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Abstract

In this paper we consider a fundamental visualization problem which arises in com-
puter vision, computer graphics and numerical simulation. The problem is to find a curve
in two dimensions, or a surface in three dimensions which can be regarded as the shape
represented by a set of unorganized points, and/or curves, and/or surface patches. We do
not assume any knowledge of the ordering, connectivity or topology of the data sets or of
the true shape. Only the location of each point or general Hausdorff distance to the data
set 1s known. The key idea in our approach is to find an implicit nonparametric repre-
sentation of the curve or surface on a fixed rectangular grid. With this representation of
surfaces we can easily (a) find the closest point and distance from any point to the surface
(useful in illumination and many other applications), (b) find the intersection curve of two
surfaces which is guaranteed to lic on both surfaces in our representation, and (c) perform
any Boolean operation (see Figure 17). We use a version of the variational level set method
[ZCMO, ZMOW] to interpret the desired shape as one or more elastic membranes attached
to the data set. We may initialize our problem with a single large membrane enclosing
this set. We then apply a gradient descent algorithm to the energy of this membrane,

which results in an interesting and simple motion of the shape involving curvature times
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distance to the nearest data point as well as convection. We prove that there exists a local
minimum which includes the data points before the shape disappears and also prove that
if we get close enough to every data point in 2D in the special case when the data set
- consists only of discrete points, the final curve will be a piecewise linear interpolant. In 3D
the final surface satisfies an interesting relationship involving its curvature and direction
of its normal, i.e., it behaves like a weighted minimal surface. This surface looks much
more pleasing than the usual polyhedral interpolant when the data points are not very
dense or not evenly spaced. Since this is a variational approach it is also quite robust
and can be used to denoise surfaces. These two properties can be extremely useful for 3D
reconstruction from photographic images instead of from precise but expensive to obtain
laser scanning data. We modify our basic functional to handle nonconvexities (which are
more difficult to deal with in 2D than 3D). The modification amounts to adding a con-
vection term which involves the weighted distance from the membrane to a collection of
nearby data points which do not see the membrane, i.e. the interpolation error. We use
finite difference schemes on fixed Cartesian grids to approximate the differential equations
of motion. The method allows for the addition of new data points easily. Moreover, the
data points and corresponding shape can move in time. As usual, the level set method
handles complicated geometries which include topological changes and singularities with
no difficulties, and local and global geometric properties of the resulting shape are easily
computed. The algorithm is extremely simple and fast if the initial shape is close to each of
the data points. This happens, for example, for dynamic problems with points moving in

time. Finally, a simple postprocessing may be used to locally smooth the resulting shape.

1. Introduction

We intend to reconstruct a shape corresponding to a set of discrete points when (i)
no information is known about the ordering or connections of the points and (ii) the shape
is not necessarily simply connected (there may be several disconnected components), (iii)
there may be edges and/or corners at unspecified locations and (iv) there may be other
information to be taken into account, such as geometric constraints, noise, or uncertainty

in the data. This basic problem arises in computer vision, robotic navigation, pattern
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recognition, data analysis, animation, computer simulation and elsewhere. There is a very

large literature on this subject, e.g. [BW, Bo, Br, CG, EM, MT, HSIW].

The approaches to this problem can be characterized as either implicit or explicit. In
the explicit approach one often uses a local spline approximation, where the knowledge of
the ordering and connections between the data points is crucial. Alternatively one needs
a global parameterization. These requirements are quite difficult to enforce under our

general assumptions.

We propose to use an implicit representation of the interpolating surface (we use the
singular even though our result may consist of several disjoint surfaces) on a structured
grid. We regard the surface as the zero level set or surface of a function which is defined
on a rectangular grid. The most convenient choice of this function is the signed distance
to the surface. This approach has not been commonly used, except for special shapes. In
this paper we first construct a variational problem involving an energy which is a surface
integral over candidate shapes. We obtain a local minimum (which has a large domain of
attraction) which is the interpolating surface. The method involves the variational level
set method derived in [ZCMO)]. The final numerical output consists of all the values of
the distance to the desired surface evaluated within a small neighborhood of the surface,
those values whose distance in magnitude is less than cAz, Az the grid size and ¢ typically
around 5 or 6. The numerical procedure uses finite difference approximations devised, in

part, to solve the equations of level set motion [OSe, OSh, ZCMO].

