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Abstract

The level set method was devised in 1987 by S. Osher and J.A. Sethian [OSe]
as a versatile and useful tool for analyzing the motion of fronts. It has proven
to be phenomenally successful as both a theoretical and computational device.

In this paper we review its properties, discuss the advances in level set
technology since the original paper, highlight some of the application areas,
and present a new application to the modeling of epitaxial growth of thin ﬁlm
semiconductor devices (see also [Ca, Me, CGMORVZ]).

1 Introduction

The idea behind the level set method is a simple one. Given an interface I' in R»
of co-dimension one, bounding a (perhaps multiply connected) open region 2, we
wish to analyze and compute its subsequent motion under a velocity field ¢¥. This
velocity can depend on position, time, the geometry of the interface (its normal,
mean curvature...) and the external physics. The idea, as devised in 1987 by S.
Osher and J.A. Sethian, is merely to define a smooth (at least Lipschitz continuous)
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function @(z,t), that represents the interface as the set where p(z,t) = 0. Here
z=(Zg,...,2L,) € B™
The level set function ¢ has the following properties

plz,t) > 0 forze
o(z,t) < 0 forz £0
o(z,t) = 0 for z e 00 =T(t)

Thus, the interface is to be captured for all later time, by merely locating the set
T'(t) for which ¢ vanishes. This deceptively trivial statement is of great significance
for numerical computation, primarily because topological changes such as breaking
and merging are well defined and performed “without emotional involvement”.

The motion is analyzed by convecting the ¢ values (levels) with the velocity field
7. This elementary equation is

dyp
ot

Here 7 is the desired velocity on the interface, and is arbitrary elsewhere.

7 Ve =0. | (1)

Actually, only the normal component of v is needed: v, = v %, so (1) becomes

a
=+ vVl = 0. (2)

In the next section we give simple and computationally fast prescriptions for (1)
reinitializing the function ¢ to be signed distance to T', at least near the boundary
ISSO] (2) smoothly extending the velocity field v, off of the front I' [CMOS] and
(3) solving (2) only locally near the interface I, thus lowering the complexity of this
calculation by an order of magnitude [PMZOK]. This makes the cost of level set
methods competitive with boundary integral methods, in cases when the latter are
applicable [HLOZ)].

We emphasize that all this is easy to implement in the presence of boundary
singularities, topological changes, and in 2 or 3 dimensions. Moreover, in the case
which v, is a function of the direction of the unit normal, as in crystalline motion
[OM], then equation (2) becomes the first order Hamilton-Jacobi equation

Oy Vi
% ¢ Vel (W) 0 ®)

for ¥ = (%) a given function of the normal.
High order accurate, essentially non-oscillatory discretizations to general Hamilton-
Jacobi equations including (3) were obtained in [OSh], see also {0Se,BO].
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Theoretical justification of this method for geometric based motion came through
the theory of viscosity solutions for scalar time dependent partial differential equations
[CGG,ES]. The notion of viscosity solution—which applies to a very wide class of these
equations, including those derived from geometric based motions—enables a user to
have confidence that their computer simulations give accurate, unique solutions. A
particularly interesting result is in [ESS] where motion by mean curvature as defined
by Osher and Sethian in [OSe], is shown to be essentially the same motion as is
obtained from the asymptotics in the phase field reaction diffusion equation. The
motion in the level set method involves no superfluous stiffness as is required in phase
field models. As was proven in [MBO?2], this stiffness due to a singular perturbation
involving a small parameter ¢ will lead to incorrect answers as in {Ko] without the
use of adaptive grids [NPV]. This is unnecessary in order for the level set model to
function.

An interesting variant of the level set method for geometry based motion was
introduced in [MBOI1] as diffusion generated motion, and has now been generalized
to forms known as convolution generated motion or threshold dynamics. This method
splits the reaction diffusion model into two highly simplified steps. For an overview
of this approach, see [RM].

