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ABSTRACT OF THE DISSERTATION

Improvements in Computing Multiple Phase
Flows

by

Brian James Miller
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1997
Professor Stanley Osher, Chair

Improvements are made to a level set method for solving the incompressible, im-
miscible Navier-Stokes equations for fluids separated by an interface. A variable
density projection method combined with a TVD Runge-Kutta scheme is used fo
advance the computed solution in time. The improvements allow the method to
be applied in three dimensions without difficulty, give more freedom in choosing
boundary conditions, and enable the application of new fast solver techniques.
The use of the level set formulation allows easy treatment of merging and break-
ing flows. We examine typical problems such as air bubbles in water and water
drops in air. Comparisons are made with other numerical methods and with

theoretical results.
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CHAPTER 1

Introduction

In this presentation, we will develop improvements to an existing formulation of
the incompressible, immiscible Navier-Stokes equations for multiple fluids sepa-
rated by an interface {Sus94]. In that thesis, the incompressibility constraint was
enforced by taking advantage of the two dimensional nature of the problem. This
also forced the non-physical choice of no-slip velocity boundary conditions. In
this work, we will instead solve the equation for pressure to enforce incompress-
ibility. This method has some advantages over the previous method. Namely, it
generalizes to three dimensions easily, allows the correct velocity boundary con-
ditions to be used, and is a natural first step if one would like to use the method

described in [HLO97].

Chapter 2 summarizes the equations of motion. Section 2.6 presents the new
projection algorithm, and Section 2.3 presents the new surface tension formula-
tion. The discretization of the problem in treated in Chapter 3. The discretization
of the new projection method is described in 3.4. A summary of the application
of the Immersed Interface Method [HLO97] to this problem is shown in Chap-
ter 4. Some numerical Tesults are presented in Chapter 5. New applications of
this method are described in Chapters 6 and 7. The figures for all chapters are

contained in Chapter 8.



CHAPTER 2

Algorithm

2.1 Continuuin Equations

The equations of motion we solve are the incompressible Navier-Stokes equations
for flows involving two immiscible fluids. Denote the density and viscosity inside
one fluid by p; and gy, and in the other fluid as ps, and pg. The equations of

motion and boundary condition on the interface are

. 1
w+(u- Viu=g+ p (=VP+ V. (2uD)) (2.1)
V U= 0 (22)
Oa
(P1 — P2 -+ Offi) n; = 2 (p‘lth,;j —_ ugDz,ij) N —|— 5;‘ (23)

where u = (u,v) is the fluid velocity, p = p(x, t) is the fluid density, pp = p(x,1)

is the fluid viscosity. The viscous stress tensor D is defined

1 /0w  Ouy
Di=3 (5— * a)

g is the gravitational acceleration, and P is the fluid pressure. In the surface stress -

boundary condition (2.3), derived in {LL87], @ is the surface tension coeflicient
which we assume is constant on the interface, « is the local mean curvature of
the interface, and n is the unit normal to the interface pointing into liquid 2. We
also define T to be the unit tangent to the interface. The gradient of o in (2.3)

is really a surface gradient, since « is only defined on the interface.



Since we assume the fluids are immiscible, the density and viscosity simply

convect along with the fluid

pit (- V)p=0 (2.4)

i+ (u-Vip=0 (2.5)

We specify boundary conditions on u. For example, at a solid wall boundary, we

choose the standard Dirichlet condition.

u=>0 (2.6)

2.2 Use of Level Set Functions

In our problems of interest there typically are large jumps in the finid density
and/or viscosity across the interface. For this reason, we try to avoid taking finite
differences of p or i across the interface when solving (2.4) and (2.5). The use of
Jevel set functions helps avoid doing this. The level set function @(x,t) is chosen
to be positive in region 2 and ﬁegative in region 1. Therefore, the zero level
set defines the interface. We choose ¢ initially to be the distance to the initial
interface, with the appropriate choice of sign. If we now advect ¢(x,t) according

to
¢+ (u-V)g=0 (2.7)

then when we need information about p or y, we evaluate ¢ at that point, and
the sign of ¢ tells us the value of p and p. The advantage here, is that ¢(x,t) is
a smooth function, even near the interface so standard numerical methods will

give accurate, non-oscillatory solutions.

One important point to remember is that initially, ¢ is a distance function,

ie. |V¢| = 1. At later times, this is not necessarily true. Periodically during



the time integration, we execute a procedure called reinitialization that forces
|V$| = 1 while leaving the zero level of ¢ unchanged. This procedure is detailed

inn Section 2.7.

2.3 Inclusion of Surface Tension

In the continuum equations, surface tension forces appear by imposing a jump in
the stress tensor across the interface (2.3). We find this jump condition difficult to
apply in practice an& would like to reformulate it as a volume force that is applied
only near the interface. In [CHMY6] this was done in the context of vortex sheet
problems. While in [BKZ], a similar result is arrived at using a more physical

approach. Our derivation will be closer to that of [CHM96] in nature.

We define a region  divided by a section of the interface, T, in it’s interior.
Label the two parts {; and 2, see Figure 8.1. Consider the conservation of

momentum equation for {2
D
/p%dx:fpgdx—l—/ oijn;ds (2.8)
o Dt Q a0
Where o = PI— 2uD is the stress tensor, and D/Dt = 8/9t +u - V is the

Lagrangian time derivative. If we now integrate the final term around J€); and

O, separately, we find that

f O'i‘jnde:/ U{,jnjd5+/ crz-,jnjds—l—][m,jnj] ds
an asy LR r

Where [o;;n;] is the jump in the normal component of the stress tensor across
the interface. Now using (2.3) and Gauss’ Theorem, we can simplify the above

equation to
doi; doi;
j o;nids = i s 4+ Tii ds + / aknds
an o, 0; q, 0z; r

= %ds—l—/amnds
o J; r




We now claim that

f aknds = f ore(d(x))8($(x)) V ddx (2.9)
r Y]