We consider an elastic membrane attached to a set of data points. This is a shape
which is easily recognized by the human eye. We obtain it by thinking of the data as a set
of electric charges and we create a potential function that depends only on the locations
of the charges. The initial elastic membrane is chosen to enclose all the data points, but is
otherwise arbitrary. It is attracted to these charges by minimizing both the electrostatic
potential and the elastic energy. The elasticity of the membrane will control the regularity
of the surface. Its minimization leads to topological changes whenever appropriate. The
final shape involves a balance between elastic and electrostatic forces. We also have a

standard property for the model: that the density of data points should increase with



the local curvature in order to resolve local features. We can easily add other geometric
constraints, either local, such a given direction of the normal or global, such as fixed
volume, to our energy minimization. Noise can be controlled using a variational method
similar to that of [ROF], used for images. We can also incorporate uncertainties in the
data by weighting the attraction each point has to the membrane. After we obtain the
signed distance we can easily find the closest point on the surface from any point in space,
as well as all geometric properties of the surface - surface area, volumne, normal curvature,
or number of connected components. We can also easily generate body fitted coordinates
with this approach. In the special case when our initial guess is close to the minimizer
the method reduces to a simple and very fast advection algorithm. This is important for
tracking dynamic motion, e.g. of certain solid/fluid interaction problems®. The final shape
may be easily smoothed locally via a postprocessing. That is we may move this curve or
surface normal to itself with normal velocity a + bx for k mean curvature. We may do this

for a few iterations, where a{z) and b(z) > 0 are user specified.
2. The Variational Level Set Formulation

2.1 The Level Set Method

Our basic numerical approach is derived from the level set method of Osher and
Sethian [OSe]. This is a very versatile and powerful technique for capturing the motion
of a moving interface. The essential idea of this method is to (1) define the interface
as one particular level set of a scalar function ¢(z,t), e.g. define the front as the set
of z, such that ¢(z,?) = 0 and (2) evolve this “level set function” in time instead of
tracking the interface. This procedure allows for the “capturing” of topological changes
easily. The extra dimension’s worth of calculation is removed by a simple “local level
set method” [PMOZK]. This procedure turns a geometric problem into a problem in the
numerical solution of a partial differential equation (PDE). Numerically, we represent an
arbitrary surface of codimension one by the values, on the grid of a function which changes

sign across the interface. Subgrid locations can be obtained accurately by interpolation,

! 'We thank Ronald Fedkiw for pointing this out
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used only ds a posiprocessing of the data. The interpolation does not feed back to the
calculation. This method is quite simple, even for the most complicated configurations.
All local geometric information concerning the interface can be extracted accurately using
divided differences on a fixed, Cartesian grid. Powerful tools developed for PDE’s both
theoretical and numerical can be applied here, e.g. [ES, ESS, OSe, OShL].

We briefly review the level set method. Consider a closed interface moving with time,
['(#), in R™ of codimension one. Let () be the (generally multiply connected) region
enclosed by I'(t). Let ¢(z,1), be the level set function associated with €2(¢). The function

is Lipschitz continuous and satisfies the following

(1a) w(z,t) <0 in Q)
(1b) w(z,t) =0 on I'(f)
(1c) w(z,t) >0 in Q%)

We have thus identified I'(#) as the zero level set of ¢(x, ). Differentiating the equation
{(which holds on I'(¢)):

(2) pla(t),) =0,
with respect to ¢, leads to a transport equation for ¢ which holds on I'(%)
(3) pr+ ¥ V=0

where ¥ is the velocity of a particle trajectory on the interface I'(¢) moving with velocity
T=ua(t). Let v, =0 - =49- ;—& be the projection of ¥ onto the outwards unit normal

direction 7 at I'\(#). Here |z| = (z? + ---23)% for d = 2 or 3. We arrive at

(4) @i+ 0| Vio| = 0.

This equation is valid on T'(#). We extend v, off of the interface in a “natural” way (see
discussion below) and assume the equation is valid throughout space, or (in the local level

set method) that it is valid in a small neighborhood of the interface. The quantity v, (z,?)
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usually depends on (1) the geometric properties of the interface such as its curvature,
normal direction, length (area in 3D}, see e.g. [MCO, ZCMO)] and/or (2) quantities which
involve external coupled physics of multiphase problems, obtained by solving a system of

partial differential equations. These quantities might include pressure, temperature, etc

[CHMO, CMOS, SSO.

There are three improvements over the original level set formulation which are impor-
tant aids to efficient computation. The first is necessary because of the excessive freedom
in the choice of the level set function . Left alone, this function might develop very flat
or very steep gradients near its zero level set. These are both problematic for calculations,
e.g. [CHMO, SSO]. A good choice would be to take ¢ to be signed distance to the bound-
ary. This means ¢ satisfies (1) and, additionally, |V¢| = 1. This gives us a well behaved
level set function, which is quite useful for extracting information about the interface. For
example, for an arbitrary point z in R™ and ¢ signed distance, the “projection operator”

which takes z to the closest point on the interface, zp, is simply evaluated by

(5) zp =2z — V.

However, the evolution in (2) will not preserve ¢ as a distance function, except in the
special case Vv, - Vo = 0 (where v, is regarded as being defined throughout the region of

interest, see below).

