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Abstract

In many problems of interest, solid objects are treated as rigid bod-
ies in compressible flowfields. When these solid objects interact with
certain features of the compressible flowfield, inaccurate solutions may
develop. In particular, the well known “overheating effect” occurs when
a shock reflects off of a stationary solid wall boundary causing over-
shoots in temperature and density, while pressure and velocity remain
constant (see e.g. [3, 7, 13, 14]). This “overheating effect” is more
dramatic when compressible fiows are coupled to moving solid objects
(e.g. moving pistons), where the nonphysical density and temperature
overshoots can be cumulative and lead to negative values.

We consider the general class of material interface problems where
numerical methods can predict pressure and velocity adequately, but
fail miserably in their prediction of density and temperature. Moti-
vated by both total variation considerations and physical considera-
tions, we have developed a simple but general boundary condition for
this class of problems. This new boundary condition does not change
the pressure or the velocity predicted by the numerical method, but
does change the density and the temperature in a fashion consistent
with the equation of state resulting in new values that minimize a
specific measure of variation at the boundary.
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1 Introduction

The well known “overheating effect” occurs when a shock reflects off of a
stationary solid wall boundary causing overshoots in temperature and den-
sity, while pressure and velocity remain constant. Note that the solid wall
boundary condition is usually applied as a reflection condition so that a
shock impinging on a wall is met by a reflected shock of equal strength
traveling in the opposite direction causing the appropriate reflection. (This
leads one to the obvious conclusion that “overheating” may occur within
a fuid when two equal strength shocks collide.) In [7], Glaister illustrates
“overheating effects” at solid wall boundaries for many different equations
of state, including the standard gamma law gas.

In 18], Menikoff argues that this error is caused by the smeared out
numerical shock profile and that the spatial width of this error shrinks to
sero as the effective scheme viscosity shrinks to zero. However, he also shows
that the maximum overshoot at the wall does not shrink as the numerical
dissipation goes to zero, i.e. the solution converges in the L? sense, but not in
the I.° sense as the scheme viscosity approaches zero. In addition, he points
out that the pressure and velocity profiles at the wall equilibrate quickly,
while the temperature and density (or equivalently entropy) errors persist.
Menikoff believes that this error is a symptom of the numerical scheme’s
unsuccessful attempt to model a physical phenomenon which occurs in real
shock tubes.

In [14], Noh had pointed out many of the effects that Menikofl later
discussed in [13]. Noh also stated that heat conduction at the wall would
dissipate this entropy error and that the failure of nmumerical schemes is due
in part to the absence of heat conduction at the wall. In fact, he shows that
a scheme with built in heat conduction could help to alleviate the problem,
allowing convergence in the L sense as well.

In [3], Marquina proposed a flux splitting method which seems to possess
2 built in heat conduction mechanism. When this flux splitting is used with a
low viscosity scheme (e.g. ENO [16] or WENO [10]), the error due to scheme
viscosity is minimized and the built n heat conduction mechanism helps to
dissipate the remaining entropy errors, allowing convergence in both the L*
and L™ sense. In general this works well, but there are times when the
heat conduction mechanism invoked by Marquina’s flux splitting works on a



much slower time scale than the accumulation of the entropy error leading
to a lack of convergence of the solution and the possibility of polluting other
flow features in the computational domain.

Suppose we solve the Euler equations on a fixed grid with a moving solid
object. The solid object will sweep through the compressible flow causing
the appearance and disappearance of grid points in the Eulerian flow. For
example, consider a piston moving from left to right in a one dimensional
Eulerian code where the piston continues to Cross over grid points remov-
ing them from the computational flowfeld. In these types of problems, the
entropy errors occurring at the interface will be cumulative and may accu-
mulate faster than the built in heat conduction mechanism can dissipate
them. In fact, this can lead to dramatic overshoots in the solution, resulting
in negative values in density or temperature. In these instances one needs to
fix the entropy error faster than it accumulates. One natural way of doing
this is by the application of a boundary condition.

Consider the Euler equations at a given point. If we fix pressure and
velocity, then there is one degree of freedom in choosing the solution, e.g. we
may choose density, then the equation of state determines the temperature
(and thus the internal energy). “Overheating” occurs, when the numerical
method chooses a value from this one parameter family which is widely
different from the accepted physical value. In these instances, pressure and
velocity seem to match the accepted solution, but the scheme does not predict
an acceptable value for the third variable (density or temperature). In the
common instance that this “overheating” occurs at a material boundary, it
usually starts locally, motivating the implementation of a fiz in the form of
a boundary condition.

