approximation
(_1)3-}-1 5 $
atpN +33PNA(,ON) = _8£(Q*8xpN)._ (1‘4.5)

Nﬁs——}

The left hand side of (1.4.5) is the standard spectral approximation of the con-
servation law (1.2.1). The expression on the right

-1 s+1 -1 s41 . .
O a@r o) =S 3 Qa0 (1496)
i

k| >N

represents the so called spectral viscosity introduced in [165]. It contains a min-
imal amount of high-modes regularization which retains the underlying spectral
accuracy of the overall approximation. The case s = 1 corresponds to a trun-
cated second-order viscosity

1B(Qelury) = 5 3 QD)

|k|>NE

It involves a viscous-free zone for the first N? modes, 0 < # < % High modes
diffusion is tuned by the viscosity coefficients Qk.

Larger s’s corresponds to truncated hyper-diffusion of order 2s. This allows
for even a larger viscosity-free zone of size N ! with 0 < 6 < 2,@2{“1_ (with possibly
s = sy < VN ), consult [167]. The underlying hyper-viscosity approximation
(for say s = 2) reads

B.p° + O A(p5) + 2035 = 0. (1.4.7)

We note that already the solution operator associated with (1.4.7) is not mono-
tone, hence L-contraction and the TVD condition fail in this case.
Instead, an L?-type entropy production estimate analogous to {1.4.2)

1
VN
together with an L®-bound, carry out the convergence analysis by compensated
compactness arguments, [165], [117]. Extensions to certain m = 2 systems can

be found in [145]. We shall return to a detailed discussion on the SV method
in our lecture IIL

Opn
=5, ez, (em) < Const.

2
loc

1.5 Measure-valued solutions(m =1,d > 1)

We turn our attention to the multidimensional scalar case, dealing with a fami-
lies of vniformly bounded approximate solutions, {p® }, with weak* limit, p* — p.
DiPerna’s result [42] states that if the entropy production of such a famnily tends
weakly to a negative measure, m < 0,

vy > 0: An(p*)+ Vo F(pf) — m <0, (1.5.1)
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then the measure-valued solution p coincides with the entropy solution, and con-
vergence follows. This framework was used to prove the convergence of multi-
dimensional finite-difference schemes [27], streamline diffusion. method [79],18¢],
spectral-viscosity approximations [18] and finite-volume schemes [24], [86],85].
We focus our attention on the latter.

1.5.1 Finite volume schemes (d > 1)

We are concerned with finite-volume schemes based on possibly unstructured
triangulation grid {7, } (for simplicity we restrict attention to the d = 2 case).
The spatial domain is covered by a triangulation, {7}}, and we compute ap-
proximate averages over these triangles, p? ~ IT_luf pr p(t"®, z)dz, governed by
the finite volume (FV) scheme

- - At T k3 71 |
ot = g 7 EAy#(py,py”). (1.5.2)
o

Here Aﬂyﬂ stand for approximate fluxes across the interfaces of 7, and its neigh-
boring triangles (identified by a secondary index ).

Typically, the approximate fluxes, ﬁv,‘ are derived on the basis of approxi-
mate Riemann sclvers across these interfaces, which yield a monotone scheme.
‘That is, the right hand side of {1.5.2) is a monotone fanction of its arguments
(77,05, ), and hence the corresponding FV scheme is L'-contractive. However,
at this stage one cannot proceed with the previous compactness arguments which
apply to TVD schemes over fixed Cartesian grid: since the grid is unstructured,
the discrete solution operator is not translation invariant and Ll-contraction
need not imply a TV bound. Instead, an entropy dissipation estimate yields

DALY |pr— ol [(Aw)® < Const, 0< <1, (1.5.3)
n 1

Observe that (1.5.3) is weaker than a TV bound (corresponding to 8 = 0), yet
it suffices for convergence to a measure-valued solution, consult [24], [85].
These questions wili be addressed in B. Cockburn’s lectures, later in this volume.

1.6 Kinetic Approximations

By a kinetic formulation of (1.2.1) we mean a representation of the solution
p(t, ) as the average of a *microscopic’ density function, f(t, ,v). The formu-
lation is a kinetic one by its analogy with the classical kinetic models such as
Boltzmann or Vlasov models - see for instance [15],[44]. In particular, we add a
real-valued variable called velocity, v, and the unknown becomes a 'density-like’
function, f(t,z,v), which is governed by an appropriate transport equation.

A useful tool in this context is the velocity averaging lemma, dealing with
the regularity of the moments for such transport solutions.
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1.6.1 Velocity averaging lemmas (m > 1,d > 1)

We deal with solutions to transport equations
a{v) - Ve f(z,v) = 09(z, ). (1.6.1)

The averaging lemmas, [62], [53], [45], state that in the generic non-degenerate
case, averaging over the velocity space, f(x) = [, f(z,v)dv, yields a gain of
spatial regularity. The prototype statement reads

Lemma 1.6.1 ([62],[45],[111]) . Let f € LP(z,v) be a solution of the trans-
port equation (1.6.1) with g € Li(z,v),1 < ¢ < p £ 2. Assume the Sollowing
non-degeneracy condilion holds

measy {v] |a(v) - €] < §}gj=1 < Const - 6%, a€(0,1). (1.6.2)
Then f{z) = [ f(w,v)dv belongs to Sobolev space WO (L (x)),

g o 0,1
flz) e WP(L (=), €<a(1_%)+(s+1)p,, e (1.6.3)

Variants of the averaging lemmas were used by DiPerna and Lions to construct
global weak (renormalized) solutions of Boltzmann, Vlasov-Maxwell and related
kinetic systems, [43], [44]; in Bardos et. al., [2], averaging lemmas were used to
construct solutions of the incompressible Navier-Stokes equations. We turn our
attention to their nse in the context of nonlinear conservation laws and related
equations.

1.6.2 Nonlinear conservation laws

As a prototype example we begin with a Boltzmann-like — or more precisely, a
BGIK-like model proposed in [136]. Its hydrodynamical limit’ describes both the
scalar conservation law {1.2.1) together with its entropy inequalities, (1.2.20).
Tt consists in solving the transport equation

afe
ot

1
+a(v) - Vo f° - (xpe(®) = 5), (4, 2,v) € R} x R x Ry, (1.6.4)
Flizo = Xpa»(®), (z,9) ERIXR,, (1.6.5)
Here, X,e(1,0)(v) denotes the ‘pseudo-Maxwellian’,
+1 0<v<pf
Xpe(0)=¢ =1 p <ow<0 , (1.6.6)
0 jv]>p

which is associated with the average of ¢,

p(t ) = = /Rfe(t,:n,'u)dfu, (t,z) € R} x R%. (1.6.7)
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Notice that the BGK-like model in (1.6.4)-(1.6.7} is a semilinear, nonlocal, hy-
perbolic (first-order) equation which is rather simple to solve for fixed & > 0.
This kinetic model was introduced in {136], following the earlier works [9],[54]. It
follows that that if pg € L'(RY) NL=(RY), then p° converges in L1((0,T") x RY)
to the unique entropy sclution {1.2.1), {1.2.20). In fact, there is a convergence
on the underlying microscopic level, to a kinetic formulation of (1.2.1), (1.2.20).
The latter is described by a limiting *density-function’, f(t,z,v), which is gov-
erned by the transport equation

%%—l—a(v)ovxf =

subject to initial conditions

%333 (t,z,v) € D'(RF x RE x R,) (1.6.8)

= Xpo(e,0)(v)- (1.6.9)

Here, m is a nonnegative bounded measure on R} x RZ x R,.

In what sense does the kinetic formulation (1.6.8-1.6.9) ’describe’ the conser-
vation law (1.2.1-1.2.20)7 observe that by averaging of (1.6.8) one recovers the
conservation law (1.2.1}, and taking its higher moments by integration against
7' (v), one recovers Kruzkov entropy inequalities (1.2.20)) for all conves entropies
7.

Theorem 1.6.1 Consider the BGK-like model {1.6.4)-(1.6.5).

{1} There exists a nonncgative measure, m®(t,x,v), which is bounded inde-

pendently of £, such that the relazation term on the right of (1.6.4) admils

1 ey OMF .
O =)= 75— m 20 (1.6.10)
{#i} The solution f€ of the kinetic model (1.6.4)-{1.6.5) converges in LYH(0,T)
RE x Ry) (VT < o0) to the solution of (1.6.8)-(1.6.9). In addition, its associ-

ated measure, m*, converges weakly 1o the measure, m, uniquely determined by
the kinetic formulation (1.6.8)-(1.6.9) with f = x,.

Remark. One may deduce from the above result and from [136] that m vanishes
on open sets of the form {(z,v,t) / {z,1) € @ v € R} where @ is an open set on
which p is locally Lipschitz. In other words, m is ’supported by the shocks”.

Proof. Several proof are available, each highlights the related aspects of this
issue.

One approach makes use of the simple H-functions, & la Boltzmann, con-
structed in [136], H.(f°) := If* — x].

Lemma 1.6.2 [136, Corollary 3.2] For any real ¢ the following functions
Ho(f%) = |F* = xel

wre kinelic entropy functions, i.e., we have

/{at—l—a(v)-vw]ffs——xc|dv50. (1.6.11)

v
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Let us remark that our kinetic entropy functions, H.(f®), are intimately
related to Kruzkov entropy functions, (1.2.8). Indeed, in [136] we prove that as
£ | 0, f. approaches x, With this in mind, the inequality (1.6.11) turns into
Kruzkov’s entropy inequality (1.2.20). The entropy (or H-)inequality, (1.6.11),
then yields macroscopic convergence by compensated compactness argurnents
in the one-dimensional case, and by BV-entropy production bounds in the
multidimensional case. Earlier works on kinetic models related to (1.6.8) can
be found in [9],[54],{84].

An alternative proof, presented in [111], makes use of the averaging jemma,
1.6.1. Tn view of the results recalled above, we just have to verify that (1.6.10)
holds, %(ch - f‘) = Qaﬂf. This fact can be shown in several ways.

One way is to observe that if g(v) is an L'(R) function which satisfy (— as
f¢ does),

0 <sign{v)g <1, / g(v)dv =« (1.6.12)
3
then there exists a nonnegative, bounded, continuous g such that
xa(v) —g(v) = d(v), geCs. (1.6.13)

Indeed, set q(v) = [°_ (Xa(w) — g{w))dw: in the case @ > 0 (~ the other
case being treated similarly), we see that ¢ is nondecreasing on (—co, o) and
nonincreasing on (c, +00) and we conclude since ¢g{—0co0) = 0 and ¢(+o0) =
o — [pgdv=0.

The characterization in (1.6.13) of g’s satisfying (1.6.12), is in fact equivalent
with the following elemnentary lemma due to Brenier [9], which in turn yields

still another possible proof for the desired representation of the relaxation term
in (1.6.10).

Lemma 1.6.3 [9] Let o € R and let p be o C' convez function on R such that
¢’ is bounded. Then, xo{v) is a minimizer of infg {fm @' {(v)g(v) dv} where the
infimum is taken over allg € G .= {g € L'(R), [podv =, 0<gsign(v) < 1},

In addition, xo(v) is the unique minimizer if ¢’ is strictly increasing on ®.

Granted that {1.6.10) holds, i.e., the relaxation term on the right of (1.6.4)
belongs to W; ' (My), then the averaging lemma 1.6.1 applies with s = ¢ =
1, p=2 (here we identify, t & zo, T > £, ao(v) = 1). Tt follows that if the
conservation law is linearly non-degenerate in the sense that (1.6.2) holds, that
is, if 3o € (0, 1) such that ‘

meas{v] |r -+ A'(v) - €] < §} < Const - %, V il = 1, (1.6.14)

then, {p°} is compact ~ in fact {p*(t > 0,-)} gains Sobolev regularity of order
§= a—img.

We conclude this section with several remarks.
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Regularizing effect

We have shown above how the averaging lemma implies convergence under the

non-degeneracy condition (1.6.14). Moreover, in this case we quantified the

Sobolev W*-regularity of the approximate solutions, {p*}. In fact, even more

can be said if the solution operator associated with {p} is translation invariant:

a bootstrap argument presented in [111] yields the improved regularity of order
o

8§ = —0=

o po(t>0,) € W (Li(z)). (1.6.15)

This shows that due to nonlinearity, (1.6.14), the corresponding solution oper-
ator, Ty, has a regularization effect, as it maps L — W*(L) with 5,1 > 0.

In particular, this framework provides an alternative route to analyze the
convergence of general entropy stable multidimensional schemes, independent
of the underlying kinetic formulations. Here we refer to finite-difference, finite-
volume, streamline-diffusion and spectral approximations ..., which were studied
in [29, 24, 85, 86, 79, 80, 18], for example. Indeed, the key feature in the
convergence proof for all of these methods is the I/I/};"cl(Lz)-compa.ct entropy
production,

Om(p*) + Ve - F(p°) = Wi, (L2 (4, 2)), Vo' > 0. (1.6.16)

Hence, if the underlying conservation law satisfies the non-linear degeneracy
condition (1.6.14), then the corresponding family of approximate solutions,
{p°{t > 0,-)} becomes compact. Moreover, if the entropy production is in
fact & bounded measure, (— and here positive measures are included compared
with the nonpositive entropy production required from measure-valued solutions
in (1.5.1)), then there is actually a gain of Sobolev regularity of order 5 and
of order % for the translation invariant case. (The expected optimal order is
). We shall outline this general framework for studying the regularizing effect
of approximate solutions to multidimensional scalar equations in Lecture V.

Kinetic schemes

‘There is more than one way to convert microscopic kinetic formulations of non-
linear equations, into macroscopic algorithms for the approximate solution of
such equations. We mention the following three examples (in the context of
conservation laws).

¢ Brenier’s transport collapse method, {9, is 2 macroscopic projection method
which preceded the BGK-like model (1.6.4), see also [54]. Here one alter-
nates between transporting microscopic 'pseudo-Maxwellians’ which start
with f(i*,-,v) == x,qx,)(v), and projecting their macroscopic averaging,
p(t" iy = f(#*1, . v). A convergence analysis of this method by the
velocity ‘averaging lemma was recently worked out in [1786].
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» Another approach is based on Chapman-Enskog asymptotic expansions,
[15]. We refer to [147], for an example of macroscopic approximation other
than the usual Navier-Stokes-like viscosity regularization ( — the scalar ver-
sion of this regularized Chapman-Enskog expansion is studied in Lecture
V).

o Still another approach is offered by Godunov-type schemes, (1.3.14), based
on projections of the Maxwellians associated with the specific kinetic for-
mulations, These amount to specific Riemann solvers which were studied
i [39], [13b], [137).

We conclude by noting that kinetic formulations like those mentioned above
in the context of scalar conservation laws apply in more general situations. For
extensions consult [111] for degenerate parabolic equations, [112],[110] for the
system of 2 x 2 isentropic equations, [77] for the system of chromatographic
equations, .... We shall say more on these issues in Lecture V.
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Chapter 2

Non-oscillatory central
schemes

Abstract. We discuss a new class of high-resolution approximations for hyper-
bolic systems of conservation laws, which are based on central differencing. its
two main ingredients include:

#1. A non-oscillatory reconstruction of pointvalues from their given cell
averages; and
v #g A central differencing based on staggered evolution of the reconstructed

erages.

Mary of the modern high-resolution schemes for such systems, are based on
Godunov-type upwind differencing; their intricate and time consuming part in-
volves the field-by-field characteristic decomposition, which is required in order
to identify the ” direction of the wind”. Instead, our proposed central (staggered)
stencils enjoy the main advantage is simplicity: no Riemann problems are solved,
and hence field-by-field decompositions are avoided. This could be viewed as
the high-order sequel to the celebrated Lax-Friedrichs (staggered) scheme. Typ-
ically, staggering suffers from excessive numerical dissipation. Here, excessive
dissipation is compensated by using modern, high-resolution, non-oscillatory

reconstructions, .
e highlight several features of this new class of central schemes.

Scalar equations. For both the second- and third-order schemes we prove
variation bounds (- which in turn yield convergence with precise error esti-
mates), as well as entropy and multidimensional L°°-stability estimates.
Systems of equatioms. Extension fo systems is carried out by componentwise
application of the scalar framework. It is in this context that our central schemes
offer a remarkable advantage over the corresponding upwind framework.
Multidimensional problems. Since we bypass the need for (approximate) Rie-
mann solvers, multidimensional problems are solved without dimensional split-
ting. In fact, the proposed class of central schemes is utilized for a variety of
nonlinear trangsport equations.

A variety of numerical experiments confirm the high-resolution content of
the proposed central schemes. They include second- and third-order approxi-
mations for one- and two-dimensional Euler, MHD, as well as other compressible
and incompressible equations. These numerical experiments demonstrate that
the proposed central schemes offer simple, robust, Riemann-~solver-free approx-
imations, while at the same time, they retain the high-resolution content of the

42
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more expensive upwind schemes,

2.1 Introduction

In recent years, central schemes for approximating solutions of hyperbolic con-
servation laws, received a considerable amount of renewed attention. A family of
high-resolution, non-oscillatory, central schemes, was developed to handle such
problems. Compared with the classical’ upwind schemes, these ceniral schemes
were shown to be both simple and stable for a large variety of problems ranging
from one-dimensional scalar problems to multi-dimensional systems of conser-
vation laws. They were successfully implemented for a variety of other related
problems, such as, e.g., the incompressible Euler equations [25},[22],[20], [21],
the magneto-hydrodynamics equations [42], viscoelastic flows—(20] hyperbolic
systems with relaxation source terms [4},[34],[35] non-linear optics [33],[7], and
slow moving shocks [17].

The family of high-order central schemes we deal with, can be viewed as a di-
rect extension to the first-order, Lax-Friedrichs (LxF) scheme [9], which on one
hand is robust and stable, but on the other hand suffers from excessive dissipa-
tion. To address this problematic property of the LxF scheme, a Godunov-like
second-order central scheme was developed by Nessyahu and Tadmor (NT) in
[29] (see also [38]). It was extended to higher-order of accuracy as well as for
more space dimensions (consult [1], [16], {2}, [3] and [21], for the two-dimensional
case, and [371, [14], [28] and [24] for the third-order schemes).

The NT scheme is based on reconstructing, in each time step, a piecewise-
polynomial interpolant from the cell-averages computed in the previous time
step. This interpolant is then (exactly) evolved in time, and finally, it is pro-
jected on its staggered averages, resulting with the staggered cell-averages at
the next time-step. The one- and two-dimensional second-order schemes, are
baged on a piecewise-linear MUSCL-type reconstruction, whereas the third-
order schemes are based on the non-oscillatory piecewise-parabolic reconstrue-
tion [27],(28]. Higher orders are treated in [36).

Like upwind schemes, the reconstructed plecewise-polynomials used by the
central schemes, also make use of non-linear limiters which guarantee the over-
all non-oscillatory nature of the approximate solution. But unlike the upwind
schemes, central schemes avoid the intricate and time consuming Riemann
solvers; this advantage is particularly important in the multi-dimensional setup,
where no such Riemann solvers exist.

2.2 A Short Guide to Godunov-Type schemes

We want to solve the hyperbolic system of conservation laws

by Godunov-type schemes. To this end we proceed in two steps. First, we
introduce a small spatial scale, Az, and we consider the corresponding (Steklov)
sliding average of u(-, 1),

O GRS {e]1e-als S
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The sliding average of (2.2.1) then yields

w(e,0) + o [f(u(m. +520) - flu(e - %—m,t))] —0. (2.2.2)

Next, we infroduce a small time-step, At, and integrate over the slab ¢ < <
t 4 A,

a(z,t+At) = a(z,t) (2.2.3)

thAt x t+AL
f flu(z + A—,T))d'r — / Flu(z ~ %, T))d7| .

_1
Az

=t 2 =t
We end up with an equivalent reformulation of the conservation law (2.2.1):
1t expresses the precise relation between the sliding averages, (-, t), and their
underlying pointvalues, u(:,¢). We shall use this reformulation, (2.2.3), as the
starting point for the construction of Godunov-type schemes.

We construct an approximate solution, w(-, "), at the discrete time-levels,
t" = nAt. Here, w(z,t") is a piecewise polynomial writter in the form

’w(gz,t”‘) = ij(m)Xj(mL Xj(m) = 11'_,-;

where p; () are algebraic polynomials supported at the discrete cells, I; = I},
centered around the midpoints, z; := jAz. An ezact evolution of w(+, ") based
on {2.2.3), reads

w(z, ") = @z, %) (2.2.4)
gt ¢+l

_515 u Flu(z + é;,w))dr_ [

To construct a Godunov-type scheme, we reglize (2.2.4) — or at least an accu-
rate approximation of it, at discrete gridpoints. Here, we distinguish between
the main methods, according to their way of sampling (2.2.4): these two main
sampling methods correspond to upwind schemes and central schemes.

Flw(z — %mm, )dr| .

2.2.1 Upwind schemes

Let @] abbreviates the cell averages, A —Al; /] I w(é,t")dé. By sampling
(2.2.4) at the mid-cells, z = r;, we obtain an evolution scheme for these aver-

ages, which reads

tn+1 t"+l

u"};‘-i-i = B — -Al_:c [/T:tu f(w(mj_i_%, ))dr — [rmn f(w(mj_%,r))dr . (2.2.5)

Here, it remains to recover the peintvalues, {w(mj+%, Ml < e < in
terms of their known cell averages, {@]};, and to this end we proceed in two
steps:
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« Tirst, the reconstruction — we recover the pointwise values of w{-, 1) at
T =1", by a reconstruction of a plecewise polynomial approximastion

W(w,t”)zzpj(w)xg'(a:), B(;) = @ . (2.2.6)

o Second, the evolution — w(z;, 3, 72 1") are determined as the solutions
of the generalized Riemann problems

w :O, t>tn wm,t” -
we+ f(w)e 2% wle 1) {Pj+1(ﬂf) T> By

The solution of (2.2.7) is composed of a family of nonlinear waves — left-going
and right-going waves. An exact Riemann solver, or at least an approximate one
is used to distribute these nonlinecar waves between the two neighboring cells,
I; and Ij 4. It is this distribution of waves according to their direction which is
responsible for upwind differencing, consult Figure 2.2.1. We briefly recall few
canonical examples for this category of upwind Godunov-type schemes.

w.(t+At)
]
t+ At If\

. > |
wig

Figure 2.2.1: Upwind differencing by Godunov-type scheme.

The original Godunov scheme is based on piecewise-constant reconstruc-
tion, w(z, ") = L} y;, followed by an exact Riemann solver. This results

in a first-order aceurate upwind method [11], which s the forerunner for all
other Godunov-type schemes. A second-order extension was introduced by van
Leer [19]: his MUSCL scheme reconstructs a piecewise linear approximation,
T—T;
¥

so that p;(z;) = @?. Here the w)-s are possibly limited slopes which are re-
i b i

constructed from the known cell-averages, w; = {{w})'} = {w'(@j "’,’G;_l}

(Throughout this lecture we use primes, w;,w;, ..., to denote discrete deriva-

tives, which approximate the corresponding differential ones). A whole library

w(z,1™) = Sp;(2)x; (), with linear pieces of the form p;(z) = B} + w; (
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of limiters is available in this context, so that the co-monotonicity of w(w, t")
with Xw;x; is gnaranteed, e.g., [39]. The Piecewise-Parabolic Method (PPM)
of Colella-Woodward [6] and respectively, ENO schernes of Harten et.al. [13],
offer, respectively, third- and higher-order Godunov-type upwind schemes. (A

detailed account of ENO schemes can be found in lectures of C.W. Shu in_ this
volume). Finally, we should not give the impression that limiters are used ex-

clusively in conjunction with Godunov-type schemes. The positive schemes of
Liu and Lax, [26], offer simple and fast upwind schemes for multidimensional
systems, based on an alternative posttivity principle.

