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Abstract

A framework to derive optimal and robust reduced-order controllers of transitional boundary
Iayers using linear-quadratic-Gaussian (LQG) design, or, in modern terms, M2 design, is presented.
As a test case, two-dimenstonal Poiseuille flow is considered. A controller based on a reduced model,
8% of the order of the full size system, is designed. Initial conditions creating transient growth
of wall-shear stresses are constructed. The controller is tested on a 32 wave numbers simulation.
Wall-shear stresses reduction, up to 90%, is obtained. The transferability of the controller to

Navier-Stokes simulations and engineering applications is discussed.
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The reduction of drag produced by skin friction, or, in other words, the reduction of wall-shear
stresses (WSS) generated by near-wall turbulence have received wide attention. “The skin friction
constitutes about 50%, 90%, and 100% of the total drag on commercial aircraft, underwater vehicles,
and pipelines, respectively.”! Two are the near-wall flows of interest: boundary layers that transition
from laminar to turbulent regime and boundary layers that are inherently turbulent. Correspondly,
efforts of reducing skin friction fall in two broad categories: transition inhibition and turbulence sup-
pression. References 1-3 are recent reviews summarizing achievements and open questions in boundary
layer control.

Boundary layer control has been attempted with some success. It is becoming widely accepted that
aven better results could be obtained by using controllers able to analyze distributed measurements and
coordinate distributed actuators. Interestingly enough, however, very little has been done to exploit the
tools developed in the control community.*~¢ In particular, linear-quadratic-Gaussian (LQG) design,
or, in modern terms, Ha design, combined with model reduction techniques for multi-inputs-multi-
outputs (MIMO) systems has never been explored.

This letter shows that MIMO LQG (Hg) design can be successfully applied to derive an optimal
and robust reduced-order controller able to suppress up to 90% WSS in a two-dimensional Poiseuille
flow. This letter also addresses the transferability of the controller to numerical simulations and
engineering applications. Finally, this letter provides guidelines for the application of LQG (H2) and
model reduction to other flows described by partial-differential equations.

We consider two-dimensional incompressible Poiseuille flow in a periodic channel of length Lh and
height 2h. The undisturbed velocity field has a parabolic profile Uly) = U.(y? — h?), where U, is
the velocity at the centerline. Since we are interested in controlling the transition of the boundary
layer from laminar to turbulent regime, we consider small perturbation of flow quantities. Let t be
the perturbation stream-function. The linearized Navier-Stokes equations are written in terms of the
stream-function to identically satisfy continuity,
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The problem is made dimensicnless by using h as characteristic length and h/U, as characteristic time.
The Reynolds number is Re = Uch/v.

To suppress perturbations evolving within the bottom boundary layer we apply blowing and suc-
tion at the bottom wall (see Figure 1), For simplicity we assume that the actuators are uniformly

distributed. The top boundary layer is left free to evolve. The corresponding boundary conditions are
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where the control function v, prescribes the amount of blowing and suction at the bottom wall. We
impose that the mass of fluid injected equals the mass of fluid removed.

To detect and measure the deviations of the boundary layer from the laminar regime, we measure
the gradient of the streamwise velocity component, or WSS, at given points & = z; along the bottom
wall (see Figure 1)
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We define an optimal performance index, or cost function, to design a controller for the LQG (Ha)

problem. Since we are interested in suppressing WSS, a natural choice is the following
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The term (0%9/ 8y*)? represents the cost of the WSS being different from zero while the term v

+ Wl | dedt. (4)
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represents the cost of implementing the control itself. The design parameter W balances the amount
of control effort against the reduction of WSS. There are two reasons to minimize the cost of the
controller: In any engineering application the energy available to drive the controller is limited; and a
large control action may drive the system away from the region where the linear model is valid.