2 The Level Set Dictionary and Technology
We list key terms and advances in technology and define them by their level set
representation.
1. The interface boundary I'(t) is defined by: {zjp(z,t) = 0}. The region €(t)
bounded by I'{t): {z|p(z,t) > 0}.
2. The unit normal 7 to I'(t) is given by

Ve
Vel

n =
3. The mean curvature k is defined by

4. The Dirac delta function concentrated on an interface is:

8()IVeel,
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where &(x) is a one dimensional delta function.
. The characteristic function x of a region (1)
x = H(p)

‘where

H(z) = 1 fz>0
H(z) 0 ifz<0.

i

. The surface (or line) integrai of a quantity p(z,t) over I':
[ #(@8(e)IVplda.

. The volume (or area) integral of p(z,t) over §}

[ pla, D H(e)dz.

. The distance reinitialization procedure:
Let d(z,t), be signed distance of z to the closest point on T The quantity
d(z,t) satisfies |[Vd| = 1, d > 0 in ,d < 0 in ()¢ and is the steady state

solution {as 7 — oo) to

% san(@)(IVH]—1) = 0 @)

ot
’!,b(.’l!,O) = ‘P(:‘r"’t)'
where sgn{z) = 2H(z) — 1 is the signum function.

Note: in recent work [PMOZK] it was found that degeneracies in the initial data
¢ for (4)—such as extreme flatness/steepness (vanishing/infinite dp/dn)-——can
be removed by preconditioning it via:

Wz = ﬂ{lﬁ_
¢ (z, 0) [Veol(z,1)]

Non) = FPodz,0)
P20 = o, 0)

2,[)(:12, 0) = (p(z)($, 0)

Moreover, in order to define d in a band of width e around I', we need only
solve (4) for 7 = 0(e). Thus the computational complexity of this construction
is minimal.



9.

10.

11.

Smooth extension of a quantity, e.g. v, on I off of I'. Let the quantity be
p(z,t). Solve to steady state, 7 — o0

dq Vg _
ot sgn{¢p) (W-Vq) =0
q(:lt,O) = p(m,t).

Again, we need only solve this for 7 = 0(e) in order to extend p to be con-
stant in the direction normal to the interface in a tube of width €. See, e.g.

[PMOZK,CMOS].

Local level set method [PMOZK]. We may solve (2) in a neighborhood of I’ of
width mAgz, where m is typically 5 or 6. Points outside of this neighborhood
need not be updated by this motion. This algorithm works in “o" space —
so no intricate computer science is used. For details see [PMOZK]. Thus this
local method works easily in the presence of topological changes and for the

multi-phase problems described below.

Additionally, this method may be used to compute distance to I', with any or-
der of accuracy, with computational complexity which is of order N, the total
number of points updated. In fact, the same is true for the solution of gen-
eral geometric based motion such as a curvature regularization of a first order
Hamilton-Jacobi equation. In contrast, the fast marching algorithm introduced
in [Se] applies to much more restricted class of equations, those where the speed
function is given & priori and does not change sign. It is also only first order
accurate, with no simple extension to higher order. High accuracy is important
if we are computing a distance function which must have accurate gradients
and second derivatives for the purpose of computing interface normals and cur-
vature. Also, fast marching actually has greater formal complexity (N log N )
than the above PDE based method, though in actual implementation it can be
faster—especially for problems where the propagation speed varies by orders of
magnitude over the domain.

Coupling to external physics in two-phase Navier-Stokes flow: iSSO,CHMO]
U, = —u-Vu-————+g+—V-( (5
* PR AP )
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13.

where @ = (u,v) is the fluid velocity, p = p(y) and p = p(p) are the piece-
wise constant fluid densities and viscosities, D is the viscous stress tensor, g is
the gravitational force, k is the curvature of the interface, H is the Heaviside
function and R,; Bd, ﬁ;, and ﬁ-; are the parameters defining a given flow.

This equation is coupled to the front motion through the level set evolution
equation (1) with ¥ = @. This involves defining the interface numerically as
having the width of the approximation to the jump in the approximate Heaviside
function, which is approximately 3Az in [SSO].