2.2.2 Central schemes

As before, we seek a piecewise-polynomial, w(z, ") = Ip;(z)x; (z), which serves
as an approximate solution to the exact evolution of sliding averages in (2.2.4),

t"+1 zn-{-l

1 f(w(m-}-%,f))d'rmftn

(s, ") = a(e, ") M

i

A
Flw(z — —;E,'r)}dTJ .
(2.2.8)
Note that the polynomial pieces of w(z,") are supported in the cells, I =

{E l {6 — x| < %ﬂ}, with interfacing breakpoints at the half-integers gridpoints,

2oy = i+ 1) A

We recall that upwind schermes (2.2.5) were based on sampling (2.2.4) in the
midcells, © = x;. In contrast, central schemes are based on sampling (2.2.8) at
the interfacing breakpoints, z = Tiyl, which yields

B . 1 tn+]. tn-l-l
o =g, - Ltn F(w(as 41, 7))dr — f . fw(e, )i (229)

We want to utilize (2.2.9) in terms of the known cell averages at time level
7 = ", {@}};. The remaining task is therefore to recover the pointvalues

{w{-, 7)| " <7 < {"*?}, and in particular, the staggered averages, {TD;‘+£}. As
2
before, this task is accomplished in two main steps:
o First, we use the given cell averages {@}};, to reconstruct the pointvalues
of w(:, 7 = {") as plecewise polynomial approximation
w(z,") = 3 pi(2)x;(2), pi(e;) =l (2.2.10)
i

In particular, the staggered averages on the right of (2.2.9) are given by
. 1| f7ied o541
Uiy = R f pj(zc)da:-l-/ piti{z)da| . (2.2.11)
] Titd
The resulting central scheme (2.2.9) then reads

1 1 ik T+
’J’;I% = m/ pj(x)dz+/ pipala)de | + (2.2.12)

i it}
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tn-i»l tn+1

[ - [ f(w(wj.f))d'r} .

Aw

¢ Second, we follow the evolution of the pointvalues along the mid-cells, .
x = mj, {w(e;, 7> 1t")};, which are governed by

w4+ f(w)e =0, 721" w(e, ") =pj(z) z€l;. (2.2.13)

Let {ap(u)}; denote the eigenvalues of the Jacobian A(u) = %{;. By hy-
perbolicity, information regarding the interfacing discontinuities at (2, L t™)
propagates no faster than mka,x|ak(u)|. Hence, the mid-cells values gov-

erned by (2.2.13}, {w(z;, v > t")};, remain free of discontinuities, at

least for sufficiently small time step dictated by the CFL condition At <

-;—Am . mka,x|ak(u)|. Consequently, since the numerical fluxes on the right
1l

of (2.2.12}, f:::n f(w(z;,7))dr, involve only smooth integrands, they can

be computed within any degree of desired accuracy by an appropriate

quadrature rule.

It is the staggered averaging over the fan of left-going and right-going waves
centered at the half-integered interfaces, (2, 3 ,t™), which characterizes the cen-

tral differencing, consult Figure 2.2.2. A main feature of these central schemes -
in contrast to upwind ones, is the computation of smooth numerical fluxes along
the mid-cells, (z = ;, T > t"), which avoids the costly (approximate) Riemann
solvers. A couple of examples of central Godunov-type schemes is in order.

t+At

H

w v ®
“3+1“3

H ] ]
i I |

X
% X+12 a1

Figure 2.2.2: Central differencing by Godunov-type scheme.

The first-order Lax-Friedrichs (LxF) approximation is the forerunner for such
central schemes — it is based on piecewise constant reconstruction, w(z,t"*) =
Tp;(z)xj(x) with p;j(z) = @7. The resulting central scheme, (2.2.12), then

reads (with the usual fixed mesh ratio X 1= £%

aflfy = %(@j +Wi41) — A [f(@nl) - f(ffj)]- (2.2.14)
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Our main focus in the rest of this chapter is on non-oscillatory higher-order
extensions of the LxF schemes.

2.3 Central schemes in one-space dimension

2.3.1 The second-order Nessyahu-Tadmor scheme

In this section we overview the construction of high-resolution central schemes
in one-space dimension. We begin with the reconstruction of the second-order,
non-oscillatory Nessyahu and Tadmor (NT) scheme, [29]. To approximate so-
lutions of (2.2.1), we introduce a piecewise-linear approximate solution at the
discrete time levels, ¢* = nAf, based on linear functions p;j(z,t") which are
supported -at the cells [; (see Figure 2.3.1),

e Dlimsr = Ymile ) = 30 [0 40 (S22 60, x5(0) =15,
” ’ (2.3.1)

1LxF B —— N-T
Pj+1(x,t)

T L a®

X, X, X, X X, X, X,
i 172§+ i 172 j+1
Figure 2.3.1: The second-order reconstruction
Second-order of accuracy is guaranteed if the discrete slopes approximate
the corresponding derivatives, w} ~ Az - dow(w;, ") + O{Az)?. Such a non-

oscillatory approximation of the derivatives is possible, e.g., by using built-in
non-linear limiters of the form

—

wi = MMA{0(a},, — w}), 5(@},&(1 — @i q), 6(@] — @)} (2.3.2)

Here and below, § € (0,2) is a non-oscillatory limiter and MM denotes the
Min-Mod function

min,-{:c,:} ifz; > O,Vi
MM{zy,22,..} =< max{z;} ifz; <0,V
0 otherwise.
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An ezact evolution of w, based on integration of the conservation law over
the staggered cell, I, 1, then reads, (2.2.9)

in+1

1 3
ﬁ);:f; = E/IHL w(z,1™)de — K:_n—,/; [fw(zjpr, 7)) — Flw(z;, )] dT.

=in

The first integral is the staggered cell-average at time ", ﬁ:;" 1 which can be
2

computed directly from the above reconstruction,

l Tn41

1o 1
T A 5 wlz, t)de = §(wj + @) + g(w; —wiy). (2.3.3)

The time integrals of the flux are computed by the second-order accurate mid-
point quadrature rule

t"+1

/:tn Flw(e;, v))dr ~ At - f(w(:cj,t“*%))'

Here, the Taylor expansion is being used to predict the required mid-values of
w

w($.f’tn+%) ~ w(mi’t)'i"%-t—wf(mjntn)
Al

X n T
= w? - ?A(wj )(pj(mj:t ))..-': = 'w_? et §Aj w;-.

In summary, we end up with the central scheme, [29], which consists of a
first-order predictor step,

W

1 oa A n -
wi P =) - pAfw, A = AE), (2.3.4)
followed by the second-order corrector siep, (2.2.12),

_ 1 _ 1 bk ntl
w?j_“%l = 5(“{? + @) + “8“(“’; - 'w:a‘+1} —A {f(wj:f) — flw; +2)1 . (2.3.5)

The scalar non-oscillatory properties of (2.3.4)-(2.3.5) were proved in [26],
[26], including the TVD property, cell entropy inequality, L},.— error estimates,
etc. Moreover, the numerical experiments, reported in [27], [29], [2], [3], [42],
[34], [35], [36], with one-dimensional systems of conservation laws, show that
such second-order central schernes enjoy the same high-resolution as the corre-
sponding second-order upwind schemes do. Thus, the excessive smearing typical
to the first-order LxF centzal scheme is compensated here by the second-order
accurate MUSCI reconstruction.
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In figure 2.3.2 we compare, side by side, the upwind ULT scheme of Harten,
119}, with our central scheme (2.3.4)-(2.3.5). The comparable high-resolution of
this so called Lax’s Riemann problem is evident.

At the same time, the central scheme (2.3.4)-(2.3.5) has the advantage over
the corresponding upwind schemes, in that no (approximate) Riemann solvers,
as in (2.2.7), are required. Hence, these Riemann-free central schemes provide
an efficient high-resolution alternative in the one-dimensional case, and a partic-
ularly advantageous framework for multidimensional computations, e.g., [3], {2,
[16]. This advantage in the multidimensional case will be explored in the next
section. Also, staggered central differencing, along the lines of the Riemann-free
Nessyahu-Tadmor scheme (2.3.4)-(2.3.5), admits simple efficient extensions in
the presence of general source terms, [8], and in particular, stiff source terms,
[3]. Indeed, it is a key ingredient behind the relaxation schemes studied in [18].

It should be noted, however, that the component-wise version of these central
schemes might result in deterioration of resolution at the computed extrema.
The second-order computation presented in figure 2.3.2 below demonstrates this
point. (this will be corrected by higher order central methods). Of course, this
- 50 called extrema clipping, is typical to high-resolution upwind schemes as
well; but it is more pronounced with our central schemes due to the built-in
extrema-switching to the dissipative LxF scheme. Indeed, once an extrema cell,
I, is detected (by the limiter), it sets a zero slope, wj = {0, in which case
the second-order scheme (2.3.4)-(2.3.5) is reduced back to the first-order LxF,
(2.2.14).

2.3.2 The third-order central scheme
Following the framework outlined in §2.3.1, the upgrade to third-order central
scheme consists of #wo main ingredients:

(i) A third-order accurate, piecewise-quadratic polynomial reconstruction which
enjoys desirable non-oscillatory properties;

ii) An appropriate quadrature rule to approximate the numerical fluxes alon
: g
cells’ interfaces.

Following [28], we proceed as follows. The piecewise-parabolic reconstruction
takes the form

z — Zj 1 z—z;\’
pi{z) = wf +w} ( An 3) + §w;-’ (W—MJ) . (2.3.6)
Here, w} are the (pointvalues of) the reconstructed second derivafives
wy = 0 AL AT (2.3.7)

w} are the (pointvalues of) the reconstructed slopes,
fw; = BjAgﬁ);-“; (2.3.8)

and w} are the reconsiructed pointvalues

it (2.3.9)
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Observe that, starting with third- (and higher-) order accurate methods, point-
wise values cannot be interchanged with cell averages, wi # W}

Here, 0; are appropriate nonlinear limiters which guarantee the non-oscillatory
behavior of the third-order reconstruction; its precise form can be found in [27],
[28]. They guarantec that the reconstruction (2.3.6) is non-oscillatory in the
sense that N(w(:,1")) — the number of extrema of w(z,"), does not exceed
that of its piecewise-constant projection, N (T x;(-)),

Nl %) < N(Eabxs(). (2.3.10)

Next we turn to the evolution of the piecewise-parabolic reconstructed solu-
tion. To this end we need to evaluate the staggered averages, {u“;;‘ 2 }, and to
2

nt1
approximate the interface fluxes, {f:ﬂn Flw(z;, 'r))d'r}.

3

With p;(z) = w} + w) (ﬁifi) + suwf (”—;—21) specified in (2.3.6)-(2.3.9),

one evaluates the staggered averages of the third order reconstruction w(e, ") =
Zpi(z) x5(2)

N T o NS DU DUV ,
iy = A ., w(e, t")dz = §(wj+wj+1)+g(wj ~wiy)  (2.3.11)

Remarkably, we obtain here the same formula for the staggered averages as in
the second-order cases, consult (2.3.3); the only difference is the use of the new
limited slopes in (2.3.8), wj,- =; Aoiﬁ;?’.

Next, we approximate the (exact) numerical fluxes by Simapson’s quadra-

ture rule, which is (more than) sufficient for retaining the overall third-order
accuracy,

tnwf-l

—Al_:c[mn Flw(z;, T)dr ~ g- {f(w?)+4f(w?+%)+f(w?+l)} . (2.3.12)

This in turn, requires the three approximate pointvalues on the right, w?+ﬁ ~
w(z;, t"F) for g = 0, 1,1, Following our approach in the second-order case,
[29], we use Taylor expansion to predict

w

w = W} - rimi—; (2.3.13)
v; = (Az-OJw(z;, t7) = —Az - O, fwle;, 7)) =

= —a{w}') - wj,; (2.3.14)
W = (Az- 8 w(es, ") =

= Az 0, [a(w])Az - O flw(z;, 1™))] =

= a*(w])wf + 2a(w})a’ (Wi (w})?. (2.3.15)

In summary of the scalar setup, we end up with a two step scheme where,
starting with the reconstructed pointvalues

’LUH

wf =@} - 5, (2.3.16)
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we predict the pointvalues witf by, e.g. Taylor expansions
) g ,

o (AB)? . 1
w}”‘ﬁ = w] + ABu} + (—wi)—w?, 8= oL 1; (2.3.17)
this is followed by the cerrector step

n 1

LT —(w +wf,) + 8( —wiiy)+ {2.3.18)

- {[f(w +1)+4f 3+1) ( ?Ll)]
— [fy Y + ]

In figure 2.3.2 we revisit the so called Woodward-Colella problem, [43], where
we compare the second vs. the third-order results. The rmprovement n resolv-
ing the density field is evident.
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Figure 2.3.3: 3% vs. 2"¢ order central schemes — Woodward-Colella problem
at + =0.03
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We conclude this section with several remarks.

Remarks.

1. Stability.
We briefly mention the stability results for the scalar central schemes.
In the second order case, the NT scheme was shown to be both TVD
and entropy stable in the sense of satisfying a cell entropy inequality -
consult [29]. The third-order scalar central scheme is stable in the sense
of satisfying the NED property, (2.3.10), namely

Theorem 2.3.1 ([28]) Consider the central scheme (2.8.16),(2.3.17},(2.8.18),
based on the third-order accurate quadratic reconsiruction, (2.8.6)-(2.3.9).
Then il salisfies the so-called Number of Extrema Diminishing (NED)
property, in lhe sense that

N (Zw;‘j_’%xu_l_%(w)) <N (E @ﬁxu(m)) . (2.3.19)

2, Source terms, radial coordinates, ...

Extensions of the central framework which deal with both, stiff and non-
stiff source terms can be found in [34],[35], 8], [4]. In particular, Kupfer-
man in [20],[21] developed the central frameworl within the radial coordi-
nates which require to handle both — variable coefficients + source terms.

3. Higher order central schemes.

We refer to [36], where a high-order ENO reconstruction is realized by a
staggered cell averaging. Here, intricate Riemann solvers are replaced by
high order quadrature rules. and for this purpose, one can effectively use
the RK method (rather than the Taylor expansion outlined above}:

4. Taylor vs. Runge-Kutta.

The evaluations of Taylor expansions could be substituted by the more
economical Runge-Kutta integrations; the simplicity becomes more pro-
nounced with systems. A particular useful approach in this context was
proposed in [36], using the natural continuous extensions of RK schemes.

5. Systems.

One of the main advantages of our central-staggered framework over that

of the upwind schemes, is that expensive and time-consuming character-
istic decompositions can be avoided. Specifically, all the non-oscillatory
computations can be carried out with diagonal limiters, based on a component-
wise extension of the scalar limiters outlined above.

2.4 Central schemes in two space dimensions

Following the one dimensional setup, one can derive a non-oscillatory, two-
dimensional central scheme, Here we sketch the construction of the second-order
two-dimensional scheme following [16] (see also [2],{1]). For the two-dimensional

third-ozder accurate scheme, we refer to [24].
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We consider the two-dimensional hyperbolic system of conservation laws
ut + f(u)y -+ g(u)y = 0. (2.4.1)

Lo approximate a solution to (2.4.1), we start with a two-dimensional lnear
reconstruction

—n L — Iy Y—Yr
wie,y,t") = piele, xie(e,y), piale,y) = P ( A$J)+w},k ( Ay ) :

jlk
(2.4.2)
Here, the discrete slopes in the x and in the y direction approximate the
corresponding derivatives, wj p ~ Az - we(z;, yi, ") + O(Az)?, wiy ~ Ay -
wy (T, Y, 1) + O(Ay)?, and x; 1(z, y) is the characteristic function of the cell
Cix = {(f,n)“f —y| < %ﬁ, n— k| < %3} = I; @ Jg. Of course, it is essential

bo reconstruct the discrete slopes, w' and «', with built in Im#ters, which guar-
antee the non-oscillatory character of the reconstruction; the family of min-mod
limiters is a prototype example

- _ 1, —n - -
”}k = MM‘{B(W_?+1,I¢ - w;l,k)a E(w_?+l,k - ijl,k);g(wﬁk - w?q,k)} (2-4-3')

. o 1 77 T - )
“}k = MM{ﬁ'(w?;k-H - w;:c): §(w',k+l - wj,k—-l): g(w;‘]k - wj,k—1)}- (2-4-3\)

An exact evolution of this reconstruction, which is based on integration of
the conservation law over the staggered volume yields

@n-l-i Bed w(z,y, t" )dzdy -+
J+g.k+g c
itdetd

tn+l

"M J[ e 7) = Sw(as, o)) dudr 4

tﬂ-+1

p ]{2“ ]£ clyes [o(wlz, yor1, 7)) — g(w(z, yi, 7))] ded£24.4)

The exact averages at ¢ — consult the floor plan in Figure 2.4.1 yields

@;‘Jr%’H% = ][C w(z,y, ") dedy = (2.4.5)

itdarh
1, - _ .
= Z(w?k + By + O] ey + Wiy py1) +
1 ' t ! 7
+ E{(“ﬂc — Wiga k) + (U kgs — g1 ) +

+ (“;k - “},k+1) + (”}+1,k - “}+1,k+1)}-
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Figure 2.4.1: Floor plan of the staggered grid.

So far everything is ezact. We now turn to epprozimate the four fluxes on the
right of (2.4.4), starting with the one along the Bast face, consult figure 2.4.2,
tn+1
][ f Flw(zjs1,y,7))dydr. We use the midpoint quadrature rule for
k-}-l
second-order approximation of the temporal integral, fire 7, f (w(zjy1, v, et Ny,

and, for reasons to be clarified below, we use the second order rectangular
quadl ature rule for the spatial integr ation across the y-axis, yielding

tﬂ+1

1 nat i
J[ ][E-T f(w($j+ll Y, T))dyd"r ~ ”2" [f(wj:ﬁk) + f(wj_;_l-lfk+1)] . (2.4.6)

B+l

In a similar manner we approximate the remaining fluxes.
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v n+l
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Figure 2.4.2: The central, staggered stencil.

1

These approximate fluxes make use of the midpoint values, w?: 7 = wiey, Uk, t’””;‘),
and it is here that we take advantage of utilizing these midvalues for the spatial
mtegration by the rectangular rule. Namely, since these midvalues are secured
at the smooth center of their cells, Cjz, bounded away from the jump dis-
continuities along the edges, we may use Taylor expansion, w(a:j,yk,t“*%) =
Wl + ‘%“t*'u..’g(ﬁj, Y, i) + O(A)Y2. Finally, we use the conservation law (2.4.1) to
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express the time derivative, wy, in terms of the spatial derivatives, f(w)’ and
g(w)', \
+:_ H
w?k = _w?k - E,f{w);-'k - 59(“’)}& (2-4‘7)
Here, f(w)}y, ~ Az - f(w(zj, us, 1)e and g(w)y, ~ Ay - g(w(@, ve, 7))y, are
one-dimensional discrete slopes in the z- and y-directions, of the type recon-

structed in (2.4.3')-(2.4.3"); for example, multiplication by the corresponding
Jacobians A and B yields

Flw)jy = A(@f i, g(w)jy = B(OT )y

Equipped with the midvalues (2.4.7), we can now evaluate the approximate
fluxes, e,g., (2.4.6). Inserting these values, together with the staggered average
computed in (2.4.6), into (2.4.4), we conclude with new staggered averages ab
t = ¢"+!, given by

_ . 1,._ _ _ _

w?:;,ﬂ% = g(w?k -+ w?+1,k + ’“’?}k+1 + w,?+1,k+1) + (2.4.8)
A
2

1 +3 +&
+ —1—6-(u;-k — Uiy k) — [.f(w?-pl,k) - f(wik )]

1 A n+—§- 7‘+‘:1z‘
+ 1_6(”;‘,k+1 — U4 kbl) 9 [f(wj+1,k+1) - f(w')’““'"l)]

1 B +4 +3
+ "fé(u;k - 1) — 9 [g(w?:kil) - g(w{i’“ }

1 M ntd nt 3
+ ‘1‘6(“}4-1,1: — Ui 4q 1) — 5 {g(wﬁ-l,k-{-l) = 9wtk } .

In surmmary, we end up with a simple two-step predictor-corrector scheme
which could be conveniently expressed in terms on the one-dimensional stag-
gered averaging notations

1 1
<wj, e 5 (Wip T wiean), < W >jeyi= glwet Wit1,k)-
Our scheme consists of a predicior step

nt} A B
Wip = 'w;'l:k ) ;,k - 59‘},k; (2.4.9)

followed by the correclor step

- 1 . _ 1 4+ n+%

w?ié,u% = < Z(“’}‘lg. + @y )+ g(w{,. — Wiy, ) — )\(f;:.ﬁ- = £ ) Phar b
1, _ 1 nti +1

+ < E(wnk + ) + g('w\k —w g1} — MG g — Qik ) >t

In figures 2.4.3 taken from [16], we present the two-dimensional computation
of a double-Mach reflection problem; in figure 2.4.4 we quote from {42] the
two-dimensional computation of MHD solution of Kelvin-Helmbholtz instability
due to shear flow. The computations are based on our second-order central
scheme. It is remarkable that such a simple *two-lines’ algorithm, with no
characteristic decompositions and no dimensional splitting, approximates the
rather complicated double Mach reflection problem with such high resolution.
Couple of remarks are in order.
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¢ The two-dimensional computation is more sensitive to the type of limiter
than in the one-dimensional framework [29]. In the context of the double
Mach reflection problem, the M Mj (consult (2.3.2) with 4 = 2) seems to
yield the sharper results,

¢ No eflort was made to optimize the boundary treatment. The staggered
stencils require a different treatment for even-odd cells intersecting with
the boundaries. A more careful treatment following [105] is presented in
§2.4.1. The lack of boundary resolution could be observed at the bottom
of the two Mach stems.
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05t

()

Figure 2.4.3: Double Mach reflection problem computed with the central scheme
using M M, limiter with CFL=0.475 at t = 0.2 (a) density computed with 430 x
120 celis (b) density computed with 960 x 240 cells (c) x-velocity computed with
960 x 240 cells
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Figure 2.4.4: Kelvin-Helmholtz instability due to shear flow. Transverse configura-
tion (B perpendicular to v). Pressure contours at £ = 140

We conclude this section with brief remarks on further results related to
central schemes.

Remarks.

L. Simplicity.

Again, we would like to highlight the simplicity of the central schemes,
which is particularly evident in the multidimensional setup: no charac-
teristic information is required — in fact, even the exact Jacobians of the
fluxes are not required; also, since no (approximate) Riemann solvers are
involved, the central schemes require no dimensional splitting; as an exam-
ple we refer to the approximation of the incompressible equations by cen-
tral schemes, §2.5; the results in [7] provide another example of a weakly
hyperbolic multidimensional system which could be efficiently solved in
term of central schemes, by avoiding dimensional splitting.

