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Modular Solvers for Constrained Image Restoration
Problems

Peter Blomgren and Tony F. Chan

Abstract—Many problems in image restoration cam he for-
mulated as either an unconstrained nonlinear optimization
problem:

. A 2
mJnR(u) + -ijllKu -z

which is the Tikhonow [1] approach, where the regularization
parameter ) is to be determined; or as a noise constrained
problem:

1 1
min R(u), subject to -z—ilK'u. —-z|?= 5]9!02,
w

where ¢ is the (estimated) variance of the the noise. In both
formulations z is the measured (noisy, and blurred) image,
and K a convolution operator.

In practice, it is much easier to develop algorithms for
the unconstrained problem, and not always obvious how to
adapt such methods to solve the corresponding constrained
problem.

In this paper, we present a new method which can make
use of any existing convergent method for the unconstrained
problem to solve the constrained one. The new method is
based on a Newton iteration applied to an extended system
of nonlinear equations, which couples the constraint and the
regularized problem. The existing solver is used in a block
elimination algorithm.

The new modular solver enables us to easily solve the
constrained image restoration problem; the solver automat-
ically identifies the regularization parameter, ), during the
iterative solution process.

‘We present some numerical results. The results indicate
that even in the worst case the constrained solver requires
only about twice as much work as the unconstrained one,
and in some instances the constrained solver can be even
faster.

I. INTRODUCTION

The regularized image restoration problem consists of
minimizing a regularity functional, R(u), over a function
space X (), subject to constraints relating the resulting
image u, to the measured image z. The congtraints de-
pend on the noise level, expressed as either the variance,
a2, of the noise, or the signal-to-noise-ratio, SNR; and the
blurring of the image, usually expressed as a convolution
Tt

min  R(u)
wEX(5)

1 1
subject to §|§§Ku = -2w|ﬂ|cr2. (1)
It is reasonable to consider the constrained problem since
estimates for the noise level are obtainable in most ap-
plications. There already exist some approaches for solv-
ing the constrained problem: Rudin-Osher-Fatemi [2} used
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the projected gradient method of Rosen [3] to control the
tradeoff between regularization and fit to measured data,
in the setting of an explicit time-marching algorithm. This
approach converges quite slowly, due to a time-step re-
striction. Chan-Golub-Mulet [4] introduced a fully con-
strained primal-dual approach, which is quadratically con-
vergent. While these approaches are very successful, they
are extremely non-modular in the sense that the constraints
and the regularizing functional are strongly coupled in the
solver. Non-modularity in itself is not an argument against
any method. However, it does make it hard to adapt
the algorithm to modifications to the regularity functional,
and/or the constraints. In our modular approach, we can
combine any solver for the unconstrained problem, with
any set of constraints.

The motivation for the modular approach is baged on the
observation that in many cases it is much more straight-
forward to design schemes for solving the corresponding
unconstrained — Tikhonov regularized [1] — problem:

min R(u) + 5 Ko ~ 3, 2)

u€ X {(2)
where A is a regularization parameter, balancing the trade-
off between minimizing the functional and staying true
to the measured image. If chosen correctly, A is the La-
grange multiplier corresponding to the constraint in the
constrained formulation (1}.

For (1), we get:

—ViR(u) + AR (Kuy — 2;) =0, {3)

Finding the solution to the constrained problem com-
prises of simultaneously identifying the Lagrange multi-
plier, as well as solving the Fuler-Lagrange eguations,

The goal of this paper is to present a highly modular
approach to solve the constrained problem. Given an effi-
cient solver for the unconstrained problem (with A given),
for instance a fixed-point [5], primal-dual [4], or transform
based algorithm, we show how we can design a solver for the
corresponding constrained problem, without special knowl-
edge of the functional or the already existing solver.

We access the unconstrained solver in the form of a black
box iteration: ™t = §{u™, A\*), which given the estimate
u™ to the solution of (2) and a value A" approximating
A, returns an improved iterate u™t!. In general it is not
necessary for the solver to return an exact solution to (2);
it is suflicient that the intermediate solves perform a few
iterations of the unconstrained solver,

The modularity facilitates plug-and-play capabilities
which enhances experimentation and performance eval-

1=1,2,...,m.
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uation of different regularity functionals, discretization
schemes, constraints, etc...

The modular solver is an adaptation of a general ap-
proximate Newton method for coupled nonlinear systems,
introduced by Chan [6]. Since the solver is based on a
Newton scheme, the overall solver converges quadratically,
provided the supplied unconsirained solver has guadratic
convergence properties.