A very simple and efficient redistancing algorithm was provided in [SSO]. One merely

solves after each time step

(6) pr + (sign(po)(|Ve| —1) =0

7> 0, @y = @(z,t), with @y as initial data for (6).
See [SSO] for more details. In practice a few iterations in 7 will suffice.

The second ambiguity comes in the definition of v, off of the interface. There is often
a natural way to extend v,. For example, for mean curvature motion, such as in (1), one

may merely extend v, as the curvature of each level set of ¢, le. v, =V (%) = K.
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However, out of necessity, as in [CMOS], and due to its effectiveness and simplicity, we
may simply extend v, so that it is constant normal to each level curve of ¢. This means
we solve Vv, - Vo = 0. This was first suggested and analyzed in {ZCMO)] and first used
effectively in [CMOS]. The numerical method is merely to solve to steady state (again,

using only a few iterations):
(7) (vn)r + (sign o)(Vipo - Von) = 0
with v,(w,t) initial data for the above.

This procedure guarantees that the distance between level contours of ¢ will not be changed

under the evolution (2).

These two properties were shown to be closely related. In fact, redistancing is equiv-

alent to extending v, so that Vv, - Ve = 0.

The third simplification involves making the motion defined by (4) local, i.e. we need
solve this only for |¢] < € &~ 6Az. This gives us a significant speedup. See [PMOZK] for a
detailed explanation of this simple localization {(which we have used in a number of papers,

e.g. [HLOZ, ZMOW, KMOS]).
The advantages of this method can be summarized as follows:

(1) All numerical calculations may be carried out on a fixed rectangular grid. This

provides us with a very simple data structure.

2) Topological changes, complicated geometries, corners, cusps and other singularities
polog g g )

can be handled simply.

(3) Geometric quantities such as mean curvature, normal direction, Gaussian curva-

ture, etc can all be computed simply, using divided differences in the rectangular grid.
(4) The formulation is the same in any number of space dimensions.
The success of the level set method depends on:

(1) High order essentially nonoscillatory numerical methods developed in [OSe, OSh].

These were modified from their (more complicated) analogues, use in the numeral approx-
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imations of conservation laws, e.g. [ShO| and are used here for the nonlinear first order
Hamilton-Jacobi equation one gets when ¢ = v(z,t, V) in (3), or, more generally for any
terms of that sort which arise in (3). These schemes effortlessly capture corners and cusps

in the solution.

(2) Reinitialization of the level set function (or functions in the multiphase case) to be
signed distance near the interface as developed in [SSO]. (3) The use of a fast localized
level set method, developed in [PMOZK].

2.2 The Variational Level Set Method

We shall adapt the general framework we developed in [ZCMO]. There we constructed
a physically based energy function for some multiphase system. The system moves to its
equilibrium state by decreasing the total energy. The main novelty in this method is that
the energy functional is expressed in terms of level set functions, as are the constraints.
We use the gradient projection method to get an evolution to steady state for the level set

funetions.

Our goal in this work is to obtain an “appropriate” level set function {which will always
be reinitialized to be signed distance) such that all the data points lie on the zero level set.
We use the physical model of an elastic membrane which can dynamically bifurcate and
“shrink wrap” down to the equilibrium shape which is our desired interpolant. The energy
functional includes electrostatic and elastic potential energy and is expressed in terms of

the level set function.

Let S = {z,} C Q-in R? or R*, be the set of points we wish to interpolate. This
could be an infinite set, e.g. it could include a subset of a curve or surface, or it might be
finite. We begin by computing the potential function d(z) as the (nonnegative) distance

from z to S

d(z) = Oln’;fs |z — zq4l-

Using techniques discussed in e.g., [BOS] and more recently in [Ma] this initial com-

putation can be done quickly. Moreover, it need only be computed approximately away
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from the set S, so that 0 < ¢ < |Vd| < C outside of a neighborhood of S. Any distance
function has kinks at points equidistant from two separate points on S and absolute value

types of singularities at S. These cause no problems in our numerical calculation.

Now we define a level set ¢ as in (1a,b,c). The zero level set of ¢ is defined to be I' and
this is the curve in R? or surface in R® which will eventually be our desired interpolant.

We define the potential energy of T in terms of ¢ as:

® 5= ([ dp(m)é(so)lveo!dmf -{ d”(m)ds}%

for p > 1.

Here §(z) is the Dirac delta function and 6(¢)|Vi| = ds is the surface element of the
zero level set of (z). See [CHMO] for a justification of this. EI(‘P ) is the L? norm of the
potential function d{z) on the elastic membrane I'. It tells us roughly the distance from I’

to §. (For p = oo it is just max, . r d(z, 5)).