We begin by assuming that the numerical scheme has chosen an adequate
pressure and consider the problem from a physical standpoint. On a graph
of temperature versus density, this pressure dictates the isobar {constant
pressure line) that the solution to the problem lies on. For the case of an ideal
gas, with equation of state p = pRT, the isobars are a family of hyperbolae of
theformT = % where A, = 2 ig a different constant on each isobar (i.e. the
hyperbolae are parameterized by pressure and a specific isobar can be labeled
p = p,). The pressure predicted by the numerical schemes dictates the choice
of hyperbola associated with the solution. “Overheating” occurs when the
numerical scheme chooses a density which is too small corresponding to a
temperature which is too large. Similarly, “underheating” occurs when the
numerical scheme chooses a density which is too large corresponding to a
temperature which is too small. Since every point on this isobar has the
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same pressure, we are free to choose any point we wish, without changing
the pressure predicted by the numerical scheme. Our boundary condition
consists of choosing a point on this isobar which is a better candidate for
the solution than the obviously wrong choice given by the numerical scheme.
That is, the numerical method picks out a reasonable isobar (i.e. pressure},
but chooses the wrong point on that isobar. Our boundary condition consists
of choosing a better point.

In the extreme limits of the hyperbola, we may choose density as large
as we wish (small temperature) or as small as we wish (large temperature).
Since both of these choices lead to extreme “overheating”, and our goal is
to reduce “overheating”, we want to avoid the ends of the hyperbola and
stay near the center. However, there is no clear choice for the point without
some measure of an acceptable solution. Since we believe that ”overheating”
starts locally, near a material interface, we apply our ”overheating fix” as a
boundary condition and assume that the nearby points are better behaved
(no ”overheating” or less dramatic » overheating” ) using them as a reference
from which to choose our boundary condition. We will choose our boundary
condition on our fixed isobar (given by the numerical scheme) to minimize
the difference in behavior between it and one or more of its neighbors.



2 Euler Equations
Consider the 1D Euler equations

p pu
pu | +| put+p | =0 (1)
E /], (E+plu

where t is time, = is space, p is the density, u is the velocity, E is the total
energy per unit volume, and p is the pressure. The total energy is the sum
of the internal energy and the kinetic energy,

2

E=pe+t+ %* (2)
where e is the internal energy per unit mass.

In general, the pressure can be written as a function of density and
internal energy, p = p(p,e), or as a function of density and temperature,
p = p(p,T). In order to complete the model, we need an expression for the
internal energy per unit mass. Since e = e(p,T) we write

de de
o= (22) s (22 o o

which can be shown to be equivalent to
p—Tp

where ¢, is the specific heat at constant volume. i1

The sound speeds associated with the equations depend on the partial
derivatives of the pressure, either p, and p, or p, and pr, where the change
of variables from density and internal energy to density and temperature is
governed by the following relations

p—Tp
Py = Pp— (—-——T) Py (5)

2
Cof

o (D) 0
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and the sound speed c is given by

'De
C={DPp + % (7)
for the case where p = p{p, ¢) and
Tlpn)2
o= fp, + 20 ®

for the case where p = p(p,T).



3 1Ideal Gas

We will motivate our new boundary condition by first considering an ideal
gas. For an ideal gas p = pRT where R = By {5 the specific gas constant,
with R, =~ 8.31451—7= the universal gas constant and M the molecular
weight of the gas. Also valid for an ideal gas is ¢, — ¢, = R where ¢, is
the specific heat at constant pressure. Additionally, gamma as the ratio of
specific heats vy = =. [6]

For an ideal gas, equation 4 becomes
de = ¢,dT (9)

and assuming that c, does not depend on temperature (calorically perfect
gas), we integrate to obtain

e =c,J (10)

where we have set e to be zero at 0K . Note that e is not uniquely determined,
and we could choose any value for e at 0K (although one needs to use
caution when dealing with more than one material to be sure that integration
constants are consistent with the heat release in any chemical reactions that
oceur).

Suppose that we have acceptable reference values for all conserved vari-
ables from which we can assemble §, p, and 7. Also suppose that somewhere
“nearby” the reference values, we have values for the conserved variables with
an acceptable pressure, p,, but unacceptable values for the density, p,, and
temperature, T,. We wish to choose new values for the density and terper-
ature from the one parameter family which lies on the isobar p = p,. Since
the reference state is “nearby”, we will use those values to help us determine
the new density and temperature.

First consider the case where p, = p, where the reference point and the
point where we wish to apply our houndary condition both lie on the same
isobar. In this case, we want the points to coincide, i.e. choose p, = p and
T, = . For this choice, all measures of variation are zero since the values are
identical. Note that any other choice on this isobar gives a splitting of the
density and temperature, i.e. density increases (decreases) while temnperature
decreases (increases). This splitting is the essence of “overheating”, and it is



this splitting behavior that we wish to avoid. We can avoid this by imposing
a simple restriction, that an increase in pressure should give an increase in
both density and temperature, while a decrease in pressure should give a
decrease in both density and temperature. We illustrate this graphically in
figure 1. The lines p=pand T = T divide the temperature versus density
graph of isobars into four regions based on the reference value. For p, > P
the solution must lie in the upper right corner, while p, < P dictates that
the solution must lie in the lower left corner. The diagonal corners represent
splitting, where an increase (or decrease) in pressure is achieved by splitting
density and temperature. Note that this splitting always gives a solution
with more variation. For example, an increase In pressure can be achieved
by increasing density, or temperature, or both. But if one of these decreases
(density or temperature), then the other must increase just to balance out
this decrease and achieve the same pressure, and then increase even more
to match the pressure rise. Thus the balancing (or splitting) to achieve the
same pressure is wasted variation, and only the final increase to achieve the
necessary pressure increase 18 needed variation.