For the proof, we define an auxiliary function (e, y) satisfying Vé- Vip = 0, and
V] # 0. We now make a change of variables p = o(z,y), £ = &(z,y), which

has Jacobian

det = T =Nz gy - 61‘ My = (E‘y; _éz‘) ‘ (T?a:a Wy)
| £ &y (2.10)

== (({bya “¢$) ) (¢za¢y) = ¢y¢m - ¢x¢y

Some simple algebra then reveals that

|‘7¢|2 : lv,¢|2 (V(ﬁ V'ﬁb)z ¢’2 2%%%% + @bi(ﬁz = (¢y¢x - ﬁbx'ﬁby)z

S0,

(¢y9”¢m) ’ ("/)ar; y) = |qu)| ) ]V¢l #0

Therefore the Jacobian is non-zero and the coordinate transformation is invert-

ible. We now apply this transformation to the right hand side of (2.9).
1
é Vodx = OV ————d
[ ntstomTaix= [ ax@i(E76: ol

- f¢=o g

Since V¢/|V¢| = n. Finally, if we parameterize the interface I' = (Z(s), y(s)) by

(2.11)

arc length s, then

dn = dd{(i(s),ﬂ(s)) = (uZs + Yys)ds
= (e o) - (Bor B )ds = [Viplds



Since (1bz,%,) is in the same direction as the unit tangent to T, (z5,Us). So we

see

/¢=o aﬁl%l{[;[dn = /Farcnds

and the proof is complete. The construction of the appropriate ¢ function is
completed in [CHMY6].

We have now transformed the boundary condition (2.3) defined only across

the interface T to an equivalent volume forcing term

ar(¢)s($)Vé (2.12)

valid throughout the whole domain.

We would like to make one additional simplification. The surface tension
forcing (2.12) will be multiplied by 1/p in the continuum equations. In the

derivation above, we could have multiplied each integrand in (2.9) by

P

{p)
where {(p) = (1 + p2/p1)/2. The proof above is unchanged and the result is that

the term in the continuum equations will be independent of p, depending only

on {p). Finally, our new surface tension term becomes

"—p—()!KZ .
B ($)8($)Ve (2.13)

2.4 Smoothing of the Interface

There are two problems with the formulation as it stands. First, despite all the
care we have taken to avoid differencing p or g across the interface, sometimes we

have no choice. For instance, in (2.22), if we treat p as a discontinuous function,



the linear system we will have to solve will be very ill-conditioned. The other
difficulty we face is that in Section 2.3 we have defined a volume force which

contains a Dirac é function.

One solution to these problems is to define a small region about the interface
and make all transitions smooth from one fluid to another. Numerically, we give
this region a width of a few grid points. We define ¢ to be the width of the

transition region and define a smoothed Heaviside function.

r

0 ¢ < —¢,
H(¢) = 4 1+ % + %sin(mﬁ/e)) lp| < e, (2.14)
1 b>e€

\

We also define the derivative with respect to ¢ of this function and define it as
an approximate delta function, since it satisfies the definition of the Dirac delta

function in the limit ¢ .— 0.

% (1+cos(mé/e)) || <
S(#)=1" (2.15)

0 9] =
Then we redefine p(¢) = p1 - He(¢) + p2(1 — He()),  is redefined likewise. With
this definition, p and g are now continuous and the transition region € can be

chosen to be O(h). We also modify (2.12) to use our newly defined smooth delta

function. The forcing due to the surface tension is now

= L ok . .
Fsr = o) ($)o(P)V (2.16)

We now re-state the continuum equations we will solve using the simplifications

we have derived.

w0 Viu =g+ (TP (2uD) + CroR(@8(#V (217)

V.ou=0 (2.18)



2.5 Nondimensionalization

To non-dimensionalize the equations, we need to choose a characteristic speed U
and length R. For most interface motion problems, a convenient choice for the
characteristic length is an initial dimension of one of the phases. For problems
without an obvious choice of characteristic speed, we may choose U = v Rg.

After non-dimensionalization, the equations of motion (2.17) become

-1 1 1 11
. =—— g+ = -VP+ —V-(2uD —- R (P}V
w0 V= =+ 1 (2T D)) 4 (V0
’ (2.19)
Which we express in a simplified notation as
1
u; = L(u) — ;VP (2.20)

The dimensionless density and viscosity have value 1 in region 1 and p2/p1, po/ it
respectively inside region 2. Our dimensionless parameters are the Reynolds
Number (Re = RUp; /1), the Weber Number (We = py RU?/a), and the Froude
Number (Fr = U?/(Rg)).

2.6 Projection

The presence of the pressure term in (2.19) forces the velocity to remain diver-
gence free. We can use this to construct the equation that the pressure must

satisfy. If we take the divergence of u, = L(u) — %VP ,
Vow =V Lu)-V- (%vp) (2.21)
and notice that V- u; = (V- u)/dt = 0, then

v. (%vp) ~ V. L(u) (2.22)



Similarly, we can define Neumann boundary conditions on P

We have specified an elliptic equation for P with Neumann boundary conditions.
Tt is well known that the solution to this problem only exists if a compatibility
condition between the forcing and boundary conditions is satisfied. Even when
the solution does exist, it is not unique; any constant added to P also solves
(2.22) and (2.23). This non-uniqueness makes the solution of discrete pressure

equation problematic.

2.6.1 Contribution of Surface Tension Force

When we compute the forcing term for the pressure equation (2.22), we need to

take the divergence of {2.13). We can make use of the fact that

8(¢)Ve = VH(¢)

It is not too difficult to show that

1 1 11
= [k H]
We {p)

Where we have used the fact that |V@| = 1 near the interface for a distance
function. See Appendix A for details used in the above derivation. When we
compute this term, we can use the analytic formula for H.($), (2.14) to compute

the second derivative in (2.24).

2.7 Re-initialization of ¢

In the previous section, we relied heavily on the assumption that ¢ is a distance

function, at least near the interface. There are many references about an iterative



procedure to force ¢ to satisfy [Vl = 1 near the interface without moving the
location of the interface[Sus94, CITM96]. To summarize, given a level set function
which is not a distance function ¢g(x), we iterate the following problem to steady

state

$r = 5(¢0) (1— /82 +42) (2.25)

B(x, 7 = 0) = do(x) (2.26)
where S is a smoothed sign function

S(¢o) = ‘"———Eg’:?

