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Abstract

We present a residual smoothing algorithm for the complex symmetric
conjugate gradients method. Asin the real case, the residnal smoothing
method reproduces the {quasi-minimising) QMR method, and is consid-
erably simpler toc compute.

1 Introduction

The proper inner product for complex vectors is (2, y)« = y*2. In the case of
complex symmetric systems, i.e., A = A? but not necessarily A = A*, there is
also value in considering the real inner product! (z,y); = z'y. Applying the
conjugate gradient method to a complex symmetric system, and letting all inner
preducts be the t-inner product leads to a three-term recurrence.

By contrast, while the conjugate gradient method using the s-inner prod-
uct applied to a Hermitian system satisfies a three-term recurrence, on a com-
plex symmetric systemn it would give longer recurrences, much like the GMRES
method when applied to real nonsymmetric systems.

In [2], Freund derived a variant of his QMR method [3] for complex symmet-
ric methods, As in the real case, it is based on minimising the coeflicient vector
on the Krylov basis, rather than minimising the residuals themselves. Corre-
spondingly, this version of QMR effects a quasi-minimisation of the residuals.

Zhou and Walker showed in [6] that the QMR method in the real case can
be derived by so-called ‘residual smoothing’. In this paper we apply the same

*This research was supported by the ARO under contract DAAL-03-9-C-0047 {Univ. of
Tenn. subcontract ORA 4466.04, Amendment 1 and 2).
1Which is not an inner product, strictly speaking.




Let A be complex symmetric and let b be given,
let £, by arbitrary, and r; = Az, — b,
Iterate fori = 1,..:

let w; = rir;

ifi=1, pi =,

otherwise # = w;fwi_1

and p; = ri + fpi-1;
with o = w; /piAp;
update z;41 = #; — ap; and rip1 = 1y~ adp;

Figure 1: The conjugate gradient algorithm for complex symmetric systems.

residual smoothing strategy to the complex symmetric CG method, thereby
deriving a different way of computing the vectors of Frennd’s complex symmetric
QMR method. The advantage of the residual smoothing algorithm for the QMR
vectors is a greatly simplified algorithm.

2 Derivation of the method

Let R be the sequence of residuals of the (three-term) conjugate gradient method
for complex symmetric systems (figure 1), and define © = diag(R* R), and the
normalisation R = NO/2, Since R* R is not a diagonal matrix, neither is N*N,

but we have
| Nalls < v (1)

(where the n subscript denotes that we take the block consisting of the first n

columns}).
In [1] we showed that any convex combination vector gn of the residu-
als rq,...,ry satisfies the following formula:

nil — G = —ARpv, = —Rn«}-lHﬂun

where H, is the (n + 1) x n Hessenberg matrix describing the iterative method,
and R, = {r1,...,7n). Since g1 = r1 = Rney (for any n), this leads to the
minimisation problem

min||gn 41| = min [{Rns1(er — Huun)|l-

In the real case, this is used to generate minimisingor quasi-minimising residuals
in methods such as MinRes [4] and GMRES [5], or QMR [3] respectively.



Since H, can be factored as H, = (J — )/ with

-1
J-1={ 1 -1 0 ) U apper triangular,
0 .
there is likewise a vector z, such that
gnt+1 = Rogi(er — (J — Dzn). 2)

The minimisation problem to be solved is then
min lgn ]| (3)

For future reference we define v, = ey — (J — Dzn.
We consider the minimisation problem (3), and note that from (1):

lgnsallz = {|Rusrvnllz = [Nns1©2vall2
< Nagrllz €Y 200l = VR F IO unla. (4)
Hence, solving the minimisation problem
min [61/25, | ©)

gives the optimal solution in the Krylov basis up to a factor of v/n. The min-
imisation problem (5) is also essentially the one considered in [2], though this
theoretical justification was not given there.

In the traditional derivation of the QMR method, the minimisation prob-
lem (5) was solved by QR factorisations, as in [2). We will here derive the
residual smoothing method of solving the same minimisation problem, hence
deriving the same iterates. We follow the discussion in [6].

The minimisation problem

¢ = min |6 2(e1 — (J — Dza)ll2
2, EC™

is of the form min, ||Az — bf] with A and b real, so the solution, given by # =
(A* A)~1A*b is real too.
An explicit form for the minimum, and the value of v for which it is taken,

can be given.
With zn = ((1,.++,6a)',s

e = H;in91(1 — P +0:(¢ —G)P 0l Cn)? 4 OngrCE.

Changing variables & = 1 = (1, & = Gy — G for kb = 2,.,n, §nsa = G,
the minimisation problem becomes

2= gon 8



Let A be complex symmetric and let b be given,
let 21 by arbitrary, and gy = ry = Azy — b.
Iterate for i = 1,...:
let w; = rir; and 8 = rir;
Hizl,pi=r,n="0
otherwise, § = w;/w;_1
and p; = r; + Bpi-1;
with o = w;/ptAp;
update 2,41 = @; — ap; and rip) =1 — aAp;
and with 743 = (771 46711
update gip1 = g1 (17 g5 + 07 ' iga)

Figure 2: The conjugate gradient algorithm for complex symmetric systems.

for which the unique minimiser gives

_ 1
Th = W

We thus find that L, quasi-minimisation of the norm of the coefficient vector 2
gives coefficients 13 satisfying
1 1 1
;_E- = —"'1?-1 g =6, where 0 = lireflz. (6)
From the discussion in [6] we know that these 7y coefficients generate the (quasi)
minimising residuals:

~2 -2 -1
19641 = Ty "Gk + Bk Thti-

Note that this method needs the (rg, %)« inner products, which do not arise
naturally from the complex symmetric conjugate gradients method. Thus, some
extra amount of computation is required.

We summarise the resulting algorithm in figure 2.

3 Conclusion

We have applied the residual-smoothing technique of {6] to the complex symmet-
ric conjugate gradients method. ‘The resulting method gives the same iterates as
the QMR method of {2], but computed in a far simpler fashion. These QMR it~
erates constitute a quasi-minimisation, giving the optimal approximations based
on the given Krylov space up to a small factor.
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