Using standard calculus of variations, as in [ZCMO], we get the Euler-Lagrange equa-

tion for this variational problem

x| f d@)p.g(@m,r"‘v (#@155) =0

p

with Neumann boundary conditions g%‘ o == (), We cancel out some quantities and obtain
5 :

o o (S e g

We note that V - |v [ is the curvature of the level set of p(z) for fixed w.

We start with an initial membrane defined by the zero level set of ¢(x, 0) which encloses
S. As is by now standard, [ZCMO, ZMOW], we follow the gradient descent direction using
artificial time, and replace §(¢) by [Vl

This leads us to

o e[S o Sedeon ()]
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We note that this evolution is now morphological, [AGLM], i.e. independent of which
level set function, ¢ we choose. This means that if we replace v by h{yp) with A(0) =0

and h'(p) > 0, the equation is invariant.
We have redefined
- df’(m)a(www)% — B,
Clearly, as p — oo, d?) - dy.x = max, . r d(z, S).
The following sitaple result shows us that the flow defined by (10) diminishes E(p ),

Lemma 1. If o(z,t) satisfies (1) then daEp () ) < 0, with equality holding only at a local
dt

ertrema.

Proof.

(p)(go) (d(p))l—p/ §(p)V - [dp(x)lgil] idz

E_F(Jw)z(l_p)] §()[ Vol [v dp(m)lv:zl} da.

p—1
The scaling factor [%g%] tells us that points on the membrane further away from
the target set S move more quickly. As this happens, new points begin to move more
quickly. This gives us a reliable, robust and efficient procedure, especially needed when

the initial guess is far from the region S.

p1
There is one potential difficulty in our approach. The quantity (-’%—;})—) can be huge

for points z belonging to level sets of ¢ whose value is far from zero. This difficulty is
removed because our local level set method uses only points within a few grid cells of the
zero level set and our grid resolution is always taken to be comparable to the density of

data pomnts.

The discrete version of equation (10) is the algorithm we shall use initially. It is
interesting to analyze the effect of each term. At steady state the interpolating surface
satisfies

Ve

1
(11) 0= Vd(a) Vg + —d(2)V - 2
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p—1
One might be tempted to let p — oo in the above, and, just replace (%—,’f—l) by 1 in

equation (10). This leads us to the simple advection equation
(12) : %de-chﬂO
ot
to be solved to steady state. However, in 3D the final state is a bit “ragged”, as compared
to the state we obtain using our algorithm. Moreover, in our more general setting, the

simpler method may fail.

Consider, for example, S consisting of two points in R2, (0,0) and (1,0). Let I’
contain the line segment from (0,0) to (3,b) and from (3,6) to (1,0) for any b. This
means that d(z,y) = v/minfz?, (z — 1)?] + 2, while p(z,y) = y — bmin(z,1 — z), (which

could be reinitialized to be signed distance to IT'). In practice (12) with small curvature

regularization can be used as a an efficient way to find a rough approximation.

Then Vd - Vi = 0 on I and the curve will not move. If, on the other hand, we
add ;—)dv (3—3), the curve will move to its proper equilibrium position, which is the line
connecting (0,0) to (1,0).

We may regard the motion caused by the convection, Vd - I—%, as reducing the

electrostatic energy, while the mean curvature motion induced by :—Jd(w)v . (;%fq) reduces
the elastic energy, which is proportional to the surface area. When the membrane I' is far
from S, both of these two factors cause v to move towards S. However near each point in
S, d{z) ~ 0, while |Vd| = 1, so the electrostatic potential dominates. Away from the data
points the two factors balance as steady state equation (10) is valid. Since d(z) is related
to the density of data points and V - I_g’_il is the curvature of I', we have a reasonable

resohution condition.

When the membrane actually passes through a data point, z;, then ¢(z;) = 0 = d(z;)
and the vector Vd(z;) = 0. Thus %—‘f(mi) = 0 and there is no force pushing the membrane
away from z;. We shall prove below, that if p > 1, the membrane will not collapse through

any data point. Our numerical calculations bear this out.
We shall prove the following results in the Appendix.

11



Lemma 2. Let I'(t) be the level set of ¢, moving according to equatton (10). If z; € S and
[(t) contains z; at t =t it will contain z; for t > 1. Hence, if the initial curve contains

S, it will not collapse and disappear.

Lemma 3. If T passes through every point in S and s a local minsmum for Eép) (which

means equation (11) is satisfied, and, in R*, of i s connected to x; on T with no other

data points between xy and X; on T', then that connection is a straight line.

Theorem 1. In R?, if T'(0) is close enough to S, then I'(t) will converge to a polygon

obtained by the above construction, which gives us a piecewise linear interpolation.