This iteration gives a function @(x) that has the same zero level set as ¢o(x),
but is also a distance function near the interface. In practice, we only need to
iterate a few times to achieve the distance function property within the fransition

region.

2.8 Algorithm Summary

e Initialize (x,0) to be the signed distance to the initial interface. Set ve-

locity u = 0.

o Advance u and ¢ one time step using a TVD Runge-Kutta scheme with

the projection method.

¢ Reinitialize ¢.

10



CHAPTER 3

Discretization

We limit our domain to be rectangular. Furthermore, we only allow equal grid
spacing in each dimension. This is not a limit of the method, it is only done for
easier programming.

If our domain is {(z,y) : @ < z < b,¢ < y < d}, and our grid spacing is h,

with nz grid points in = and ny grid points in y, then our grid points are

x;; = (a+ (¢ = .B)h,c+ (§ — .5)h)
i =-1,0,1,2,... ,nz,nz+ 1,nz +2

j=-1,0,1,2,... ,ny,ny+ 1,ny +2

The grid points whose indices put them outside the domain are called ”ghost
points” and are used to enforce the boundary conditions and to allow for easy
application of difference approximations. All unknowns u, ¢, and P are defined
at these grid points. See Figure 8.2 for an example of a grid with one layer
of ghost points outside the computational domain. The open circles denote the

locations where the unknowns are defined.

3.1 Spatial Discretization

All non-linear and convection terms are discretized using a 2nd or 3rd order ENO

method [SO89]. Suppose we wish to compute a second order approximation fo

11



u - ux, part of the convection term u - Vu, evaluated at the grid point x; ;. For
notational convenience, we drop the j index, since we are only concerned with

variations in the i1 dimension.

There are two cases, if u; > 0, then

-

h .
+ ~2~mmmod (

o o t AN
Uspy — U5 + Ugmy Uy — U1 T uz'—z)

h? ’ h?

Uy~ Ui

h

um(Xg‘) ~

and if u; < 0, then

: Uipr — U R Uipg — 2Uipt + U Uipr — 2Ui + Uiy
us(X;) ~ - §mznmod % , 2
Where
sgn(a)min(la|,[b]) @-b>0,
minmod(a,b) = Jmixl ) (3.1)
0 otherwise

Approximations of y derivatives are similar. To achieve higher order accuracy,
we add additional terms to the approximation which are computed in the same

INalner.

The viscous term, 1/(pRe)V - (2uD), is discretized using centered differences
for the derivatives of u and an averaging of u(x). For instance, the discretization

of the first component of the divergence of the viscous stress tensor term is

2pus)e + (ptiy)y + (Hvs)y =
{(rarng + i) (i — wig) — (g + pimr)(eg — wicrg))/B°
b (e an + i) (@igar — wig) — (i + pij-0) (i — wij-1))/ (2h°)
(g g1 (Vi g1 — Vicrge1) — Higo1 (Vian -1 — vim1,-1))/ (4%}

/(05 Re)

12



The discretization of the second term in the divergence of the viscous stress tensor
(pty)e + (104 )e + 2(11vy )y is defined similarly. Let L(u) be the 2nd order accurate
discretized approximation to £(u). Call the components of I = (L', L%). We
apply linear or quadratic extrapolation boundary conditions on L to define L on

grid points outside the domain (the ghost points).

3.2 Time Dis_cretization

We discretize in time using the Method of Lines. This enables us to use a TVD
Runge-Kutta scheme to advance the solution in time. These TVD R-K schemes
were derived in [SO88]. The advantage of these schemes is their low storage
requirements and non-oscillatory nature, with the trade off of higher cost per

iteration due to repeated pressure solves. For example, if we consider solving
u, = L(u)
First order Runge-Kutta is just the Explicit Euler method
u™t! = u” +dt - L{u")
Second order Runge-Kutta is defined, using an intermediate solution ul, 1by
u! = u" 4 dt - L(u™)
u"tl = 5. (u" 4+ u') 4.5 dt - L{u')

Third order TVD Runge-Kutta uses two intermediate solutions, u!, and u®

u! = u" +dt - L(u")

wl=75-u"+.25-u' +.25. d¢ - L(u')
1 2 2
n+1:__ b - 2 —'dt' 2
u 7Y -|-3 u-l—3 L(u®)

13



3.3 Discretization of Reinitialization

The reinitialization equations (2.25) are discretized using a non oscillatory meth-
od for the spatial derivative terms. We choose to rewrite (2.25) in a form that

looks more like a convection equation

$r + H1(§f))¢5x -+ H2(¢)¢y - S(g%) =10
d(x,7 = 0) = ¢"(x)

with |
_ 0 bz
Hy(¢) = 5(¢ )W
Hy(9) = S(qs“)ﬁ

To compute these terms numerically, we define forward and backward finite dif-
ferences of ¢, ¢ = D%¢, and ¢; = DZ¢, and corresponding approximations to
Hy, Hf = S(¢)¢F, and Hf = S(¢)¢;. Then the following selection procedure
determines the approximation of ¢, and H;.

by = o5, Hy = HY Hf >0 and H{ >0,
by~ ¢, Hy = HY HY <0 andH; <0,

| b= 5, Hym HY  (HY — H7)/(¢2 — ¢2) > 0,

de &0 ¢t Hy = Hf  otherwise

H7 > 0and Hf <0,

| ¢: 0, Hy =0 Hy <0< Hf

A similar selection procedure is used to approximate ¢, and H,. Once all terms
are computed, we complete the approximation of fI; and H, by dividing each by
/@2 + ¢2. Higher order accurate approximations can be derived, but we omit

the details. Once the spatial terms are discretized, we the same 2nd or 3rd order

14



TVD Runge-Kutta method for advancing in 7 as we defined for the continuum

equations.

There are a few modifications we have added to the reinitialization procedure
[Fed]. The first is a limiting procedure to ensure that sgn(¢) does not change at
any point in the domaii.

