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AN AGGLOMERATION MULTIGRID METHOD FOR
UNSTRUCTURED GRIDS

TONY F. CHAN, JINCHAO XU, AND LUDMIL ZIKATANOV

ABSTRACT. A new agglomeration multigrid method is proposed in this pa-
per for general unstructured grids. By a proper local agglomeration of finite
elements, a nested sequence of finite dimensional subspaces are obtained by
taking appropriate linear combinations of the basis functions from previous
level of space. Our algorithm seems to be able to solve, for example, the Pois-
son equation discretized on any shape-regular finite element grids with nearly
optimal complexity.

1. INTRODUCTION

In this paper, we discuss a multilevel method applied to problems on general
unstructured grids. We will describe an approach for designing a multilevel method
for the solution of large systems of linear algebraic equations, arising from finite
element discretizations on unstructured grids. Our interest will be focused on the
performance of an agglomeration multigrid method for unstructured grids.

One approach of constructing coarse spaces is based on generating node-nested
coarse grids, which are created by selecting subsets of a vertex set, retriangulating
the subset, and using piecewise linear interpolation between the grids (see [8, 5]).
This still provides an automatic way of generating coarse grids and faster implemen-
tations of the interpolation in O(n) time. The drawback is that in three dimensions,
retetrahedralization can be problematic.

Another effective coarsening strategy has been proposed by Bank and Xu [1l. It
uses the geometrical coordinates of the fine grid and the derefinement algorithim is
based on the specified patterns of fine grid elements. The interpolation between
grids is done by interpolating each fine grid node using only 2 coarse grid nodes.
As a consequence of that the fill-in in the coarse grid matrices is reasonably small.
The hierarchy of spaces is defined by interpolating the basis.

Recently a new approach, known as auxiliary space method, was proposed by
Xu [16]. In this method only one non-nested (auxiliary) grid is created and then all
consecutive grids are nested. This can be done by using as auxiliary grid a uniform
one and interpolating the values from the original grid there. For a uniform grid
then, there is a natural hierarchy of coarse grids and spaces. Such a procedure leads
to optimal multigrid methods in some applications.
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Onc promising new coarsening techniques is based on the agglomeration tech-
nique (see Koobus, Lallemand and Dervieux [11]). Instead of constructing a proper
coarse grid, neighboring fine grid elements are agglomerated together to form
macroelements. Since these agglomerated regions are not standard finite elements,
appropriate basis functions and interpolation operators must be constructed on
them. An algebraic construction of agglomerated coarse grid spaces has been in-
vestigated by Vangk, Mandel, and Brezina [6] and Vanék, Kiikova [7]. Their
approach uses a simple initial interpolation matrix, which might not be stable, and
then this matrix is smoothed and stabilized by some basic relaxation schemes, e.g.
Jacobi method.

The pure algebraic definition of the coarse spaces has the advantage that there
is no need to use any geometrical information of the grid or of the shape of the grid
and the kind of finite elements used. We refer to a paper by Ruge and Stuben [13]
on algebraic multigrid. Recent developments in this divection have been made by
Braess [2] and Reusken [12]. The main issue in using pure “black-box” algebraic
derefinement is that the coarse grid operators usually become denser and it is not
clear how to control their sparsity except in some special cases.

Another approach in the definition of coarse spaces, known as composite finite
clement method was recently investigated by Hackbusch and Sauter in [10]. This
method gives coarse space constructions which result in only few degrees of freedom
on the coarse grid, and yet can be applied to problems with complicated geometries.

In this paper, we will consider a new and rather simple technique for defining
nested coarse spaces and the corresponding interpolation operators. Our earlier
experience shows that the definition of the sparsity pattern of the transfer opera-
tors and the definition of these operators themselves is the most crucial point in
designing multigrid algorithms for elliptic problems. In the present paper we pro-
pose a technique based on the graph-theoretical approach. Our goal is to construct
a “coarse grid” using only the combinatorial (not the geometrical properties) of
the graph of the underlying fine grid. This coarse grid is formed by groups of el-
ements called agglomerated macroelements. Using this approach a macroelement
grid can be constructed for any unstructured finite clement triangulation. We can
implement our algorithm with or without any use of the nodal coordinates. Based
on this macroelement partition, we propose an interpolation technique which uses
only arithmetic average based on clearly determined coarse grid nodes. This leads
to savings in storage and CPU time, when such scheme is implemented. In fact,
to store the interpolation matrix we only need to store integers. Although rather
simple, such type of interpolation leads to a multigrid algorithm with neatly opti-
mal performance. Moreover the algorithm naturally recovers the structure of the
natural coarse grids if the fine grid is obtained by structured refinement. Although
we present only 2D algorithms we believe that it can be extended for 3D problems
ag well.