3.1 Some Measures of Variation

Given a reference state (3, T), we measure the variation from it by,

—p -7
Ol ) e (11)
p T

where the division by p and T is done to nondimensionalize the individual
variations of density and temperature to give them equal weight. If p and T
lie on a fixed isobar, chosen by the numerical scheme, then V' is a function
of one variable, since specifying p fixes T' and vice versa. We differentiate V'
as a function of p (differentiating as a function of T leads to the same result)
to get

S@jm+3@—fﬁﬁﬂ (12)

Vi{p) = 5 7

where S is the sign function. (Note that the expression is not valid when
p=porT = TY). Next we enforce the condition that there is no splitting,
meaning that p and T' both increase for an increase in pressure and both
decrease for a decrease in pressure. This condition implies that S(p — p) =



S(T — T, so that setting V'(p) = 0 allows us to divide out the sign functions
getting

T
T (p)=—= (13)
P
where T"(p) is evaluated at some fixed pressure p,. For an ideal gas
gy Po — PET_ T
T'(p) = 2R sz_ p (14)
leading to the condition that
T T
——= 15
> =% (15)
which can be rewritten using the equation of state to obtain
. {Po
p=p= (16)

3

as an exact closed form solution for the density. Or we could write equation

16 as
T Po
e ()

giving an exact closed form solution for the temperature. Notice how an
increase in pressure, p, > P, leads to an increase in both density and tem-
perature, while a decrease in pressure, p, < $, leads to a decrease in both
density and temperature. In addition, note that these closed form solutions
predict equality in density and temperature when we have equality in pres-
sure, p, = P, implying that they are valid in all cases.

We take a second derivative of equation 11 to get

S(r —T)YT"(p)
T

(18)

V'{p) =

which is not valid when p=por T = 7. For an ideal gas, T"(p) > 0. This
implies that our closed form solution in equation 16 gives the minimum value
for V in the case of p, > p where S (T—T) > 0, but gives the maximum value
of V in the case of p, < p where S(T — T) < 0. In fact, the minimum value
for V occurs on the boundary of the nonsplitting region in case of p, < .
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Figure 2 is a graph of the minimization of V under the no splitting restriction.
Notice that the solution is unique for p, > $ and is given by equation 16.
Then for p, < P, the solution splits into two pieces and becomes multivalued
withp=por T = 7' giving the minimization in the nonsplitting region.

At this point, we make two notes, concerning the case where p, < P.
First there is no clear reason to choose p = p instead of T =T or vice
versa. Second, both of these solutions border on the splitting region leading
to the possibility that small variations in the choice of p and T' may lead to
“overheating”.

Next consider equation 13 which dictates that the point chosen on the
isobar p = p, to fix “overheating” will have a slope of —%. In addition
note that the reference poins, (p,T), on the isobar p = p also has slope ——%,
which can be see by evaluating T"{p) at (5, 7). Thus equation 13 says that
the point chosen on the isobar p = p, should have the same slope, T'(p), as
the reference point on the isobar p = p. We could think of this as minimizing
the variation in behavior between the two points, 1.e. we could minimize the
difference between the slopes and arrive at equation 16 as our solution. This
especially makes sense when one considers that

T'(p) = =22 (19)
br
and considers the important role that p, and pr play in the sound speeds.
Figure 3 shows the solution given by minimizing the variation in behavior
as defined by the slope of the isobar at the given point.
Consider the alternative formulation of the pressure as p = p(p,e). For
a calorically perfect ideal gas e = ¢, T and so ¢'(p) = ¢, T"(p) and thus mini-
mizing the variation in behavior based on T'(p) is equivalent to minimizing
the variation in behavior based on ¢'(p) leading to the solution in figure 3
and equation 16. However, this 18 not true for general equations of state
where minimizing the variation in behavior based on e'(p) may be different
than minimizing the variation in behavior based on T {p). In addition, note
that e = ¢, T implies that the measure of variation in equation 11 ig identical
if we consider p and e instead of p and T with the result shown in figure 2.
Again, this is only valid when e = c, T with ¢, constant.
Since the errors in density and temperature can be seen in the entropy
of an ideal gas defined by

(20)
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it is natural to analyze the solution that occurs if we attempt to minimize
the variation in entropy. In [17], Woodward and Colella compute a flow past
a corner problem and show that the traditional methods do not give the
appropriate steady state solution. They notice a large entropy gradient at the
corner and fix it by enforcing constant entropy. This entropy fix removes the
boundary layer in entropy, but the solution still does not converge to a steady
state. An additional constant enthalpy fix is applied to get the solution to
converge to a steady state. This is an extremely popular method and more
current details can be seen in [15, 3]. We note that the constant entropy and
enthalpy fix is only valid on a streamline, and that Woodward and Colella
use an upstream point as their reference point. In general, one cannot always
find an upstream reference point and this fix cannot be applied. In fact, the
constant enthalpy fix will change the velocity field which is unwanted in
many cases. Note that this fix is isobaric (it does not change the pressure).