2. Non-staggering. We refer to [15] for a non-staggered version of the central
schemes.
3. Stability.

The following maximum principle holds for the nonoscillatory scalar cen-
tral schemes:

Theorem 2.4.1 ([{16]) Consider the two-dimensional scalar scheme (8.4.7-
2.4.8), with minmod slopes, v’ and u', in (2.4.9-2.4.8)). Then for any
§ < 2 there exists a sufficiently small CFL number, Cy { - e.g. C) =
(VT —2)/6 ~ 0.1}, such that if the CFL condition is fulfilled,

max(\ - max| fu (u)], 1 - maxlga ()]) < Co,
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then the following local mazimum principle holds

min  {@7,} < vt < max {&?,} 2.4.10
pGipiey P S iy S |pﬂ(j_+%}|:%{ Pl (2410)
la~(k+1)l=4 le-Ce+ Di=3

4. Third-order accuracy. Extensions to third-order accuracy in two space
dimensions can be found in [24].

2.4.1 Boundary conditions

Following [25], we demonstrate our boundary treatment in the case of the left-
boundary (see Figure 2.4.5).

ZP_H;____.;;__,
f : :
é"‘o’k_ﬂ“ E?“I _,_k-!-_l | _ _;_ L
éﬂ,kﬂﬂi ;

| i
Zwo,li_;_lnzk_ ’___;___‘
2 : y
; T T
7z | X
A
A0 K

Figure 2.4.5: Two dimensions - left boundary

We distinguish between inflow (fl(w’f/z,k) > 0), and outflow (f’ (w?/'?,k) <

0), boundary cells.
In inflow boundary cells, we reconstruct a constant interpolant from the
prescribed point-values at these boundaries, -

proa(e, u "y = uly, Wi = 0. (2.4.11)

This reconstruction is then used to build the approximate solution at time ¢"+!
in the interior cells. At the next-time step, t"T!, the cell-averages at these
boundary cells are defined according to the prescribed point-values as

—n+1 R 5 §
Wifak+i/2 = Yo kt1/2
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We now turn to the owtflow boundary cells. Here, we extrapolate the data
from the interior of the domain, up to the boundary. First, we determine the
discrete slope in the z-direction, wf /2,5+ This slope is then used to extrapolate

the cell-average up to the boundary,

Agr

Y13 —_ i !
Wokp = Wipa g — T Wy/2,k:

which is then used to predict the mid-value, wg‘};l/ PP

Here

A gf !
B "ifa,k - %Qo,k‘

Jop =a(wg wine 9o = b(wl w)g

The discrete slope in the y-direction, wb)k, is computed in that boundary cell
in an analogous way to the interior computation. In summary, the staggered
average at time "1 is given by

=1 . 1E’T/2,ic"""J"Tllfz,kﬂ
Wi ka1 = ) +

1
-+ g(—wi/m - wll/2,k+1 + w\z/z,k — Wi pet) =

A
- E(f(wT/2,k+1) + f(w?/z,k) - f(wg’k,,rl) - f(wg,k.)) -
- lu(g(w?/E,k+1) + g(w&kﬂ) - 9("”?/2,15) - g(wg'k+1)gz.4.12)

"This concludes the boundary treatment of the left boundary. Similar expressions

hold for the other three boundaries. .
e now turn to the corners and as a prototype, consider the upper-left corner

{see Figure 2.4.6). In the corner we repeat the previous boundary treatment
with one simple modification. The main difference regarding the boundary
scheme in the corner is based on the number of different possible inflow /outflow
configurations in that corner.

I

ANNNNNRANRNNANY

Figure 2.4.6: Upper-left corner
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Computationally, the most complicated case is when the flow in that upper-
left corner is outflow in both directions. In this case, the staggered average ab

time t" 3, mg‘j:;le /4 18 computed according to

’ . ..
Wia,N-1j2 = oo Limited slopes
! _
WipaN—1/3 =
7 = Az, :
Wo N-1/2 T ”’T/z,Nﬂl/z — W N-1/2 Predictor (west)
n+l/2  _  n A B
Wy v—1/2 = WoN—1/2 sfon-1/27 590,N-1/2
T [ \ .
Wi N = Wi N_1ja T _zy"wj/gsN_]_/z Predictor (north)
nt+l/2 _  n A pt B
WyaN = Wipan — Sfijan — 59128
T ) Ax .t Ay H
W = Whg o1y~ FW e No1y2 T "ﬁawlfz,N—lﬂ Predictor (north-west)
n+l/2 _ A g
wyn' =win— 5fon— S9N

The cell-average in the north-west edge of Figure 2.4.6 in time ¢+, is given in
this outflow-outflow case by the correcior step

n _ —w 2,N-1 g+ wy 9,N—1/2

w1]‘2N-1/4 = BV N-1ph { L 1 - 2
=M (Wl n) + flan_12) — Flug n) = Fwg yo1y2)) —
—p(g(w’f’/z’N) + g{wg n) — g(w?/z,Nwl,f?) — g(wo,n—1(2%)13)

When one of the boundaries is inflow, we have 11)"1',,2’1,\,_1}.2 = w\1/2,N—1/2 = 0,
and @’fﬁfN_i = wB‘"R,l (- the prescribed pointvalues at the corner).

As an example, we we approximate a solution to the two-dimensional Burgers
equation

uy + ulty + uty = 0, (2.4.14)
subject to the initial conditions,

0.5 —I<e<0,~-1<y<0

0 0<e<l,-1<y<0

up(z, y) = <}
~1 0<z<l0<y<1l

02 -1<2<0,0<y<1.

and augmented with boundary conditions at the inflow boundaries which
are equal to the initial values at these same boundaries. Figures 2.4.7 show the
evolution of the solution in time for mesh sizes 41 = 41 and 81 % 81. Again, we
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note that there are no spurious oscillations at the boundaries, oscillations that
are inherent with a naive treatment of inflow boundaries.

Figure 2.4.7: The 2D IBVP Burgers equation: T=1. {a) N=41, (a’) N=81
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2.5 Incompressible Euler equations

2.5.1 The vorticity formulation

We are concerned with the approximate solution of the 2D Euler (— and respec-
tively — NS) equations, expressed in terms of the vorticity, w =V X i,

wi + (g + (vw)y =0 ( +rAw). (2.5.1)
Here, @ = (u,v), is the two-component divergence-free velocity field,
Uy + vy = 0. (2.5.2)
Equation (2.5.1) can be viewed as a nonlinear (viscous) conservation law,
we + flwe +9(w)y =0 ( +vAw), (2.5.3)
with a global flux, (f,g) = (ww,ww). At the same time, the incompressibil-

ity (2.5.2) enables us to rewrite (2.5.1) in the equivalent convective form
wy + Uy + vy = 0, (2.5.4)

Equation {2.5.4) guarantees that the vorticity, w, propagates with finite speed,
at least for uniformly bounded velocity field, @ € L°°. This duality between the
conservative and convective forms of the equations plays an essential role in our

discussion.
To approximate (2.5.1) by a second-order central scheme (following [16,

29]) we introduce a piecewise-linear polynomial MUSCL approximate solution,
w(-, -, 1), at the discrete time levels, {* = nAt,

— & Tj YUk
w(:c, y,t”) - Z{wj»k +w;‘,k ( Az J) +w}:k (——A——y—> }1Cj,k- (2.5.5)
i,k

with pieces supported in the cells, Cj x 1= {(E, C)ilg — x5 < %“E, i — | < %l }

As before, we use the ezact staggered averages at 1, followed by the mid-
point rule to approximate the corresponding flux. For example, the averaged
flux, f = uw is approximated by Analogous expressions hold for the remaining
fluxes. Note that finite speed of propagation (of w — which is due to the dis-
crete incompressibility relation (2.5.9) below), guarantees that these values are
'secured’ inside a region of local smoothness of the flow. The missing midvalues,

1
wzzf, are predicted using a first-order Taylor expansion (where A 1= 3% and

o= ;‘%:7, are the usual fixed mesh-ratios),

+3 g A P ,
win? = O - SHa— G0 (AR, (2.5.6)

Equipped with these midvalues, we are now able to use the approximate fluxes
which yield a second-order corrector step outlined in {2.5.11) below. Finally, we
have to recover the velocity field from the computed values of vorticity. We end
up with the following algorithm.

1. Reconstruct
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(a) An exact discrete divergence-free reconstruction of the velocity field. We
define the discrete vorticity at the mid-cells as the average of the four
corners of each cell, i.e.

1
Wit hry = g @irLpn @i p @ik Fwitne). (25.7)

We then use a streamfunction, ©, such that Av = —w, which is
obtained in the min-cells, e.g., by solving the five-points Laplacian,
A'(,bj‘{_%,,w% = =wiri gy - Then, its gradient, Vi recovers the
velocity field

Uik = P Ve, g —p, Vet (2.5.8)

Here, pr and g, denote averaging in the z-direction and in the y-
direction, respectively, such that, e.g.,

1
Uik = 5 (¢j+%,k+% = Yi4d k-t T Vot ey — @bj__%,km%) :

Observe that with this integer indexed velocity field, we retain a
discrete incompressibility relation, centered around (j + %, k+ %),

Uil U, >yl + < Ukl Uk il
Awx Ay

=0, (2.5.9)

which is essential for the maximum principle in (2.5.1).

2. Predict

(a) Prepare the pointvalues of the divergence-free velocity field | @l -, 1),
from the reconstructed vorticity pointvalues, wyy. To this end, use

the Biot-Savart solver (2.5.8);

1
(b) Predict the midvalues of the vorticity, w?l_:z,

ntt A p

Wiy ? =0, — §u?’kw;,k - Evﬁkw},k. (2.5.10)
Note: Observe that here we use the predictor step (2.5.6) in its con-
vective formulation (2.5.4), that is, (f/, ") = (uw’, mo'}.

3. Correct

(a) Asin step {2a), use the previously calculated values of the vorticity
to compute the divergence-free pointvalues of the velocity, at time
s T R L

(b) Finally, the previously calculated pointvalues of the velocities and
vorticity are plugged into the second-order corrector step in order to
compute the staggered cell-averages of the vorticily af time t"*+?,



CHAPTER 2. NON-OSCILLATORY CENTRAL SCHEMES 69

1 1
— 1 - _
W?:%,k+;j = < Z(“"?, twfyg )+ g(w’,,. — Wig,) e+l t

nt i

+%
— < A(ww)jif — (“w)? ) >pqr

1, 1
+ < E(w.,k + @) + g(wf,k — @ gy1) >ja1

+3 +3
- < #((”w)?:kﬁ - (”‘*’)ﬁk ) Zits - (2.5.11)
The specific recovery of the velocity field outlined above, retains the dual

convective-conservative form of the vorticity variable, which in turn leads o the
maximum principle [25}.

min a? }<a™tl < max @ . } 2.5.12
apmu+—;f)«=%{ Pk < :+a,h+%—%p_(j+%),2%{ pal (25.12)
lg~(k+5)i=% lg=(k+3)=%

As in the compressible case — compare (2.4.10), the main idea in {25] is to
rewrite w;.‘_t;H% as a conves combination of the cell averages at t*, &% 4, &7 (@7 1, @7y pase
In figure 2.5.2 we show the central computation of a ’thin’ shear-layer prob-
lem, [5]. For details, consult [25].

Figure 2.5.1: t = 8 , 64%64 Figure 2.5.2: t == § , 128*128
The “thin” shear-layer problem, solved by the second-order central scheme (2.5.6),(2.5.11)
with spectral reconstruction of the velocity field.
2.5.2 The velocity formulation

Following [22] our goal is introduce a second-order central difference scheme
for incompressible flows, based on velocity variables. The use of the velocity
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formulation yields a more versatile algorithm. The advantage of our proposed
central scheme in its velocity formulation is two-fold: generalization to the three
dimensional case is straightforward, and the treatment of boundary conditions
associated with general geometries becomes simpler. The Fesult is a simple fast
high-resolution method, whose accuracy is comparable to that of an upwind
scheme. In addition, numerical experiments show the new scheme to be immune
to some of the well-known deleterious consequences of under-resolition.

We consider a two-dimensional incompressible flow field, u = (u, v}, so that

V -u = 0. The equations of motion for a Newtonian fluid in conservation form
are

thy = [_uz + Vg ——p]w + [—uv + Vuy]y = U, v, e, e + % (%, U, U, - Jy

v = [—uv +vug], + [—v? + vy — p]y = (0, U, - o b 07U, 0, U, .y
(2.5.13)
where p is the pressure, » Is the kinematic viscosity, and subscripts denote partial
derivatives. The functions f*¥(.) and g"=¥(-) are components of the fluxes of
the conserved quantities u and v.

The computational grid consists of rectangular cells of sizes Az and Ay; at
time level 1" =nAt, these cells, C; ;, are centered at (z;=iAz, 1 =jAy). Start-
ing with the corresponding cell averages, u® = {uf';,vF;), we first reconstruct
a piecewise linear polynomial approximation which recovers the point values of
the velocity field, u”(z,y) = (u" (=, y), v"(z,y)). For second-order accuracy, the
plecewise linear reconstructed velocities take the form,

! A

uz"- u.’.
Ap @)t A W-w),  By€Cy (2519

u(z,y) = ul; -

As before, exact averaging over a staggered control volume yields

Gigg s (") = ][ (@, y, " )dzdy +
Cittivd

tn+1

+ At D;ff J[ F (20, y, )dydr $ 4(2.5.15)
T=t" Jyed. g
ot

+ At Dj"][ f g“ (e, y;, T)dedr 3,
T=%" ..".‘EI‘.+3§

and a similar averaging applies for #**1 |,
045

An exact computation yields

n Az Ay
f u(z,y,t")dedy = ptpf ol - ?D;'N;}F“:-,j — = Dy iy (2.5.16)
Cirditd
2t 2
The incompressible fluxes, e.g., f* = —u? + vu, — p,, are approximated in

terms of the midpoint rule , which in turn employs predicted midvalues which
are obtained from half-step Taylor expansion. Thus our scheme starts with a

b

gt Tt
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predictor step of the form

n-+ i At u".'. 1)‘.’. u\.’. 2
U [2“?,13% + iy ,_&; + iy A; + Gopll; — vV
(2.5.17)
' / Y
+1 At U g v ; v 4
vii® = vy [”:’:‘,j AUl 2R Cuply — vV |-

Note that the predictor step is nothing but a forward Euler scheme; conser-
vation form is not essential for the spatial discretization at this stage.
This is followed by a correcior step

At et Ar Ay
e L T L ST

(2.5.18)

+ 4+ |, ntE nti v,
e At.Dm ‘U-y [ué,"i ﬂui,j 2 _ N +

\
+ 4+ ] . n+d n+g T
- AtDJ g [v,‘-’j u Lt ————ZAy].

Note that the viscous terms are handled here by the implicit Crank-Nicholson
discretization which is favored due to its preferable stability properties. Here,
we ignore the pressure terms; instead, the contribution of the pressure will be
integrated by enforcing zero-divergence fluxes at the last projection step.

Cormpute the potential ¢; ; solving the Poisson equation

- - - - 11~ . -
[D:Dw“;”-'f + Dy Dy %“”]@"‘ - E[Dm iy sy + Dy “w”?f%lwr%]'

(2.5.19)
Then, the pressure gradient at +*+! is being updated,
G”p?:é,j+% = Dg-.”_jqﬁi,js Gy??:%lﬁ_% B DJ#:@J: (2.5.20)

and finally, it is used to evaluate the divergence-free velocity field, uhtl

wrt s T O MG (2.5.21)
In Figure 2.5.3, we plot vorticity contours for two shear layer problems stud-
jed in [5]: the inviscid “thick” shear layer problem corresponding to (uf,v)
with p = 30, and a viscous “thin” shear layer problem (with v =5 1075, cor-
responding to {uf, vd) with p = 100. As in {5], both plots in Figures 2.5.3a and
9.5.3b are recorded at time ¢ = 1.2, and are subject to an initial perturbation
v, with & = 0.05.
Further applications of the central schemes for more complex incompressible

flows (with ’variable’ axisymmetric coefficients, forcing source/viscous terms,
...), can be found in [20],[21].
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Figure 2.5.3: Contour lines of the vorticity, w = v, — Uy, at T = 1.2 with initial
(u?, v}, 8 = 0.05, using a 256 x 256 grid. (a) A “thick" shear layer with p = 30,
and v = 0. The contour levels range from —36 to 36 (cf. Figure 3c in Ref. [sD).
(b) A "thin" shear layer with p = 100, and » = 5 - 10™°. The contour levels range
from —70 to 70 (cf. Figure 9b in Ref. [5]).



Bibliography

{1

2]

[3)

14

P. ArMmion, D. STanEscu & M.-C. VIALLoN, A Two-Dimensional Finite Volume Bz-
tension of the Loz-Friedrichs and Nessyahu- Tadmo:r Schemes for Compressible Flow,
(1995}, preprint.

P. ArMmiIoN, D. STanmscu & M.-C. VIALLON, A fwo-dimensional finite volume eg-

tension of the Law-Friedrichs and Nessyahu-Tedmor schemes for compressible flows,

Preprint.

P. ARMINION & M.-C. VIALLON, Généralisation du Schéma de Nessyahu-Tadmor pour
Une Equation Hyperboligue ¢ Dews Dimensions [Vespace, C.R. Acad. Sci. Paris, t. 320
, série I, (1995), pp. 85-88.

F. BEREUX & L. SAINSAULIEU, 4 Roe-fype Riemann Solver for Hyperbolic Systems with
Relazation Based on Time-Dependent Wave Decomposition, Numer. Math,, 77, {1997),
pp. 143-185,

D. L. BrowN & M. L. Miniox Performance of wnder-resolved two-dimensional tncom-
pressible flow simulations, J. Comp. Phys. 122, {(1985) 165-183.

P. CoLELLA & P. WoODWARD, The piecewise parabolic method (PPM) for gas-dynamical
simulations, JCP 54, 1984, pp. 174-201.

B. EnaqQuisT & O, RUNBORG, Multi-phuse computations in geometrical optics, J. Comp.
Appl. Math., 1996, in press.

ERBES, A high-resolution Laz-Friedrichs scheme for Hyperbolic conservation laws with
source term. Application to the Shallow Water equations. Preprint.

K.O. FRIEDRICHS & P.D. LaX, Systems of Conservation Equations with o Conver Fz-
tension, Proc. Nat. Acad. Sci., 68, (1971), pp.1686-1688.

E. GODLEWSKT & P.-A. RAVIART, Hyperbolic Systems of Conservation Laws, Mathemat-
ics & Applications, Ellipses, Paris, 1991,

§.X. GopuNov, A finite difference method for the numerical compulation of discontin-
wous solutions of the equations of fluid dynamics, Mat, Sb. 47, 1959, pp. 271-290,

A. HARTEN, High Resolution Schemes for Hyperbolic Conserveiion Laws, JOP, 49,
(1983}, pp.357-393.

A. Harren, B, EngquisT, S. OsHER & 3.R. CHAKRAVARTHY, Uniformly high order
accurate essentially non-oscillatory schemes. III JOP 71, 1982, pp. 231-303.

Huynh, A pieceudse-parabolic dual-mesh method for the Euler equations, ATAA-95-1735-
CP, The 12th AIAA CFD Conf., 1895.

-8, Jane, D. Levy, C-T, L, 8. Osuer & E. TaDMOR, High- resoluiion Non-
Oscillatory Ceniral Schemes with Non-Siaggered Grids for Hyperbolic Conservatlion
Laws, SIAM Journal on Num. Anal., to appear.

G.-S Jianc & E. TADMOR, Nenoscilletory Centrel Schemes for Multidimensional Hy-
perbolic Conservation Laws, SIAM J. Scie. Comp., to appear.

73



BIBLIOGRAPHY 74

(17]
{18]

(19]
[20]

[21}

3. JiN, private communication.

8. Jw anD Z. X, The relaxing schemes for systems of conservation laws in arbitrary
spece dimensions, Comm. Pure Appl. Math. 48 (1995) 235-277.

B. vawv Luer, Towards the Ultimate Conservative Difference Scheme, V. A Second-Order
Sequel to Godunov's Method, JOP, 32, (1979), pp.101-136.

R. KUPFERMAN, Simuletion of viscoelastic fluids: Couetfe- Taylor flow, J. Comp. Phys.,
to appear.

R. KUPFERMAN, A numerical study of the axisymmetric Couetie- Taylor problem using a
fast high-resolution second-order central scheme, SIAM. J. Sci, Comp., to appear.

R. KUurPFERMAN & E. TADMOR, A Fast High-Resclution Second-Order Central Scheme
for Incompressible Flow s, Proc. Nat. Acad. Sci.,

R.J. LEVEQUS, Numerical Methods for Conservation Laws, Lectures in Mathematics,
Birkhauser Verlag, Basel, 1992, ’

D. Levy, Third-order 2D Ceniral Schemes for Hyperbolic Conservation Laws, in prepa-
ration.

D. Levy & E. TaADMOR, Non-oscillatory Ceniral Schemes for the Incompressible 2-D
Buler Bguations, Math. Res. Let., 4, (1997), pp.321-340.

X.-D. Ly & P. D. LaAX, Positive Schemes for Solving Multi-dimensional Hyperbolic
Systems of Conservation Lows, Courant Mathematics and Computing Labaratory Report,
Comm. Pure Appl. Math,

X.-D.L1u & 8. OsHER, Nonoscilletory High Order Accurate Self-Similar Mazimum Prin-
ciple Satisfying Shock Capturing Schemes I, SINUM, 33, no. 2 {1998), pp.760-779.
X.-D. Lw & E. TaDMOR, Third Order Nonoscillatory Central Scheme far Hyperbolic
Conservation Laws, Numer. Math., to appear.

H. Nessvapu & E. TADMOR, Non-oscillatory Central Differencing for Hyperbolic Con-
servation Laws, JCP, 87, no. 2 (1990), pp.408-463,

5. OsHER & E. TADMOR, On the Convergence of Difference Approzimaiions to Scalar
Conservation Laws, Math. Comp., 50, no. 181 {1988}, pp,19-51,

P. L. Ror, dpprozimate Riemann Solvers, Parameter Vectors, and Difference Schemes,
JTCP, 43, (1981}, pp.357-372.

A. ROGERSON & E. M=IBURG, A numericel study of the convergence properiies of ENO
schemes, I, Sci. Comput., 5, 1990, pp, 127-148.

O. RunBoRrG, Multiphase Computations in Geometrical Optics, UCLA CAM report no.
96-52 (1998).

V. Romano & G, Russo, Numerical solution for hydredynamical models of semiconduc-
tors, IEEE, to appear.

A.M. AniLe, V. RoMano & G. Russo, Extended hydredymnamicel model of carrier
transport in semiconductors, Phys. Rev. B., to appear.

F. Biance, G. Purpo & . Russo, High erder central schemes for hyperbolic systems
of conservation lews, STAM I, Sci. Comp., to appear.