The argument cannot be extended to R? to show that the polyhedron with piecewise
triangular facets connecting each x; to its two closest points is in local equilibrium. In
3D we get some kind of weighted minimal surface interpolant. The reason we start with
a large membrane (10) enclosing S is because we do not want I'(t) to shrink down and
disappear, which is the global minimum of E(®) for p < co. We also have, when the set S

is a smooth curve in R? or surface in R3:

Lemma 4. Let S be a closed smooth surface. Then there is no other contour within dy of
S which acts as ¢ minimizer of Ec(i? where,

1
- 2|K|

do

where | K|oo 18 the mazimum of the absolute value of the curvature of S in R?, or is the

mazimum of the absolute value of each principal curvature of S in R3.

This gives us our principle conjecture, which we have validated by our numerical

experiments.

Conjecture. Let S be a discrete data set lying on S which is a smooth interpolant of S,
with dy defined for S. If any two closest points in the data set have distance less than 4dy
and if our initial guess is within 2dy of S, then I'(t) will converge to a surface interpolating

S.
If the true surface S is convex, then minimizing Eép ) will very efficiently find the piece-

wise linear interpolant described in Theorem 1 for R?, and the more interesting interpolant
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in R3. If there are many fine features, i.e. |K|uo is large, then we probably need a good
initial guess. Without this, our membrane may get “stuck”. Another important property
of our energy is that the surface tension d(z)} automatically adapts to the density of data

points.

There is, however, a problem with our energy E;p )

which allows [ to occasionally get
“stuck”. This energy somehow only measures the distance from I'(f), from the membrane
to the closest data point. The philosophy of interpolation is generally different. We usually
. minimize the distance from each z; in 5 to the curve (or surface) I'({). An example of
the difficulties comes from a situation as shown in Figure 1. There, a narrow bottleneck
screens out the effects of the enclosed charges. The membrane feels no attraction from

those interior points. In fact, Eép ) will increase if the membrane I'(#) enters the bottleneck

since the electrostatic energy is unchanged, while the elastic energy increases.

At the opening of the square, d(z), is determined by the two points at the end of the
opening. When the membrane closes in and forms a straight line there, Vd(z) - Ve =0
and & = 0, so we have a equilibrium. Figure 1 shows the result for different values of p.
The bigger the p, the more flexible the membrane, but the “screening” difficulty can not

be overcomae.

In our calculations we observed that p = 2 is a good choice, which gives rapid con-
vergence to steady state and to a pleasant appearing shape in 3D. We conclude that for
El(jp } we have robust and efficient convergence to steady state. The method works well for
disconnected regions as in Figure 2, and for interesting shapes as in Figure 3. In fact, it
works quite well in three dimensions since the two principal curvatures are both finite —
this is related to the well known result that motion by mean curvature in two dimensions
shrinks arbitrary curves down to round points, but not in three dimensions [Gr, Se]. The
principal deficiency comes in approximating very concave shapes which are essentially two

dimensional.

In order to overcome these difficulties we construct another “energy” function E}E\_Q) , ¢ >

1 which measures, in some norm the distance from each &; ¢ S to I'(t). Weuse © 7 because
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the functional is not convex; we approximate its gradient descent below by a well-posed

evaluation procedure.

Define d;(z) = |z — z;|, the distance for each ¢ to each z; ¢ §. The distance from z;

to I'(t) is d; = inf, . p(y |z — 20| We approximate, for ¢ > 1

_1
q

(13) dim dTY = ( / d;Q(m)é(@wﬂ) —d; as g — oo.
Q

Now we define

K3

(14) B0 =3 | [ ar@itoivel]

=1

i
q

(here n is the number of points on S which, for simplicity of exposition, we have taken to

be finite).

The rescaled gradient descent flow (i.e., 6(¢) replaced by |Ve|) for EIQ_Q) is

LI G )
(15) }V‘PIZ (d (z )) [Vd (@) - m - _d'($) V- ;;2,0}

we replace dﬁ‘@ by its limit as ¢ — oo, as in equation (13) arriving at
> ) ( : )q+1 [ v v ]

16 = |V — Vd--—-————d z)V -

1) NNy Vel a %Y

The negative coefficient in front of the curvature term above indicates the ill-posedness
of this procedure, corresponding to the nonconvexity of EémQ). The factor (EE%) ™
indicates that the point z; attracts the closest point ¢ on the membrane I'(#) most, and
once z; is on the membrane, it has no effect. The membrane will move locally to pass

through each x;. This is the correct interpolation philosophy, if I'(%) is close to S.

However, when this closest point moves quickly, it is even closer and continues to move.
Thus the membrane bends (which explains the negative coeflicient of curvature). This
helps to explain the ill-posedness. Another serious difficulty comes in the very expensive

computation of [ d; ¥(2)é(¢)|V|, for each z; and each time step. We simplify as follows.
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First we let ¢ — oo in the coefficient of curvature, so this coefficient disappears, and second
we use the fact that ¢(z,t) has been rescaled to be signed distance to T', to obtain the
advection equation

n . g+1

We call this the flow associated with EIQ_Q).