The rest of the paper is organized as follows. In section 2 we state the differential
problem and briefly comment on the finite element discretization. In section 3
we give the definition of the standard V-cycle preconditioner. In section 4 we
describe in detail the two level coarsening algorithm. In section 4.3 the interpolation
between grids is defined. The multilevel implementation of the algorithm is given in
Section 4.4. The stability and approximation properties are investigated in Section b
under rather mild assumptions on the geometry of the coarse grids, In Section 6
results of several numerical experiments are presented.
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2. A MODEL PROBLEM AND DISCRETIZATION

Let © C TR? be a polygonal domain with boundary I' = I'p UTw, where I'p is
a closed subset of T' with positive measure. We consider the following variational
formulation of elliptic PDE: Find U € Hp(Q) such that

(2.1) a(U,v) = F{v) forall v € HL{),
where
(2.2) a(U,v) = [, a(2)VU - Vodz, Flv) = Jo Flz)vde.

Here H} () as usual denotes the Sobolev space which contains functions which
vanish on I'p with square integrable first derivatives. It is well-known that (2.1)
is uniquely solvable if a(z) is a strictly positive scalar function and F is square
integrable,

We consider a finite element space of continuous piecewise linear functions My C
H}L(Q) defined on a triangulation T of §2. Then the corresponding finite element
discretization of (2.2) is: Find up € My such that

(2.3) alup,vp) = F(vp) for all vp € My.
The discretization results in a linear system of equations:

where A is a symmetric and positive definite matrix, f is the right hand side and
the nodal values of the discrete solution up will be obtained in the vector u after
solving the system (2.4).

3. MULTIGRID METHOD

In this section, we introduce the notation related to the multigrid method, and
we define the (1-1} V-cycle preconditioner.
Let us congider the following simple iteration scheme:

(3.1) Wt = ot By(f - Adt) £=1,2,. .,

where By is the V-cycle preconditioner By to be defined. We assume that we
have given a nested sequence of subspaces Mo C ... C My_1 C My = My, with
dim{ My} = nz. We assume that the matrices Ag, k = 0,...J, are stiffness matrices
agsociated with M. We also assume that the interpolafion operators If | and the
smoothing operators Sy are giver.

In our case By will correspond to (1 — 1) V-eycle preconditioner. For given
g € My we define Brg as follows:

Algorithm 3.1. [(1-1) V-cycle |

0. Ifk=0then Bag:A[,'lg
1. Pre-smoothing: ' = Sf g
2. Coarse grid correction:
TP () e — Axa)
2. ¢ = Brad’
3. a?=al+If_ b
3. Post-smoothing: Brg = % + Sk(g — Ak z?).
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The practical definition of such a wreconditioner in the case of unstructured grids
will be our main goal in the next sections, We will define proper interpolation {pro-
longation) operators I, b ofork=1,...,J and the subspace Mj_1 by interpolating
the nodal basis in My. In order to have convergence of the iteration (3.1) inde-
pendent of the mesh parameters, the subspaces have to satisfy certain stability and
approximation properties, namely, that there exists a operator 0 : HY(Q) — My

such that:

{3.2) Mevline < Cllellia
(3.3) []v—Hkag,g < Chl'b‘l;]g, V‘UGEHl(Q).

We will comment on these properties of the agglomerated spaces in § 5. Once the
subspaces are defined, the V-cycle algorithm can be implemented in a straightfor-
ward fashion using as coarse grid matrices, given by Apoy = (I VT AT},

General discussions concerning the convergence of this type of method and ils
implementation can be found in the standard references, e.g. Bramble [3], Hack-
busch [9], Xu [15].