R. Sanpers, A4 Third-order Accurate Variation Nonewpansive Difference Scheme for
Single Conservation Laws, Math. Comp., 41 (1988), pp.535-558.

R.SanpERs R. & A, WEISER, A High Resolution Siaggered Mesh Approach for Nonlinear
Hyperbolic Systems of Conservation Laws, JOP, 1010 (1992), pp.314-329.

P. K. Swesy, High Resolution Schemes Using Fluz Limiters for Hyperbolic Conservation
Laws, SINUM, 21, no. 5 (1984), pp.995-1011.

C.-W. 80U, Numerical experiments on the accuracy of ENO and modified ENO schemes,
JCP 5, 1990, pp. 127-149.



BIBLIOGRAPHY 75

[41} . SoD, A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws, JOP 22, 1978, pp. 1-31.

[42] B. TapMmor & C.C. Wu, Central Scheme for the Multidimensional MHD Equations, in
preparation.

[43] P. Woonwanp & P. CoLkLLA, The numerical simulation of {wo-dimenstonel fluid flow
with strong shocks, JOP 54, 1988, pp. 115-173.



Chapter 3

The Spectral Viscosity
Method

3.1 Introduction

Let Py stands for one of the standard spectral projections — Fourier, Cheby-
shev, Legendre .... It is well known that such spectral projections, Pyu, pro-
vide highly accurate approximations for sufficiently smooth u’s. This superior
accuracy is destroyed if u contains discontinuities. Indeed, Pyu produces a(n)
(Gibbs’ oscillations in the local neighborhoods of the discontinuities, and more-
over, their global accuracy deteriorates to first-order.

We are interested in spectral approximations of nonlinear conservation laws

Ou 8

5 -l-awf(u)m(), (3.1.1)
subject to initial conditions, u(z,0) = wp, and augmented with appropriate
boundary conditions. The purpose of a spectral method is 4o compute an ap-
proximation to the projection of u(:,?) rather than u(:,¢) itself. Consequently,
since nonlinear conservation laws exhibit spontaneous shock discontinuities, the
spectral approximation faces two difficulties:

Stability. Numerical tests indicate that the convergence of spectral approximations
to nonlinear conservation laws fails. In [26]-[28] we prove! that this fail-
ure is related to the fact that spurious Gibbs oscillations pollute the entire
computational domain, and that the lack of entropy dissipation then ren-
ders these spectral approximations unstable.

Accuracy. The accuracy of the spectral computation is limited by the first order
convergence rate of Pyu(,1).

With this in mind we turn to discuss the Spectral Viscosity (SV) method in-
troduced in [26]. Our discussion focuses on three aspects: the periodic Fourier

SV method in both — onre and several space dimensions and the nonperiodic
Legendre SV method.

1Consult the counterexamples in the introductory section of Lecture IV Lelow,

76
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In §3.2 we begin with the one-dimensional periodic problems. The purpose
of the SV method is to stabilize the nonlinear spectral approximation withcut
sacrificing its underlying spectral accuracy. This is achieved by augmenting the
standard spectral approximation with high frequency regularization. In §3.2.1
we briefly review the convergence results of the pertodic Fourier SV method,
[26]-i29], (171, [5], [21]. These convergence results employ high frequency reg-
ularization based on second order viscosity. In §3.2.2 we discuss spectral ap-
proximations based on “super-viscosity”, i.e., high-frequency parabolic regular-
izations of order > 2. These ’super’ spectral viscositles were introduced and
analyzed in [30]. Extensions of the spectral super viscosity to non-periodic
problems was presented in {13]. We prove the H~l-stability of these spectral
‘super-viscosity’ approximations, and together with L*°-stability, convergence
follows by compensated compactness arguments [31],(16].

In §3.3 we turn o the nonperiodic case and discuss the Legendre SV method,
[18]. Extensions to and applications with Chebyshev SV method can be found
in [12],[2],[15]. Firally, the multidimensional problem is treated in §3.5, along
the lines of [b].

We close this introduction by referring to the numerical experiments in
§3.4 quoted from [18]; see also [28]. These numerical tests show that by post-
processing the spectral (super)-viscosity approximation, the exact entropy solu-
tion is recovered within spectral accuracy. This post-processing is carried out
as a highly accurate mollification and operated either in the physical space as
in [103,[1],{18], or in the dual Fourier space as in [11],[19],[32]. It should be
emphasized that the role of post-processing is essential in order to realize the
highly accurate content of the SV solution.

For further applications in two- and three-dimensional atmospheric simulations
we refer to [2},[15},[7] and the references therein.

3.2 The Fourier Spectral Viscosity (SV) method

To solve the periodic conservation law (3.1.1) by a spectral method, one employs
an N-degree trigonometric polynomial

uy(z,t) = Z ()™ | (3.2.1)

[k|<N

in order to approximate the Fourier projection of the exact entropy solution,
Pyu.? Starting with uy(z,0) = Pyuo(z), the classical spectral method lets
upy (2,1) evolve according to the approximate model

Qgtﬁ + %[PN (_f('u‘.N))] =0. (3.2.2)

As we have already noted, the convergence of uy towards the entropy solution
of (3.1.1), un N2 % may fail, [26]. Instead, we modify (3.2.2) by augmenting
— o0

?The spectral Fourier projection of u{z) is given by E|k|<N{“l eik”)eikz; the pseudospec-
tral Fourier projection of u(z} is given by z]k|<N < u,e'RT > T where < u, et Bi=
Az, u{wy)e"‘.k‘”ﬂ is collocated at the 2N + 1 equidistant gridvalues m, = 2arvAz. Pyu
denotes either one of these two projections.
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it with high frequency viscosity regularization which amounts to
BuN 8 s+1 65 68 uN
En -+ 5 [PNf(uN(a:, t))} EN( 1) - @ (:1? t) * 5o s> 1

(3.2.3,)

This kind of spectral wiscosity can be efficiently implemented in Fourier space
ag

SNa_am';' [Qm($,t) * %ﬁ%} o E (ik)zsék(t)ﬁk(f)eikm ) (324)

m<| k<N
It involves the following three ingredients:
» the viscosity amplitude, £ = ep,

2c
E=en~ “N”ﬁ;%T; (3.2.5)
Here, C, is a constant which may depend on the fixed order of super-
viscosity, s. (A pessimistic upper bound of this constant will be specified

below — consult [5, Theorem 2.1]).
e the effective size of the fnviscid spectrum, m = my,

2s -1

mEmNNNg, ¢ < 5o

(3.2.6)

s the 5V smoothing factors, @k (t), which are activated only on high wavenum-
bers, |k| > my, satisfying

2s—1

- (%) "< Gty <1, |k| > my. (3.2.7)

The SV mmethod can be viewed as a compromise between the total-variation
shable viscosity approximation ~ see (3.2.9) and (3.2.15,) below — which is re-
stricted fo first order accuracy {corresponding to 6 = 0}, and the spectrally
accurate yet unstable spectral method (3.2.2} (corresponding to ¢ = 1). The
additional SV on the right of (3.2.3,) is small enough to retain the formal
spectral accuracy of the underlying spectral approximation, i.e., the following
estimate holds

gete & Y
”ENW [Qm(az,t)* ——am—f‘r [|z2(x) < Const-N g-p 1)”

lr2), Yg > p+l> —co.

(3.2.8)
At the same time this SV is shown in §3 & 4 to be large enough so that it
enforces a sufficient amount of entropy dissipation, and hence — by compensated
compactness arguments — {31],[16], to prevent the unstable spurious Gibbs’
oscillations.

8quN
xq

a
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3.2.1 'The Fourier SV method — 2nd order viscosity

The unique entropy solution of the scalar conservation law (3.1.1) is the one
which is- realized as the vanishing viscosity solution, u = lime)eu®, where uf
satisfies the standard viscosity equation

2

vt B, . 84 .

This section provides a brief review of the convergence results for the Fourier
SV method (3.2.3;) with s = 1. The convergence analysis is based on the close
resemblance of the Fourier SV method (3.2.3,) with s = 1 to the usual viscosity
- regularization (3.2.9). To quantify this similarity we rewrite (3.2.3,) with s = 1
in the equivalent form

BuN

&
- T a—mf(ﬂN(fﬂ,t))I

T N TN

Ry(z,t) a—w] + ;—m(f — Pn)f{un), |
(3.2.10

un 8 [ dun

where

1 k| < mu,

N
RN(&U,t) - kzz_:NRk(t)ezkm, Rk(i) = { 1 — Qk(t) ki > my. (3211)

Observe that the SV approximation in (3.2.10) contains two additional mod-
ifications to the standard viscosity approximation in (3.2.9).

{i} The second term on the right of (3.2.10) measures the difference between
the spectral viscosity, E‘N% [Qm(m,t) % Qaﬁf-], and the standard vanish-

ing viscosity, & ~EZUE The following straightforward estimate shows this

difference to be Lgf;)o.unded, V8 < %
lew o [RN(',t) Lo ] ls < Consten [mi&“ g [k mﬁv] flun )z
< Const - N¥Yjun (-, t)||2
< Const - Jun(-,2)|ize, 0 < 3.

(3.2.12)

{ii} The spectral projection error contained in the third term on the right of
(3.2.10) does not exceed

I~ Pr) (- O)llzs < Comstocll S-une (- o (3:2.13)

Equipped with the last two estimates one concludes the standard entropy dis-
sipation bound, [26], [17], [28], [5],

du 1
lun (Dl + \/“-:N”T;V‘”Lfoc(w,t) < Conmst,  en ~ - (3.2.14)



CHAPTER 3. THE SPECTRAL VISCOSITY METHOD 80

'The inequality (3.2.14) is the usual statement of entropy stability familiar from
the standard viscosity setup (3.2.9). For the L®-stability of the Fourier SV
approximation consult e.g. {17],[27, §5] and [b, §4] for the one- and respectively,
multi-dimensional problems. The convergence of the SV method then follows
by compensated compactness arguments, [31],{16].

We note in passing that the the Fourier SV approximation (3.2.3;), (3.2.56-
(3.2.8) shares other familiar properties of the standard viscosity approximation
(3.2.9), e.g., total variation boundedness, Oleinik’s one-sided Lipschitz regular-
ity (for 6 < $), L'-convergence rate of order one-half, [21],(28].

3.2.2 Fourier SV method revisited — super viscosity

In this section we remove the restriction # < 1 in (3.2.6), which limits the

portion of the inviscid spectrum. The key is to replace the standard second-
order viscosity regularization (3.2.9) with the “super-viscosity” regularization

Sut 623

Er E uf(z, 1). (3.2.15,)
The convergence analysis of the spectral “super-viscosity” method (3.2.3,) is
linked to the behavior of the “super-viscosity” regularization {3.2.15,). To this
end we rewrite (3.2.3,) in the equivalent form

9 - s1 07 un
o flun(2,8)) = en(-1) RIS

+ o (0 (2,1) = (1)

uy
ot

Fup
Oz

+€N@ Ly (z,t) * + B%(I — Pn)flun) = (3.2.16)

Jas

= Ti(un) +Zalun) + Zs(uw).

As before, we observe that the second and third terms on the right of (3.2.16),
To(un) and Tz(uy), are the two additional terms which distinguish the spectral
“super-viscosity” approximation (3.2.16) from the super-viscosity regularization
{3.2.15,). In the sequel we shall use the following upper-bounds on these two
terms.

{i} The second term, Zp{up), measures the difference between the SV regular-
ization in (3.2.16) and the “super-viscosity” in (3.2.15,). Using the SV
parameterization in (3.2.7}, (3.2.6) and (3.2.5) (in this order), we find that
this difference does not exceed

(—8)°
dxs

max |]si2’”23*;l
mu

&>

s TS

llex Has

< Const - N2 |y p (4 4)|| 22 <

IA

Comnst - [fun (-, t){z2, VO < 2L
(3.2.17)

[[un (- O)llz2
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Thus, the second term on the right of (3.2.16), To(un), is L:-bounded :
||Iz(uN)|§L2{$) < ConstHuN(-,t)HLz{x). (3.2.18)

{ii} Regarding the third term, Ts(uy), we shall make a frequent use of the
spectral estimate which we quote from [5, §2.3]%,

ar 1 89 1

57 =P (uw (5 O)lee < Cogrpllgum (o iles, Vo 29> o0, g> 5.
(3.2.19)

(The restriction ¢ > % is required only for the pseudospeciral Fourier

projection, Py, whose truncation estimate in provided in e.g., [25, Lemna

2.2]). An upper bound on the constants C; appearing on the right of

(3.2.19) is given by [5, Theorem 7.1]

€~ S IO lorlu s (3.2.20)
k=1

this estimate may serve as a (pessimistic) bound for the same constant
used in conjunction with the viscosity amplitude, e, in (3.2.5).

Next we turn to the behavior of the quadratic entropy of the SV solution,
Ulun) = %uj"\, (A similar treatment applies to general convex entropy functions
U{un).} Multiplication of {3.2.16) by uy implies

18 et
55”1% + ;—wf Eff{€)dE =

= uNIE(uN)‘i"UNIz(UN) +UNI;3(UN) = (3221)

= IT)(un) +IZs(un) + TLa(un).

The three expressions on the right (3.2.21) represent the quadratic entropy dis-
sipation + production of the SV method. Successive ”differentiation by parts”
enable us to rewrite the first expression as

5 2
IIl(uN) = &N Z (_1)5+p+1£ |:8P’ILN 89’11.1\1] —eN (6 ’LtN)

8z | fzP Ozt Oz*
p+g=2s-1
0<p<s
= IIll(uN) +Il'12(uN).

(3.2.22)

3As usual we let Zw(x) i= E(‘ik}l"t&(k)e‘.k‘”. Note that if fw(z)dz = 0 then 85w{x)
k70
with p < D coincides with the ip|-th order primitive of w(z}.
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Similarly, the second expression can be rewritten as

d (Puy [0'Ry(z,t) Fun
- _1ys+tr 2 :
IIz(’LtN) i ENp+qEzs:_1( l) 5z ( ) [ Ot * Az’ +

8

& UN
+EN -—a;:-s-RN(m, t) *

Fun

u
Je®

= IZZl(uN) + IIgg(UN).
(3.2.23)
Finally, we have for the third expression

a 6‘PuN a-r

a1
ITs(un) = Z(——l)l’a? [WW(I — Priflun)| -+
p=0

Fupy ot (3.2.24)

H1) o g (T = Pa)f(un)

= II31(UN) + ZI?,Q(UN).

We arrive at the following entropy estimate which plays an essential role in
the convergence analysis of the SV method.

Lemma 3.2.1 (Entropy dissipation estimate) .There exists a constant, Const ~
lun (-, 0)l|z2, (but otherwise is independent of N), such that the following esti-
mate kolds

331&]\{
OO P g Lo

lec

C
(z,) = Const, EN = %ﬁ“{ (3.2.25)

Remark. Observe that the entropy dissipation estimate in (3.2.25) is consid-
erably weaker in the “super-viscosity” case where s > 1, than in the standard
viscosity regularization, s = 1 quoted in (3.2.14).

Proof. Spatial integration of (3.2.21) yields

1d , 8
§E|§”N('=t)|fLe+€N§|3

A’ uy (8|32 = (UN,Iz(uN))L'z(m)-F (un, Za(un (o)

z

(3.2.26)

According to (3.2.18), the first expression on the right of the last inequality does
not exceed )

Hun, Zo(un))ze| < Const - [|un(-,2)]js. (3.2.27)

According to {4.6¢), the second expression on the right= {—1)* Qggﬁg‘%—%(l -

Py ) f(un), and by (3.2.19) it does not exceed

PFun C; | FPun 1 d° 2

Has ”L2 ' st_lll S® [Il--"2 < EENHEE“;UN(H?:)“L%
(3.2.28)

Hun, Za(uw ) za| < ||
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(In fact, in the spectral case, the second expression vanishes by orthogonality ).
The result follows from Gronwall’s inequality. M

Equipped with Lemma-3.2.1 we now turn to the main result of this section,
stating

Theorem 3.2.1 (Convergence.) Consider the Fourier “super-viscosity” ap-
prozimation (3.2.9;)-(3.2.7), subject to L*°-initial data, un(:,0). Then uni-
formly bounded uy converges to the unique entropy selution of the conver con-
servation law (3.1.1).

Proof. We proceed in three steps.

Step 1. (L™ -stability). The L*-stability for spectral viscosity of 2nd order,
s = 1, follows by LP-iterations along the lines of [17] and [5], (we omit the
details). The issue of an L bound for spectral viscosity of ’super’ order s > 1
remains an open question, The intricate part of this question could be traced
to the fact that already the underlying super-viscosity regularization (3.2.15,),
lacks monotonicity for s > 1: instead, it exhibits additional oscillations which
are added to the spectral Gibbs’ oscillations (Both types of oscillations are post-
processed without sacrificing neither stability nor spectral accuracy).

Step 2. (H1-stability). We want to show that both — the local error on the
right hand-side of {3.2.16), Z Zj(un), and the quadratic entropy dissipation

1<i<3
+ production on the right of (3.2.21), Z ZZ;(un), belong to a compact
1<j<3

subset of Hyl(z,1).

To this end we first prepare the following. Bernstein’s inequality gives us ¥p <
§5¢

HPupy Olun AP upy Hlupy
lew | et Z g g < Comstenl gt e et o <
by Bernstein inequalit < Const-ey - N7 weme 2 <
...by Bernstein inequality... < Const-en - NP |luyl|pe - I e ilrz (o, <
...by Lemma 3.2.1. .. < Const - /gy - NPH7% ||upi|pe ~
~ /20, NPFTEES gy pee.
(3.2.29)

Consider now the first two expressions, 73 (un} and ZZ1(un}. The inequality
(3.2.29) with (p, ¢) = (0,2s — 1) implies that 7;(un) tends to zero in Hy Nz t),

for
”Il(uN)ilH;i{m,t) S Const - v/ 2Ca/N . ”uNHLw — 0. (3230)
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We turn now to the expression ZZ,(uy) in (3.2.22): its first half tends to zero
in Hi; (x,t), for by (3.2.29) we have Vp+ ¢ = 25 — 1,

é’PuN 6quN

: a
ZZ13(un) = en- Z (““1)3+p"(§*m"" { DzP W] HH!‘ni(m,z) <
ptqg=2s—1
0<p<s
< Const-/2C,/N - > Hunl|pe <
prg=2s—1
0<p<s
< Const - 54/2C, /N - ||un|ze — 0;
(3.2.31)
o N2
the second half of 771 in (3.2.22), —en (a—a%g‘-‘ﬂ) ,isbounded in L} (x,t), consult

Lemma 3.2.1, and hence by Murat’s Lemma [16], belongs to a compact subset
of H;.1(z,t). We conclude

Hi {e)1)

leo

We continue with the next pair of expressions, To(un) and ZTZs(uy). Ac-
cording to (3.2.18), Ta(uy) — and therefore also TZa(un) = unZz(uy) — are
L%-bounded, and hence belong to a compact subset of H,";;l(m,t); in fact, by
repeating our previous arguments which led to (3.2.18) one finds that

2s—1

_1,,%u s— _
1 Z2(un )1 (2,2y € Const-enymiy 1”87‘?“”(”’0 < Constry/Exymiy t ~ /20, N~5 — 0.
(3.2.33)
A similar treatment shows that the first half of ZZ5(uy) in (3.2.23) tends to

ol o
zero in H, («,1), for

Prny) = v 3 (ol (G [Phled) oy,

ptg=s—1 €T 631?? 333‘1 6.’[,"9 foc

(o,8) =

B’uN
< eve Y. Nlunlize B wrt R ERRS

loc

pHgms—1
< Comst ey Y. NPH|uy|lzee < sv/2C, /N - |jun{|pe — 0.
p+g=s—1

(3.2.34)
The second half of TT;(un) is L-bounded, for
P un LET

0
”ZIQQ(HN) = EN—B?RN(m)t) * 5o

P upy
{lzr < Const-eNH_Bm—SH%?M(w't) < Const.

(3.2.35)
Finally we treat the third pair of expressions, Ts(uy) and ZZs{up). The
spectral decay estimate (3.2.19) with (p, ¢) = (0, s), together with Lemma 3.2.1
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imply that Za(un) tends to zero in Hroi(m,t); indeed

d Cs ,u
Zatu) = el = P gzt oy S U el ~ VAGTN = 0.
(3.2.36)
A similar argument applies to the expression ZZa(un) given in (4.6c). Sobolev
inequality — consult (3.2.29), followed by the spectral decay estimate (3.2.19)
imply that the first half of Z7Z3(un) does not exceed

o) = 317 |5 20— P an)

N bep Ba—P et S
p=0
§—1
FPuy o-r
< ;“ G 15 '”a—xrg(f — Pw)f(unilizs, o) <
§—-1 c asuN
< Const 'z;}Np““NHL“’f\f“ﬁ?“?ﬁéﬂl!bfoc{m) <
p=

~ Const - 54/2C, /N||unilz= ~ 0.

(3.2.37)
According to Lemma 3.2.1, the second half of ZZ3(un) is L'-bounded, for
_ Buy g7t un ¢, ., Duy
12232 (un) = WW(I—PNV(”N)HLJ« < N e sm=ill=ggs llze < Const,
(3.2.38)

and hence by Murat’s Lemma [16], belongs to a compact subset of H;;i"(a:,t)
We conclude that the entropy dissipation of the Fourier spectral ’super-viscosity’
method, for both linear and quadratic entropies, belongs to a compact subset
of H; 1(z,1).

Step 8. (Convergence). Lt follows that the SV solution uy converges strongly
(in I2,,¥p < oo) to a weak solution of (3.1.1). In fact, except for the LA
bounded terms TZy2(un) and TZ3z(un), we have shown that all the other ex-
pressions which contribute to the entropy dissipation tend either to zero or to a
negative measure. Using the strong convergence of uy it follows that 77 22(unN)
and ZZgs{un) also tend to zero, consult [17]. Hence the convergence to the
unique entropy solution. M

Remarks.

1. Low pass filter [8]. We note that the spectral “super-viscosity” in (3.2.3,)
allows for an increasing order of parabolicity, s ~ N*, p < 1/2 (at least for
bounded C,’s). This enables us to rewrite the spectral “super-viscosity”
method in the form

a 9 oo
% + s [Puf(un)] = =N m;N o5 )i (D™, (3.2.39)
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where ¢(£) is a symmetric low pass filter satisfying

< ke, €1 <1,
403 (3.2.40)
z 6%~ %, i€l>o.

In particular, for s ~ N#, one is led to a low pass filler which is -
tailored at the origin, consult [32].

2. Super viscosity regularization. The estimates outlined in Theorem 3.2.1
imply the convergence of the regularized ’super-viscosity’ approximation
u® in (3.2.15,), to the entropy solution of the convex conservation law

(3.1.1).

Assertion 3.2.1 Consider the 'super-viscosity’ regularization (3.2.15,),

Ous & . _ b1 62.9 .
+5g /W (@, 1) = e(=1) ot (2,8), (3.2.41)

o

subject to given L' () L-initial data, u(-,0). Assume that u® is uniformly
bounded. Then u® converges to the unique entropy solution of the conves
conservation law (3.1.1).