From a more general standpoint we dismiss the use of a constant enthalpy
fix, but consider a constant entropy fix. The constant entropy solution, or
the minimization of the variation in entropy, is shown in figure 4. While it
lies in the nonsplitting region, we note that it makes the assumption that
the points lie on the same streamline which is not necessarily true.
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4 TIsobaric Fix

Given a reference state (5,7) on an isobar p = f, we need to choose a value
for (p,T") on the isobar p = p, in order to minimize some sense of the variation
to avoid “overheating”. While there seem to be a few ways of doing this,
we will focus our attention on three specific ways: constant T'(p), constant
¢'(p), or constant S. For an ideal gas, holding either T"(p) or €/(p) constant
leads to equation 16, while holding entropy constant leads to

1
-~ po) ¥
p=7p ( 5 (21)
as our isobaric fix.

For general equations of state, if we hold

T'(p) = — 2 (22)
Pr
constant, than we need some assumptions t0 guarantee that the solution
exists. For example, if fixed pressures have T"(p) <0 with lim,_, T(p) = o
and lim,_,,, T(p) = 0 (to establish the asymptotes), than a solution exists.
In addition, T"(p) > 0 will guarantee uniqueness. If we hold

o) = Do
¢'(p) == (23)

constant, than we need similar conditions on e(p) to those mentioned above
for T(p) in order to guarantee a unique solution.

For the general constant entropy case, note that entropy has partial
derivatives orthogonal to the left elgenvectors of the truly nonlinear fields,
implying that they are a multiple of the left eigenvector of the linearly de-
generate field. For the one dimensional Euler equations, we have {3]

S Epﬂl - u?
S | = U (24)
Sg -1

where @ is a constant and can be seen to be equal to —Sg from the above
equation. We make a change of variables from the conserved variables p, pu,
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and E to the new variables p, u, and e giving the following relations

S, =8, - (%) S, + (g% - %) s, (25)
e () ()
55— (5) 5 (27)

which can be substituted into equation 24, while settinga = —Spand 5, =0
to get the relation

S, =— (3) s, (28)

for entropy. Since we only care about constant entropy, we write

a5 o5
ds = (*a—p)edp-i" (zj‘g)ﬂd@—ﬂ (29)

which can be rearranged to get

de 5,
7S @
and using equation 28, we have
de p
= 1

as an equation that guarantees constant entropy.
As an example, consider a somewhat general equation of state

p=f(p)+glple (32)

where f{(p) and g(p) are arbitrary functions of p. Then using equation 31 to
impose constant entropy, we have
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which is 8 first order linear differential equation, solved with the integrating

factor
e (- [224) o

yielding the solution

€= % [/ Ef?gﬂdpfl-C(S)] (35)

where C(S) is a constant function of §. For an ideal gas, p = (y — 1)pe with
f(p) = 0 and g(p) = (v — 1)p giving e = C(S)p?~! from equation 35. We
solve for C(S) using the equation of state to get

P
cls)=———= 36
() (y— 1) (39)
or equivalently
a(s) = f— (37)
leading to
p=5(%) (38)

as a closed form solution (which is very similar to equation 16).

4.1 Example: Tait Solid

Consider the Tait equation of state for a solid given by

N
p=(y—Depl =L ,Y (39)

where 7, ¢y, Pa, and o are the Tait parameter, specific heat at constant
volume, initial ambient density, and the nonideal solid parameter respectively
[8]. We integrate equation 4, setting the integration constant to g which is
the chemical energy stored in the solid,

e

Pal
=faZ LT+ 40
P 4 (40)
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Since T'(p) < 0, lim,.o T(p) = o0, limy.0 T{(p) = 0 and T"(p) > 0,
there is a unique solution for the T”(p) constant isobaric fix. We evaluate

equation 22 to get

y T
T'(p) = -
which leads to the condition
T T
T b

that can be rewritten using the equation of state as

_ L (Pt 5
p—p ﬁ_{_g{{!&

N O-i—ﬂ‘ﬁ
=1

giving an exact closed form solution.

or equivalently

(41)

(42)

(43)

(44)