4, AGGLOMERATED MACROELEMENTS

The main approach we will take in the construction of [, I{f—i will be first to define
a coarse grid formed by macroelements (groups of triangles) and then interpolate
locally within each macroelement. In this section, we will present an algorithm for
the definition of the coarse grid consisting of macroelements. We first identify the
set of coarse grid nodes. The interpolation from coarse grid to the fine grid will use
the values at these nodes. As a next step, for a given node on the fine grid we have
to define its ancestors on the coarse grid (i.e. the coarse grid nodes which will be
used in the interpolation). These ancestors are determined by partitioning the fine
grid into agglomerated macroelements (such macroelements can be seen on Fig. 1)
which in some sense are analogue of the finite elements, because they have vertices
which are precisely the coarse grid nodes, and their edges are formed by edges of
the underlying fine grid.

FigUrRe 1. An example of macroelements
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4.1. Some basic graph theory. in this subsection we introduce some basic nota-
tion and definitions. Given a finite element triangulation T} of §2, we consider the
corresponding graph, denoted by G = (V, B}, where V is the set of vertices {grid
nodes) and F is the set of edges {boundaries of the triangles). In this definition, the
concept of vertex and edge happen to be the same for the underlying triangulation
and for the graph corresponding to the stiffness matrix. Associated with the graph
G, we will form our coarse grid on the so called maximal independent set (MIS,
for short) which is a set of vertices having the following two properties: any two
vertices in this set are independent in the sense that they are not connected by an
edge, and the set is mazimal in the sense that an addition of any vertex to the set
will invalidate the aforementioned independent property. The graph distance be-
tween two vertices v,w € V is defined to be the length of the shortest path between
these two vertices, A matching in G is any collection of edges such that no two
edges in this collection share a vertex.

The construction of the macroelements will be based on the dual mesh (graph)
of G defined as follows. Given a triangulation 7j and associated graph G, the dual
graph G = (V', B') of G is:

e Each element T € 7T}, is a vertex in G'.

 Two vertices in ' are connected by an edge if and only if they share an edge

in G, ie. (Th,Ty) € B if and only i 71 00 T, € B (see Fig. 2).

FiGuRE 2. A triangulation and its dual mesh.

49. Two level coarsening algorithm. In this section we describe in detail the
heuristic algorithm for forming a coarse grid macroelements from a given finite
element triangulation.

As a first step we define the set of coarse nodes to be a MIS in G, An MIS is
obtained by a simple “greedy” (locally optimal) algorithm given as follows.
Algorithm 4.1 (MIS).

1. Pick an initial set of vertices ¥ (for example all boundary vertices).

2. Repeat:

(a} Apply a “greedy” algorithm to find MIS in Vo.
(b) Mark all nodes at distance 1 from Vp (here distance is the graph distance).
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(c) Take as Vj all vertices which are at distance 2 from Vp and have not been
explored (marked).

3. until Vy = 0.

4. Complete MIS by applying one step of “greedy” algorithm on V.

To define the macroelements, we use the fact that separating two triangles on
the fine grid and putting them in different groups is equivalent to removing an edge
in the dual graph G'.

We now describe how to form the initial partition of G into groups of elements.

For any coarse grid node k {i.e. k € MIS) we pick the edges in G having this
node as an end. To this set of edges By C E corresponds a set Ej, C I, namely E,
contains exactly all edges between all T' € Ty which have this particular coarse node
as a vertex. As a first step we remove Ej, from E'. Applying this procedure for all
coarse grid nodes results in a subgraph of G, G* = (V*,E*) where V* = V' and
E* = E'\ Uy E}. The connected components in G* will form the initial partition
of © into groups of elements (sce Fig. 3).

FIiGURE 3. Connected components in G*.