In this new flow each @ feels the attraction of all ¢; ¢ S, but each ; affects the closest
point on I' the most. The computational cost has diminished because there are no integrals

to evaluate. Moreover, the PDE has no second order terms so the restriction in At is eased

considerably. Finally, we can easily parallelize the computations of d;(z) = |z — z;| and
Vd; = [£=5

It is interesting to note that pure convection of the form?.

Oy _
(18) i Vdi(z) - Ve =0

has the effect of attracting points on the zero level set of ¢ towards @;. This is easily
seen, e.g. in 2 dimensions from the method of characteristics in polar coordinates. If
@o(r,8,0) = @o(r,f) is given, with the origin of the coordinate system shifted to the point
z;, then (r,0,t) = @o(r + t,6), so all level sets compress to the origin.

From this point of view, one might neglect the curvature term in (10) and simplify

(10) and (17) further to

o} -
(19) 5;8 — C(P)Vd Ve — C(_Q)EVdi Vi =10

where ¢(p) and ¢(_,) are nonnegative, adding up to one, and the sum % is taken over 4 for
which ¢(z;) # 0. This will attract [’ towards S. We have, however, found generally better

results with our slightly more complicated algorithm, especially in 3D.

2 ‘We again thank Ronald Fedkiw for this helpful observation and several relevant

discussions.

15



There are a few interesting variations to this flow. One obvious modification is to
weight each z; according to some measure of uncertainty. Another, quite intriguing mod-
ification is to change our initialization strategy. Namely, we start with a small membrane
inside the data points and let it grow with the flow defined in (17). Other variations are
possible and easy to implement because of the flexibility of our level set formulation. We
could use several membranes, some small, some large, etc. We can also add elastic energy

as a recularizer. i.e. add ef2)V - 2% . with e(z) > 0 chosen as needed to remove noise,
g ; Vel

If we start with a poor initial guess and use the flow defined by (16), the point of T’
closest to § will be most attracted, while the distant points will be affected the least. The
properties of Ef}’ ) exactly complement this. We recommend taking some combination of
these two energies, We have used the following procedure in this work. First we minimize
Eép } which leads us to the flow defined by (10). We flow to steady state, which occurs
when the norm of the difference in ¢ in succeeding time step is small enough. If at steady
state Y |@(z;)| is small, i.e. every point in S is close to I, we are finished. Otherwise, we

have a good initial guess which we use to minimize Eé_q) via the flow defined by (16).

A fascinating numerical phenomenon we often observe in these experiments is that
when we start using (16), points z; in S which were initially on T, i.e., initially ¢{z;) =0
will leave T, in order to better accomodate points in S which were not initially on T'.
Recall, if a point z ¢ S is on T, it no longer attracts I. At some later stage the membrane
will be attracted back to all the points. Finally, after ¢(z;)} = 0 for all z; ¢ 5, we can run

(10) again to smooth the final surface.

If more data points are added after convergence, or if we need to follow some dynami-
cally changing surface or surfaces, the models handle the situation easily. We have a good

initial guess in both cases.

A very interesting and simple multiscale idea can be used together with our approach.
The resolution of the surface is determined by both the density of points in S (reflected by
the values of d(z) and the underlying grid. For a fixed grid we can cut our computational

cost in the following way. If there are many points in § lying within a given grid cell, we
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rescale the data by using the mass center of the given points with a weight equal to their

number. This lowers the cost without losing resolution.

Additionally, we can build a hierarchical set of grids and find the shape successively
from the coarsest grid. We can easily do adaptive refinement so that each cell only contains

one data points.

We shall report on these multiscale procedures in future work.

3. Nuwmerical Implementation and Results

We use techniques discussed in [ZCMO)] in order to solve (10} and (17). We may

rewrite (10) as

(20) 2 = IVl (@ |

and use a conservative formulation to compute V - (dp(m)%). This potential function
d(z) must be calculated initially, but only once. There are fast algorithms to do this
[Ma, BOS]. For the advection equation (17) we use an upwind ENO or TVD scheme as
discussed in [OSe, OSh]. We also normalize the velocity field in (17), i.e. we replace ¢- Ve
by —l—f’m - V. We also avoid division by zero by replacing di{z) by max(|z — z;|, §), for
0 < § << Az. We reduce the number of terms in the summation in (17) by neglecting

those points which are sufficiently close to T', i.e. replace o{z;) by 0 if |¢(z;)| < tolerance.

We use distance reinitialization and the local level set method, which is described in

[PMOZK], in both cases.