Since ¢'(p) < 0, lim,_,q €(p) = 00, lim, . e(p) = ¢ and e"{p) > O there is
a unique solution for the ¢'(p) constant isobaric fix. Note that the horizontal
asymptote e = g is sufficient for our purposes. We evaluate equation 23 to

get
' (6 - q)
e =
(p) P
which leads to the condition
(-9 _ (-4
p p

that can be rewritten using the equation of state as

p=p Do+ P.C
P+ oo
or equivalently
~ pﬂ + pao-
—_ =g — —
e—q 9 5t p.c

(45)

(46)

(47)

(48)



giving an exact closed form solution different from equations 43 and 44.
For constant entropy, we combine equations 39 and 40 to get

p=(y—1Dple—q) — pc (49)

with f(p) = —(7 — 1)pg — poo and g(p) = (v — 1)p implying that the in-
tegrating factor in equation 34 is p = p'~7 and the sclution in equation 35
is

p+ B
C(S) = —— 50
== (50
after suitable application of the equation of state. We prefer the equivalent
R p+ E2%
Gy ==—x7 . (51)
as a more conventional definition. Note that this leads to
P, + 257 ;
=p| T 52
p=p ( e ) (52)

as a cloged form solution which is more similar to equation 43 than to equa-
tion 47.

4.2 Example: Virial Gas

Consider the virial equation of state for a gas with the third and higher virial
coefficients set to zero,

p = pRT(L + bp) (53)

where b is the second virial coefficient [1]. We integrate equation 4, setting
the integration constant to zero, getting

e = ¢, T (54)

as our internal energy per unit mass.

Since T"(p) < 0, lim,_o T{p) = 00, lim, . T{p) = 0 and T"(p) > 0 there
is a unique solution for the T"(p) constant isobaric fix. We evaluate equation
22 to get

T(1 + 2bp)

T'(p) = T b (55)
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which leads to the condition

T(1+2bp)  T(L+2bp) _

B R S (e (56)

where K is a constant equal to T"(p) evaluated at (p,T) on the isobar p = p.
We use the equation of state to rewrite this as

dbp P KK 2
g, (80P Ny (Per )
D) =T —l—(R)T (R) 0 (57)
and use Newton Raphson iteration [2] of the form
)
ot = e AL 58
f.'(Tn) ( )
where
12b
F(T) = 4T% + (—R}”—“) T2 >0 (59)

with initial guess equal to either the reference temperature, 7' the temper-
ature provided by the numerical scheme, T,, or any other convenient guess.
We could have approached this rootfinding through the density, but we have
found that temperature iteration is easy to monitor and control [6].

Since ¢'(p) < 0, im, o e{p) = 00, lim, 00 e(p) = 0 and e”(p) > 0 there

is a unique solution for the e'(p) constant isobaric fix. We evaluate equation
23 to get

e(1 + 2bp)

~ T+ bp) (60)

e'(p) =

which leads to the condition
_e(l +2bp) B (1 + 2bp)
p(1 + bp) p(1 + bp)

which can be rewritten to be identical to 56.
For constant entropy, we combine equations 53 and 54 to get

(61)

p=(T) pet+ 0 (62)

19



with f{p) = 0 and

o) = () o1+ o) (63)

implying that the integrating factor in equation 34 is
1

p% exXp (9:—?) (64)

“:

and the solution in equation 35 is

_ P
o= () @ +bo)p® M exn (12) )

after suitable application of the equation of state. Once again we prefer

- p
&(8) = _ 66)
) (1+ bp)p®* exp (22) (

as a more conventional definition. Note that setting f; =y—1landb=0
reduces this to the ideal gas case as it should.

4.3 Which Isobaric Fix?

In general, our preference is to use the isobaric fix that works the best out
of those that we find convenient to apply.

The constant entropy isobaric fix is difficult to write down in closed form
for many general equations of state, and once written down not always easy
to apply (e.g. consider the constant entropy isobaric fix for the virial gas
above). In the case where the constant entropy isobaric fix is hard to derive
and apply, we choose to consider either T"(p) constant or €'(p) constant or
both, but ignore the constant entropy isobaric fix.

Yometimes, for equations of state of the form p = p(p, T), with the entire
problem formulated in terms of T, it may be difficult or just inconvenient
to find relations with e. In these cases, we use the T'(p) constant isobaric
fix and ignore the ¢'(p) constant isobaric fix. Likewise, equations of state of
the form p = p(p, €) with the entire problem formulated in terms of e, may
not have readily available formulas based on T', so we only apply the €'(p)
constant isobaric fix, ignoring the T"(p) constant isobaric fix.
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For some equations of state, all analytic methods may be difficult or
impossible to apply, e.g. consider an equation of state in tabular form. In
these cases we advocate the use of the constant entropy isobaric fix, since a
purely numerical approach is available. That is, given p and p at a suitable
reference state along with p, at the point in question, one can integrate an
ordinary differential equation to find an appropriate density. At constant
entropy,

dp 2

E'a =c (67)
where ¢ is the local speed of sound dependent on the local density and
pressure (and partial derivatives of the pressure). We apply the constant
entropy isobaric fix by integrating the ordinary differential equation

do _ 1 (68)

from P to p, with initial data p = p. The final value of p at p = p, is the
value we use for the isobaric fix. Note that exact integration of this ordi-
nary differential equation gives the same density as analytically applying the
constant entropy isobaric fix. Our experience has shown that this numerical
approach is fairly robust and easy to apply.
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5 A Moving Piston