Fach step in the TVD Runge-Kutta procedure looks like
qbwew — qsafd + dt - G

where ¢°'¢ is some linear combination of ¢’s at previous steps, dt is some multiple
of the pseudo-time step dr, and G = Hy¢,+ Hay— 5 is the approximation to the
spatial derivative term. We wish to ensure that sgn(¢®? —dt - G) = sgn ('),
equivalently, ¢°¢ - ¢ > dt - ¢° . G. Tf this condition is not satisfied at any
grid point in the domain, we replace G; ; with €5;;, where ¢ was defined as some
multiple of the spa.tia,llgrid size, and
Si;= &
(¢°)2 + 4c?

is a smooth approximation to sgn(¢°).

If one examines the reinitialization equation (2.25), it is easy to see that
information is propagated away from the interface with increasing 7. As this
‘wave’ approaches the boundary of the domain, numerical difficulties usually

occur resulting in non smooth regions of ¢ near the boundary.

The second modification is the imposition of different boundary conditions
on ¢. After the completion of the TVD Runge-Kutta pseudo-time stepping, we
must compute the value of $"+! at the ghost points outside the domain. We use
the Dirichlet information on the boundary and linearly extrapolate the interior

values to the ghost points. For a rectangular domain, we define the boundary

15



value of ¢"*! to be
+1 _ 3 +1 1 1
¢ (@i yl) = $iL + sgn (117) - [4if — #ijin

where (z;,yL) is a point on the lower boundary, and 7L is the index of the row of

grid points adjacent to that boundary. This choice of boundary condition ensures

2 Y-

a smooth extrapolation of the interior values to the ghost points.

3.4 Discretization of the Projection

The discretization of the projection is the most difficult part of the problem. First

define the following coeflicients

dy = 2.0/(p(1,5) + p(i + 1,5))
dy = 2.0/(p(i,5) + p(i,5 + 1))
(

(
da = 2.0/(p(i,3) + pli, — 1))
We now discretize (2.22) in a straightforward manner.

(dy+ dy + ds + dg) B 5 — di Py —doPijpr — daFioy; — dy P 51 =

_hg(Lz{}-l,j - L%—l,j + L?,j+1 - L?,j—l)/(gh)

(3.3)

This equation is valid if (z,7) is in the interior of the domain. However, if the
stencil crosses the boundary of the domain, we modify (3.3) by using the boundary
conditions. For instanée, if i = 1,1 < § < ny, then the Neumann boundary

condition is

de(Po; — Puj)/h = —(Lg; + L};)/2

16



The equation(3.3) then becomes

(dy + dy + ds)Pij — di Pigy; — doPijn — dsPioaj = (3.4

—hH (L — D+ L — LE; 1)/ (2R) + h(L3; + L3 ;)/2
The modifications are similar for those grid points near the other boundaries.
We now put these equations into matrix form. Order the unknown P starting
at the lower left corner, {(1,1),(1,2),...,(1,nz),(2,1),... ,(ny,nz)}. There are
N = nz * ny equations with N unknowns. Define the resulting matrix A, and
the forcing b. We now need to solve Az = b, where « is the vector of pressure

unknowns ordered as above.

Just as in the continuous case, the linear system has a non empty kernel. In
particular the vectore = (1,1,..., 1)! is in the null space of A. The corresponding
compatibility condition is that (b,e) = 0, where (-,) is the usual vector inner
product. If b does not satisfy this condition, we can modify b so that it does, by
replacing b with |

., by, (e
b=b- g =t (3.5)

This will cause a shift in the solution by a constant, which does no harm. In

fact, this correction will cause the PCG method to converge to the least squares

solution. We must also choose our initial guess z° so that (2°,¢) = 0.

The matrix A is symmetric and positive semi-definite, so we can hope to
apply some sort of preconditioned conjugate gradient method to the system.

This problem is addressed in [LR80] in great detail.

To summmarize, it turns out that a good preconditioner for Az = b can be

formed using the matrix resulting from discretizing

AP =F
o _
an“g
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We call the matrix corresponding to the above problem, C'. C also has a one
dimensional null space. In fact, e is also a null vector of C'. If we now define the
matrix D!/2 to be the diagonal matrix with dg; = m , then our precondi-
tioner matrix M = DY2(C D2, In the preconditioned conjugate gradient (PCG),

we solve Mz = r repeatedly. This is easily done by

e compute w = D12
e solve Cu = w (using BLKTRI from SLATEC)

e compute z = D™V/%y

We can simplify this process considerably by replacing the original system Az =b
by

Az =b (3.6)
A=D"Y?AD™V? (3.7)
b= D% (3.8)

We solve Az = b, using PCG with C as our preconditioner, then compute z =

D~1/23 to complete the solution procedure.

The remaining issue in this method is that we must force each iterate to be
orthogonal to the null space of A. An examination of the PCG method reveals
that the direction vector is updated by taking a multiple of the old direction plus
the solution to the preconditioner problem. So if we force the solution of Cz =7+
to be orthogonal to & = D~"/?e, by explicitly applying (3.5) to the update of the
direction vectors in the PCG method, each iterate will remain orthogonal to &.
The general PCG routine from SLATEC can be modified without much trouble
to do this.
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We can include the surface tension term into the forcing for (2.22) explicitly,

by adding (2.24) to the forcing term computed above in (3.3).

3.5 CFL Condition

We compute the time step using [Sus94]. In addition to the usual time step
restrictions for velocity and the viscous term, At., and At, respectively, we need
a restriction to ensure that surface tension driven capillary waves on the interface
don’t travel more than one computational cell per time step. The Af; term

ensures this.