Coupling to the external physics in Stefan problems [CMOS]. Solve:

oT 2 —
= = Y;TT, z £ON=T(t) (7)
v, = [—6}:11 zeI(1)

where {-] denotes the jump across the boundary, and

T = —&.k(1 — Acos(k a8 + 0p)) + E,0,(1 — Acos(ksf + o))
on I'(t), and where k is the curvature, § = cos—1 i—é"%l, and the constants
A, ky, @0, &, and &, depend upon the material being modeled.
We directly discretize the boundary conditions at T': To update T" at grid nodes
near the boundary, if the stencil for the heat equation would cross I’ (as indicated
by nodal sign change in ¢), we merely use dimension by dimension one sided
interpolation and the given boundary T value at a ghost node placed at ¢ =0
(found by interpolation on @) to compute T, and or Ty, (never interpolating
across the interface) rather than the usual three point central stencils. The level
set function ¢ is updated, after reinitialization to be distance, by (1), using the
extension off the interface of v, as defined in (7).

Multi-phase flow using exactly as many level set functions as there are phases,
with applications to drops and bubbles [{ZCMO,ZMOW]; a variational level set
approach.

Define an energy function involving the area (length) of each interface, the
volume (area) of each phase (using 6(w;), H(y;)). Apply gradient descent to
this energy using time as the descent variable. Enforce a no-vacuum, no-overlap
constraint: This leads to slightly coupled system of geometrically driven motion
perturbed by the constraints {ZCMO]. Additional constraints such as volume
preservation may also be enforced in order to compute falling drops and bubble
motion [ZMOW)]. Finally, inertial forces are added in [KMOS].
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14. Topological regularization of ill posed problems with applications to vortex mo-

15.

tion in incompressible flow.

In [HOS] we computed two and three dimensional unstable vortex motion with-
out regularization other than that in the discrete approximation to é{(p) — this
is done over a few grid points. The key observation, first made in [HO] is that
viewing a curve or surface as the Jevel set of a function, and then evolving it
with a perhaps unstable velocity field, prevents certain types of blow up from
occuring. This is denoted “topological regularization”. For example a tracked
curve can develop a figure 8 pattern, but a level set captured carve will pinchoft
and stabilize before this happens. For the set up {involving two functions), see
[HO], where we perform calculations involving the Cauchy-Riemann equations.
The motions agree until pinchoff, when the topological stabilization develops.

As an example, we consider the two dimensional incompressible Euler equations,
which may be written as

wt—i-ﬁ-Vu) = 0
V xi
V- = 0

We are interested in situations in which the vorticity is initially concentrated
on a set characterized by the level set function ¢ as follows

Vortex patch: w = H(p)
Vortex sheet: w = &(¢) (strength of sheet is I—V’Lﬂ)
Vortex sheet dipole: w = f-{;S(go) = 6'(¢p).

The key observation is that ¢ also satisfies (8) and w can be recovered from (8).
For example, for the vortex sheet case we solve
o +8-Vo = 0

7 = ( 8:1:y) A-16(¢).
Off the shelf Laplace solvers may be used. See [HOS] for results involving two

and three dimensional fiows.

The Wulff shape as the asymptotic limit of a growing crystalline interface [OM].

For an initial state consisting of any number of growing crystals in R”, n arbi-
trary, moving outward with normal velocity ¥ > 0 which depends on the angle
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of the unit normal, the asymptotic growth shape is a Wulff crystal, appropri-
ately scaled in time. This shape minimizes the surface energy, i.e. the surface
integral of 7, for a given volume. The proof uses the level set idea and then
analyzes the solution to (3) using the Hopf-Bellman formulas [BE]. This result
was first conjectured by Gross in (1918) [Gr].

Additionally, with the help of the Brunn-Minkowski inequality, we show that if
we evolve a convex surface under the motion described in (3), that the ratio to
be minimized monotonically decreases to its minimum as time increases. Thus
there is a new link between this hyperbolic surface evolution and this (generally
nonconvex) energy minimization.

16. Other applications of the level set method include Hele-Shaw flow (slow flow
through porous media) [HLOZ], generalized interpolation of curves and sur-
faces [ZOMK], the construction of (Wulff) minimal surfaces [CMO]}, generalized
ray tracing [FEQ], computer vision [CCCD], computer aided design [KB], and
combustion {ABS].

3 The Island Dynamics Model for Epitaxial Growth

We have developed a new continuum model for the epitaxial growth of thin films
[Ca,Me,CGMORVZ]. Since our model describes hundreds of moving and merging
interfaces, the level set method is essential for practical calculation. Here we will
briefly outline the model and the novel level set techniques for the computations. We
also show representative numerical results.