Although we could adapt the time step more carefully, we use At ~ (Az)? in the
EISP ) formulation and At ~ Az in the Eg{,_Q) formulation, since the first leads to a ond
order parabolic PDE and the second a first order hyperbolic PDE. We find that the (Az)?
restriction is not serious since the motion by mean curvature term speeds the convergence
to steady state. We used the slightly smoothed out approximation to §(¢) described in
[SSO] in the computation of d(®),

One other simplification, which we used in the Eép ), formulation is to replace (18) by
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motion by mean curvature for z on T', when d(z) > do, for some preselected positive dy,
then reverting to (18) when d(z) < dy. We thus avoid computing d®) until it becomes

necessary.

In our figures, the dots correspond to the given data set S. The points are neither
evenly spaced, nor are they on the grid. The continuous lines or surfaces are the zero level
sets of , i.e. they represent I'(t). The quantities p and ¢ are the numbers used in E;p )
and Eé—Q) respectively.

We have seen the same interpolating surface whether we start with a sphere or a
rectangular box enclosing § for the EI(\p ) minimum in figures 2 and 3. In figure 4 we start
with a rectangle and use p = 2 to converge to the simply connected figure which fails to
interpolate some of the points. We then use ¢ = 2 to converge to the two circles. In figure
5 we converge at t = 0.36 to an object that misses many of the inner points of S. Then
we flow with ¢ = 2 to steady state at ¢ = .46. Finally we smooth the result using p =2. It
converges at t = .55 to a pleasing interpolant. Figure 6 is treated similarly. In the upper
left corner we display contours of d(z). We use p = 2, converge to the approximate convex
hull at ¢ = .225. Then we use ¢ = 2 and arrive at our interpolant at ¢ = .575. Finally we
use p = 2 and smooth with success. Tt is amusing to see the effect of the (—g) flow — the

curve I' leaves § completely at t = .325, then returns.

Our 3 dimensional results in figures 7,8 and 9 use only El(}’ ) for p = 2. Remarkably,
we handle all these topological changes with ease, and with sparse data points. Figure
7 was initialized with a rectangular box. The number of data points was 300. For the
interlinked tori in figure 8, we initialized with a sphere (not shown) and there are 500
data points. In figure 9, the initial sphere converges to the four separate balls. In this
example we continue past convergence (which occurred at /&~ 1500 iterations) and the result

is unchanged at 4,000 iterations.

In Figure 10, a section of a pipe with 1200 data points is interpolated with a box
as initial guess. First we use p = 2 and converge after 500 iterations to an approximate

convex hull. Since w(x;) # 0 for many points, we then proceed 100 iterations with ¢ = 2
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to convergence. Finally we smooth with 100 iterations for p = 2.

Figure 11, a box with a hole in the shape of a hemisphere is to be interpolated. We
have 700 data points and initialize with a box. Using p = 2, after 100 iterations we obtain
the approximate convex hull. We then finish interpolating with 100 iterations and ¢ = 2.

Finally we smooth with 50 iterations and p = 2.

Figure 12 has the same set of data points as figure 11. We begin with a small sphere
lying within 5. We then use only the ¢ formulation, with ¢ = 2, and converge in 100

iterations to remarkably good interpolant.

Figure 13 has 600 data points on a torus. We again begin with a small sphere, this time
lying completely within the hole. We then converge to steady state with the ¢ formulation
for ¢ = 2. This time we do not quite succeed in removing the hole in the torus. Then we

apply 100 iterations of the p flow, for p = 2, with success.

Figure 14 shows that interpolation of a graph can be treated as a special case in our
formulation, 1.e. by deforming a plane. Here we have 50 x 50 points (evenly spaced in the
(2z,y) cordinates). In this calculation the advection equation (12) with a small curvature

regularization is used.

Figure 15 is an interpolation of two cones balanced on top of each other. In this
example, the initial data set contains a point {the common vertex), curves (ten circles on

each cone)}, and two discs (bottoms of the cones).

Figure 16 is an interpolation of a sphere where ten parallel circles on the sphere were

prescribed.

Figure 17 shows the (trivial to implement) Boolean operations of a ball and a box.

4. Conclusion

A deformable surface model is used to construct a surface (curve in 2D) which inter-
polates a given (rather sparse) set of data points, curves and surface pieces. Our method

1s based on an implicit representation using a fixed Cartesian grid. The level set method
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is used, motivated by variational formulations.

Our method does not need any information about the ordering of the data set and gives
a nonparametric representation in fixed grid, as mentioned above. It uses an extremely
simple data structure and handles complicated topologies easily. The data set may be of

arbitrary codimension.

We use the fast local level set method of [PMOZK] to find the final shape, which is
implicitly represented as the zero value of the signed distance to the shape. The smoothness
of the final shape is confrolled by the elastic energy, which tends to lower the surface area.
This regularization can also be used to remove noise. Uncertainty in the data can be
reflected by assigning different values at different points in the energy functional. Other
information and constraints such as given values of the unit normal, fixing the volume of

a component, even the location of a triple junction etc. can be easily added.