At, = \/(1 + Pb/Pe)Weth

AT = Bmin(Ats, At,, Atg)
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CHAPTER 4
Immersed Interface Method

In his dissertation [Li94], Zhilin Li developed a method to solve elliptic equations

of the form

V. (AVu) = f (4.1)

[ulp = w (4.2)
[ﬁg—z] ) =v (4.3)
(4.4)

[ denotes the jump in the quantity across the interface I, and B(z,y) could be
a discontinuous function. In his work at UCLA, Li developed a faster method
[HLO97]. In either method, we need to be able to compute certain quantities
about the interface: its curvature, unit tangent and normal, and derivatives of
functions along the interface. In his original method, Li used a discrete set of
points together with spline interpolation. However, one could use a level set
to define the interface and also compute all the above quantities from the level
set function. That is what we propose to do. In the Chapter 5 we have some
preliminary results comparing the static elliptic solvers using both the smoothed
interface and ITM method to solve the problems. Section 4.2 has an application

of the 1IM to a simple fluid flow problem
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4.1 Level Set Implementation

The IIM is really a way to compute a modification to a finite difference scheme
when the finite difference stencil crosses an interface. Using this method, one
is able to retain second order accuracy in the inf-norm throughout the domain.
We can label a stencil as "regular” if none of its 'arms’ intersects the interface,
and ”irregular” otherwise. The IIM modifications need only be computed for
~irregular stencils. For each irregular stencil, we choose a point on the interface,
usually the point oﬁ the interface closest to the stencil center. See Figure 8.7 for

a sketch of an irregular stencil and its corresponding interface point.

There are several necessary interface quantities that are needed in an applica-
tion of the ITM to an elliptic problem. First, we need a collection of points lying
on the interface, usually computed by some interpolation from #(z,y). At each of
these points, we need the outward unit normal, local curvature, and the value of
the jumps in the solution w, and v. It is important to note that-all the geometric
quantities needed in the I[IM method are easily computed directly from the level

set function with some combination of interpolation and finite differences.

Since we need to compute derivatives along the interface of w and v, it 18
essential that our collection of points lying on the interface are uniformly spaced.
This can be accomplished in a number of ways. One could just compute many
points on the interface and when computing derivatives, make sure not to use
points that are too close together. We prefer to choose our points more carefully
so that they are well spaced. This also reduces storage costs and search times,

which are not insignificant in these problems.
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4.2 Application to Vortex Sheet Problems

A simple application of the Immersed Interface Method is the numerical solution
of a two dimensional vortex sheet problem. The problem formulation is derived
in [HOS95]. We summarize. Consider a two dimensional domain, periodic in
z. The fiuid velocity u is incompressible with its vorticity confined to a one
dimensional subset of the domain defined by the zero level of a smooth function

#(z,y,1). The stream function ¥{z,y,1) satisfies

AV = —5(¢)

¥(z,y,t) periodicinz
U(z,y,0) =y + .05sin(2rz)
The velocity is then u = (—¥,, ¥, ). The level set function is advected according
; y

to ¢ + u - Vg = 0. The vortex sheet strength is 1/|V¢|. This problem can be

easily cast in the form of the Immersed Interface Method by noting that

[P, =0
[ -9
onjr V4]

The IIM solution of the linear system arising from the discretization of (4.5)
with (4.6) requires a modification of the {otherwise zero) right hand side at irreg-
ular points to accommodate (4.6). The solution of the system is then computed

by one call of a fast elliptic solver.

Some care must be taken computing (—¥,,¥.) because ¥ has a jump In
normal derivative across the interface. As detailed in [Li94], one can derive

a finite difference approximation that is second order accurate away from the
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interface and first order accurate near the interface by using the known values of
the jumps in ¥ and %.

The equation for the advection of ¢ is discretized, as before, using a TVD
Runge-Kutta method in time, and a 2nd or 3rd order ENO scheme for the
convection term. The time step d¢ must satisfy the standard CFL condition

dt < .5 % h/|ul|, where h is the uniform spatial grid spacing.

We show some numerical results using this method on the problem above.
The domain is {{z,y}| -1 <e<1,~-1 <y < 1}. The number of grid points in
each direction is 80. Our initial interface is a sinusoidal shape. The vortex sheet

strength has a non dimensional value of 1.

Figure 8.8 shows the evolution of the vortex sheet over time. We see that over
time the vortex sheet rolls up as it should. At the given grid resolution, we were
not able to integrate much further in time beyond the time of the final subplot
in the figure. The velo'city at the center of the domain grows quite large forcing

a correspondingly small time step.

Figure 8.9 shows how the Immersed Interface Method preserves the jump
in the velocity. We can modify the code slightly to use the smoothed interface
procedure instead of IIM. When that is done, it is quite obvious how the interface

is smeared and the jump in velocity then becomes a smooth transition.

There is a trade off between the [IM and the smoothed interface methods.
The smoothed interface methods are quite easy to program, while writing an
IIM solver is quite complicated. There is a significant difference in the quality
of solution produced by each method, the IIM method will carefully preserve
discrete jumps in the solution. Since the IIM method will preserve jumps, finite
difference methods must be more carefully implemented. Care must be taken

when differentiating numerically across an interface. Fortunately for the vortex
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sheet problem, we can use the knowledge of the value of the jump in velocity to

make differentiating across the interface first order accurate.
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CHAPTER 5

Tests and Numerical Results

5.1 Linear Solver Tests

We have run various tests solving elliptic problems like (4.1). We choose an exact

solution P(z,y) = cos(z)cos(y), and the density function

p(z,y) = (1 - g—’e’) Ho(¢)+ %E

We choose ¢(z,y) = 1/(z — .B)* + (y—.5)> — .3, and € — 1.5h. We ran two tests
comparing three methods: Diagonally Scaled Incomplete Cholesky precondition-
ing, the inverse Laplacian preconditioner described in Section 3.4, and the fast
[IM method described in [HLO97]. We test these methods with density ratios of
.1 and .001. The results are presented in Tables 5.1 and 5.2.

T is time for the run measured in seconds, err is the {2 error once the error
is shifted to have zero average. For the [IM method results, M is the number of
discrete points on the interface. The rate of convergence is listed at the bottom

of each column.