We note that there might be some isolated vertices in G* and also some of the
connected components might be considerably large. We first deal with the large
groups {such a group can be seen on Fig. 3 in the right bottom corner of the domain)
and we break them into smaller pieces. We consider a group of elements MCT,
that corresponds to one connected component in G* and denote the set of edges in
M by Epr. We intend to break this group in pieces if there is an “interior” edge
e € Eyyr such that e @M = §. This breakup is done as follows (our considerations
here are restricted only on M C Th):

e From the subgraph formed by all edges e C En such that eN M = @, we
form a matching. On the model grid (see Fig. 3) there is only one such edge
in the whole domain.

o Remove the edges in the dual corresponding to the edges in the matching. In
Pig. 3 this edge in the dual is drawn with thick line {near the right bottom
corner of the domain). The pieces obtained by removing this edge are clearly
seen on Fig. 1).
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The situation with the isolated vertices in G* 1s simpler. We propose two different

ways of dealing with them as follows:

1. Since each isolated triangle {vertex in G*) has as one vertex being a coalse
grid point, the edge opposite to this vertex does not have a coarse grid node as
an end, because our set of coarse grid nodes is a MIS. We group together two
neighbors sharing this edge to form a macroelement. If such edge happens to
be a boundary edge, we leave a single triangle to be a macroelement.

9. We group together all isolated neighbors. 1If such a group does not have
more than 4 coarse grid vertices then we consider it as a new agglomerated
macroelemnent, If it has more than 4 coarse grid vertices we proceed as in the
previous step coupling triangles in this group two by two. In partitioning our
model grid we have used precisely this way of grouping isolated triangles (see
Fig 3, Fig. 1).

T4 is obvious that all triangles from the triangulation are either in a connected
component in G* or are isolated vertices in G*. Thus we have explored all the
triangles and every T € T} is in some macroelement (see Fig. 1),

To summarize we give the following short description of the algorithm for ag-
glomerating elements into macroelements:

Algorithm 4.2 (Coarse grid macroelements).

1. 1dentify coarse grid nodes by finding an MIS.

9. For any coarse node, remove all dual edges surrounding it.

3 Find connected components in the remaining dual graph. These connected

components form most of the agglomerated regions.

4, Breakup “large” macroelements into smaller pieces.

5. Group the remaining triangles into contiguous groups as additional macroele-
ments.

6. The remaining connected components in the dual are called “agglomerated
elements”.

Remark 4.3. Note that this algorithm will give a unique partition in agglomerated
macroelements up to the choice of MIS and the edges in the matchings (if we need
further breakup of large connected components in G*).

We would like to elaborate a little more on the input data needed for the algo-
rithm to work. The input we used was:

1. The grid (i.e. list of elements and correspondence “vertex—element”). From
this correspondence we can easily define G in the usual way: two vertices are
connected by an edge if and only if they share element.

9. The auxiliary graph G’ whose vertices are the elements and the correspon-
dence between edges in G and edges in G,

Note that the algorithm we have described do not need the correspondence between
edges in G and G’ to be (1 - 1) (as it is between the dual and primal graph). The
only fact we used was: for a given edge in G the set of edges n G’ which have to
be removed is uniquely determined. This observation is important and will be used
in the multilevel implementation of the algorithm.

4.3. The definition of coarse subspaces. In the present section we will describe
a simple interpolation technique using the agglomerated macroelements. We also
give a description how a multilevel variant of our derefinement algorithm can be
implemented. With a grid agglomeration obtained as above, we need to define a
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conrse finite element space associated with the macroelements. This is equivalent
to defining the interpolation between My and My..1. The interpolation is defined
in the following way:
o Coarse nodes:
— For the coarse nodes we simply define the interpolation to be the identity.
e Interior nodes:

_ Tor the nodes interior to the macroelements we use the arithmetic aver-
age of the values at coarse grid nodes defining the macroelement. This
situation can be seen in Fig. 4.

s Edge nodes:

— If the fine grid node lies on a macroelement edge, then its value is defined
to be the average of the 2 coarse grid nodes defining the macro-edge {in
Fig. 4 such a node is j1).

— If the fine grid node lies on more than one macro-edge, then its value is
defined to be the simple arithmetic average of all the values corresponding
to the different edges (in Fig. 4 such a node is iz}

As an example we give the interpolated values at fine grid nodes for the grids in
Fig. 4):

J o vaimey ) on(ze,)
IJ—lyh(“""h) = L 5 o

I o va(Ee)tveiTe Y+un(Fry}
If_yu(zg,) = * E 2

Uh(mki)‘l'vh(Ekg)"}"uh($k3)+uh(5k4)+‘vh($k5)
£ .

I yonlei) =
This simple interpolation has the advantage that the matrix corresponding to it

can be stored in the computer memory using only integers. The matrix vector
multiplication is easier to perform and this basis preserves the constant function.