One way of simulating moving pistons is to transform the Euler equations
to an accelerating reference frame which would keep the piston surface fixed
in space and allow the use of exact ghost cells for a solid wall boundary
condition. This transformation adds source terms to the right hand side
of the momentum and energy equations which can be integrated in time
along with the spatial derivative terms. The details are outlined in [8]. A
drawback of this method is that it cannot conveniently treat multiple bodies
with different accelerations at the same time. Since we wish to couple our
Eulerian code to multiple moving objects and possibly to Lagrangian codes,
we prefer to use the standard (non-transformed) Euler equations and treat
the piston as a moving body with the appropriate boundary conditions. For
a general discussion on boundary conditions, see chapter 19 in [9].

5.1 Ghost Cells

We will allow a piston to move across the domain from left to right, with a
specific velocity. This will be accomplished by tracking the piston location
(using a level set in 2D}, and then using ghost cells to define the interior of
the piston. For & piston moving with speed v, and exterior values of p, u,
e, and E, we define the interior reflected values as

pp=p, e (69)

p(gvp - u)z (70)

u, =2v, —u, E,=pet 5

For example, we consider a 20cm domain consisting of 200 grid cells,
where the piston starts at rest at the left edge of the domain and moves with
velocity v,(t). We compute this problem by setting the left hand boundary to
— 5em instead of Ocm, thus putting 5 ghost cells in our piston and increasing
the total number of cells to 205.
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5.2 Numerical Interpolation

Assume that a piston starts at ¢ = 0 and that we have added y units of
ghost cells to the left of z = 0. Consider the piston sitting at a point z, in
space with a velocity v,. Then the grid cells which ke ingide the piston are
numbered from 1 to 7, where

io = [y “;';“} +1 (71)
where [A] is the greatest integer less than or equal to A.

For each of the grid points 4, from 1 to &y, we identify the associated set
of conserved variables located outside the piston. A grid point 4 is located
at = (i—1)dz —y and so it is a distance Zo — (i —1)dz +y inside the piston
surface, implying that the associated reflected point is at the location

# o=y +xg— (F—1)dz+y (72)
which has neighbors which are the grid nodes
. [z+y
j= [ T ] +1 (73)

and § + 1. The point is located
=F+y—(j—1)de (74)

units to the right of j and dz — € units to the left of j + 1.

We will use a second order linear interpolation to find the values of the
conserved variables, {7 in between the grid nodes. This is a second order
boundary condition, and should be good enough for third order methods in
the interior. If both j and j + 1 are exterior points, then the interpolated
value for the conserved variables is,

BT,
otherwise if j is a point which is inside the piston, i.e. § < i, then
5 U1~ U;
U=U;ss + (dz —¢) (—%i&m—fﬁ) (76)

using linear extrapolation from ﬁjH and l:f'jw. Once the exact values of

—+

U are known, then the new interior values are defined above, based on the
piston velocity, v,
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6 Examples

For the ideal gas we consider air with M = .029;295 and v = 1.4. For the
Tait solid equation of state, we have ¥ = 5, ¢, = 1, 500525, Pa = 1,900%,
o = 8,980, 000%‘;, and g = 0. For the virial gas equation of state, we have
R = 286.7;%, ¢, = T16.85)%, and b = 000762

The grid is set up to be a 1lm domain with 200 cells. The piston (or wall
if not moving) is located at the left hand side of the figure in all cases and
ghost cells are added to the left of the piston. We do not print out the values
of data at ghost cells, since they can be inferred from the real data points.

All schemes use 3rd order TVD Runge Kutta for the time stepping [16],
and in each case the CFL is chosen near it's limit.

As specified earlier, the isobaric fix is applied as a boundary condition
after each Euler substep of the TVD Runge Kutta method. That is, we
update the conserved variables in the usual fashion for one substep, and
then we use the isobaric fix to modify the computed values of the conserved
variables near the wall. For example, suppose that the values of density,
velocity, and pressure are py, s, and p, adjacent to the wall and py, Ug, and
p, at the next point over which we will use as a reference point. Then in the
case of an ideal gas, we can use equation 16 to define

2
new = - 77
P P2/ P (77)

as the new density adjacent to the wall. Thet Pnew, U3, and p; can be
reassembled to get the new conserved variables.