In this paper, we present three applications of the modu-
lar solver: (%) Restoration of gray scale images, u : £} — R,
where the regularity functional is the total variation norm
of Rudin-Osher-Fatemi [2]. PFurther, we assume Gaus-
sian “white” noise, with variance o®, and no blurring, i.e.
K = I. We bage the solver on the quadratically convergent
primal-dual golver of Chan-Golub-Mulet [4]. (#) Restora-
tion of vector valued {RGB color) images, u » @ — RS,
where the regularity functional, R(u) = TV m(u), is the
color-TV norm introduced in Blomgren-Chan [7]. Noise
and blur are as in (i). For this problem, we base the con-
strained solver on a fixed-point lagged diffusivity scheme
for the unconstrained problem; an adaption of the scheme
introduced by Vogel-Oman [5] for the intensity image case.
(74t} Restoration of a gray scale image degraded by both
noise and blur. We use the Total Variation regularization
functional, a fixed-point solver using a cosine transform
based preconditioner to solver the resulting linear systems

[8].

The algorithm can easily be adapted to other regulariza-
tion functionals, e.g. H'-regularization, and modified, or
multipie constraints.

II. Tue MODULAR SOLVER

As in Chan [6], we introduce the following notation:

GHu, A = ~ViR(u) + MK (Ku; — 2), i=1,2,...,m
G (u, A)
G (u, A)

G{u,A) = .

G™(u, A)
N{u,A) = ||Ku — z[|3 — |20,
The KKT first order necessary condition for optimality
of the constrained problem (1) — see for instance Nash-

Sofer [9, chapter 14]) — can be written as the coupled
nonlinear system:
| =0

Our modular solver is based on a Newton iteration applied
to this system. Assuming that the solution exists, and is
regular enough that the Jacobian

G, G
Nu NJ\

{ Glu,\) n

Nlu, \)

Jlu, A) = [

is nongingular at the solution, at each step of the Newton
iteration, we are faced with solving the following linear

system:
RS B
N, N, S N |’
yielding the changes (du, 6A) in the Newton iterates.
We apply a block elimination algorithm to the system
(see Keller [10]):
First we notice that Ny = 0 and premultiplying the equa-

tion for du by G;! yields:
__| e
= (T

I G,;lG)\ du
EA
Now the key idea in the modular algorithm is to approxi-
mate the terms w = G 1@, and v = G,* G, by calls to the
unconstrained solver 5. First, observe that w can be ap-
proximated by one call to the existing constrained solver,
w = S(u, A) —u. The reason this works is that G/ G corre-
sponds to the Newton correction to u for the unconstrained
problem (where ) is fixed).

Moreover, we can approximate v by another call to the
golver: Differentiating G'{u, A) = 0 with respect to A yields
Ghuy+Gy = 0. Hencew = G 1@y = —uy. At convergence
—uy = —S5(u, A)x = —Syuy— 5. Provided § is sufficiently
contractive, i.e. ||9,]| < 1, it is reasonable to approximate
v = —S,. In particular, if the solver S is a Newton solver,
this approximation ig exact, since S, = 0. In practice,
all reasonably fast solvers are contractive enough to make
this approximation work. Finally, we use a finite difference
approximation to Sy, so that v = w, where
le] < 1.

Using the approximation v of G 1@, we rewrite (6):

(6)

I vl][ éu —w
[Nuo_[éA]“”[N]' (M
Now, elimination of the (2, 1)-block yields
I v [ 6u | _ —1p (8)
0 —Nyw || A - N+ Nw |’

Thus we can summarize the algorithm as follows:

ALGORITEM: Modular Solver
PROBLEM:
min R(u), subject to +1|Ku — z|| = §|Qjc?.
ASSUMPTION:

u — S{u, A) is a convergent solver for
VR(u)+ AK* (Ku — z) = 0.

1. Compute w = S(u™, A™) —u™.
2. Compute v = [¢] 7! [S(u®, A™) — S{u™, A" + €)].
3. Compute §X = [Nyv] " (N + N,w), where
o N=1{(Ku—2)*~|Q|s?),
o« Ny =K (Ku — 2).
4. Compute du = w —vdA.

yvtl = y" o fu
5. Update {)\"+1 — A" 6A
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Fig. 3. The true, noisy (SNR = 16.4dB), and the recovered {SNR =
30.2dB images.

Hence, each iteration requires two calls to the uncon-
strained solver, S. The solution obtained from the first
call can be used as an initial guess for the second call, thus
speeding up this call considerably®.

I11. NuMERICAL RESULTS

We present three applications of the modular solver.
First we reconstruct a gray scale image using a primal-dual
solbver for the unconstrained part of the problem. Since the
primal-dual solver converges quadratically, we expect the
overall convergence of the modular solver to be quadratic;
the numerics show that this is indeed the case. The sec-
ond application is a reconstruction of a color image. Here,
the unconstrained module is a lagged diffusivity fixed point
scheme, which is globally and linearly convergent. The fi-
nal application is a restoration of an image degraded by
non-trivial blur, and a small amount of noise. The uncon-
strained module for this application is also linearly conver-
gent.

For stability reasons we damp the update éA so that A
never changes by more than one order of magnitude be-
tween iterations.