A

3 j1
X k

2 2

FiauRE 4. Example of interpolation. Thick lines mark the
macroelement boundaries.

4.4. Multilevel implementation. A straightforward multilevel implementation
of the coarsening algorithm, can be done by simply retriangulating the set of coarse
grid points and apply the derefinement algorithm to the obtained triangulation.
In this section we will propose another version, which has the advantage that it
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operates only on the graph and does not use nodal coordinates and real numbers
arithmetic.

To apply the algorithm recursively, we need to define the same input data, but
using the coarse grid. We first define the elements (triangles, or triples of vertices)

on the coarse grid in the following way:

o Consider every macroelement as a polygon with m vertices (1, ka, ... , km) in
counter-clockwise ordering (m is the number of coarse grid vertices forming
the macroelement). We triangulate it with m — 2 triangles in the following
way:

1. ¥ m < 3 stop.

2. Form the triangles (k1, ko, k3) and (k1, ks, bm).
3. Remove k; and kp from the polygon, set ki ¢ km and ki ¢ ki for
i=3,..m—1,mem—2 Goto L.

e If a fine grid node lies on more than one macro-edge we form a m-gon with
vertices the coarse grid points surrounding it {see Fig. 4, such a node is ja).
We triangulate this m-gon in the same way as we did in the previous step.
Such a m-gon is shown in Fig. 5 on the right. This triangle corresponds to

node j2 in Fig. 4.
k, k‘

2 kZ

FicUrE 5. The coarse grid elements

The coarse grid configurations corresponding to Fig. 4 are given in Fig. 5. Thus
we define the graph G. = (Vi, Ec) corresponding to the coarse grid to be the
following:

e V.. Vertices are the coarse grid nodes

s E,: Two vertices are connected by an edge if and only if they are In one and
the same triangle.

o V!: Vertices are the triangles we have formeed,

e F': Two triangles are connected by an edge if they share an edge in G..

The issue we have to address here is that in this way we might not get a valid
finite element triangulation. Tt might happened that for some edge in (7, there are
more than 2 triangles adjacent to it. But as we pointed out before we only need
an auxiliary graph G and a correspondence between E. and EY which we have



10 TONY F. CHAN, JINCHAO XU, AND LUDMIL FIKATANOY

F1GURE 6. Coarse grid graph

defined. In Fig. 6 the graph G, for the model finite element grid is plotted. As it
can be seen, we obtained a valid triangulation and in practice this is often the case.
A simple application of the algorithm yields:

If the fine grid is obtained by a successive halving refinernent and if
the MIS on each level coincide the original coarse grid set, then the
macro-elements will coincide exactly with the underlined {nested)
coarse grids.

Remark 4.4, Note that although the multilevel sequence of grids is non-nested the
corresponding finite dimensional spaces are nested, becanse the basis in M.y is
always defined as a linear combination of the fine grid basis via the interpolation. It
is also clear from the definition that the arithmetic average interpolation preserves
the constant function in each macroelement on all levels.

5. ON THE CONVERGENCE

In this section, we briefly discuss the convergence of the aforementioned multi-
grid method. We shall prove a result concerning the stability and approximation
properties of the agglomerated coarse spaces. As a result we can conclude that our
multigrid algorithm converges uniformly if the number of levels is fixed. We are yet
o extend our result to truly multilevel case.

Given a triangulation Tj, and the corresponding linear finite element space My C
HY(Q), let Mg C Mj, be obtained by the agglomeration algorithm described in the
previous section. Let Qr : H'(2) = Mg be the L%-projection. The assumption
we make is for every macroelement G there exists an auxiliary big simplex Kg
of diameter H, containing Gy together with all its neighboring elements from the
fine grid. We also assume that H /h < ¢, for some constant c.