For the PCG methods, we see that the number of iterations to convergence
does depend on the density jump across the interface. Hopefully, when this
solver is embedded in the Navier-Stokes solver, using the previous solution as the
initial guess for the next solution will help to reduce the number of iterations

to convergence. Preliminary results seem to bear this out. We should only
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Table 5.1: Convergence Study: Linear Solver, density ratio=.1
DSICCG Inverse Laplacian M

N || its err T || its | err T M | its err T
8

10| 19 | .104 22 | .104 g8 | .0018
206 31 ¢ .052 35 | 052 24 1111 .0004
36 || 45 | .0335 36 §.033 32 | 11 ¢ .0002

40 1| 59 | 025 | 8 |46 |.025 8 48 | 10 | .0001 | 8

50 || 73 | .020 | 12 { 51 | .020 12 || 56 | 11 | 6.45e-5 | 11

&0 i 116 | 012 | 43 || 68 | .012 35 1196 ] 10| 2.65e-5 | 19
1st Order 1st Order 2nd Order

expect first order convergence in the PCG methods since the density function is

smoothed across the interface.

The IIM method shows excellent convergence properties and has the addi-
tional feature that the number of iterations and the time to convergence is in-
dependent of the density jump. It is this property that we hope to exploit in a

Navier-Stokes solver.

5.2 Surface Tension Test

A good check for the validity of the surface tension term is to consider a circular
bubble in the absence of gravity and viscous effects. The jump in pressure is then .

given by Laplace’s formula, equatioﬁ in [LL87, 61.3]

I
P.— P =~y (5.1)

the minus sign is needed because P, > P, if the bubble is concave, and &k = 1/r

where 7 is the radius of the bubble. For the test, we choose We = .1, pp = .001,

26



Table 5.2: Convergence Study: Linear Solver, density ratio=.001

DSICCG Inverse Laplacian ™M
N || its | err | T } its | err T M | its err T
10 || 19 | 12.1 32 1121 8 | 8 | .0015
20 32 |5.71 h2 1 5.71 24 1 11 ; 00034
30| 46 | 3.65 76 | 3.65 32 | 12 | .00016

40 || 60 | 271§ 8 || 74 [2.71 13 48 | 11 | 9.35e-5 | 8
50 & 75 2.14 | 11 || 100 | 2.14 | 22 56 | 12 | 5.85e-5 | 11

801 120 1 1.32 |44 || 168 | 1.32 | &4 96 | 10 | 2.44e-5 | 20
1st Order 1st Order 2nd Order

p. = 1.0, @ = [-1,1] x [0,2], » = .5. The center of the bubble is (0,1), and we
choose € = 1.5 % h. We ran this test with nz = ny = 20 and nz = ny = 40. The
theoretical jump in pressure with this choice of parameters according to (5.1) is
[Posaet] = 20. For nz = ny = 20, {P] & 21.5 and when nz = ny = 40, [P] = 20.8,

verifying our formulation of the surface tension term.

5.3 Advection Test

We would also like a check of the time stepping - projection combination. We

solve
u; + (u-Viu = —%VP-I—EAu—{—F (5.2)
Veou=0 (5.3)
u=g (5.4)

in the region Q = {0, 7] x [0,7]. As in [HK], we define v = .01, choose an exact

solution and compute the forcing F(z,y,t), and boundary conditions g(z,y,?)
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from that solution. Let

tosac (14 1) = sin®*(z) sin{2y) cos(2mt) (5.5)
e — sin(2z) sin®(y) cos{2mt)

—
'CJ‘
-]

—

Poact(,y,t) = sin(z) sin(y) cos(2mt)

bt

——
ot
—

Pea:act(w:yat) =4+z+y

We discretize this problem as outlined in Section 3. The errors reported below

are computed at ¢ = .5.

Table 5.3: Errors in Advection Test

N U — Uegget|2 | Ju — uBzact|s | [v — Vezacthoo

50 027 0146 0146

60 0152 - .0081 .0081

80 .0068 .0060 .0061
Order | 2.93 1.82 1.82

We see second order convergence in the velocity as expected.

5.4 Comparison to Previous Method

5.4.1 Two Dimensional Flows

We have run various test cases of our method in 2-d Cartesian geometry. We
would like to present some comparisons of the method outlined in Section 3 to

the previous results in [Sus94]. We look at two rising bubble problems.

The first rising bubble simulation, Figure 8.3, has a very small surface tension
and medium range Reynolds number (Re=100, We=200) with a density ratio of

1000:1. We see in the comparison, that the bubble with no surface tension deforms
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rapidly while the bubble with surface tension stays more circular, verifying the

effect that surface tension has on rising. bubbles.

The second rising bubble problem Figure 8.4 has stronger surface tension

(Re=168, We=45), density ratio =40:1. After more time steps than the previous

tension has broken into two smaller bubbles, the bubble with strong surface

tension is still intact and has undergone only mild deformation.

5.4.2 Axisymmetric Flows

We can also solve these flow problems in axisymmetric coordinates. The deriva-
tion of the equations is presented in Appendix B. We examine two test cases for
axisymmetric flow, a bubble rising in a viscous liquid, and a droplet falling into

a liquid pool. In both problems we discretize on a 40x80 grid.

For the rising bubble problem, our non dimensional parameters are Re=10,
We=100.0, Fr=.1, Figure 8.10 shows the evolution of the bubble. One can again
see the effect of weak surface tension in the evolution by the large deformation

of the bubble from circular.

The falling droplet problem has parameters Re=100, We=10, Fr=.1, the so-
lation is pioﬁted in Figure 8.11. This problem clearly illustrates the ease with
which the level set methodology solves problems with merging interfaces. Noth-
ing special was done to simulate the droplet merging with the liquid. Again, the
presence of surface tension forces keep the falling droplet basically circular before

impact with the surface of the liquid.
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CHAPTER 6

Application to Micro-gravity Flows

One new application of this method we have investigated is the problem of simu-
lating flows in micro-gravity. The problem origin is the simulation of vapor-liquid
interactions in low gravity. Consider a heat exchanger unit on a satellite utilizing
a liquid coolant. In a 1-g environment, buoyancy will cause vapor bubbles to rise
away from the heat source ensuring a steady flow of heat from the source to the
fluid. However, in low gravity environments if the heat exchanger is not properly
designed, a layer of insulating vapor can develop between the heat source and
the cooling fluid due to the lack of buoyancy. If this occurs, the flow rate of heat
from the source is dramatically reduced. This can result in damage to the part

being cooled if it sensitive to high heat.