To reduce (1)-(3) to a set of first-order ordinary differential cquations, we make a few transfor-
mations loosely based on the approach presented in Ref. 4 and 5. A modified stream function ¢
is introduced to embed the actuator into the evolution equation and to make the boundary condi-
tions homogenecus. Flow quantities are expanded as follows: ¢ = Zle Eﬁzo[anm(t) cos(nagz) +

b (t) sin(nage)lCm (y), v = 25:1 na[pn(t) sin(nage)—gn(t) cos(nag)], z = Efmi[cn(t) cos(nagz )+
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dn () sin(naoz)], where Cp ave basis functions constructed using Chebyshev polynomials.*® Finally,
we use Galerkin’s projection and a linear transformation to make (1)-(3) into the following state-space
form

dw
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with initial condition ® (0) = @g ; where @ is the internal state vector, u is the control vector and

5 is the measurernent vector. The cost function (4) becomes

iy .
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where the superscript 7 denotes transpose. The matrix W is an appropriate weight for the cost of
the controller.

The advantage of the present formulation is that the problem decouples with respect to the wave
number. All matrices in (5) and (6) are block diagonal. The block diagonal structure of the matrix A
was first recognized in Ref. 4. The above state-space system is consequently equivalent to N state-space

sub-systems, one for each wave number. For a given wave number r the state-space equations are

da

d; = A, &» + Br ty, 2p = Cp p + Dy tty, (7
with initial condition =, (0) = ®po . Vectors T, , Uy, 2y have the following structure: =, =
[@ra, -~ rpr,bro, - e |T g = [prygrlT, 20 = [er, dr]T. The cost function also decouples with re-

gpect to the wave number and we obtain N optimal performance indexes. For a given wave number »

the cost function is defined as follows
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Consequently, the design of an optimal and robust controller for the system (5) with (6) has been
reduced to the independent design of N optimal and robust controllers, one for each wave number, for
the sub-systems (7} with (8).
The challenge of the present study is to reduce of the size of the controller. The controller of the

full system would have 2N (M + 1} states, where N=32 and M=64 in the simpler cases considered in
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literature. A controller with thousands of states is of no interest in engineering applications because of
the amount of hardware and computer power necessary to compute a real-time control law. We derive
a lower order controller in two steps: First we construct a lower order model of (7), and subsequently,
we design an optimal and robust controller for the reduced-order model. To obtain a lower order
maodel, we transform (7) into Jordan Canonical form and subsequently retain only the states that are
equally well controllable and observable. In practice, the matrices A, ,B,. ,é‘,. ,D, that describe
the dynamics of the reduced-order model are obtained from the matrices in Jordan Canonical form
by removing rows and columns corresponding to the unnecessary states. Hat denotes the guantities
associated with the reduced-order model.

Control theory provides a framework for designing optimal and robust controllers.”® The design of
an optimal and robust controller for the LQG (Hy) problem is divided in two parts: the linear quadratic
regulator (LQR) and the minimum variation estimator (Kalman-Bucy filter). LQR provides an optimal
control law in terms of the internal state vector. In general, however, the internal state vector is not
directly measurable. The Kalman-Bucy filter provides an optimal estimate of the ';nternal state vector
in terms of the measurements vector z, . The result of the LQG (H2) design of an optimal and robuat

controller based on the reduced-order model of (7) is summarized by the following equations:

wp = ~Kp &p (9)
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with initial conditions &, (0) = 0 . The gains matrix K, is obtained by minimizing the following
optimal performance index:
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Equation (9) is the control law. Equation (10) is the the minimum variation estimator. The matrix
I, is obtained by minimizing the variance of the estimated state vector &, with respect to the

internal state vector #, assuming that the reduced-model of (7} is affected by additive Gaussian white

noise. In this study the power spectral densities of the additive noise are used as design parameters to



produce robust controllers. The initial condition #, (0) = 0 implies that the estimator starts with no
information about &, .