3.1 Epitaxial Growth

Molecular Beam Epitaxy (MBE) is is a method for growing extremely thin films of
material. The essential aspects of this growth process are as follows: under vacuum
conditions a flux of atoms is deposited on a substrate material, typically at a rate
that grows one atomic monolayer every several seconds. When deposition flux atoms
hit the surface, they bond weakly rather than bounce off. These surface “adatoms”
are relatively free to hop from lattice site to site on a flat (atomic) planar surface.
However, when they hop to a site at which there are neighbors at the same level, they
form additional bonds which hold them in place. This bonding could occur at the
“step edge” of a partially formed atomic monolayer, which contributes the growth of
that monolayer. Or, it could occur when two adatoms collide with each other. If the

8



critical cluster size is one, the colliding adatoms nucleate a new partial monolayer
“igland” that will grow by trapping other adatoms at its step edges.

By these means, the deposited atoms become incorporated into the growing thin
film. FEach atomic layer is formed by the nucleation of many isolated monolayer
islands, which then grow in area, merge with nearby islands, and ultimately fill in to
complete the layer. Because the deposition flux is continually raining down on the
entire surface, including the tops of the islands, a new monolayer can start growing
before the previous layer is completely filled. Thus islands can form on top of islands
in a “wedding cake” fashion, and the surface morphology during growth can become
quite complicated.

The process has traditionally been modeled using Kinetic Monte Carlo methods
and Molecular Dynamics methods. These follow the trajectories of adatoms hopping
on the surface, with varying degrees of accuracy. Such direct simulation methods
provide a wealth of insight into the growth process, but they are computationally
expensive. Also, the focus on single atoms makes it difficult to capture the behavior
at the longer lengths scales that are important for the performance of integrated
circuit devices grown via MBE.

For example, Resonant Tunneling Diodes (RTDs) are a very fast switching compo-
nent grown with MBE and used in satellite communications electronics. The active
region in these devices is a thin film on the order of 50 monolayers thick, with a
lateral dimensions of tens of thousands of atoms. The performance characteristics
of the RTD depend extremely sensitively on the thickness, roughness, and general
morphology of this film. For practical device growth, it is important to achieve a
high degree of repeatability and controllability of these film properties. For device
design, it is further important to develop an understanding of how they relate to the
device characteristics.

3.2 The Island Dynamics Model

The Island Dynamics model is a continuum model designed to capture the longer
length scale features that are likely to be important for the analysis and control
of monolayer thin film growth. It is also intended to model the physics relevant to
studying basic issues of surface morphology, such as the effects of noise on growth, the
long time evolution of islands, and the scaling relations ships between surface features
(mean island area, step edge length, etc) in various growth regimes {precoalescence,
coalescence). Refer to the classic work of [BCF] for useful background on the modeling
of the growth of material surfaces.

In the Island Dynamics model, we treat each of the islands present as having a
unit height, but a continuous (step edge) boundary on the surface. This represents
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the idea that the films are atomic monolayers, so that height is discrete, but they
cover relatively large regions on the substrate, so z-y are continuum dimensions. The
adatoms are modeled by a continuous adatorn density function on the surface. This
represents the idea that they are very mobile, and so they effectively occupy a given
site for some fraction of the time, with statistical continuity, rather than discretely.

Thus, the domain for the model is the z-y region originally defined by the sub-
strate, and the fundamental dynamical variables for this model are:

e The island boundary curves I;(2),i=1,2,..., N
¢ The adatom density on the surface p(z,¥,t)

The adatom density p obeys a surface diffusive transport equation, with a source

term for the deposition flux

d

L=V (DVp) +F,
where F' = F(z,y,t) is specified. During most phases of the growth, it is simply
a constant. This equation may also include additional small loss terms reflecting
adatoms lost to the nucleation of new islands, or lost to de-absorption off the surface.
This equation must be supplemented with boundary conditions at the island bound-
aries. In the simplest model of Irreversible Aggregation, the binding of adatoms to
step edges leaves the adatom population totally depleted near island boundaries, and
the boundary condition is

plr =0

More generally, the effects of adatom detachment from boundaries, as well as the
energy barriers present at the boundary, lead to boundary conditions of the form

dp
[Ap + B an} =C

where C is given and [] denotes the local jump across the boundary. In particular,
note that p itself can have a jump across the boundary, even though it satisfies a
diffusive transport equation. This simply reflects that fact that the adatoms on top
of the island are much more likely to incorporate into the step edge than to hop across
it and mix with the adatoms on the lower terrace, and vice versa.