The question of L™ bound for the superviscosity case — (3.2.41) with
s > 1, is open. Unlike the regular viscosity case, the solution operator
assoclated with (3.2.41) with s > 1 is not monotone — here there are
"gpurious” osciliations, on top of the Gibbs’ oscillations due to the Fourier
projection. What we have shown is that the oscillations of either type
do not cause instability. Moreover, these oscillations contaln, In some
weak sense, highly accurate information on the exact entropy solution;
this could be revealed by post-processing the spectral {(super)-viscosity
approximation, e.g. [18].

3.3 Non-periodic boundaries

In this section we discuss the Legendre SV method, [18]. Extensions to Cheby-
shev SV method can be found in {12], [15]. Applications to atmospheric simu-
lations can be found in [2).

3.3.1 The Legendre SV approximation

In the spectral viscosity approximation of (3.1.1) we seek a Py-polynomial of
N

the form un(z,t) = Zﬂk(t)Lk(a:), such that V¢ € Py[—1,1], we have
k=0

(g + e ), O = = (@ o, L + (Bluw), By (3.3.1)



CHAPTER 3. THE SPECTRAL VISCOSITY METHOD 87

The approximation (3.3.1) involves the boundary operator, B(uw), and the
Spectral Viscosity operator, Q. Here, B(un) is a forcing polynomialin Py [-1,1]

of the form
Blun) = ML - @)+ pl)(L+ )] Ly (@), (3.3.2)

involving (at most) two nonzero free parameters, A(t) and p(f), which should
enable un(z,t) to match inflow boundary data prescribed at & = 41 whenever
+f (un(21,1)) < 0. And, Q denoctes the spectral viscosity operator,

N =5
Qp=> Ndels, Vo= > delx, (3.3.3)

k=0 k=0

which is associated with bounded viscosity coefficients,

QkEEO k < mp,

s (3.3.4)
12@;@_%(%) k> my.

The free pair of spectral viscosity parameters (en,my) will be chosen later,
such that ey | 0 and my T oo, in order to retain the formal spectral accuracy
of (3.3.1) with {3.1.1). We close this section by explaining how the SV method
{3.3.1) can be implemented as a collocation method. Let us *test’ (3.3.1) against
¢ = ¢;, where ¢; is the standard characteristic polynomial of Fy[~1, 1j satis-
fying $:(&;) = 65,0 < 4,§ < N. At the interior points we obtain

d e a é] ) '
EEUN(&:"E) + a_mINf(UN)(Ei;t) = EN%Q(a_mUN)(&;t): 1<i< N (—313- )

These equations are augmented, at the outflow boundaries, (say at © = +1),
with

d d a 8 en ., O
E%UN(+1;t)+‘é“£INf(UN)(+1st) = EN%Q(EEUN)(-I—Lt}—w—N—Q(-a—wuN)(—{-},t).

(3.3.6)
We note that the last term on the right of (3.3.6) prevents the creation of a
boundary layer. Equations (3.3.5), (3.3.6) together with the prescribed inflow
data (say at @ = —1), furnish a complete equivalent statement of the pseu-
dospectral (collocation) viscosity approximation (3.3.1).

The SV approximation (3.3.5),(3.3.6) enjoys formal spectral accuracy, Le.,
its truncation error decays as fast as the global smoothness of the underlying
solution permits. However, it is essential to keep in mind that this superior
accuracy cannot be realized in the presence of shock discontinuities, unless the
final SV solution is post-processed. The rest of this section is devoted to clarify
this point.

Epilogue — on spectral post-processing

It is well-known that spectral projections like wyu, Zyu, ete., provide highly
accurate approximations of u, provided u itself is sufficiently smooth. Indeed,
these projections enjoy spectral convergence rate. This superior accuracy is de-
stroyed if u contains discontinuities: both myu and Zyu produce spurious o)
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Gibbs’ oscillations which are localized in the neighborhoods of the discontinu-
ities, and moreover, their global accuracy is deteriorated to first-order.

To accelerate the convergence rate in such cases, we follow a similar treat-
ment in [10] for the Fourier projections of discontinuous data. We introduce a
mollifier of the form

$ —
VP () y) = P(ma—y)ffp(ﬂf; ¥) (3.3.7)
which consists of the following two ingredients:
* p(z) is a C5°(—1, 1)-localizer satisfying p(0) = 1;
o K,(z;y) is the Christoffel-Darboux kernel

K (a3) = i Li@Li(g) _ (p+1) Lot (@)Lp(W) = Lpsa @)Ly (z)

2L T 2 m—
(3.3.8)
We let F*# denote the smoothing filter
1
Febu(e) = / Per=IN g V() dy, (3.3.9)
g=—1

depending on the two fixed parameters, o, € (0,1). Then, the following
spectral error estimate was derived in [20]: ¥s > 1 there exists a constant Cs
such that

) () (#) < O | N g+ NG s (Do)

Y| <a

954 <s

(3.3.10)

Similar estimate holds for Zy. These estimates show {at least for § < %) that
except for a small neighborhood of the discortinuities (measured by the free
parameter «), one can filter the Legendre projections, wyu and Zyu, in order
to recover pointwise values of u within spectral accuracy.

Next, let u be the desired exact solution of a given problem. The purpose
of a spectral method is to compute an approximation to the projection of u
rather than u itself. Consequently, if the underlying solution of our problem
is discontinuous, then the approximation computed by a spectral method, 1y,
exhibits the two difficulties of local Gibbs’ oscillations, and global, low(=first)-
order accuracy.

With this in mind, we now turn to discuss the present context of nonlinear
conservation laws. The standard, viscous-free spectral method supports the
spurious Gibbs’ oscillations which render the overall approximation unstable
(consult the introductory counterexamples in Lecture IV below). The task of
the Spectral Viscosity is therefore two fold: to stabilize the standard spectral
method {(— which is otherwise unstable), and to retain the overall spectral
accuracy of the underlying spectral method.

The question of stability is addressed in the following sections: we prove that
Spectral Viscosity guarantees the H~'-stability (and hence the convergence) of
the Legendre SV approximation,

LY —bmuy(z,t) = u(e,t), Vp < co. (3.3.11)

loc
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The question of spectral accuracy requires further clarification. As noted above,
the Legendre SV solution, un{-,t), should be considered as an accurate approx-
imation of Zyu(-,t), rather than u(-,t) itself. Therefore, the convergence rate
of the SV method is limited by the first order convergence rate of Zyu(-,1). (Of
course, this limitation arises once shock-discontinuities are formed). We recall
that according to (3.3.10), this first-order limitation can be avoided by filtering
Inu: the filtered interpolant, F®#(Iyu), retains a spectral convergence rate,
at least in smooth regions of the discontinuous entropy solution u(-,t). This
suggests to apply the same filtering procedure (3.3.9) to uw(-,?), in order to
accelerate the convergence rate of the SV method.

Let {(t)}1_, denote the computed coefficients of the Legendre SV method.
The computation of the SV solution is based on adding spectral viscosity only to
the ”high” modes - those with wavenumbers k > my . Therefore, one ezpecis the
(un, Lu)N b=

L%
1,...,my, to be spectrally accurate approximation of the exact psendospectral
(’LL, Lk)N

Il el
according to (3.3.10) one can post-process the SV solution, un(-,£), in order
to recover spectral convergence rate in smooth regions of the entropy solutions.
Thus, at the final stage of the SV method, (3.3.5),(3.3.6) should be augmented
with the post-processing procedure

computation of the viscous-free coeflicients, at least, 4x(t) =

Legendre coefficients, Assuming that indeed this is the case, then

1
Fobyp(z,t) = f \I!""p:Nﬂ(a:;y)uN(y)dy. (3.3.12)

w=—1

The numerical experiments in [23] confirm that the SV method contains a
spectrally accurate information about the discontinuous solution — by post-
processing one recovers this information despite the presence of shock disconti-

nuities.
We conclude by noting that the post-processing of the SV solution plays a

necessary key role in realizing the spectral accuracy of the SV method within
smooth regions of the underlying solution. The treatment of Gibbs’ oscillations
in the neighborhood of discontinuities requires an alternative ‘one-sided’ filtering
procedure, which is studies in e.g., [9].

3.3.2 Convergence of the Legendre SV method

We want to prove the convergence of (3.3.1) by compensated compactness ar-
guments. To this end we want to show that ZU(uy)+ & F(un) belongs to a

compact subset of H; X(z,1) for all convex entropy pairs (U(un), F(un)). Our
main tool in this direction reads [18, §5]

Lemma 3.3.1 4 weak represeniation of the truncation error of the Legendre
viscosity approzimation (3.3.1) is given by

Gyt i)=Y 5@, denen(-L1,  (331)
j=1
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where the following estimates hold:

; I <@ 1 : 1,0 ' 3.3.14
32 50012 000 16—l + gl ] (30,11
1)) < Oewmi /BN, (33.15)

[1s(¢) = “EN([_%HN, —(%m)l < @(\/Ef;)ué%mn, (3.3.16)
Is(¢) = 2(—1)V+H ff M) b {—1,t)dt. (3.3.17)

Here, ¢n(-,t) is an arbitrary IPn-polynomial at our disposal.

Appropriate choices of test functions, ¢n yield the desired convergence fe-
sult,

Theorem 3.3.1 Leluy(z,t) be the Legendre wiscosity approzimation of (8.8.1},
(8.8.4), with spectral viscosity parameters (en,muy) which satisfy

1
0len ~ =, mpy < Const - N ¥ with 0<q<@<1. (3.3.18)
Then, (a subsequence of) un(w,t) converges strongly (in ., p<oo)toa
weak solution of the comservation law (3.1.1). Moreover, if § < 1, then (the

whole sequence of ) un(z,t) converges strongly to the unique entropy solution of
(3.1.1).

3.4 Numerical results

In this section we will present numerical experiments which demonstrate the
performance of the Legendre SV method for systems of conservation laws. We
consider the approximate solution of the Euler equations of gas dynamics,

5 ! p pU
é}—u(m,t) + ggf(u(:c,t)) =90, u=1 pv fl) =1 p?+p |,
E v(E + p)
(3.4.1)
where p denotes the density of the gas, v its velocity, m = pv its momentum, E
its energy per unit volume and p = (y-1)-(E — % pv?) its (polytropic) pressure,
= 1.4.

7 The Legendre SV approximation of this system reads

GOV L0 + oIy fn)E 1) = en D QB )€ ), 1SiS N1,
(3.4.2)
Here, un = *(pw, pyvw, En) € PF[—1,1] denotes the polynomial approxima-
tion of the 3-vector of (density, momentum, energy), and Q abbreviates a general
3 x 3 spectral viscasity matrix, {Qi’f W I < 4,5 <3 which is activated only

=mgy?
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on ‘high’ Legendre modes, i.e., Qi’j = 0, Yk > my (£, 7). The numerical results
reported in this section were obtaned using a simple scalar viscosity matrix,

& d a a8 -
Q(EEUN) = t(Q'ggpN, Q%PN”N: QE:EEN)’ (3.4.3)

with the viscosity coefficients, Qy,given by

. _ A2
G = e:cp{—m(%c_‘——rg)—z , k>mpy, (3.4.4)

The Legendre SV method (3.4.2,(3.4.3) amounts to a nonlinear system of
(N + 1)® ODEs which was integrated in time using the second order Adams-

Bashforth QDE solver.
We implemented the SV method for two test problems.

e The Riemann shock tube problem [22]. Our first example is the Riemann
problem (3.4.1), subject to initial conditions

ue = (1., 0, 2.5), 2 <0,
u(z,0) =

u, = $(0.125, 0, 0.25), =z > 0.

(3.4.5)

- 0.5 ¢ 0.5 i

(2) ' (b)

Figure 3.4.1: Density py with N=128 Legendre modes. {(a) before and (b) after
post-processing,.
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Figure 3.4.2: Velocity vy with N=128 Legendre modes. {a} before and (b) after
post-processing.
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Figure 3.4.3: Pressure uy with N=128 Legendre modes. (a) before and (b) after
post-processing,

Figures 3.4.1a, 3.4.2a and 3.4.3a display the computed density gy, velocity
vpy, and pressure py, with N = 128 Legendre modes. The numerical results
in these figures show that the presence of Spectral Viscosity guarantees the
convergence of the pseudogpeciral Legendre method that is otherwise unstable.
However, Gibbs’ oscillations which are inherited from the projecied solution,
Inu{-,t), are still present. ‘

To remove these oscillations without sacrificing spectral accuracy, the SV
solution on the left side of figures (3.4.1)-(3.4.5) was post-processed using the
filtering procedure (3.3.9), F*# with (o, 8) = (0.2,0.85). Again, as in the scalar
case, the post-processing leads to a dramatic improvement in the quality of the
computed results, revealing the high-resolution content of the SV computation.
In particular, comparing the results obtained by the post-processed SV method
in figures 3.4.1b-3.4.3b, we find the representation of the rarefaction wave and
the capturing of the contact discontinuity to be better than the results obtained
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by the finite-difference methods in [22] or the high-resolution schemes in [22].
(It is worthwhile noting that these high resolutions results of the SV computa-
tions were obtained without the costly characteristic decompositions which are
employed in the modern high resolution finite difference approximations.)

The resolution of the shock discontinuity, however, still suffers from a smear-
ing of spurious Gibbs’ oscillations. As told by the error estimate (3.3.10), the
oscillations in the neighborhood of the discontinuities cannot be removed by the
filtering procedure (3.3.9). Instead, these oscillations can be avoided by using
an alternative ‘one-sided’ filter which is currently under investigation [9].

5 5
45
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35
31
25 2.5
2 2
15f E 1.5} 1
| W 1k L\/\,
025 Y 0 ¥ 1 935 0.5 0 03 1
(a) (b)

Figure 3.4.4: Density py with N=220 Legendre modes. (a) before and (b) after
post-processing.

o3}
ot %Mw«u o351
0.5 . . . 0 : . L
-1 03 0 03 1 gl oY B 05 i
(a) (b}

Figure 3.4.5: Velocity vy with N=220 Legendre modes. (a) before and (b) after

post-processing.
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Figure 3.4.6: Pressure py with N=220 Legendre modes. (a) before and (b} after
post-processing.

o The shock-disturbance interaction e.g., [SO]. Our second example mod-

els the interaction of a sinusoidal disturbance and a shock wave due to initial
conditions

(3.857143, 10.333333, 2.629369), z < 0.8,
(p(z,0),v(=, 0}, p(z,0)) =
(1. + 0.2sin(5rz), 0., 1.), z > —0.8,
(3.4.6)
The exact solution of this problem, {3.4.1),(3.4.6), consists of a density wave
that will emerge behind the shock discontinuity, and the fine structure of this
density wave makes the current problem a suitable test case for high order
methods. For example, second order MUSCL type schemes, [14], are unable to
resolve the fine structure of the density wave unless the number of grid points
is substantially increased.

The Legendre SV method was tmplemented in this case with SV parameters
(ew,mn) = (#,8VN). Figures 3.4.4-3.4.6 display the numerical results of the
SV approximation which was integrated in time by the second-order Adams-
Bashforth method with time step Af = 2.5.107°,

Figures 3.4.4a, 3.4.5a, and 3.4.6a show the approximated density py, ve-
locity vy, and pressure py at ¢ = 0.36, computed with N = 220 Legendre
modes. These results were post-processed by the filtering procedure (3.3.9),
F*P | with (a, 8) = (0.1,0.89). Figures 3.4.4b, 3.4.5b and 3.4.6b present the
post-processed results, which show that the velocity and pressure waves are well
resolved. The density wave still contains Gibbs’ oscillations in the neighborhood
of the shock discontinuity, and its first extrernum behind the shock is smeared
by our smoothing filter. Here, a ’one-sided’ filter would be recommended in-
stead. A better resolution of the density profile near the shock was obtained
by a different spectral method presented in [3]. However, the latter is a shock
fitting like method which might not be easy to extend to higher dimensions.
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3.5 Multidimensional Fourier SV method

We want to solve the multidimensional 27-periodic initial-value problem, (3.1.1)
by a spectral method. To this end we approximate the spectral /pseudo-spectral
projection of the exact entropy solution, Pyu(-,t), using an N-trigonometric
polynomial, un (2,1} = 3 i< v Ue (t)e't®, which is governed by the semi-discrete
approximation

d
%w(m,tnag Puflun(z,t) =en > BQ% (2, ) xun(e,?).  (35.1)

iik=1

Together with one’s favorite ODE solver, (3.5.1} gives a fully discrete method
for the approximate solution of (3.1.1).

To suppress these oscillations, without sacrificing the overall spectral accu-
racy, we augment the standard Fourier approximation on the right-hand side of
(3.5.1) by spectral viscosily, which consists of the following three ingredients:

¢ A vanishing viscosity amplitude, ey, of size
en~N7% 6<l. (3.5.2)

o A viscosity-free spectrum of size my >> 1,

e

N

~—22 a1 3.5.3
(log N)% (3.5.3)

my
o A family of viscosity kernels, Q}i@k(z,t) = Zf}]:mN Qé’k(t)e"f'x, 1<

4,k < d, activated only on high wavenumbers || > my, which can be
conveniently implemented in the Fourier space as

d N d
ev Y AQiun(e )= —en Y < @b, > %), < Qe € >= > Q)4
ik=1 lei=man i k=1
(3.5.4)
The viscosity kernels we deal with, Q"R,k(m,t), are assumed to be spherically
symmetric, that 1s, Qg’k = Aj’;‘k,\:’i& | = p, with monotonically increasing Fourier

coeflicients, Q{,'k, that satisfy
2
a I
iQf)’k — 6| < Const.p—gN, ¥p > mn. (3.5.5)

The main convergence result, quoted from [5], are based on the following
two lemmas.

Lemma 3.5.1 (L*° stability) There exisis a constant such that

lun( t)]izee(zy < Const - [lun(:, 0)|JLeorny, W0 ST (3.5.6)
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Lemma 3.5.2 (Entropy Consistency) . There crists a vanishing sequence,
en, such thal

%U(UN) + 0. - Fluy) <exy —0, inD. (3.5.7)

Proofs of Lemma 3.5.1 and Lemma 3.5.2can be found in {5]. Granted the
L*-stability and the entropy consistency, we can combine DiPerna’s unigueness
result for measure-valued solutions [6] with the finiteness of propagation speed
(see also [24] for the case of bounded domains) to conclude the following.

Theorem 3.5.1 Letuy be the solution of the SV approzimation (9.5.1)-(3.5.5),
subject 1o bounded intlial conditions satisfying

“'LLN(-, O)HL‘”(m) -§‘63||3:,UN(-, 0)”[.“(0;) < Const. (3.5.8)

Then un converges strongly to the unigue entropy solution of (3.1.1).
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Chapter 4

Convergence Rate
Estimates

Abstract. Let {v*(2,1)}c>0 be a family of approximate solutions for the convex
conservation law u; + f(u)e = 0 subject to C-initial data, ug{z). The notion
of approwimate solutions is quantified in terms of Lip'-consistency: we assume
that {v¢(z,t)} are Lip'-consistent in the sense its initial+truncation errors are
of order O(c), [[v°(+0) — wo(Ilzipe) + I16F + S0 Nallpipt oy = OF). Here, &
is the ’small scale’ of the approximate solution, e.g., the vanishing amplitude
of size ¢, a gridsize of order € ~ Az, etc. We then prove that stability 1mplies
convergence; namely, if {v°(z,)} are Lip™-stable ( —in the sense that they sat-
isfy Oleinik’s E-entropy condition), then they converge to the entropy solution,
and the convergence rate estimate ||v° (-, ) —u(-, )| iy = O(£) holds. Conse-
quently, the familiar LP-type and new pointwise error estimates are derived. In
particular, we recover classical L!-estimates (& al Kuznetsov) of order O(y/g).
And we improve it to an O(g) pointwise error estimate for all but finitely many
©(e)-neighborhoods of shock discontinuities.

These convergence rate results are then demonstrated in the context of var-
ious approximate solutions, including Chapman-Enskog regularization, finite-
difference schemes, Godunov-type methods, spectral viscosity methods, ...

4.1 Introduction

We are concerned here with the convergence rate of approximate solutions o
the nonlinear scalar conservation law,

uy + fu)e =0, (4.1.1)
subject to C}-initial conditions,
u(z, 0} = uo(a). (4.1.2)

In this context we first recall Strang’s theorem which shows that the classical
Lax-Richtmyer (LR) linear convergence theory applies for such nonlinear prob-
lem, as long as the underlying solution is sufficiently smooth e.g., [29, §5]. The

99
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generic convergence error estimate in this context reads
o0, 8) = u(, ] < Cr{l1v° (5 0) — woC)ll + lef + F(v*)all], 0 <t T, (4.1.3)

Here, {v*}, is a family of approximate solutions which is tagged by its ’small
scale’, ¢, e.g., a viscosity amplitude of size ¢, a grideells of size £ ~ A, the
number of Fourier modes, N ~ £~!, etc. The linear Lax-Richtmyer theory
tells us that if the approximate solution is stable, [lvf (-, )]} < Const, then
the error, [|v*(-,¢) — u(-,t)|l is upper bounded by the initial+truncation errors,
given respectively on the right of (4.1.3). In particular, if the approximation is
consisient { — in the sense that that its initial+truncation errors tend to zero
as £ | 0), then stability implies convergence.

What norm, || - ||, should be used in (4.1.3)? The 4near Lax-Richtmyer theory
is often implemented in term of the L? norm; likewise, Strang’s extension to
nonlinear smooth problems is usually expressed in terms of higher Sobolev ¢
norms. There are two main reasons for the use of the L? framework:

1. It is the appropriate topology te measure stability and well-posedness of
hyperbolic systems;

2. The Fourier space serves as a 'mirror site’ for the real space LZstability
and error analysis. The von-Neumann stability analysis for finite-difference
schemes is a classical example.

Since the solutions of the nonlinear conservation laws develop spontaneous
shock-discontinuities at a finite time, however, Strang’s result does not apply
beyond this critical time. Indeed, the Fourier method as well as other L2-
conservative schemes provide simple counterexamples of consistent approxima-
tions which fail to converge (to the discontinuous entropy solution), despite their
linearized L*-stability. Here are two counterexamples in this directions (more
can be found in [38, 37, 13].)

Counterezample 1 [38]. The Fourler approximation of the 27-periodic equa-
tion (4.1.1), expressed in term of the Fourier partial sum projection Sy, reads °

d d

S0z, 01+ o[ Fow (2, )] = 0,

Multiplying this by vx (,t) and integrating over the 2r-period, we obtain that
vy~being orthogonal to Z-{(I — Sy)f(vn (,1))], satisfies

1d 27 5 27 5 vl{m,t) , pezn
5&/0 v (2, t)de = _/o vN(ﬂ:,t)—gE[f(vN(m,t))]dm:—/ uf(u)du|7=2" = 0.

Thus, the total quadratic entropy, n(u) = %—uz, is globally conserved in time

1 2 1 27
-me v (2, t)de = 5/ v (z, 0)de, (4.1.4)
0 0

which in turn yields the existence of a weak L?(z)-limit, @(x, ) = wlimp .o vn (z,1).
Yet, T(z,?) cannot be the entropy solution of a nonlinear equation (4.1.1) where
f7(-) # 0. Otherwise, Sy f(vn(z,t))} and therefore f(uy (#,%)) should tend, in
the weak distributional sense, to f((z,1)); consequently, since f(u) is nonlinear,
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T(x,t) = slimy_c vn(2,t), which by (4.1.4) should satisly %foh T (z,1)de =

3 02 " %?(2,0)de. But this is incompatible with the (quadratic) entropy nequal-

ity if u(x,t) contains shock discontinuities.