6.1 Example 1

The purpose of this example 1s to iliustrate how the isobaric fix works for
a standard shock reflection problem. We generate a shock using a standard
shock tube problem. The generated shock moves to the left until it inter-
sects the solid wall (located at Om) and reflects off, causing “overheating’.
Note that we numerically cut off (and discard) the contact discontinuity and
rarefaction so that they do not interfere with our reflected shock.
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We use the ideal gas equation of state where the initial data for the shock
tube problem has u =0 and T = 300K. In addition, we choose the density
to be lﬂnﬁfg on the leff and 100%‘1% on the right.

We use 3rd order ENO-RF [16] which is a low viscosity scheme and show
the results in figure 5. Note the “gverheating” errors in the temperature and
the density. Figures 6 and 7 show the positive effect that the isobaric fix
can have on these “overheating” errors. As shown in figure 8, the Marquina
style Jacobian evaluation i3, 4] will also reduce overheating with its built in
heat conduction mechanism (Note that ENO-LLF-M stands for ENO-LLF
with the Marquina style Jacobian evaluation.) In figures 9 and 10, we show
how the isobaric fix works in conjunction with the Marquina style Jacobian
evaluation. Note that the isobaric fix did not affect the shock speed or
strength. In fact the intermediate points inside the shock are almost in the
same location.

At this point, we comment on conservation. A stationary solid wall
boundary has a physical flux given by

ot 0
pu +p | =] P (78)
(E +p)u 0

since the velocity is identically zero. Thus, mass and energy are completely
conserved while momentum is not conserved. The change in momentum for
the computational domain can be found by summing the momentum fluxes
at the boundaries. Achieving exact conservation for mass and energy can
easily be accomplished for stationary walls aligned with the grid by setting
the appropriate fluxes to zero. However, this can be excessively complicated
to apply for multiple moving boundaries with irregular shapes. In either case,
the isobaric fix will create a small conservation error in mass and energy in
favor of a better solution. However, in the later case, difficulties of scheme
implementation may force relaxation of mass and energy conservation even
without the isobaric fix. In this case, the small conservation error generated
by the isobaric fix is not an jasue. Note that all the shocks in our examples
are located in the correct cell and move with the appropriate speed, even
with the relaxation of exact conservation at the boundary.
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6.2 Example 2

In this example we start the fluid at rest, v = 0, and at 7' = 300K. Then the
piston (initially located at Omn) is instantaneously set to a velocity of 10007
driving to the right. There is no time for the fluid to react to a smoothly
accelerated piston. Our acceleration is infinite!

Our first test is with the ideal gas equation of state where we choose
the uniform initial density to be 10£%. The results are shown in figure 11
for ENO-RF. The results for T'(p) constant isobaric fix (equivalent to e'(p)
constant isobaric fix) are shown in figure 12, while the results for the constant
entropy isobaric fix are shown in 13.

Next we try the Marquina style Jacobian evaluation and note it suffers
from “underheating” as shown in figure 14 for ENO-LLF-M. In figure 15, we
combine ENO-LLF-M with the 7"{p) constant isobaric fix and note that the
isobaric fix improves the “underheating” problem.

For the Tait solid equation of state, we choose the uniform initial density
to be 1900;’5%. The results in figure 16 show the “overheating” errors for the
ENO-LLF scheme. Figures 17, 18, and 19 show the improvement gained by
using any of the three isobaric fixes.

For the virial gas equation of state, we choose the uniform initial density
to be IOH%%. The results in figure 20 show the “gverheating” errors for the
FNO-RF scheme, while figure 21 shows the results with the T"(p) constant
isobaric fix (which is equivalent to the e'(p) constant isobaric fix for the virial
gas equation of state).

In general, the isobaric fix does not completely eliminate the “gverheat-
ing” errors, but it does lmit them to more acceptable levels. In contrast,
unfixed schemes can accumulate large errors in density and temperature. In
fact, our experiments have shown that some schernes will eventually fail due
to nonphysical negative values of either density or temperature.
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6.3 Example 3

In this example we start the fluid at rest, u = 0, and at T = 300K. Then
the piston (initially located at .3m) is instantaneously set to a velocity of
—1002, That is, we instantaneously pull the piston to the left (away from
the fluid).

We use the ideal gas equation of state with a uniform initial density of
10%%. The results in figure 22 show the “overheating” errors for the ENO-RF
scheme, while figure 23 shows the results with the T'(p) constant isobaric fix
(which is equivalent to the €' (p) constant isobaric fix). Figure 24 shows the
results with the constant entropy isobaric fix.
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6.4 Example 4

In this example, we consider test cases from [14].

Consider a 1m domain with a stationary solid wall boundary located at
Om. We use 100 grid points with v = § and M = 029-EL in the ideal gas
equation of state. Initially, p=1, u = —1 and p = 0 are defined everywhere
on the domain. Note that the wall is placed at a flux, not at a grid point.