We claim that for every v € H'(Q) the following stability and approximation
properties hold:

(5.1) [[#F75 | B Clivllse
(6.2) v — Quvlloa < CHlplia

I
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We shall give detailed proof of our claim. Our proof is based on an averaged
nodal value interpolation similar to the one described in Scott and Zhang [14].
Given any “coarse node” zy, let Fg be an n — 1 dimensional face from T}, that
contains #x. Let ¢ (2) be the linear function on Fy such that

< v,y >om= vizk) Yv € Pi(Fi).
Now define I : H'(Q) = Mg by
(gv) (zx) =< v, P >o0.R

for each coarse node @y, and the value of Ilgv on all other fine grid nodes are
determined by the prolongation operator. We claim that for any v € H(Q)

(6.3) Tgv|1,0 Cllvll,e
(5.4) H'U_HHU”U,Q Clqlvll,ﬂ-

We shall first prove (5.4). By the extension theorem, we may assume that v €
HI{IR") satisfying

<
<

)y re < Clvlyo
Let now G be a macroelement. By construction we can find an auxiliary big
simplex Ky (with diameter bounded by ¢H) that contains G g together with all its
neighboring elements from the fine grid. Now let us introduce the affine mapping
Kg — K, where K is the standard reference element. Correspondingly we will
have Gy — G, v — 9, and Hyv — 115,
We now consider IL. Tt is easy to see that by trace theorem we have

16 - Tisy ¢ < Cllélly 2 V9 € H'(H)
and by construction 11 is invariant on constant functions, namely ¢ = ¢, for any
¢ € R!. Therefore

1 — ﬁﬁ'“u,c‘; = éierg! |6 + & —T1(d + é)ly &

C jnf (|6 + &l g < Cloly g

IA

By scaling back to Ky we get
H'U - HH'UHO,GH < CH"”‘I,KH-
Summing over all macroelements we have

lv—Ouvlga < Z v~ Tavll5 g
GgCh

S CH2 Z ]‘U]?,KH
KpdGa
CE ol g < CHhlE 0

1A

This proves (5.4)
We shall now prove (5.3). The proof uses the standard scaling argument and
invariance of I1 on Po(K). We have
Mgvhcy, < CHE@0), ¢ = CHE™' inf [0+, 6
» éﬁ 1 3
n_1 - PN f_qa
< OHE it o+l S CHE g
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Consequently
lv — Qavilog < v = Mavloga < CHvi0.
and
|Qaviie < 1Qmv—Tgvlia+ |HavlLe
< ChMiQuv — Uuvlloa + o)) < Clvlia:

By the convergence theory in Bramble, Pasciak, Wang, Xu [4] we use the es-
timates (5.1) and (5.2} to conclude that: the agglomeration multigrid algorithm
converges uniformly with respect to h if the number of levels is fized.

6. NUMERICAL EXAMPLES

We consider the Laplace equation:

—~Au=1, {z,1eQC R?,
(6.1)

u(z,y) =0, (z,y) €0

FiourE 7. Macroelements for one element atrfoil: level= b Np =
12665 level= 4 N} = 3404; level= 3 Njj = 928; level= 2 N
957; level= 1 N§j = 74; level= 0 N} = 24,

In these examples we use the standard V-cycle preconditioner and the outer
acceleration is done by the conjugate gradient method. In the V-cycle we use 1-pre
and 1-post smoothing steps. The smoothing operator is forward GauB-Seidel. The
POG iterations are terminated when the relative residual is less than 107%. We
also present the examples using the variable V-cycle , doubling the smoothing steps
on each level. We are interested in checking numerically the convergence of PCG
preconditioned with V-cycle based on the simple interpolation we derived.
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I}

FiouRE 8 Macroelements for four element airfoil: level= b Ny
12850; level= 4 N} = 3444; level= 3 NE = 949; level= 2 NE
270; level= 1 N§ = 80; level= 0 N§ = 26.

il

Tn Figures 7-8, we plot the macroelements for different unstructured grids and
different nuraber of levels to illustrate the coarsening algorithm. These fine grids
are obtained by Delaunay triangulation of randomly placed point sets. They are
not obtained by any refinement procedure. Figure 9 shows the convergence histories
for a varying number of unknowns on two types of grids. One of these (one-clement
airfoil) has one internal boundary, the other one has four internal boundaries.

As interpolation, we use the one described in § 4.3. The numerical experiments
suggest that for isotropic problems (such as Laplace equation), the convergence of
the variable V-cycle seems to be uniform with respect to the mesh size h.
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Figurs 9. Convergence history and average reduction per itera-
tion for varying number of unknowns, V-cycle
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FigUrE 10. Convergence history and average reduction per itera-
tion for varying number of unknowns, variable V-cycle
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