Our second example is a discrete one.

Counterezample 2. We consider the 27-periodic conservation law

du  9(e”)
& ter O

Expressed in terms of the trigonometric interpolant at the equidistant gridpoints
Ty = —2%,"1—1, the corresponding spdospectral approximation reads

d 7]
gl (@ 0]+ grlhne 0 = 0.

Multiply this by vne*™ (=) and integrate over the 2m-period: since the
trapezoidal rule is exact with integration of the 2N-trigonometric polynomial
obtained from the second brackets, we have

d 2N - 8 1
—C_H E eUN(mvyt)Am — __./D é&”[ﬁ(ibNeUN(w’t))z]dm - 0.

po=0

Thus, the total exponential entropy, 7{u) = ¢*, is globally conserved in time

2N 2N
> o (@, )As =3 n(on (e, 0)As,  n(w) = (4.1.5)

Hence, if un{x,t) converges {even weakly) to a discontinuous weak solution,
u(z, 1), then Py ¢"~{@1) tends (at least weakly) to ¢¥(™%), Consequently, (4.1.5)
would imply the global entropy conservation of [, 0” @t dg in time, which rules
out the possibility of @(z,t) being the unique entropy solufion.

In this chapter we extend the linear convergence theory into the weak regime.
The extension is based on the usual two ingredients of stability and consistency.
On the one hand, the counterexamples mentioned above show that one must
strengthen the linearized I2-stability requirement. We assume that the approx-
imate solutions are LipT-stable in the sense that they satisfy a one-sided Lips-
chitz condition, in agreement with Oleinik’s E-condition for the entropy solution.
On the other hand, the lack of smoothness requires to weaken the consistency
requirement, which is measured here in the Lip'-(semilnorm. As a guiding ex-
ample, let us consider the usual viscosity approximation, »*, with ’truncation
error’ evs_. Localized to the neighborhood of shock discontinuities we find that

flevialie = O(é:l_;’}"") which rules out the L? norms as possible measures for
the & priori error estimate (4.1.3); instead, the weak Lip'-(semi)norm yields a
truncation error of size ||eve,||Lipr = O(e) which agrees with the fact that ¢ is
the smallest scale present in a viscosity approximation in this case.
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In §4.3.1 we prove for Lip*-stable approximate solutions, that their Lip'-
convergence rate to the entropy solution is of the same order as their Lip/-
consistency. Thus, we show that under the assumption of Lip*-stability, the
basic Lax-Richtmyer & priori error bound (4.1.3) still holds when we replace the
L% with the weaker Lip’ norm.

Our Lip'-convergence rate estimates could be converted into stronger L? con-
vergence rate estimates. In particular, we recover the usual L'-convergence rate
of order one half, and we obtain new pointwise error estimates which depend on
the local smoothness of the entropy solution. In fact, though the Li-convergence
rate of order (){+/¢) is optimal, in practice one obtains an Ll-rate of order Ofe),
when there are finitely many shock discontinuities, [42],[43] (and these are the
only solutions that can be computed!). In this case, we can use our Lip/ theory
to derive local error estimates which improve the L'-result: using a bootstrap
argument we show in [41], that the Lip*-stable approximate solutions satisfy
an O(e) pointwise error estimate for all but finitely many @(e)-neighborhoods

of shock discontinuities. . .
We now turn to the multidimensional setup. Kuznetsov [15] was the first

to provide error estimates for scalar approximate solutions, {v*}, for both —
the one- and multi-dimensional setups. Subsequently, many authors have used
Kuznetsov’s approach to prove convergence + Ll-error estimates; we refer for
the detailed treatments of [31], [22], [42],... . A more recent treatment of 7]
employs the entropy dissipation estimate (1.5.3), which in turn, by Kuznetsov
arguments, yields an L'-convergence rate estimate of order (Am)% (indepen-
dently of the BV bound).

Kuznetsov’s approach employs a reqularized version of Krugkov’s entropy
pairs in (1.2.8), 5°(v%;¢) ~ |v* — ¢, Fé(v%;¢) ~ sgn(v® — c)(A(v) — Ale)).
Here, one measures by how much the entropy dissipation rate of {v*} fails
to satisfy the entropy inequality (1.2.3), with Kruzkov’s regularized entropies.
Following the general recent convergence result of [2], we consider a family of
approximate solutions, {v*}, which satisfies

Oul® = el + Vo - {sgn(v* — )(A(v") — A(c))} < & Ralt, 2) + Vs - R(t, 2), (4.1.6)

with

[[Ralt, 2)ime,,, + |1 R(z, £)]| A1, , < Const - &. (4.1.7)
Then, the convergence rate proof proceeds along the lines of Theorem 1.2.1:
Using the key property of symmetry of the regularized entropy pairs, (n =
¢sn, F° .= ¢sF), one finds [, (v u)de < Const.e/8. In addition, there is
a regularization error, {|n® — l|L1¢w), of size O(8), and an L' error estimate of

order O(+/€) follows (under reasonable assumptions on the L-initial error w.1.t.
BV data), consult [2]

10° (. 2) = u(-, Dllz,_oy < Comst.&.

Observe that this error estimate, based on (4.1.6)-(4.1.7) is the multidi-
mensional analogue of our Lip'-consistency requirement. In general, Kuznetsoy
approach makes a stronger requirement of approximate entropy inequalities (—
Le., in terms of all of Kruzkov’s pairs), and in return, ones obtains convergence
results which apply to general, non-convex equations. The lectures by B. Cock-
burn provide a detailed account of Kuznetsov’s I -convergence theory. In this
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chapter we therefore focus our attention on the Lip'-convergence theory men-

tioned above. Its multidimensional extension dealg with convex Hamilton-Jacobi
equations {rather than conservation laws), consult §4.3.2.

In §4.4 we implement these error estimates for a variety of approximate
solutions. The examples we discuss include

e Regularized Chapman-Enskog approximations [33];

Finite-difference E-schemes [24];

Godunov-type schemes [26];

*

Glimm’s scheme [24];

L

Spectral viscosity approximations, [40]

Other examples dealing with 2 x 2 systems with and without stiff relaxation
coupling terms could be found in [27],{18].

4.2 Approximate solutions

We study approximate solutions of the scalar convex conservation law

d a "
= — = > .2,
atu(a:,t) + 5 flu(m,th =0, f'>a>0, (4.2.1)
with compactly supported initial conditions prescribed at ¢ = 0,
u(z,t = 0) = up(z). (4.2.2)

Let {v*(2,%)}esc be a family of approximate solutions of the conservation
law (4.2.1), (4.2.2) in the following sense.

Definition 4.2.1 A. We say that {v°(z,1)}.u0 are conservative solutions if

/mve(m,t)dwzluo(w)dx, t > 0. (4.2.3)

B. We say that {v*(z,1)}e»0 are Lip’-consistent with the conservation law (4.2.1),
(4.2.2) if the following estimates are fulfilled"
(i} consisiency with the initial conditions ({.2.2),

Ho® (2, 0) — uo(@)||pip < Ko € (4.2.4)
(1) consistency with the conservation law (4.2.1),
o (=, 8) + F(v* (=, ))allLipie o) < K7 - €. (4.2.5)

1We let!|dl 7.ip, ||¢|]L|’p+a‘nd”¢“1,ip' denote  respectively, €885UP Tty 12(5:'}:%&1|'
#lz)— 4 -
eSSSUP gy [.i_:)r___:'ﬁil] N and sup.y ¢i ‘f‘lf“_p, where ¢p = fsupprﬁ P,




CHAPTER 4. CONVERGENCE RATE ESTIMATES 104 -

We are interested in the convergence rate of the approximate solutions,
v*(z,1), as their small parameter ¢ | 0. This requires an appropriate stabil-
ity definition for such approximate solutions. Recall that the entropy solution
of the nonlinear conservation law (4.2.1), (4.2.2) satisfies the a priori estimate
4, 39]

1

TS S
Huo! Lipt +at
‘The case ||ug|{zip+ = oo is included in (4.2.6), and it corresponds to the exact
~ 17! decay rate of an initial rarefaction.

Definition 4.2.2 We say that {v*(z,1)}en0 are LipT-stable if there exisis a

constant 8 > 0 (independent of t and &) such that the following estimate, anal-
ogous to (4.2.6), is fulfilled:

[l )i+ < (4.2.6)

£ . - I
(i) pipt < 0 (.0 E‘ilp+ e t 2 0. (4.2.7)

Remarks,

1. The case of an initial rarefaction subject to the quadratic flux f(u) = $u?

demonsirates that the a priori decay estimate of the exact entropy solution
in (4.2.6) is sharp. A comparison of (4.2.7) with (4.2.6) shows that a
necessary condition for the convergence of {v®}.v0 s

0<A<q, (4.2.8)

for otherwise, the decay rate of {v*{:,£)} (and hence of its ¢ — 0 limit)
would be fasier than that of the exact entropy solution.

2. The case f > 0 in (4.2.7) corresponds to a strict LipT-stability in the
sense that ||vf(,){|rip+ decays in time, in agreement with the decay of
rarefactions indicated in (4.2.6).

3. In general, any a priori bound
1o (- E)lpips < Consty < oo, 0<t<T, (4.2.9)

is a sufficient stability condition for the convergence results discussed be-
low. In particular, we allow for # = 0 in (4.2.7), as long as the approxi-
mate initial conditions are LipT-bounded. We remark that the restriction
of LipT-bounded initial data is indeed necessary for convergence, in view
of the counterexample of Roe’s scheme discussed in remark 4.4.2 in §4.4.2.
Unless stated otherwise, we therefore restrict our attention to the class of
Lip*t-bounded (i.e., rarefaction-free) initial conditions, where

Lf = max(luollzips, 107 C, 0)llzips) < oo, (4.2.10)

4. Finally, we remark that in case of strict LipT-stability, i.e., in case (4.2.7)
holds with 2 > 0, then one can remove this restriction of Lip*-bounded
initial data and our convergence results can be extended to include general
L{; -initial conditions, initial rarefaction are included. The discussion of
this case could be found in [25], and it leads to similar error estimates
discussed in this chapter, with ¢ being replaced by £log{s).
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4.3 Convergence rate estimates

4.3.1 Convex conservation laws

We begin with the following theorem which is at the heart of matter.

Theorem 4.3.1 A. Let {v°(2,1)}es0 be a family of conservative, Lipt-stable
approzimate solutions of the convex conservation law (4.2.1),(4.2.2), subject to
the Lipt- bounded initial conditions (4.2.10}. Then the following error estimate
holds

Il (-, T) = (e, Tllzip < Cr {10, 0) = vl )lzipr + 155 + £ allLiprcafo,an)] »
(4.3.1)

where )
max f"

Cr~(+AL3TY, n="50 w1
B. In particular, if the famaly {v=(z,t)}c»0 s also Lip'-consistent of order
O(e), i.e, (4.2.4),(4.2.5) hold, then v°(z,t) converges to the eniropy solution

u(z,t) and the following convergence rate estimate holds

o (-, T) = u(, Dllpipr < M e, My = (Ko+ Kz)(1+ BLIT)".  (4.3.2)

Proof, We proceed along the lines of [39, 24]. The difference, e*{#,t) := v*(z,t)—
u(z,t), satisfies the error equation

d 3 9 — £ T
ETi (z,8) + a—m[ag(a},t)e (z,1)] = F*(z,1), (4.3.3)

where @.(z,t) stands for the mean-value

1

o (0,1) = j_o afév* (z,8) + (1 — Oz, O]dE, al() = £(),

and F¢(z,t) is the truncation error,
Fi(z,t) = of (z,8) + fo° (2,1))s.

Given an arbitrary ¢(z)eWy'™, we let {¢°(z,1)}o<i<T denote the solution
of the backward transport equation

65 (@, 1) + G (2, 5 (2, 1) =0, t<T) (4.3.4)
corresponding to the endvalues, ¢(z), prescribed at ¢ =T,

¢*(z,T) = ¢(z).
Here, the following a priori estimate holds [39, Theorem 2.2}

T
e (- Dllzp < exp(/t @ (- Dllpip+dr) - [6(@)irip, 0<ELT. (4.3.5)
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The Lip*-stability of the entropy solution (4.2.6) and its approximate solutions
i (4.2.7), provide us with the one-sided Lipschitz upper-bound required on the
right-hand side of (4.3.5):

max f max f"

[ Co Mlzips < =" (o Hlzips i, )l zipe] < e (4.3.6)
Equipped with (4.3.5}, (4.3.6) we conclude
- (14 pLgT)y "

||¢ ( :i)“L%p < “‘(1 4—3[;3'15)’? ”‘?5( )§|L%p < (4.3‘7)

< Crllé(@)lny, 0<E<T, Cpi=(1+pL{T),
and employing (4.3.4) we also have

165 (z, MLipro,r; < |a!oﬂer‘£1taé}%,”¢£('it)”Ls'p(:c) <
=S (4.3.8)
< §a|ooCT|§¢($)“Lip: Ia‘loo = max|f’|

Of course, (4.3.4) is just the adjoint problem of the error equation (4.3.3) which
gives us

(1), 800) = (¢ 0), 6, O+ (F*(, ), 65(2, ooy (4:8.9)
Conservation implies that & = [ e*(z,0)dz = 0 and by (4.3.7) we find
f(es(-,O),qﬁe(v,U)N = “ea(':ﬂ)“fﬁp’”‘fss(ﬁO)”Lip <

< (U BLETY e Olisp - ()| zeps
similarly, conservation implies that Ff = f:v,[O,T] Fe(z,t)dzdt = 0 and by (4.3.7),(4.3.8)
we find
[(F<(2,8), 6°(2, 2oyl < ME (2, )| niprcae o, o 165 (2, )| i o2y <

< (U +laleo)CrliF (e, )l Lipta o) | ()| LLip-
(4.3.10)
The error estimate (4.3.1) follows from the last two estimates together with

(4.3.9). M

The Lip'-convergence rate estimate {4.3.2) can be extended to more familiar
WP .convergence rate estimates. The rest of this section is devoted to three
corollaries which summarize these extensions. . )

We begin by noting that the conservation and Lip*-stability of +*(-,?) imply

that v*(:,T") ~ and consequently that the error, v°(-,7") — u(-, "), have bounded
variation, )

LT pT
We note in passing that the constant on the right of (4.3.11) depends on the
finite size of the support of the error.

We can now interpolate between the BV-bound (4.3.11) and the Lip/-error es-
timate (4.3.2), to conclude the following.

“vs(':T) - u('}T)”BV < Const (4.3.11}
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Corollary 4.3.1 Let {v°(z,t)}eso be a family of conservative, Lip'-consistent
and Lip*-stable approzimate solutions of the conservation law (4.2.1), (4.2.2),
with Lipt-bounded initial conditions ({.2.10). Then the following convergence
rate estimates hold ¥p < oo

{of (-, T) — u(, T)||lwer < Consty Asl”;*sz', -1<s< i (4.3.12)

The error estimate (4.3.12) with (s,p) = (0, 1) yields L' convergence rate of
order (}(y/¢), which is familiar from the setup of monotone difference approx-
imations [15, 22, 31] Of course, uniform convergence (which corresponds to
(s,p) = (0, 00)) fails in this case, due to the possible presence of shock disconti-
nuifies in the entropy solution u( t). Instead, one seeks pointwise convergence
away from the singular support of u(-,¢). To thls end, we employ a Ci(—1, 1)-
unit mass mollifier of the form ¢5(z) = 2((%). The error estimate (4.3.1) asserts
that

0 T # ) (@) = (u(, T) # Co)(e)| < M 5|2l

Moreover, if {(z) is chosen so that
/mk((w)dm =0 fork=1,2...,7~1, (4.3.13)
then a straightforward error estimate based on Taylor’s expansion yields
6‘?"
|(ul, T) # G )(2) — u(e, T)| < liclz: - )i,

where |u{"};,. measures the degree of local smoothness of u(., ),

T O [ T —

The last two inequalities (with § ~ e"r"%"f) imply

Corollary 4.3.2 Let {v°(x,%)}ss0 be a family of conservative, Lip'-consisient
and LipT-stable approzimate solutions of the conservation law (4.2.1), (4.2.2),
with Lipt-bounded initial conditions (4.2.10). Then, for any r-order mollifier
(s() = %C(%) satisfying (4.9.13), the following convergence rate estimate holds

|(v° (-, T) * (5 )(2) — (e, T)| < Const(1 + ———'—135) £743, {4.3.14)

Corollary 4.3.2 shows that by posi-processing the approximate solutions
v¥{(-,t}, we are able to recover the pointwise values of u(w,t) with an error
as close to ¢ as the local smoothness of u(:,{) permits. A similar treatment
enables the recovery of the derivatives of u(z,?) as well, consult {39, §4].
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The particular case r = 1 in (4.3.14), deserves special attention. In this
case, post-processing of the approximate solution with erbitrary C3-unit mass
mollifier {(z), gives us

|(v* (-, T) # {5 )(2) ~ u(e, T)| < Const - (14 |ug(s, T)roc) - Ve (4.3.15)

We claim that the pointwise convergence rate of order O(¥¢) indicated in
(4.3.15) holds even without post-processing of the approximate solution. Indeed,
let us consider the difference

F@T) =@ (T e = [T - o=y Dy =

¥

/‘; {vs(m,T) —_v;(:r: —-y,1) ~—%C(%)dy.

I}

By choosing a positive C¢-unit mass mollifier {(z) supported on (—1,0) then,
thanks to the Lipt-stability condition (4.2.7), the integrand on the right does
not exceed Const - 6, and hence

v (e, T) — (v°(,T) # {s)(z) < Const - § . (4.3.16)

Similarly, a different choice of a positive C}-unit mass mollifier {(z) supported
on (0,1} leads to

¥ (@, T) — (v*(-, T') * {s)(z) > Const - 4. (4.3.17)

Each of the last two inequalities (with 6§ ~ &) together with {4.3.15) show that
the approximate solution itself converges with an O(¥/e)-rate, as asserted. We
summarize what we have shown by stating the following.

Corollary 4.3.3 Let {v*(z,t)}en0 be a family of conservative, Lip/-consistent
and Lip™*-stable approzimate solutions of the conservation law (4.2.1), (4.2.2),
with Lipt-bounded initial conditions (4.2.10). Then the following convergence
rate estimate holds:

[v* (2, T) — w{z,T)| < Cq - Ve, Co~ |u$(':T)IL°°(a:—%,m+\3/E)' (4.3.18)

The above derivation of pointwise error estimates applies in more general sit-
uations. Consider, for example, a family of approximate solutions, {v*(z,t)}ev0
which satisfics the stronger L! error estimate of order, say, O(u),

(v, T) — -, T), $(- D] < Co - pill bl (4.3.19)

Then our previous arguments show how to post-process (-, T) in order to
recover the pointwise values of the entropy solution, u(z, T} with an error as
close to p as the local smoothness of u(:, T') permits. In particular, using (4.3.19)
with a positive Cj-unit mass mollifier, {;(x) = ${(§) we obtain

(v, T) % G )(2) — (u( T) # s ){@)| < Co - %HCHL«:- (4.3.20)
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Using this together with

[(u(:, TY* (o) (@) — ul=, )| < éli¢Hles - ol Tl g {z+4-5upp()s (4.3.21)

loc

we find (with § ~ /i)

(2% (-, T * ) (&) — u(z, T)! < Constep (1 + [ua(:, T)lioc )/ 1- (4.3.22)

If the approximate solutions {v°(z,{)}e»0 are also LipT-stable, then we may
augment (4.3.22) with (4.3.16)-(4.3.17) to conclude

Corollary 4.3.4 Assume that {v¢(z,1)} is o family of Lip™ stable approzimate
solutions with global L'-convergence rate of order O(p}, (4.8.19). Then the
Following local pointwise error estimate holds

|v5 (2, T) — w{z, TN < Co - B,  Co ~ |z, Tl poo(z—/mat/i)y-

Remarks.
1. The usual L'-vate of order u ~ /€ leads to [24]

(2, T) = (e, T < Ca Y5, Co o~ it Tl oo 9o 9y (43.29)

2. In case u(-,t) has finitely many shocks, {41], one obtain an Lt-rate of order
4 ~ ¢, [42], and hence we find a local exror of order \/&

|vf (2, T) — u(z, T) < Co - VE,  Co ~ |Ual-, Dzoo(amyratye)- (4:3.24)

3. Finally, in {41] we improved the estimate (4.3.24) replacing /€ by €. Thus,
we obtain an optimal pointwise error estimate of order O(¢) in all but
finitely many neighborhoods of shock discontinuities of width O(e).

4.3.2 Convex Hamilton-Jacobi equations

In this section we briefly comment on the muliidimensioal generalization of
the Lip'-convergence theory outlined above, to convex Hamilton-Jacobi (HJT)
equations. We consider the multidimensional Hamilton-Jacobi (HJ) equation

Byu + H(Vyu) =0, (t,z) € Rt x RY, (4.3.25)

with convex Hamiltonian, H” > 0. Its unique viscosity solution is identified
by the one-sided concavity condition, D2u < Const., consult [16], [20]. Given
a family of approximate HJ solutions, {v°}, we make the analogous one-sided
stability requirement of

e Demi-concave stability. The family {v*} is demi-concave stable if

D2y* < Const. (4.3.26)
We then have the following.
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Theorem 4.3.2 ([19]) Assume {v5} and {v§} are two demi-concave stable
families of approvimate solutions. Then

(it ) = v3 (6 Mllesey < Constf|vi(0, ) — w5(0, loae) +
2

+ Const. Y 1065 + H(Vovs)|pas,dp-3.27)
i=1
If we let vf = v', v§ = v? denote two demi-concave viscosity solutions, then
(4.3.27) is an L'-stability statement (compared with the usual L®-stability
statements of viscosily solutions, [8]). If we Jet {v{} = {¢°} denote a given
family of demi-concave approximate HJ solutions, and let vg equals the exact
viscosity solution u, then (4.3.27) yields the Ll-error estimate

|E’U€(',t) — u(,t)”p(w) _<_ C’onst.”@we -+ H(vas)ill.‘(a;,t) ~ 0(8) (4328)

This corresponds to the Lip'-error estimate of (1.3.20) with (s,p) = (—1,1).

One can then interpolate from (4.3.28) an LP-error estimates of order O(s%a).
For a general L®-convergence theory for approximate solutions to HJ equations
we refer to [1] and the references therein.