A. Gray Scale Reconstruction

For our first example, we use the total variation norm of
Rudin-Osher-Fatemi [2] to restore a gray scale image. The
regularity functional is defined by:

TVa1(®) = / V| ds,
Q

and the associated Fuler-Lagrenge equations are:

Vu .
Vo (IWI> + AK* (Ku — z) = 0.

In the primal dual approach of Chan-Golub-Mulet [4]
an auxiliary variable w = %%ﬁ?, llw|| = 1 is introduced.
This leads to an enlarged system of equations which is less
non-linear than the original one. Thus, the convergence
properties of the expanded problem are more favorable.

The result of using the primai-dual algorithm on a simple
test image can be seen in Figure 1. As can be seen in
Figure 2, the correct Lagrange multiplier X is identified
in 5-6 iterations. After that, convergence is quadratic, as
expected.

*For example, when S is the fixed point algorithin of Vogel-
Oman {5], the first call may use 5-T iferations, and the second 2
to reach the same precision.

z a ] 3 3 7 ] ] ] 5 B

Fig. 2. Left: The regularization parameter, A, as a function of the
number of iterations; and Right: The residual of the constraint,
e.g. N(u,X) as a function of the iterations.

B. Color Reconstruction

Qur second example shows a reconstruction of a color
image, where the regularizing functional is the Color-TV
norm of Blomgren-Chan {7}:

3

1/2
>, [TVn,x(ﬂi)f] ;

i=1

TVom(u) =

and the unconstrained module is a lagged diffusivity fixed
point scheme, ¢f. Vogel-Oman {5]:

n+41
Vo (Tgap) +X 06 -0 =0

For a detailed discussion of the TV, norm, including
comparisons to other possible extensions, see Blomgren-
Chan [7]. Sochen-Kimmel-Malladi [11] relate the TV, s
norm 1o a general framework of Hows.

The result of the reconstruction can be seen in figure 3.
Figure 4 shows the evolution of the Lagrange multiplier, A,
the residual of the constraint, as well as the constraint of
the coupled nonlinear system. We notice that the conver-
gence is linear as expected, since the fixed point solver is
only lineaxrly convergent.

Figure 5 shows the evolution of A for several initial
guesses. Fven though the modular method is based on
a Newton iteration, which is not guaranteed to be globally
convergent, we notice that the method is quite robust -
typically it converges for initial guesses off by as much as
3 orders of magnitude.

C. Reconstruction with Nontrivial Blur

Our final example shows reconstruction of an image de-
graded by Gaussian blur, and a small amount of addi-
tive noige {SNR = 25.2dB). Figure 6 shows the true,
degraded, and recovered images, and figure 7 shows con-
vergence statistics. The underlying unconstrained solver,
based on a fixed-point algorithm [5] with cosine transform
based preconditioning [8], converges linearly, a property
which is inherited by the modular solver.

D. Work Comparison

Figure 8 shows a convergence comparison of the con-
strained and unconstrained methods {experiment 2, color
restoration}. The nonlinear residual is plotted againgt the
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Fig. 3. The true, noisy, and the recovered images.
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Fig. 4. Upper-Left: The regularization parameter, A, as a function
of the number of iterations. Upper-Right: The residual of the
constraint, e.g. N(u, A} as a function of the iterations. Center:
The residual of the coupled system.

B 1 1% 20 2
leralion

Fig. 5. Convergence of A for different initial guesses.

H 1 [ L ) ]

Fig. 7. Upper-Left: Convergence of the Lagrange multiplier.
Upper-Right: The estimated error in the Lagrange multiplier;
notice the linear convergence. Center: The residual of the non-
linear system; again, the convergence is linear.

number of linear gystems solved — the actual work per-
formed. We notice that after the initial search for the cor-
rect value of the Lagrange multiplier A, the constrained
solver converges faster than the unconstrained one (which
was given the correct multiplier A).

Each iteration of the constrained solver is at most twice
as expensive as an iteration for the unconstrained solver,
since there are two calls to the unconstrained solver. How-
ever, since the gecond call involves a small perturbation
of the Lagrange multiplier, the solution obtained from the
first call can be used as an extremely accurate initial guess,
thus speeding up the second call considerably.

In practice, the modular solver produces a solution using
about the same, or less, amount of work compared with the
unconstrained solver (which is given the correct multiplier).

IV. CONCLUSION

As indicated by the three applications presented, the
modular solver is easy to implement. The experimental
settings are quite different, nonetheless the same solver is
successful in all three.

The easy “plug-and-play” facilitates easy experimen-
tation and evaluation of different regularization models.
Finding the correct Lagrange multiplier is the only way
to make fair comparisons between different models.

The approach is very robust. In most cases the modular
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Fig. 8. Comparison of the residual for the constrained, and uncon-
strained soivers. Notice that the z-axis shows the total number
of linear systems solved (the actual work), not the number of
iterations.

solver converges for a wide range of initial guesses for the
Lagrange multiplier.

The modular solver is efficient. In practice we can com-
pute a solution to the constrained solution in the same
amount of time it takes to compute the unconstrained so-
lution.
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