The islands boundaries T'; move with velocities ¢ = v,7, where the normal velocity
v, reflects the island growth. This is determined simply by local conservation of
atoms: the total flux of atoms to the boundary from both sides times the effective
area per atom, a2, must equal the local rate of growth of the boundary, v,:

—

Uy = _0’2{‘; : ﬁ]
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(this assumes there is no particle transport along the boundary; more generally, there
is a contribution from this as well) where § is the surface flux of adatoms to the
island boundary and i is the local outward normal. In general, the net atom flux §
can be expressed in terms of the the diffusive transport, as well as attachment and
detachment probabilities, all of which can be directly related to the parameters of
Kinetic Monte Carlo models. In the special case of Irreversible Aggregation, g is
simply the surface diffusive flux of adatoms

§=—-DVp

To complete the model we include a mechanism for the nucleation of new islands.
If islands nucleate by random binary collisions between adatoms (and if the critical
cluster size is one), we expect the probability that an island is nucleated at a time i,
at a site (z,y), scales like

Pldz, dy,dt] = ep(x,y,t)%dt dz dy.

This model describes nucleation as a site-by-site, time step-by-time step random
process. A simplifying alternative is to assume the nucleation occurs at the continuous
rate obtained by averaging together the probabilistic rates at each site. In this case,
if we let n(¢) denote the total number of islands nucleated prior to time ¢, we have

the deterministic rate equation

dn_< 25
a7

where < - > denotes the spatial average. In this formulation, at each time when n(t)
reaches an new integer value, we nucleate a new island in space. This is carried out
by placing it randomly on the surface with a probability weighted by p?, so that the
effect of random binary collisions is retained.

This basic model also has natural extensions to handle more complex thin film
models. For example, additional continuum equations can be added to model the
dynamics of the density of kink sites on the island boundaries, which is a micro-
structural property that significantly influences the local adatom attachment rates
(see [CGMORVZ]). Also, we can couple this model to equations for the elastic stress
that results from the “lattice mismatch” between the size of the atoms in the growing
layers and the size of the atoms in the substrate.

Conversely, the above model has a particularly interesting extreme simplification.
We can go to the limit where the adatoms are so mobile on the surface (D — oo)
that the adatom density is spatially uniform, p(z,y,t) = p(f). In this case, the loss
of adatoms due to the absorbing boundaries is assumed to take on a limiting form
proportional to the adatom density and the total length L of all the island boundaries,
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which can be written as a simple sink term

dp

i F—ALp.

(This equation can be derived systematicaly from the conservation law for the to-
‘tal number of adatoms, [ p, that follows from the adatom diffusion equation. The
above loss term is just a simplified model for the net loss of adatoms to the island
boundaries.) Further, it is assumed the velocity takes on a given normal dependent
limiting form, v, = v, (%) (which implies that growing islands will rapidly assume
the associated “Wulff shape” for this function v, (@) (as in {OM])). We have used
this “Uniform Density” model to prototype the numerical methods, and to develop
an understanding of how the island dynamics models are related to the continuum
“rate equation” models that describe island size distribution evolution while using no
information at all about the spatial interactions of the islands.

3.3 Level Set Methods for Island Dynamics

Much of the above model is formally a Stefan problem and many of the level set
techniques required for this were developed in {[CMOS] and can similarly be applied
here. For example, the internal boundary condition discretization of the adatom
diffusion equation, and the the procedure for extending the interface velocity v, to a
velocity defined on all of space. Here we will only highlight the aspects of the level
set method were newly developed for the island dynamics model.