We study this phenomenon experimentally and numerically in [MMR97]. The
experimental setup is a perforated metal plate submerged in liquid nitrogen.
A heat source is applied beneath one of the perforations causing a bubble of
vapor to form imside the hole. As more heat is applied, the bubble expands
and eventually separates from the plate and rises. We would like to model this
situation using our level set method derived here and see agreement between our

computer simulations and the results from the lab.

Our simplified numerical model problem is the injection of gaseous nitrogen
into a rectangular box containing liquid nitrogen under very low gravity con-

ditions. We choose different boundary conditions to simulate the experimental
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problem. On the lower boundary of the domain, we specify a region called the
inlet where we fix a vertical velocity and also maintain ¢ < 0 corresponding
to the vapor phase. On the top boundary of the domain, we specify an outlet
boundary condition so bubbles rising to the top exit the domain. On each side of
the domain, we specify either no slip or free slip boundary conditions depending

on the solution method.

We first applied the method of [Sus94] to this problem. This required a few
modifications. First, we must define a purely vertical velocity at the injection
site. This makes the determination of the dimensionless constants, the Reynolds
and Weber numbers, more s’sraigl_}tforward. Second, and more importantly, the
no slip boundary conditions no longer apply, we instead impose free slip boundary

conditions.

Finally, the specification of the level set function is different. Initially, the
box is entirely one fluid (liquid Nitrogen) and the other phase (Nitrogen vapor)
is carried in through the inlet. We can accomplish this by setting the level
set function to be zero on the inlet, the positive distance from the inlet in the
interior of the box, and negative in the ghost points outside the box, below the
inlet. During the time evolution, we force the ghost points beneath the inlet to

have negative value explicitly.

In all our investigations, we choose to specify an inlet port on the lower side
of the box with a purely vertical velocity profile across this inlet. Because of

incompressibility, we need to specify an outlet port and outlet velocity so that

/ u-n=0 (6.1}
aQ

In all our tests, we put the inlet on the bottom of the box and the outlet on top,

31



so the integral condition becomes

—~/ vda::/ vdz (6.2)
inlet outlet

Where v is the vertical component of velocity specified on the inlet or outlet.
In [Sus04], the Navier-Stokes equations are expressed as u, = L(u) where
L(u) contains the convective, viscous, gravity, and surface tension terms. The

incompressibility is enforced by finding the divergence free part of L at each time

step [CM93]. This can done by solving
V(pVV¥) = =V x pL (6.3)

Where U is the standard stream function. The free slip boundary conditions
correspond to ¥ = 0. Since d¥/dz = —v and d¥/dy = u, we can construct

boundary conditions on ¥ for our injection problem as follows.

For simplicity, let our box @ = [0,1] % [0, 1]. ¥(0,0) = 0, then

¥(z,0) = —f:v(g,{))dg

U(l,y) = —/01 v(m,O)da:—}-foyu(l,n)dn

¥(z,1) = —/01 o, 0)dz + f u(l,y)dy—/: o€, 1)de

¥(y,0) = w-/olv(:c,{))d:c-l— /01 u(1, y)dy ——j:v(:c,l)dm-l- fyl (0, n)dn

If (6.2) is satisfied, then this specification of boundary conditions on U will be

consistent, that is, lim,_0 ¥(y,0) = 0.

We have run numerous cases with these boundary conditions and include some
plots of the injection process evolution. Figure 8.5 with Re=170, shows the time
evolution of the injection process in the absence of surface tension. The inlet

velocity was specified with a purely vertical, parabolic profile. Note the effect of
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no surface tension: the trail of vapor that follows the bubble into the domain and

at later times, there is no breaking of the interface.

In contrast, Figure 8.6 with parameters Re=110 and We=.27 shows how the
presence of surface tension in the injection flow causes the pinch-off of the vapor.
Following pinch off, the separated bubble retains the more round shape.

These numerical results qualitatively agree with the experimental results and

give us some hope that this method can be applied to assist the design of a simple,

effective low gravity heat exchanging device.
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CHAPTER 7
Application to Core Annular Flows

An interesting physical problem which seems ideally suited to solution using
level sets recently came to our attention. In the transport of heavy crude oil in
pipelines, water is injected into the pipe and it naturally migrates to the walls
of the pipe leaving the oil in the center. The water then acts as a lubricant.
The pumping pressure then must balance the shear stress of the water on the
wall of the pipe, not the shear stress of the oil, which would be much greater
due its larger viscosity. Thus, significant savings can be realized. This process is

reviewed in [JBCI7]

It is then of interest to find parameter values where this core annular flow
(CAF) is stable. The stable steady state is characterized by a wavy interface
between the oil and water. Since the viscosity of the oil is much larger than
that of water woi/twater ~ 10°, the fluid velocity in the oil is nearly a constant
throughout. Previous numerical simulations [BKJ96] have iterated on the shape
of the interface until force balance is reached. At each step of the iteration the
fluid velocities, pressures a.nd stresses must be computed. The procedure is very

computationally expensive.

We propose to solve the problem in a periodic domain by starting with a rea-
sonable interfacial shape and pressure jump, and solve the Navier-Stokes equa-
tions forward in time until steady state is reached. The interface will be the

zero level set of a periodic function. There is nothing exotic about the equations
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except for the drastic jump in viscosity across the interface.

We treat this problem as flow between infinite parallel plates. To further
simplify the problem, we only consider flows which are symmetric about the center
line of the pipe. We truncate the domain to a rectangular shape with the length
in the direction of the flow twice the size as the other dimension. On the pipe wall
we assign no slip boundary conditions, and on the line of symmetry (the center
of the pipe) we impose symmetry boundary conditions. We assume periodicity
in the variable parallel to the flow. While this two dimensional problem is not

ideal, the actual flows are fully three dimensional and we are not yet capable of

solving such flows. If we modify (2.19) for CAF,

1 1 1
Viu=F+ (- V- (2uD) + ——r(d
u; + (n- Viu F—%—p( VP»’rReV (2u )+Wem5( )n) -
V-u=0

where F contains both the gravity and imposed pressure gradient. We rewrite

(7.1)

1 1
u = L(u)—-VP+ TV -(2uD)
P pire (7.2)
Vou=0

The major computational difficulty we encountered is the stiffness due to the
large difference in viscosity between the fluids. We first implemented a simple
splitting method that has shown some success. An implicit treatment of the

viscous terms has also been implemented. These methods are described below.