Since the sound speed is initially ¢ = 0, we use the 2nd order central
scheme from [11]. Figure 25 shows the “oyerheating” errors, and figure 26
shows the improvement with the T'(p) constant isobaric fix.
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7 A Two Dimensional Test

In this section we consider the two dimensional Mach 3 step flow test problem
[17] where the reflecting boundary conditions are crucial in determining the
quality of the numerical approximation. The tunnel is 3 units long and 1
unit wide with a .2 unit high step which is located .6 units from the left
hand side of the tunnel. We use a gamma law gag with v = 1.4. The initial
conditions are p = 14, p = 1, u = 3, and v = 0. An inflow boundary
condition is applied at the left end of the computational domain and an
outflow boundary condition is applied at the right end. We apply reflecting
boundary conditions along the walls of the tunnel.

The density profile is the hardest to compute due to the Mach stem at
the upper wall and the contact discontinuity it generates, and due to the
corner of the step which is a singularity of the boundary of the domain and
the center of a rarefaction fan, i.e. a singular point of the fiow. In an attempt
to minimize numerical errors generated at the corner of the step, Woodward
and Colella propose an additional boundary condition [17] near the corner of
the step in order to maintain steady flow around this singular point. They
propose two corrections: constant entropy and constant enthalpy to a group
of six cells near the corner of the step using an upstream point as a reference.
The details of these two corrections are outlined in {3] (in equation 24 of [3],
the second appearance of p, should be ;).

The overheating phenomenon can be observed along all reflecting bound-
aries of the domain by looking at the level curves near the walls. More
orthogonal level curves impinging on the reflecting walls imply less “over-
heating” errors. We note that the 1" (p) constant isobaric fix dramatically
reduces “overheating” errors, and a divect consequence of this is an addi-
tional reduction in other errors such as the “kinked” Mach stem and nu-
merical artifacts related to the “carbuncle phenomenon” {associated with
nearly stationary shocks near a reflecting wall). We note that Marquina’s
flux splitting eliminated these numerical pathologies in {3].

The numerical results shown are on an equally spaced grid with dz =
dy = & and finer grids showed similar results. We run the code to a final
time of t = 4 when the flow has a rich and interesting structure which is the
“culture medium” for growing numerical errors associated with near station-
ary shock waves aligned with the grid, and their interaction with reflecting
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walls producing large “overheating’ errors. In order to be concise we ran all
the experiments for the 3rd order PHM reconstruction [12]. Each contour
plot in this section displays thirty equally spaced level curves between the
minimum and maximum values of the computed density.

In this first example, we use the standard J acobian technique as opposed
to Marquina’s flux splitting. In addition we use the standard six cell enthalpy
and entropy correction. In the top plot of figure 27 we display numerical ap-
proximations of the flow density for PHM-RF (the 'RF’ notation is described
in [16]) where the “kinked” Mach stem is conspicuous. The middle plot was
obtained with the same algorithm with the T"(p} constant isobaric fix cor-
rection applied along the solid walls using the third cell from the wall to
correct the second cell from the wall and then that cell to correct the cell
adjacent to the wall, (we find this double correction satisfactory for high
order resolution). The bottom plot represents the numerical approximation
obtained with the more viscous PHM-LLF (the LLF notation is described in
[16]). While both the isobaric fix and the more viscous PHM-LLF method
removed the “kinked” Mach stem pathology, the isobaric fix has the advan-
tage of a much sharper contact discontinuity. In figure 28 we display the
corresponding y = .2 section of the adiabatic exponent to see how entropy
is preserved at the corner of the step.

In this example we use PHM-RF-M (where the "M’ denotes the appli-
cation of Marquina’s flux splitting technique as opposed to the standard
Jacobian evaluation). In the top plot of figure 27, we used the standard
corner treatment. The middle plot uses the standard corner treatment with
the T"(p) constant isobaric fix along reflecting walls. The bottom plot was
obtained by applying the isobaric fix with constant T'(p) along reflecting
walls and only an enthalpy correction at the corner, i.e. no enfropy correc-
tion at the corner. Note that the bottom numerical approximation gives an
accurate prediction of the shock wave location without the entropy fix! This
is the only method we know of that can predict the shock wave location
without the entropy fix. In figure 30 we observe the entropy preservation at
the corner for the corresponding numerical approximations that appear in
figure 29.

42



e 27: Contour plots of numerical approximations to the density: PHM-
RF (top), PHM-RF with constant T'(p) isobaric fix (middle), PHM-LLF

(bottom).
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Figure 28: Adiabatic Exponents for the previous figure (one dimensional
y-sections at y=.2).
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Figure 29: Contour plots of numerical approximations to the density with
PHM-RF-M: standard corner treatment (top), standard corner treatment
with T"(p) constant isobaric fix (middle), no entropy correction with 7"(p)
constant isobaric fix (bottom).
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Figure 30: Adiabatic Exponents for the previous figure (one dimensional
y-sections at y=.2).
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