Representation Islands can only merge if they are part of the same monolayer,
and the islands on monolayer 5 must be on top of a larger island in monolayer j — 1.
Since there is no overhang at step edges, it is also true that the boundaries of islands
on different layers 7, k will never cross. We can capture all this behavior conveniently
in a level set representation by letting the ¢ = 0 level represent the island boundaries
of the first monolayer, the ¢ = 1 level represent the island boundaries of the second
monolayer, and in general the ¢ = j — 1 level represent the boundaries of islands
in the jth monolayer, where ¢ is a smooth function (The 2 level case of this was
introduced in [CHMO] to handle immiscible fluids.) In this regard, ¢ is just a smooth
version of the surface height function h(z,y), which is integer valued and jumps at
the boundaries [;. Indeed, h = (¢), where (z) denotes the least integer greater
than z. The advantage of computing with ¢ is that its smoothness allows us to
solve the level set advection equation and compute normals, curvature, etc of island
boundaries much more accurately. However, note that there is no longer a simple
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canonical choice for such a smooth ¢. In practice, we simply allow ¢ to evolve from
the trivial initial ¢ = —0.5, through the processes of nucleation an growth. But it is
no longer convenient to reinitialize ¢ during the calculation.

Nucleation Island nucleation is modeled simply by selecting a nucleation site on
the grid, and increasing the ¢ values at this point. (and a few neighboring points) by
+1, which automatically introduces a new ¢ = j level, consisting of the smallest loop
that is representable on the grid. Such an island is born with a small, grid dependent
area, and in order to better conserve the total number of atoms, we include a loss
term in the adatom transport equation proportional to the nucleation rate dn/dt and
the area of this small newly seeded island. This is a small O(dz?) correction to the
ideal equations, for the sake of better discrete conservation of atoms.

Connected Components Gathering statistics in the island dynamics model re-
quires counting the number of islands, and determining their individual areas, bound-
ary lengths, etc. Individual islands are precisely the connected components of the
¢ = 0,1,2,... levels. Thus we require an algorithm for identifying connected com-
ponents of level sets. In contrast, many level set applications never require such
distinctions. :

A practical and fast algorithm can be based on the iterative propagation of an
arbitrary component label on the grid, as follows: the goal is to label every connected
component, and also label each grid point as being in a certain connected component.
Starting from an arbitrary node, it is labeled as being in component 1. At each
iteration, every labeled node passes its label to its neighbors that are (a) unlabeled
and (b) are not separated from it by a é =0,1,2,... boundary. Whenever there are no
such neighbors found for any of the labeled nodes, we select any remaining unlabeled
node and give it the label 2, and continue in this fashion. This process terminates
when all nodes have been labeled. The connected component j simply consists of
all nodes with the label 7, and the total number of connected components N equals
the highest value of the label used. This arbitrary labeling allows us to count and
locate each of the j = 1,2,...,N islands in the domain. Combined with the subgrid
representation of the component boundaries implicit in ¢, we can accurately compute
all the individual island properties without ever having to apply any complicated
decision procedures to locate components.

Penalty Formulation of Internal Boundary Conditions In [CMOS], the inter-
nal boundary conditions for the Stefan problem were implemented in direct fashion,
which was relatively simple in the level set formulation. However, it required the use of
spatial difference stencils for the Laplacian that are one-sided, irregular, and include
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small cut cells (and hence require implicit timestepping to avoid CFL limitations)
near the interface. It is desirable to have an even simpler level-set based method for
Stefan problems that avoids all these complications due to irregular discretization.
To achieve this, we have implemented the plp = 0 condition of the Irreversible
" Aggregation model via a penalty formulation. In order to keep p near zero on I’ we
simply add a strong spatial sink term, proportional to p and concentrated only on T'.
Le., the sink is proportional to a delta function concentrated on I'. Thus the diffusion
equation with internal boundary conditions is replace by the diffusion-sink equation

op

ot
with no added internal boundary conditions. Here ép is a delta function on the
island boundaries, which is represented by the usual level set means ([CHMOY], [SSO}).
K is a large penalty constant, which should scale like D/e, where € is the width
of the smoothed out delta function used in practice. This formulation is similar
to the delta function source term formulations used to treat surface tension forces
(which otherwise would be internal boundary jump conditions on the PDEs) in two-
phase flow, [CHMO], [SSO]. The advantage is that this form can be discretized using
standard stencils, and solved using standard diffusion equation solvers (in particular,
explicit timestepping can be used for the evolution, if we want the simplest possible
implementation).