4.4 Examples
4.4.1 Regularized Chapman-Enskog expansion

Of course, the usual viscous approximation

S @O+ L0 D) = e 2glQ0 (e, O, e/ 10, (a41)

is the cancnical example for a family of approximate solutions whose convergence
rate could be analyzed in terms of our Lip’ theory outlined above. Here, we con-
centrate on yet another, more intricate regularization of the inviscid equations
of the form

—ek?

v
iFmeer )

v + f(v%)e = {
or equivalently,

1 1
vts'e'f(ws)w:_m(”_é?ms*”)a Qu = ﬂﬁ l/n, (4.4.2)

Rosenau [28] has proposed this type of equation as a model for his regularized
version of the Chapman-Enskog expansion for hydrodynamics. The operator on
the right side looks like the usual viscosity term evs, at low wave-numbers k,
while for higher wave numbers it is intended to model a bounded approximation
of a linearized collision operator, thereby avoiding the artificial instabilities that
occur when the Chapman-Enskog expansion for such an operator is truncated
after a finite number of terms [28].

We shall study the convergence rate of v* to the inviscid solution, along
the lines of [33]. It should be pointed out that the solution of (4.4.2) does
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not admit all the entropy inequalities, except for the quadratic one; thus, the
question of convergence in this case, is not easily answered in terms of the usual
Li-Kuznetsov theory. Instead, we use the Lip’ theory outlined in §4.3.1. To
this end, we first. turn to show that the nonlinear Regularized Chaprman-Enskog
(RCE) equation (4.4.2) satisfies Oleinik’s E-entropy condition.

Theorem 4.4.1 Assume f > o > 0. Then the following a priori estimate

holds 1
s . 1>0. (4.4.3)
Ol + o

Ol <

Remark. The inequality {4.4.3) implies that the positive-variation and hence
the total-variation of v*(f) decays in time. Furthermore, this proves the zero
mean-free-path convergence to the entropy solution of (4.2.1) for any Ly, -initial
data ug

Proof. We add the artificial viscosity term Su,y to regularize (4.4.2), obtaining
1

m2e

Differentiation of (4.4.4) yields for w = 0pv§,

Oyvs -+ Oz f(v5) = {45 — Qume * V5 } + 60205, (4.4.4)

B+ £ (W), 4 ' (wbw? == — {1 — Qe # ) + 6020,

Hence, since f > a > 0, it follows that W(t) = maz,w(t) is governed by the
differential inequality

W) + oW (1) S — (W) ~ Qe + W} <0

and {4.4.3) follows by letting § | 0. M
Theorem 4.4.1 shows that solutions of the RCE equation (4.4.2) are Lip*-

stable. Moreover, (4.4.2) implies that the Lip'-size of their truncation if of order
O(e), for

|10:9° + 8z f (v )Izipt = €l|@me #Fuv%ilL2 < €|lQmellzs|[v*(O)]lBv < ellue(0)][Bv-

Using our main result we conclude that the Lip/- convergence rafe of the
RCE solutions to the corresponding entropy solution is also of order O(g).

Corollary 4.4.1 Assume that ' > >0, and let v° be the unique RCE solu-
tion of (4.4.2) subject to C* initial conditions v*(0) = u(0). then v* converges
to the unigue entropy solution of (4.2.1) and the following error estimates hold

o5 () — u()|[wes < Const &' 3", ~1<s< (4.4.5)
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4.4.2 Finite-Difference approximations

We want to solve the conservation law (4:2.1)-(4.2.2) by difference approxima-
tions. To this end we use a grid {z, := vAg,t" = nAt) with a fixed mesh-ratio
A= —2—; = Const. The approximate solution at these grid points, v? = v(z,, 1),
is determined by a conservative difference approximation which takes the fol-

lowing viscosity form, e.g., [35]?

1

A
vt = ol - §[f(vﬂ+z) — fvp_1)]+ §[Qﬁ+%A”§+% =@y Avp_y] (4.4.6)

and is subject to Lip*-bounded initial conditions,

1 fTwsd
e a [ w1 =l <o (4.4.7)

a;u__ 1
2
Let v (z,1) be the piecewise linear interpolant of our grid solution, vi(z,,t") =
vy, depending on the small discretization parameter £ = Az | 0. It is given by

v (2, 8) = D o AT (2,1),  AT(x,t) = Ay (2)A™(2),
jm

where A;(2) and A™(¢) denote the usual ‘hat’ functions,

1
Aj(e) = Z&;min(m ~Tj.1,@pr— )y, AT(E) = A7 min(t — ™ ™y

In [24] we show that these schemes are Lip'-consistent of order ({Ag), thus
arriving at

Theorem 4.4.2 Assume that the difference approvimation ({.4.6)-(4.4.7} is
Lipt-stable in the sense that the following one-sided Lipschilz condition is ful-
filled:
(AU3+;)+ 1
< <ttt <T 4.4,
TR Sman 0SUF -

Then the following error estimates hold:

2% (-, T) — u(, T|lwes < Cr - (Az)'F", ~1<s< %, (4.4.9)
WA (2, T) — u(e, T) € Cp - max__|uy(£,T)| - VAz. (4.4.10)

[6—z|< VA

2We use the usual notations for forward and backward differences,
A:l:“,,.,.li = vyt ~ o).
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The following first order accurate schemes (identified in a decreasing order
according to their numerical viscosity coefficient, @, 1= Qy b1 }, are frequently
2

referred to in the literature.

Lax — Friedrichs scheme ff; =1, (4.4.11)
. A Vg1
Engquist — Osher scheme Qf"f% = ml} | (v)]dv, (4.4.12)
T ny_ 9
Godunov scheme Qf . = dmax CVRRICH) f(y%] 4.13)
vtz v Uy — Uy |
Y
Roe scheme vy = A|A?f‘,f,"+1 | (4.4.14)
2

In [24] we prove the LipT stability of these schemes, and together with their
Lip' consistency (of order @(Awx)) we arrive at

Corollary 4.4.2 Consider the conservation law (4.2.1), (4.2.2) with LipT-
bounded initial data (4.2.10). Then the Roe, Godunov, Engquisi-Osher, and
Laz-Friedrichs difference approzimations (4.4.11)-(4.4.14) with discrete inttial
data (4.4.7) converge, and their piecewise-linear interpolants v8%(z, t), satisfy
the convergence rate estimates (4.4.9), (4.4.10).

Remark. The Lip*t-stability (4.4.8) of Roe scheme with 8 = 0 (no decay), was
proved in [3]. Note that the assumption of Lip*-bounded initial conditions is
essential for convergence to the enfropy solution in this case, in view of the
discrete steady-state solution, v) = sgn(v + 3), which shows that convergence
of Roe scheme to the correct entropy rarefaction fails due to the fact that the
initial data are not Lip"-bounded.

4.4.3 Godunov type schemes

Godunov type schemes form a special class of transport projection methods for
the approximate solution of nonlinear hyperbolic conservation laws. This class
of schemes takes the following form:

Tpiogneyv®5 (2770, * T <t <t?
v 1) = (4.4.15)
P{Ippple(,t* = 0), t=1"=nAl

where the initialization step is:

w22 (-, 10 = 0) = P({INuoe(") . (4.4.16)

These schermes are composed of the following four ingredients:

i) The possibly variable size grid cells, I = [2%_,, 27, ), where the grid is
& 4 -3’ ity &
regular in the sense that:
Az = Azmin < |17 £ AZmas ; A%mas < Const. ; (4.4.17)

Tmin
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{ii) A conservative piecewise polynomial grid projection, P = PHIEY,

/Pw(ae)d$:/mw(m)da: ; (4.4.18)

T

(iti) The exact entropy solution operator associated with (4.1.1), 7' = 7};
(iv) The time step At, which is restricted by the CFL condition:

At
! (AT
)\n;,aixlf (2, )| <1, A= ~ (4.4.19)

As an example we recall here the subclass of Godunov-type schemes based
on piecewise-polynomial projections, which was discussed already in the ’short
guide’ introduced in Lecture 11

‘To study the convergence rate of this class of schemes, we are required to ver-
ify the Lip'-consistency and Lip*-stability of the scheme in question. We begin
by reducing the question of Lip/-consistency to the level of a mere approxima-
tion problem, namely, measuring in Lip'-semi-norm the distance between the
exact solution and its grid projection. Thus, ounr first theorem below enahles
us to avoid the delicate bookkeeping of error accumulation due to the dynamic
transport part of the scheme.

Theorem 4.4.3 (Lip'-consistency.) The Godunou type approzimation (4.4.15)-
(4.4.16) satisfies the following truncation error estimate.

H T T T
106 105 )almiproioimy < &7 2aag, 1P = Dot (8" = O)lluipr (4:4.20)

Hemark. We emphasize that this theorem applies to both fixed and variable
grid schemes.

Proof. Let N denote the number of time steps in [0, 77, i.e.
T=t"N = NAt . (4.4.21)

Then for every ¢ € CH{R x [0,T])

tn

tn-l Sy

N t"
(8% + F(02)e, $)op = 3 U [ v ddaie + f(““)”‘mdt}
n=] it e

Integration by parts gives that

N i n
O+ (5o, B = [(vm, D= [ (@604 G0, 00) dt}
n=1 et

(4.4.22)
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But since ¥4 is a weak solution in the strip ® x {t*~*,1"), as definition (4.4.15)
implies, then

e L

/M_l ((,UA;U) ¢t) + (f(’[.'Am), (ﬁ:r:)) dt = (fuﬁf” , qﬁ) Zn_lt}+0 . (4.4.23)

Therefore, by (4.4.22) and (4.4.23),
Ag Az o Az " Ax ¢"-0
(”t -+ f{’u ):v: ¢)a¢,t - z [(1} ,‘ﬁ)Ln_l - (?) ’QS)‘tnml+0] )
nl
and since, by (4.4.15), v2¢(., ¢! 4+ 0) = v27(, "~ 1), we have that
’ N » N
(08 + F(0 ), Bop = D (057, 0)] = D (P =Dt (80— 0), (7))
n=1 n=1

Recall the conservation of P asserted in (4.4.18), f (P — INv**de = 0. There-
fore, using the definition of the Lip/-seminorm, together with (4.4.21), we get

T e [I(P = DoA (" = O)ip 106G #)ip -

AT Ag
(08 + (0o ol < 17 mmx,

Dividing by ||¢(z, )[izi, and taking the supremum over ¢, we arrive at (4.4.20).
[

Next, we turn to the question of Lipt-stability. The standard Lip*-seminorm,
| - || nip+, is inappropriate measure for the size of discontinuous plecewise poly-
nomial functions, since increasing jumps — even on the acceptable scale of the
gridsize, are LipT-unbounded. Instead, we replace it by its discrete analogue —
| - llzip+, requiring

An ny _ A n +
VA% (4, ) lgip+ = max v (@t As,t) — v7 (2, ) < Const. (4.4.24
p o Az

The discrete £ip* stability is weaker than Lipt stability, yet, as we shall
show below, it will suffice for our convergence rate estimates to hold. To see
this, we introduce a compactly supported non-negative unit mass mollifter,

v = 593 o [ws@yio= [d@az=1 . (4.4.25)

The discrete £ipt stability is related to the stronger Lipt bound on the mollified
solution. The following lemma shows that Lip'-consistency of order ({Az)
remains invariant under a mollification with s, § = O{Az). Thus, O(Axz)-
mollification does not sacrifice accuracy yet we have the advantage of using the
weaker discrete £ip? stability.
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Lemma 4.4.1 Assume v2%(z,t) has a bounded variation and is Lip' -consistent
with (4.1.1) of order O(Az),

IFA%(z, ||z = O(Az)  ,  F2%(,t) = oP® + f(02%), . (4.4.26)
Then v2%:% = b x v2% is Lip'-consistent with ({.1.1) of order O{Az) + O(6).

We omit the straightforward proof (which could be found in [26]). Finally,
we combine Theorem 4.4.3 and Lemma 4.4.1 to achieve our main convergence
rate estimate for Godunov type schemes.

Theorem 4.4.4 (Convergence rate estimates.} Assume that the Godunov fype
approzimation ({.4.15)-(4.4.16) is LipT-stable, ({.4.24), and Lip'-consistent in
the sense that

(P — Dwllzip < O(A?)|wllay (4.4.27)

Then the following error estimates hold:

1A% (-, ) — ul, B)lwee = O(AB" 5" ), ~1 < 5 < (4.4.28)

’U.IP—‘

Proof. Let us denote 547 ) = hap*0D® (v, 1), where A, is the dilated mollifier
of
||

1
o S i (4.4.29)

w0 ={ g
This choice of mollifier satisfies the Lip'-error estimate
lbas = Wiz < O fuliay - (4.4.30)

We show that 427 satisfies the LipT-stability condition {4.2.7), and it is Lip/-
consistent of order O(Az).

We start with the LipT-stability question. The definition of the discrete
Lip*-seminorm, (4.4.24), implies that ||#% (-, #")[ipip+ = |§1;A$(A,t“)|[h-p+ . Since
v2% is assumed to be discrete ip*-stable, we conclude that at each time level

1" we have
“6Am('}tn)“Lip+ =D <C . (4.4.31)

This, together with the fact that the intermediate exact solution operator de-
creases the Lipt-seminorm, (4.2.6) imply Lipt-boundedness for all t > 0:

1529 (o D)llpip+ < Const. ¥t >0 . (4.4.32)

Namely, the mollified approximation 42 is Lip*-stable.

We note in passing that +2%(.,t), being compactly supported and Lip*-
bounded, has bounded variation. Turning to the question of Lip'-consistency
we therefore conclude from assumption (4.4.27) together with the truncation
error estimate (4.4.20), that v is Lip/-consistent with (4.2.1) of order @(Az),

and hence by lemma 4.4.1, so does #47,

158 + F(85)ell = O(Az) .
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Furthermore, 72 is also Lip’-consistent with the initial condition (4.2.2}, since
by (4.4.30), (4.4.16) and (4.4.27):

1559 (- 0) - Ozt < 152 (-, 0)—02 (c, O)lLzip-Hv5% (-, O)—un( Yz < O(Aa?) .
Therefore, Theorem 4.3.1 holds; in particular (4.3.1) tells us that
1552, T) = u(s T ipe = O(0) . (4.4.33)
In addition, we have by (4.4.30),
1525 (-, T) = 032 (, T lnipe = O(A2?) | (4.4.34)
Combining (4.4.33) and (4.4.34) we end up with
[v4%(, T) = u(, Dlizip = O(Az) (4.4.35)

The Lip'-error estimate (4.4.35) may now be interpolated into the W*?-error
estimates (4.4.28). u

Examples of the first-order Godunov and Engquist-Osher schemes as well
as the second-order (upwind) MUSCL and (central} Nessyahu-Tadmor schemes
are discussed in [26].

4.4.4 Glimmm scheme

We recall the construction of Glimm approximate solution for the conservation
law (4.2.1), see [10, 32]. We let v(z,¢) be the entropy solution of (4.2.1) in
the slab t® < ¢t < t**,n > 0, subject to piecewise constant data v(z,t") =

Z v?x, (). To proceed in time, the solution is extended (in a staggered fash-
i

ion) with a jump discontinuity across the lines "+, n > 0, where v{z,t"+!)

takes the plecewise constant values

(z,1*) = Zv 1xv_|_ L{x), :ﬁ =v(z, 48+ rAg, "t —0). (4.4.36)

Notice that in each slab, v(z,1) consists of successive noninferacting Riemann
solutions provided the CFL condition, A - max|a(u)| < % is met. This defines
the Glimm approximate solution, v(z,t}) = v*(z,t), depending on the mesh
parameters £ = Am = MA{, and the set of random variables {#"”}, uniformly
distributed in [—% 5 2] In the deterministic version of the Glinm scheme, Lin
[21] employs equidistributed rather than random sequence of numbers {r"}. We
note that in both versions, we make use of exactly one random or equidistributed
choice per time step (independentiy of the spatial cells), as was first advocated
by Chorin [5].

It follows that both versions of Glimm scheme share the LipT-stability esti-
mate (4.2.7). Indeed, since the solution of a scalar Rlemann problem remains
in the convex hull of its initial data, we may express v” +1 as (1-67 )'u,? o

92+%U?:+1 for some 9:4_1 € [0,1], and hence

n+1 n-{-l n 2!
V+1_ — 9+1A'U +1 +(1 V—%)AUV—

1
2
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We now distinguish between two cases. If either A} , or Aw? 11 Is negative,
2 2

then
n+l _ el n n
Vi~ vl < max(Avy+%_, /_\.'uy_%). (4.4.37)
141
v+

are obtained as sampled values of two consecutive rarefaction waves,

Otherwise - when both Ay 41 and Av} , are positive, the two values of v
2 2

-1

and v,l1

and a straightforward computation shows that their difference satisfies (4.4.37).
Thus in either case, the Lip*-stability (4.2.7) holds with § = 0.

Although Glimm approximate solutions are conservative “on the average,”
they do not satisfy the conservation requirement (4.2.3). We therefore need to
slightly modify our previous convergence arguments in this case.

. We firgt recall the truncation error estimate for the deterministic version of
Glimm scheme [14, Theorem 3.2], .

(o7 + F0A)e, 62,8 o o 1

(4.4.38)
< Constyp [\/Aazlln/_\a:[ Nélipe -+ A - ||q5(a:,t)||L,;p(m,[0,T])] .

Let ¢(z,t) = $°%(z,t) denote the solution of the adjoint error equation (4.3.4).
Applying (4.4.38) instead of {4.3.10) and arguing along the lines of Theorem
(4.3.1}, we conclude that Glimm scheme is Lip/-consistent (and hence has a

Lip’-convergence rate) of order vVAz|In Az|,
(27 (, T), #(-))| < Consty [VAz|ln Az| - gz + Az - |g(=)llesp| - (4.4.39)

To obtain an Ll-convergence rate estimate we employ (4.4.39) with ¢; =
@ * %C (3) yielding

(€2 (-, T), ¢5)| < Constr [\/Eﬂ InAz|+ %f] llé(z)|| oo (4.4.40)

Using this estimate together with
(ee(':T): [é() - 9{’5()]) = (es(" T) - Bg(-,T), QS) < Const - “es('! T)“BV ’ 5”96”13“’!

imply (for § ~ v/Az), the usual L'-convergence rate of order O(y/Az|In Az]).
As noted in the closing remark of §4.3.1, the LipT-stability of Glimm’s approx-

imate solutions enables us to convert the L-type into pointwise convergence
rate estimate. | . . .
We close this section by stating the following.

Theorem 4.4.5 Consider the conservation law (4.2.1), (4.2.2) with sufficiently
small Lip*-bounded initial date (4.2.10). Then the (deterministic version of)
Glimm approzimate solution v~%(z,t) in ({.4.36) converges to the entropy so-
lution u(z,t), and the following convergence rate estimates hold:

|29 (-, T — u(-, T)|iz: < Consty - /Az|InAz|, (4.4.41)

[v2% (2, T} — u(z, T)| < Conste r - [1+ max__ |ug(£,T)[]- ¥/Az|InAxz]|.
|&~z|< VAz
(4.4.42)
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Remarks.

1. A sharp Ll-error estimate of order O(v/Az) can be found in {22}, improv-
ing the previous error estimates of [14}.

2. Theorem 4.4.5 hinges on the truncation error estimate (4.4.38) which as-
sumes initial data which sufficiently small variation [14]. Extensions to

strong initial discontinuities for Glimm scheme and the front tracking
method can be found in [6, Theorems 4.6 and 5.2].

4.4.5 The Spectral Viscosity method

We want to solve the 2r-periodic initial-value problem (4.1.1)-(4.1.2) by spec-
tral methods. To this end we use an N-trigonometric polynomial, vy {z,t) =

E‘;::_ w Ox(t)e™®, to approximate the spectral (or pseudospectral) projection
of the exact entropy solution, Pyu. Starting with vn(z,0) = Pnuo(z}, the
standard Fourier method reads,

d d -
= — =10, 4.4.
AU T g P f o) (4.4.43)
Together with one’s favorite ODE solver, (4.4.43) gives a fully discrete spectral
method for the approximate solution of (4.1.1).

Although the spectral method (4.4.43) is a spectrally accurate approximation
of the conservation law (4.1.1) in the sense that its local error does not exceed

(7 — Pn)F(on (-, )| -+ < Const - N7%luwl|zz, Vs> 0, {4.4.44)

the spectral solution, vy (z,1), need not approximate the corresponding entropy
solution, u(x,?). Indeed, the counterexamples in §4.1 show that the spectral
approximation (4.4.43) lacks entropy dissipation, which is inconsistent with the
entropy condition (4.1.2). Consequently, the spectral approximation (4.4.43)
supports spurious Gibbs oscillations which prevent strong convergence to the
exact solution of (1.1). To suppress these oscillations, without sacrificing the
overall spectral accuracy, we consider instead the Spectral Viscosity (SV) ap-
proximation

%, 0 d a
-é—g"uN(w,t) + a—mPNf(vN(m,t)) = ENEEQN * EmmvN(a:,t). (4.4.45)

The left-hand side of (4.4.45) is the standard spectral approximation of (4.1.1).
On the right hand-side, it is augmented by speciral viscosily which consists of
the following three ingredients: a vanishing viscosity amplitude of size ey | 0,
a viscosity-free spectrum of size my >> 1, and a viscosity kernel, Qn(z, 1) =
Ef\lesz Qr(t)et*® activated only on high wavenumbers {k| > my, which can
be conveniently implemented in the Fourier space as

i) E; o e
eng -G * 5o (z,t) = —en Y RFQe)is(t)e.

|k]=m
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We deal with real viscosity kernels Qn(=,t) with increasing Fourier coefficients,
@k = Q|g|, which satisfy

2q N
1 — (%?) <Qe(?) <1, |k|>my, forsomefixed ¢ > 1, (4.4.46,)

and we let the spectral viscosity parameters, (e, my), He in the range

1

2
EN ~ Wmi()g—N’ my ~ Nz, §<1. (4.4.47q)

We remark that this choice of spectral viscosity parameters is small encugh
to retain the formal spectral accuracy of the overall approximation, since

||8N;—xQN x %w(.,tmﬂns < Const- N™ % lon(-,€)|zs, ¥e 22 (4.4.48)

At the same time, it is sufficiently large to enforce the correct amount of entropy
dissipation that is missing otherwise, when either e = 0 or my = N. Indeed,
1t was shown in [38],[40],[23] that the SV approximation (4.4.45), (4.4.48,)-

4.4.47;) has a bounded entropy production in the sense that
g
5]
5N§|5;vN(m,t)f|i§M(m,t) < Const, (4.4.49)

and this together with an L°-bound imply - by compensated compactness
arguments, that the SV approximation vy converges to the unique entropy
solution of (4.1.1). A detailed account on the SV method is outlined in Leture

HI of this volume,
Observe that in the limit case ¢ = oo, the SV method (4.4.45), (4.4.46,)-

(4.4.47,), coincides with the usual viscosity approximation,

S (@1) 4 P S0 2, 1) = e ogt (0,
(,%TJ T, Oz N &, —F,'Namz'v y o).
But of course, the spectral accuracy (4.4.48) is lost in this limit case.
The Lipt-stability and Lip’-consistency (of order CH{N—%)) of the SV ap-
proximation were studies in [40]. We thus arrive at

Theorem 4.4.8 (Convergence rate estimates.) Consider the 2m-periodic non-
linear conservation law (4.2.1) with Lip¥ -initial-data. Then the SV approzima-
tion ({.4.45),(4.4.46,)-(4.4.47,) with ¢ > $ converges to the entropy solution of
(4.2.1} and the following error estimates hold for 0 < g <Vt < T

How (-, 8) — ul, 8)||we» < Consty -N_i%;”,—l <8< %; {4.4.50)
['UN(x,t) — u(z,1)| < Consty - N_%, 0 <t <t <Ty (4.4.51)

Finally, any r-th order mollifier, ({.9.18), recovers the pointvalues of vy to the
order of

luw (z,8) * ¥, — on(2,1)] < Cp - N™753°0. (4.4.52)
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Remarks.