35



7.1 Splitting Method

We discretize in time using explicit Euler, leaving out the viscous term in the

projection method

*

u u?

= = L)
e = ——V P
dt P

1

After taking one time step of the above method, we take u™** as initial data for

u, = %V - (2uD) (7.4)

and advance this equation using explicit Euler from " to t"t!. Essentially, we
take one large time step of (7.3), then many small time steps of (7.4). This turns
out to be much faster than the non-split explicit method, since using an ENO
method to compute the convective derivative and computing the projection are

computationally expensive, while solving the heat equation is relatively fast.

Using this method allows us to compute the CAF flow with viscosity ratios
of 100:1 in a reasonable amount of time. Figures 8.12, are 8.13 are plots of time
evolution of this method for horizontal flows. These flows were computed in a
non symmetric domain, The parameters for this example are Re=450, We=2000,
Fr=.001, with a non dimensional pressure jump of 10. These plots show the
formation of the wavy interface similar to those seen in experiments and shown in
analytic solutions. However, the very weak surface tension allows the interesting

behavior seen on the top interface.

7.2 Implicit Method

Although the splitting method showed some success, it is too slow to be used for

larger jumps in viscosity. A fully implicit method was then developed to solve
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this problem. We again restrict ourselves to first order accuracy and discretize

as follows. We first solve for u” in

gy — Wi " 1 .
B W Tfut )+ —V - (2uD 7.5
T~ g + - (uD() (7.5
Then we compnute u™*! from
uy —uy _ lop
dt P

Using the pressure Poisson equation method. Equation (7.5) is a coupled system
of equations because of the presence of the u(z,y) term. We discretize (7.5) using
centered differences. The resulting linear system is non-symmetric, but positive

definite. A preconditioned GMRES routine is used to solve the system.

We have applied this method to a vertical core flow. Our parameters for
this problem are Re=450, We=200, Fr=.1, and the imposed pressure jump which
forces the flow vertically, has a non dimensional value of 100. Figures 3.14,
8.15, 8.16, and 8.17 show the numerical solutions. The number of grid points in
each dimension 40. The density is constant across the interface, as it is in the
physical problem, and the viscosity in the core is 1000 times higher than that
in the lubricating layer. The implicit method shows better qualitative results,
the waves in the flow have shapes very similar to those seen experimentally, and

computed in [BKJ96].
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CHAPTER 8

Figures for the Dissertation
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Figure 8.1: Differential volume element straddling interface.
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Figure 8.2: Computational grid with one layer of Ghost Points.
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Figure 8.3: Rising bubble with small surface tension.
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Figure 8.4: Rising bubble with large surface tension.
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Figure 8.5: Injection with no surface tension.
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Figure 8.6: Injection with surface tension.
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Figure 8.8: IIM vortex sheet problem
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Figure 8.9: u velocity at t=0.5
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Figure 8.10: Rising axisymmetric bubble
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Figure 8.11: Talling droplet evolution
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Figure 8.13: CAF flow at t=1.0
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Figure 8.14: implicit-CAF flow
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Figure 8.15: implicit-CAF upflow at t=1.0
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Figure 8.16: implicit-CAF upflow at t=2.0
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Figure 8.17: implicit-CAF upflow at t=2.5
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APPENDIX A

Level Set Facts .

The following facts can be used to simplify the divergence of the surface tension

term above.

QOutward unit normal to interface

n = m__VqS
TVl
Normal derivatives of ¢
d
% Vg m=|vyl
n
9*¢p (V¢ _ )
Curvature
Vi )
—v. [ -
i (IWI
Combination
8
Ag = [Vl + s

(A1)

(A.4)

(A.5)

A useful fact pointed out by Dr. Barry Merriman, is most easily seen by regarding

the interface as locally circular. This formula is only true in two dimensions, but

a formula valid in three dimensions does exist.

Vi n=—x’
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APPENDIX B

Axisymmetric Flow Equations

Solving these problems in cylindrical coordinate geometry requires some modifi-
cation of the equations of motion and the form gf the projection.

By axisymmetric flow, we mean flows in which there is no flow in the 8 direc-
tion, and all § derivatives are identically zero. So there are only two variables, r-
the radial direction, and z. We define the fluid velocity by the vector u = (u, w)
where u(r, z) is the radial component of velocity and w(r, z) is the component in
the z direction. In what follows, we denote differentiation by r with a subscripted
r and differentiation by z with a subscripted z. The incompressibility condition

V -u = 0 translates to
1
—(ru)y +w, =0 (B.1)
”

The convective derivative u, + {u - V)u is written:

U + Uy, + Wi,

wy + ww,. + ww,

The divergence of the stress tensor 0 = — P14 2uD is transformed by com-

puting the various elements of D and applying the divergence to the result. The
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deformation tensor D has the following elements

D, =u,
1
D,.=D. = 5(152 + wr)
D.. = w.

The first component of (V- ¢)/p is

1P 1 24 2u
vy + p {2(,uur)r + (p(wr + uz)): + U= —JU}
which simplifies to
1P 1 u
T L)+ )+ 2 ()
The second component is
19P 1 {1
—a 't {; (r(uz + wr)), + Q(ﬂwz)z}

The Poisson equation we solve to compute the pressure (2.22), becomes
1 1 '
= (hﬂ,.) + (——Pz) =V L(u) (B.2)
AN P/

To make the equation symmetric, we multiply by r to get

() o) e

We can solve B.2 using a GMRES solver, or B.3 using a preconditioned conjugate
gradient method similar to that in 3.4. All the examples here have been computed

using GMRES on B.2.
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[BKJ96]

[RK7)

[CHMY6]

[HOS95]

[JBCY7]

[Li94]

[LL87]

[LRSO]
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