In the context of Stefan problems, this form can be derived more abstractly by
viewing dynamics of p as a constrained steepest descent on the gradient energy of
p, Elp] = [ D|Vp|?, and then including the constraint pp = 0 into the energy as a
penalty term of the form [ Kp%ér. Using this energy formulation, it is also possible
to conveniently express more general I'-boundary conditions as well, in terms of other
penalties or as changes in D (diffusion barriers, mimicking the physics that yields
such conditions) that are concentrated only the island boundaries.

One nice side effect of this formulation is that if atoms attaching to the boundary
are counted by integrating the local sink term—instead of the local gradient flux of
p—we get this simple asymptotic expression for the boundary velocity

V(DVp) + F — K pép

v, = Kp

on the island boundary. This is a pointwise evaluation rather than the less local
[9p/0n] from the internal boundary condition formulation. Note that p is nearly 0,
but this is balanced by fact that K is very large. In the K — oo limit, the correct
and well-defined v, is obtained.
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3.4 Computational Results

Figure 1 shows the island boundary evolution for the simple Uniform Density model,
i1 the case where the specified normal velocity is isotropic. The figures shows the view
one would have looking directly down at the surface, at coverages (ratio of number
of atoms deposited on the surface to the number of lattice sites on the surface) of
10%, 50% , 100% and 130%. Islands on the first monolayer are shown with solid
line boundaries, while those on the second monolayer have dashed line boundares
and those on the third (one such island is shown in the 130% coverage case) have
dot-dashed line boundaries. These calculations were done on a 128 x 128 numerical
grid.

Figure 2 shows a similar evolution (computed on a 256 x 256 grid), except the
specified normal velocity now has a three-fold anisotropy, which causes the islands
to naturally assume an asymptotically triangular (“Wulff”) shape as they grow. We
emphasize that this shape is not imposed on the growth—it is simply the asymptotic
shape that results from a particular simple normal velocity specification v, (), as
proven in [OM].

These results from the simple Uniform Density model illustrates the ability of our
numerical method to capture the types of growing and merging anisotropic shapes
that are observed in real epitaxial growth conditions. For example, certain metals
grown on certain silicon substrates produce very precise triangular island shapes.

Figure 3 shows results from the Irreversible Aggregation model, using realistic
physical parameters for D, I and the size of the system (D/F = 108, the growth is
on a lattice of 400 x 400 atoms). The island boundaries are shown at coverages of
10% and 50%, and the corresponding adatom density p(z,yo) profiles along a cross
section y = ¥, through the middle of the spatial domain are also show. Note how
the adatom density dips towards zero at island boundaries, as desired in this model.
(Note: it does not vanish exactly due to the penalty formulation of the boundary
condition used here.) The two density plots illustrate how the adatom density is
lower when there are a large amount of step edges on the surface to soak up adatoms.
The calculations were done on a 128 x 128 numerical grid. A total of 56 islands were
nucleated during the growth of one complete layer in this simulation, which implies
that a similar number of merger events took place curing the course of filling in the
layer.

3.5 Conclusion

Our recent results, as illustrated here, demonstrate that the Island Dynamics models
include the desired physical features, and that the level set numerical methods can
effectively solve these models. Together, they provide a promising new framework for
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Figure 1: Island boundaries during growth in the simplified Uniform Density model,
with isotropic normal velocity, at coverages of 10%, 50%, 100% and 130%. Islands on
the first, second and third monolayers are shown with solid, dashed, and dot-dashed

lines, respectively.
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Island boundaries during growth in the simplified Uniform Density model,
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dashing indicates different monolayers. The islands are nucleated circular, but rapidly
assume the triangular Wulff shape associated with their anisotropic velocity v,.
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Figure 3: Island and adatom density evolution in the Irreversible Aggregation model.
The surface is shown at 10% and 50% coverages; associated adatom densities are
shown along the horizontal midline through the domain. Note the much lower mean
density at 50% coverage, due to greater absorption at the many island boundaries.
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doing analysis and control of thin film epitaxial growth.
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