Figure 1 summarizes in a block diagram the control strategy described above. Note that the
numerical integration of the estimator (10), the computation of the control law (9), and fast direct
and inverse Fourier transforms can be programmed in a computer routine. Subsequently, this routine
can be embedded in any Navier-Stokes solver for the control of more realistic transitional boundary
layers. Figure 1 also provides the basic architecture for the implementation of the present controller
in practical engineering applications. The WSS can be measured by micro-electro-mechanical-systems
(MEMS) hot film sensors.® Analog Lo digital converters (A/D) and digital signal processors (DSP)
convert the measured WSS into 2z, . Each pair of estimator (10) and control (9) blocks is replaced by
a microprocessor, and a parallel computation produces u,. . A DSP and a digital to analog converter
(D/A) produce the actuating signal. Finally, MEMS technology will provide the necessary hardware.
Note that & variety of actuators can mimic small amplitude blowing and suction at the wall: porous
walls, micro pumps, deformable walls and thermal actuators.’®

We use a combination of unsteady modes and transient growth to create a worse scenario test case.
We choose the Reynolds number and channel length in order to have at least a few unstable modes.
The non-orthogonality of the eigenfunctions associated with (1) permits constructing initial conditions
leading to transient growth, see Ref. 3 for references. We obtain initial conditions specifically able to
generate transient growth of the WSS, instead of internal energy, by modifying a technique proposed
in Ref. 10. Although transient growth will be eventually subdued by the viscous effects, it permits
testing the capability of the controller in suppressing disturbances that can trigger nonlinear effect and
transition to turbulence. Note that this initial condition stimulates modes that are not included in the
reduced-order model, and consequently, cannot be directly controlled.

We design a controller for two-dimensional Poisenille flow in a periodic channel of length L = 20/ 7
at Re — 10000. The wave numbers corresponding to N = 8,9, and 10 are unstable, We used a grid

resolution of N = 32 and M = 124, consequently, the order of the full system is 8000. Using the



model reduction technique previously described, we create a reduced model of order 640. We derive 32
controllers, one for each wave number. Controllers operate in parallel. Figure 2(a) shows the temporal
evolution of WSS along the bottom wall of the channel for the uncontrolled case. 'IThe WSS present
a rich structure because of the transient growth of 32 stable and unstable wave numbers. Figures
2(b)-{c) show the temporal evolution of the controlled WSS and of the blowing and suction along the
bottom wall of the channel. Although the estimator starts with no information about the internal
state of the system, the controller reduces the initial WSS in the first few time steps. Subsequently,
the amplitude of blowing and suction rises to suppress the effects of transient growth. Eventually,
blowing and suction decreases as the transient growth subdues. Controlled WSS show only some low
amplitude ripples during the entire simulation. Figure 2(d) shows a compaxzison of average WSS in the
controlled and uncontrolled case. In the uncontrolled case, the average WSS rises sharply due to the
transient growth, It fluctuates around its maximum value and, eventually, subsides due to the viscous
effects. Tn the controlled case, the average WSS drops to half of its initial value in the first few time
steps after which it decreases with some mild fluctuations. The comparison of the two curves shows up
to 90% average WSS reduction. The remaining unsuppressed WSS are due to the modes that cannot
be controlled. The performance of the controller can be improved at the price of increasing its order.

In conclusion, we presented a framework to design an optimal and robust reduced-order controller
able to suppress up to 90% WSS in a’ two-dimensional Poisenille flow. This controller can be pro-
grammed in a computer routine whose inputs are the WSS measurements and whose cutputs are the
blowing and suction at the wall. This routine, suited for parallel computing, can be embedded in any
Navier-Stokes solver for the control of more realistic two-dimensional transitional boundary layers. We
also presented a plausible hardware architecture for the implementation of the controller in engineering
applications. A more complete report with a detailed derivation of the controller and applications to
Navier-Stokes simulations is in preparation. Extensions of LQG (Hz) design and applications of Heo
design”® to three-dimensional Poiseuille flow and two- and three-dimensional Blasius boundary layers

are in progress.
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0.2
0
B
01 &
o
)
4]
-
o)
@
T 01 L
©
=
0
t!'ea .0
TSe dircction, 0 Time
(b)
0.2
12}
o)
01 8
&
o g
)
5
-0.1 4
©
=
Stre 0 0
a .
Mwisg direct?gn 20 Time

Figure 2: Temporal evolution of wall-shear stresses along the bottom wall of the channel: uncontrolled

case (a), controlled case(h).
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Figure 2: {Continued) Temporal evolution of blowing-suction along the bottom wall of the channel (c).

Comparison of average wall-shear stresses in the controlled (solid) and uncontrolled (dashed) case (d).
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