1. Theorem 4.4.6 requires the initial data of the SV method, vn(z,0), to

be Lipt-bounded independently of N. Consequently, one might need to
pre-process the prescribed initial data up unless they are smooth enough
to hegin with, The de Ia Vallee Poussin pre-processing, for example, will
guarantee this requirement for arbitrary Lip*-bounded initial data ug.

2. The error estimates (4.4.50),(4.4.51) are not uniform in time as ¢p | 0,
unless the initial data are sufficiently smooth to guarantee the uniformity
{in time ) of the Lip* bound, For arbitrary Lip*-initial data, ug, an initial
layer may be formed, after which the spectral viscosity becomes effective
and guarantees the spectral decay of the discretization errer.

" 3. According to (4.4.51) and (4.4.52), the pointwise convergence rate of the
SV solution in smooth regions of the entropy solution is of order ~ N “%,
and by post-processing the SV solution this convergence rate can be made
arbitrarily close to N =1, In fact, numerical experiments reported in [38]
show that by post-processing the 5V sclution using the spectrally accu-

1
rate mollifier of [12], ¢y (z) = Yo(2)Dn(z),n ~ [st], we recover the

pointwise values in smooth regions of the entropy solution within spectral
accuracy.

4. According to (4.4.50) with (s, p) = (0,1), the SV approximation has an L!-
convergence rate of order ~ N ™7 in agreement with [30]. This correspond
s to the usual L'-convergence rate of order % for monotone difference
approximations, [15],[31].
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Chapter 5

Kinetic Formulations and
Regularity

Abstract. We discuss the kinetic formulation of nonlinear conservation laws (
~ and related equations), a kinetic formulation which describes both the equa-
tion and the entropy criterion. This formulation is a kinetic one, involving an
additional variable called velocity by analogy. We apply this formulation to
derive, based upon the velocity averaging lemmas, new compactness and reg-
ularity results. In particular, we highlight the regularizing effect of nonlinear
entropy solution operators, and we quantify the gained regularity in terms of the
nonlinearity. Finally, we show that this kinetic formulation is in fact valid and
meaningful for more general classes of equations, including equations involving
nonlinear second-order terms, and the 2 x 2 hyperbolic system of isentropic gas
dynamics, in both Eulerian or Lagrangian variables ( — the so called 'p-system’).

5.1 Regularizing effect in one-space dimension

We consider the convex conservation law
a el _ "
atu{m,t) -+ a{ﬂA(u(m,t)) =0, A">a>0. (6.1.1)

Starting with two values at the different positions, ug = wu(zs,?) and v, =
u(zy, 1), we trace these values by backward characteristics. They impinge on
the initial line at 23 = @4 - ta(ue) and z? = @, —tau, ), respectively. Since the
characteristics of entropy solutions of convex conservation laws carmot intersect,
one finds that the ratio (22 — 29)/(z, — z¢) remains positive for all time. After
rearrangement this yields

a(u(zr, 1)) — a(u(zr, 1))

Iy — Tz

1
< -
-1

Thus we conclude that the velocity of a(u) satisfies the Oléinik’s one-sided Lip
condition, a{u(:,t))y < 1/t. Thanks to the convexity of A, we obtain the Lipt
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bound on u itself,
1
Uz (2, 1) S.E' (5.1.2)
We recall that Lipt bound (5.1.2) served as the cornerstone for the Lip’ conver-
gence theory outlined in Lecture IV, Here we focus on the issue of it regularity.
Granted (5.1.2), it follows that the solution operator associated with convex
conservation laws, i, has a nonlinear regularizing effect, mapping

T, : L —s BY, t> 0. (5.1.3)

Indeed, for uniformly bounded initial data, ug € L, with compact support of
size I = |suppuo|, one obtains |suppu(-,t)| < L + Const.t. The Lip* bound
(5.1.2) then yields an upper bound on the positive variation, [u}(z,t)dz <
Const.; since the sum of the positive and negative variations is bounded,

juj(:c,t) +uy (z,1)de = fuw(:r:,t) < Const.||uglize,
it follows that their difference is also bounded,
l[ulz, B)lv = ] [u} (2, ) — w3 (x,1)] de < Const. (5.1.4)

Observe that no regularity is ’gained’ in the linear case, where 4(u) = 0.
Indeed, the compactness asserted in (5.1.3) is a purely nonlinear regularizing
phenomenon which reflects the irreversibility of nonlinear conservation laws, due
to loss of entropy (information) across shock discontinuities. Here, nonlinearity
its quantified in terms of convexity; in the prototype example of the inviscid
Burgers’ equation,

i} a

U2

one finds a time decay, u.(z,t) < 1/t. Tartar [31] proved this regularizing effect
for general nonlinear fluxes — nonlinear in the sense of A”(\) £ 0, a.c..

The situation with multidimensional equations, however, is less clear. Con-
sider the ’two-dimensional Burgers’ equation’, analogous to (5.1.5)

I} 8 u?
u -+

s L 2 (5.1.6)
gt Oxq " 2 8:52(2 - o

Since u(#, ¢2,1) = ug(w1—z2) is asteady solution of (5.1.6) for any ug, it follows
that initial oscillations persist (along x; — s = Const), and hence there is no
regularizing effect which guarantee the compactness of the soluiion operator

m this case. More on oscillations and discontinuities can be found in Tartar’s
review [32].

5.2 Velocity averaging lemmas (m > 1,d > 1)
We deal with solutions to fransport equations

a(v) - Ve f(z,v) = 35 g(z, v). (5.2.1)
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The averaging lemmas, [13], {12], [11], state that in the generic non-degenerate
case, averaging over the velocity space, f(z) := [ f(z,v)dv, yields a gain of
spatial regularity. The prototype statement reads

Lemma 5.2.1 ([13],{11),[22]) Let f € LP(z,v) be a solution of the iransport
equation (5.2.1) with g € L (z,v),1 < ¢ < p < 2. Assume the following non-
degeneracy condition holds

measy{v| |a(v) - €/|E]] < 6} < Const - 6%, « € {0,1). (5.2.2)
Then f(z) := [, f(z,v)dv belongs to Sobolev space W (L (z)),

R p— a L0, 10
_,,.:f(m)eW(L (=), 9<a(1_%)+(5+1)p,, FEL T (5.2.3)

Variants of the averaging lernmas were used by DiPerna and Lions to construct
global weak (rencrmalized) solutions of Boltzmann, Vlasov-Maxwell and related
kinetic systems, [9], [10]; in Bardos et. al., [1], averaging lemmas were used to
construct solutions of the incompressible Navier-Stokes equations. We turn our

attention to their use in the context of nonlinear conservation laws and related
equations.

Proof. (Sketch). We shall sketch the proof in the particular case, p = ¢ which
will suffice to demonstrate the general p # ¢ case.
Let Q5(€, v} denote the set where the symbol a(v) - & is small’,

25(6,0) == {(v, )] la(v)-&| <6}, ¢ = éT , (5.2.4)
and decompose the average, f(z) accordingly:
Hz) = [, f(z,0)dv =
= L7t [%Xﬂz(&ﬂ] vt — T (x) (5.2.5)
+ f, P a6, v)] do — T(@) = T'(a).

Here, xq represents the usual smooth partitioning relative to £ and its com-
plement, Qf. On Q°, the symbol is ’bounded away’ from zero, so we gain one
derivative: s

g o 1

7 ey < Const|gl|nage,n)8 ™, (5.2.6)

On ) — along the ‘non uniformly elliptic’ rays, we have no gain of regularity,
but instead, our non-degeneracy assumption implies that |2} is a ’small’ set and
therefore

IF ~ F'llze < Const.||fllzageeys (5.2.7)

Both (5.2.6) and (5.2.7) are straightforward for p = 2 and by estimating the

corresponding 7' multipliers, the case 1 < p < 2 follows by interpolation.
Finally, we consider the K-functional
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K(F,2) = inf [IIF = Flles + H@lwon] 5

The behavior of this functional, K(f, ¢} ~ #?, characterize the smoothness of f
in the intermediate space between LP and W(LP): more precisely, f belongs
to Besov space BY, with ’intermediate’ smoothness of order 0.

Now set g = ?6, then with appropriately scaled § we find that K(f,t) ~ ¢ with
f = 5%y This means that F{z) belongs to Besov space, f(z)eBY (LP(x))
and (5.2.3) (with p = g = r) follows. B

Remark. In the limiting case of o = 0 in (5.2.2), one finds that if
measy {v| la{v) - £'| =0} =0, (5.2.8)

then averaging is a compact mapping, {f(z,v)} € L% — {f} € L?. The case
p = 2 follows from Gérard’s results [12].

5.3 Regularizing effect revisited (m =1,d > 1)
In this section we resume our discussion on the regularization effect of nonlinear
congervation laws. The averaging lemma enables us to identify the proper notion

of 'neulinearity’ in the multivariate case, which guarantee compactness,
The following result, adapted from [22], is in the heart of matter.

Theorem 5.3.1 Consider the scalar conservation low
Bu+ V- Alu) =0, (t,z) € R x RE, (5.3.1)
and assume that the following non-degeneracy condition holds (consult (5.2.2))
Jo € (0,1} : meas, {v| T+4'(v)-£] < 6} < Const-6%, VYri+|éf* = 1. (5.3.2)

Let {uf} be a family of approzimate solutions with bounded measures of entropy
production,

Ben(w®) + Vo F(uf) € M((0,T) x RE),  ¥y” > 0. (5.3.3)

Then v (t,2) € W (I7 (%, 2)), r= %-%'

Remark. Note that the bounded measure of entropy production in (5.3.3) need
not be negative; general bounded measures will do.

Proof. To simplify notations, we use the customary 0%* index for time direction,
& = (t < @, 31,...,24), Alu) = (Ao(u) =1, Ay (u), ..., Aq(u)).
The entropy condition {5.3.3) with Kruikov entropy pairs (1.2.1), reads
Vi - [sgn(uf — v)(A(uF) — A()] < 0.
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This defines a family of non-negative measures, m°(z, v),
Vo - [sgn(v)Alv) — sgn(u® — v)(A(u") — A(v))] = m* (&, v). (5.3.4)

Differentiate (5.3.4) w.r.t. v: one finds that the indicator function, f(z,v) =
Xue(v), where
+1 O0<o<uf
Xur(v) =4 ~1 wf<v<0 , (5.3.5)
0 o] >uf

satisfies the transport equation,

e}
8 ff +alv) Ve ff = %ms (t,z,v), (5.3.6)
which corresponds to (5.2.1) with s = 1,g(z,v) = m*(z,v) € My, 1 We
now apply the averaging lemma with (s = ¢ = 1,p = 2}, which tells us that

u(t,2) = [ xue(v)dv € Wi (L7 (t, z)) as asserted. R
It follows that if the non-degeneracy condition (5.3.2) holds, then the family
of approximate solutions {u} is compact and strong convergence follows. In
this context we refer to the convergence statement for measure-valued solutions
for general multidimensional scalar conservation laws — approximate solutions
measured by their nonpositive entropy production outlined in Lecture I, §1.5.

Here, Theorem 5.3.1 yields even more, by quantifying the regularity of ap-
proximate solutions with bounded entropy productions in terms of the non-
degeneracy condition (5.3.2). In fact, more can be said if the solution operator
associated with {uf} is translation invariant: a bootstrap argument yields an
improved regularity, [22],

ut(t > 0,) € Wt (L (). (5.3.7)

In particular, if the problem is nonlinear in the sense that the non-degeneracy
condition (5.2.8) holds,

meas,{v| 7+ A'(v) - £ =0} =0, {(5.3.8)

then the corresponding solution operator, 1},t > 0, has a regularization effect
mapping Tisop 1 L — LY. This could be viewed as a multidimensional gen-

eralization for Tartar’s regularization result for a.e. nonlinear one-dimensional
fluxes, A"{)#0, a.e..

We continue with few multidimensional examples which illustrate the relation
between the non-degeneracy condition, (5.3.2) and regularity.

Ezample #1. The ’two-dimensional Burgers’ equation’ (5.1.6),

0

d u? g u?
wgt_u + 3—:1}1(3—) + ‘a‘w—z(?) =0,

10Once more, it is the symmetry property (1.2.6) which has a key role in the derivation of
the transport kinetic formulation {5.2.1).
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has a linearized symbol 7/+v€} +v€), which fails to satisfy the non-degeneracy /non-
linearity condition (5.3.2), since it vanishes Vo's along 7 = & + £, = 0. This
corresponds to its persistence of oscillations along @) — @ = const, which ex-
cludes compactness,

Erample #8. We consider

0 8§ u? 4, .
pr + 'ém—l(—z“) + 6%1;2(6 y=10. (5.3.9)

In this case the linearized symbol is given by 7/ + v€} + €%&}; Here we have
meas{v | |7' +v&] + e*€}| < 6} < Const.§2

(just consider the second-order touch-point at v = 1). Hence, the solution oper-
ator assoclated with (5.3.9) is compact ( — in fact, mapping L — W3 (L1).)

Erample #8. Consider

o 9 .. . & o m

For n # m we obtain an index of non-degeneracy/non-linearity of order & =
1/ max{l +m,1+n}.

5.3.1 Kinetic and other approximations

Theorern 5.3.1 provides an alternative route to analyze the convergence of gen-
eralentropy stable multi-dimensional schemes, schemes whose convergence proof
was previously accomplished by measure-valued arguments: here we refer to
finite-difference, finite-volume, streamline-diffusion and spectral approximations
..., which were studied in [4, 18, 19, 15, 16, 3]. Indeed, the feature in the conver-
gence proof of all these methods is the W;;1(Z?)-compact entropy production,
(5.4.3). Hence, if the underlying conservation law satisfies the non-linear degen-
eracy condition (5.3.8), then the corresponding family of approximate solutions,
{u®(f > 0, )} becomes compact. Moreover, if the entropy production is bounded
measure, then there is actually a gain of regularity indicated in Theorem 5.3.1
and respectively, in (5.3.7) for the translation invariant case.

Remark. Note that unlike the requirement for a nonpositive entropy production
from measure-valued solutions {consult (1.5.1} in Lecture I), here we allow for
an arbitrary bounded measure.

So far we have not addressed explicitly a kinetic formulation of the mul-

tidimensional conservation law (5.3.1). The study of regularizing effect for
multidimensional conservation laws was originally carried out in [22] for the
approximate solution constructed by the following BGK-like model, [136] (see
also [2],{14]},

O | o) - Vof* = %(mv) =F7), (t2,v) €Rf xR x Ry(5.3.11)

o
FFlimo = Xuge)(¥), (z,v) € RE x R, (5.3.12)
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Here, Xue(s,2){v) denotes the ‘pseudo-Maxwellian’,

+1 O0<wv<uf
xur(v) = ¢ =1 w*<v <0 (5.3.13)
0 il >uf

which is associated with the average of f*,
u(t, ) = f* = f Fe(t, 2, v)dv, (t,2) € RY x R3. (5.3.14)
R

The key property of this kinetic approximation is the existence of a nonnegative

measure, m® such that (xye(v) — o) = ag:; (The existence of such measures

proved in [22] and is related to H-functions studied in [28] and Brenier’s lemma
{2].) Thus, we may rewrite (5.3.11} in the form
- afe e
méém+a(v)-vxf€ = %%m’ m® € M((0,T) x RS x RY). (5.3.15)
Let (n, ') be an entropy pair associated with (5.3.1). Integration of (5.3.15)
against 7 (v) implies that the corresponding macroscopic averages, u®(f, z), sat~
isfy

Bp(u) + Vo - F(u€) <0, V' > 0. (5.3.16)

Thus, the entropy production in this case is nonpositive and hence a bounded
measure, so that Theorern 5.3.1 applies. Viewed as a measure-valued solution,
convergence follows along DiPerna’s theory [8]. If, moreover, the nondegeneracy
condition (5.8.2) holds, then we can further quantify the W*-regularity (of order
5= -8
-2

T}j‘eorem 5.3.1 offers a further generalization beyond the original, "kineticly’
motivated discussion in [22]. Indeed, consideration of Theorem 5.3.1 reveals the
intimate connection between the macroscopic assumption of bounded entropy
production in (5.3.3), and an underlying kinetic formulation (5.3.6), analogous
to (5.3.15). For a recent application of the regularizing effect for a convergence
study of finite-volume schemes along these lines we refer to [24].

5.4 Degenerate parabolic equations

As an example one can treat convective equations together with (possibly de-
generate) diffusive terms

Buf + Vi - A(u®) = Vo  (@Vuf), Q>0 (5.4.1)
Assume the problem is not linearly deéenenaf;e, in the sense that
measy{u| T+ A'(v) £=0, (Q(v)¢, &) =0} =0. (5.4.2)

Let {u¢} be a family of approximate solutions of (5.2.1) with W, (L?)-compact
entropy production,

Ben(uf) 4+ Vo - Fuf) — Wi (L2(E,2)), Vo' >0. (5.4.3)
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Then {uf} is compact in L, (¢, x), [22].
The case @ = 0 corresponds to our multidimensional discussion in §5.3.1; the
case A = 0 correspond possibly degenerate parabolic equations (consult [17]
and the references therein, for example). According to (5.4.2), satisfying the
ellipticity condition, {(Q(¥)é,£) > 0 on a set of non-zero measure, guarantees
regularization, compactness ...

Again, a second-order version of the averaging lemma 1.6.1 enables us to
quantify the gained regularity which we state as

Lemma 5.4.1 Let f € L*(z,v) be a solution of the diffusive equation

- 0% = 5 Qi () 2 0, m(L ) € My
Assume the following non-degeneracy condition holds
measy{v} [0 < (', Q(v)€') < 6} < Const - 6%, a € (0,1). (5.4.4)
Then f(z) := [, f(z,v)dv belongs to Sobolev space W (L (z)),

8a

feyew' (' @), o<

(5.4.5)

Fzample. Consider the isotropic equation
ur+Ad(u) =0, ¥1.

Here (;;(v) = 8;;4'(v) and the lemma 5.4.1 applies. The kinetic formulation
of such equations was studied in [17]. In the particular case of porous media
equation, ¥{u) = u™,m > 2, (5.4.4) holds with & = L < 2 and one conclude

m-1 —
a regularizing effect of order s < 5;%:?, Le, u(t >0,): L§® —r We(L1).
A particular attractive advantage of the kinetic formulation in this case, is that
it applies to non-isetrepic problems as well.

5.5 The 2 x 2 isentropic equations

We consider the 2 x 2 system of isentropic equations, governing the density p
and momentum m = pu,

& P a m .
(2 ) 2 (B ) =0 61

Here p(p) is the pressure which is assumed to satisfy the (scaled) v law,

— 2
plp) =rp?, k= GO

The question of existence for this model, depending on the y-law, 1 < v < 3,
was already studied {7],[6] by compensated compactness arguments. Here we
revisit this problem with the kinetic formulation presented below which leads to
existence result for 3 < v < oo, consult [23], and is complemented with a new
existence proof for 1 < y < 3, consult [21].
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For the derivation of our kinetic formulation of (5.5.1), we start by seeking
all weak entropy inequalities associated with the isentropic 2 x 2 system (5.5.1),

(5.5.2)

m

Byw + B Aw) =0,  wi= [ P ] Aw) =

‘ ]
m? v
o TP
The family of entropy functions associated with (5.5.2) consists of those

n(w)’s whose Hessians symmetrize the Jacobian, A’'(w); the requirement of a
symmetric n”(w) A’ (w) yields the Euler-Poisson-Darboux equation, e.g, [6]

r=17 -
___( )p'ySn

[ . 4 U

Seeking week entropy functions such that n(p, u),=0 = 0, leads to the fam-

ily of weak (entropy, entropy flux) pairs, (n{p,u), F(p,u)), depending on an
arbitrary ¢,

nlp,u) = g/MOMu+®”@,
p [ @t + ") (u + 5", (5.5.3)

w(p, )
Here, w(£) is given by
W) =0- A= _%“";1_ >0,8:=1"=

We note that 5 is convex iff ¢ is. Thus by the formal change of variables,
v — u + £p¥, the weight function w(¢) becomes the ’pseudo-Maxwellian’,

Xpu(v) < pw((v = w)p~"),

Xpa(®) = (77" = (o = ). (5.5
We arrive at the kinetic formulation of (5.5.1} which reads
Bex (v} + By [a(v, p,w)x,pu(v)] = Boym, meM_. (5.5.5)

Observe that integration of (6.5.5) against any convex ¢ recovers all the
weak entropy inequalities. Again, as in the scalar case, the nonpositive measure
mm on the right of (5.5.5), measures the loss of entropy which concentrates along

shock disconfinuities. . o
The transport equation (5.5.5) is not purely kinetic due to the dependence

on the macroscopic velocity u {(unless v = 3 corresponding to § = 1),
a(v, p,u) = 8v + (1 — B)u e u+ £0p°.

Compensated compactness arguments presented in {23] yield the following
compactness result.

Theorem 5.5.1 [23] Consider the isentropic equations [5.5.1) with v > 3 and
let (pn = pu(t,2),un = un(t,z)) be a family of approzimate solution with
bounded entropy production and finite energy, By, = paul+4pl € L°(R], L' (Ry)).
Then a subsequence of pn (still denoted by pn) converges pointwise to p, and
(o subsequence of) un converges pointwise to u on the set {p(z,t) > 0}. In
particular, ppu, converges poiniwise to pu.
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Finally, we consider the 2 x 2 system

Bgv - 8mw = 0,
{ Brw+8p(v) =0, ¢30,2€ER, (5.5.6)
endowed with the pressure law
12
p('u) =rv"Y, >0, k= M (557)

4y

The system (5.5.6)-(5.5.7) governs the isentropic gas dynamics written in La-
grangian coordinates. In general the equations (5.5.6)-(5.5.7) will be referred to
as the p-system (see [20],[30]).

For a kinetic formulation, we first seek the (entropy,entropy flux) pairs,
(m, "), associated with (5.5.6)-(5.5.7). They are determined by the relations

Ty +PI('U) Tww = 0, (5.5.8)
where F' is computed by the compatibility relations
Fy =0y p'(v), Fy=—n. (5.5.9)

The solutions of (5.5.8) can be expressed in terms of the fundamental solution

(v, w) = fm (€)X (6)dE,

where the fundamental solutions, x, ., (£), are given by
3—v
2y -1)°

Here and below, £ (rather than v occupied for the specific volume) denotes the
kinetic variable. The corresponding kinetic fluxes are then given by

hu,w(f) = Hg':%gxy,w(€)-

Xowl€) = v (T = (w -8}, A= (5.5.10)

We arrive at the kinetic formulation of (5.5.6)-(5.5.7) which reads, [23]
O xvw + Os[alé, v, w)xy,w(é)] = Beem, mt,z,8) e M_, (5.5.11)

with macroscopic velocity, a(€, v, w) = 6(§ — w)/v.
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