After we converge to the level set representation of the shape, we can add new data
point easily. Moreover, dynamic motion of the points, as in the motion of a slightly
deformable solid object in a gas, can also be easily handled. We have a good initial guess

at each time step, namely the interpolation surface I' through S at the previous time step.

We can easily compute approximations to all geometric quantities such as curvature,
normal, surface area, enclosed volume, numbers of connected components, location of

closest point on I' to a given point z, etc.

The formulation can easily be extended to higher dimensional data analysis. A more

efficient algorithm can be implemented via a multigrid or multiresolution strategy.

Finally, a simple, local postprocessing, as described in the introduction, can be used

to smooth the final result.
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Appendix

In this section we shall prove Lemmas 2,3,4 and Theorem 1. We will also discuss

relevant geometric issues.

In two dimensions, polygons composed of straight lines connecting data points form a
local equilibrium for EI(‘P ). In the neighborhood of a point z;, d = |z — 2;| and Vd points

along the line from z; to z. It is easy to see from figure 1 that

Ny

Vd- -V + dV
4 Vel

= 0.

The angle & between two line segments is determined by the neighbors of z; in §.

Now we shall show that this polygon is actually a local minimum of E(p ). We have
two simple observations (1) Any curve that passes through z; can not have less energy than
two straight line segments passing through a:z (see figure 17). (ii) Any two line segments
meeting at x; have the same energy. We shall show that if the curve is deformed a bit from
z;, then the energy will increase. As in figure 18 and 19 we deform T’ to I. We denote the
weighted length of T' by Iy, and II;. (By symmetry, we need consider only the right hand
part of each line). We have

A +1
. /t e 11 (cot)”
0 .

r+1
¥
Il :f sPds.
ecot%
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The weighted length of the shifted line segment is

Y, ¢
IIIL:/ des:/ (5% + €%) 3 ds
ecot% ecot%
nd

—In+ | SP((HE;)%—}L)CJS

ecots

> I, +c(6,6)e® if p> 1
> 11 + c(L, 9)621?”6 if p=1.

Where 0 < ¢ depends only on £ and 6.

We see that if p > 1, the slightly perturbed line segment has larger energy than the

unperturbed segment. Thus, we have proven Lemmas 2, 3 and Theoremn 1.

Next, we consider the idealized case when S is the complete set of curves (or surfaces
in R*) which we wish to interpolate. Then d(z) is the exact distance function (unsigned)
to S. Since the points on I'(#) which are furthest from S move most quickly, we expect
that I'(¢) will move so as to line up with the level contours of d(z). It is possible, for
example, if S is not simply connected, that the energy Efp ) can have a local extrema off of
S, i.e. for I" aligned with a nonzero level contour S. One such example occurs whenever S
consists of two separate closed curves Sy, S or (surfaces in R?*). if I lies on S, its energy

is zero. If we then deform T" from 5 to S; along level contours of d, Er(‘p ) first increases,

then decreases to zero again. Thus it has a local maximum somewhere.

Let T'(d) be a level contour of d and L(d) be its length (or surface area). Then
EP(T(d)) = ( / dPds)¥ = dL7(d),
Ty
Let F(d) = dL%(d). Then F(0) = 0 is a minimum and
' i d 14 !
F'(d) = Lv»(d)+ —L¥— (d)L'{d).
p

An interesting question is whether there is an isolated local minimum of F(d) near

d = 0. We shall carry out our argument by assuming 0 < d is the signed distance function

to 5. The argument for I" lying within 9, i.e. when the signed distance function is negative,

is similar.
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Suppose S = I'(0) is C? and, |K| is the maximum of the norm of curvature along

S. If d|Kw| < 1 and I'(d) is a C? diffeomorphism, we have

(21} L{d) = jf ds = j[ (1 +dK)ds
T{d) T'¢0)
SO
L'(d) = Kds
{d)
and

F'(dy=L+ ML + ;—fL’(d))

1 4 i -
% (/ma +d(1+ K ))

Lyt ( (1—d(1+ l)|K|)>
N )] P

Y

> Ly~ /(1 —2diK|) > 0.

We thus have Lemma 4.
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Interpolation of a Torus, R = 0.25, r = 0.06
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Interpolation of Two Linked Tori, B = 0.24, r = 0.05
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Interpolation of Four Separate Spheres, r = 0.12,0.12,0.1,0.08
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Interpolation of a pipe, R=035 r=02, h =103
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Interpolation of a box with a rounded cave starting from a big box
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Interpolation of a box with a rounded cave starting from a sphere inside
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Interpolation of One Torus from a Small Sphere Inside R = 0.25,r = 0.1
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Interpolation the Graph of Peaks
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Interpolation of Two Cones, r = h = 0.25
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Interpolation of One Sphere From Circles, r = 0.3
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Boolean Operation of a Ball and a Box
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